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Improved harmonic suppression efficiency of single-phase APFs
in distorted distribution systems

Samet Biricika,b*, Soydan Redif b, Shafiuzzaman K. Khademc and Malabika Basua

aSchool of Electrical & Electronic Engineering, Dublin Institute of Technology (DIT), Dublin,
Ireland; bDepartment of Electrical & Electronic Engineering, European University of Lefke,

Cyprus, Mersin, 10 Turkey; cDepartment of Civil, Structural & Environmental Engineering, Trinity
College Dublin (TCD), Dublin, Ireland

(Received 1 July 2014; accepted 26 October 2014)

In this study, a control method is proposed to improve the harmonic suppression
efficiency of the single-phase active power filter in a distorted power system to
suppress current harmonics and reactive power. The proposed method uses the self-
tuning filter (STF) algorithm to process single-phase grid voltage in order to provide a
uniform reference grid current, which increases the efficiency of the system. The
results of the simulation study are presented to verify the effectiveness of the proposed
control technique in this study.

Keywords: single-phase active power filter; self-tuning filter; distorted grid voltage;
power quality

1. Introduction

In order to determine the harmonic and reactive components of the load current, several
control methods are proposed in the literature. These methods applied to active power
filters (APFs) play a very important role on the performance and stability of an APF. The
self-tuning filter (STF) was originally developed to estimate the phase angle of pulse
width modulation (PWM) converter outputs (Song, 2000). It was then applied to solve the
control problem of shunt APF in distorted voltage conditions (Ben Habib, Jacquot, &
Saadate, 2003). The STF algorithm was shown to possess important advantages over other
methods in the control of three-phase APFs. Since then much attention has been devoted
to the application of STF to the control of three-phase APFs (Abdusalam, Poure,
Karimia, & Saadatea, 2009; Abdusalam, Poure, & Saadate, 2007, 2008, Adam, Stan, &
Livint, 2012; Ahmed, Madjid, Youcef, & Hamza, 2012; Benaissa, Rabhi, Benkhoris,
Moussi, & Le Claire, 2012; Biricik, Ozerdem, Redif, & Kmail, 2011, 2012, 2013;
Biricik, Redif, Ozerdem, Khadem, & Basu, 2014; Ghadbane, Ghamri, Benchouia, &
Golea, 2012; Ghamri, Benchouia, & Golea, 2012; Gupta, Dubey, & Singh, 2010;
Karimi, Poure, & Saadate, 2008; Mesbahi, Ouari, Abdeslam, Djamah, & Omeiri, 2014;
Ozerdem & Biricik, 2012; Samadaei, Lesan, & Cherati, 2011; Samedaei, Vahedi,
Sheikholeslami, & Lesan, 2010). To date, the STF algorithm has only been adapted to
the three-phase p–q theory and the dq method, referred to here as the STF-based pq theory
(STF-pq) (Abdusalam et al., 2007; Ozerdem & Biricik, 2012) and STF-based dq method

*Corresponding author. Email: samet@biricikelektrik.com

International Journal of Electronics, 2016
Vol. 103, No. 2, 232–246, http://dx.doi.org/10.1080/00207217.2015.1036318
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(STF-dq) (Karimi et al., 2008; Mesbahi et al., 2014), respectively. Abdusalam et al. (2007)
proposed the integration of the STF algorithm with the d–q theory for the control of
hybrid APFs (HAPFs), where a shunt APF was connected in series with a shunt passive
filter. Karimi et al. (2008) also showed how the STF can be used to control a shunt APF
by integrating it with the pq theory, and referred to the resultant system as selective band-
pass filtering. Abdusalam et al. (2008, 2009) applied STF-based control with the p–q
theory for voltage signals and current signals, without the use of low-pass or high-pass
filters. The STF was also used for both voltage and current signals in Abdusalam et al.
(2009) and Adam et al. (2012). Gupta et al. (2010) used the STF-pq under the name of
harmonic tuned filter. Samadaei et al. (2011) also used STF-pq to control shunt APF
connected in series with the shunt passive filter. In Benaissa et al. (2012), the STF-pq
theory is used for the first time, in the control of multi-level shunt APFs. Using this
method the number of filters is reduced in the control system. However, the effectiveness
of the control algorithm is only tested under balanced currents with ideal grid-voltage
conditions. Ghadbane et al. (2012) used the STF-pq theory, where the STF is applied to
the load current only. The STF was first used to extract harmonic currents from load
currents with subsequent application of the p–q theory in Ghamri et al. (2012). In Biricik
et al. (2011), it is shown that the harmonic suppression performance of both the pq and dq
control methods deteriorates in the case of distorted source voltages. The authors propose
applying an STF-pq-based control strategy to improve the harmonic suppression effi-
ciency of an HAPF and solve the problems caused by unbalanced and distorted source
voltages as shown in Biricik et al. (2012).

In Biricik et al. (2014) the STF algorithm is used to manage the distorted and
unbalanced voltage and current. This method eliminates the need for additional low-
pass or high-pass filtering when extracting harmonic components from the fundamental
component. Mesbahi et al. (2014) described the design of a direct power control based on
the STF algorithm in order to control three-phase APF.

Although the STF algorithm has been used in the past for three-phase systems, in this
study, we show how the STF algorithm can be used successfully for the control of the
single-phase APF under weak grid-voltage conditions.

2. Problem statement

The power circuit of the studied APF is a single-phase H-bridge PWM converter having a
dc capacitor, Cdc. The associated control system regulates the voltage, which is sensed by
potential transformer 2 (PT2), on the dc-link capacitor and controls the reference filter
current, i�c , that compensates the current harmonics. The ac side of the voltage source
inverter (VSI) is connected to the common coupling point (PCC) through an inductor, Lc,
and current through the inductor is measured by current transformer 2 (CT2). The non-linear
load, which comprises a resistive RLð Þ and an inductive LLð Þ element, is supplied from a
full-bridge rectifier. The consumed load current by the non-linear load is measured using
CT1. In this study, the control scheme is based on the load and filter current measurements
(Hsu & Wu, 1996; Khadkikar, Chandra, & Singh, 2009; Komurcugil & Kukrer, 2006;
Kunjumuhammed & Mishra, 2006; Mesbahi et al., 2014; Palandöken, Aksoy, & Tümay,
2003; Torrey & Al-Zamel, 1995; Tsang & Chan, 2006), as given in Figure 1.

When the grid voltage is ideal, us is given by

us ¼ Us:sin ωtð Þ; (1)

International Journal of Electronics 233
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where Us is the amplitude of the grid voltage.
It is well known that single-phase, non-linear loads draw a non-sinusoidal current and

can be represented as

iL tð Þ ¼
X1

h¼1
iL;hsin hωtþ�hð Þ ¼ iL;1 sin ωt þ�1ð Þ þ

X1
h¼2

iL;hsin hωt þ�hð Þ; (2)

where h is the harmonic order, �h is the harmonic phase angle and ω is the angular
frequency of the fundamental harmonic. As can be seen in Equation (2), the load current,
iL, consists of a fundamental current, i1, and harmonic currents, i.e.

iL ¼ iL;1 þ
X1

h¼2
iL;h: (3)

The load current, iL; used by the control system is measured by CT2. The main aim of the
APF is to compensate for all harmonic currents, ih; and the reactive current, iq; dynami-
cally. Therefore, the VSI is controlled to generate a compensation current; ic, which is
equal to the harmonics with opposite phase, i.e.

ic ¼ � i3 þ i5 þ i7 þ i9 þ inð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ih

þ iq: (4)

This current is required by the control system for injection into the PCC. The current, ic, is
related to the interfacing inductor voltage, uc, which is controlled by the proposed control
circuit, by

d

dt
ic ¼ us � udc

Lc
; (5)

where udc is the measured voltage on the dc-link capacitor and

uc ¼ us � udc: (6)

Hence, the compensation current, ic, can be obtained thus

Figure 1. Block diagram of the single-phase APF.
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ic ¼ 1

Lc

ð
us � udcð Þdt: (7)

As can be seen, the compensation current ic can be generated in the circuit by controlling
voltages on the inductor terminals. Therefore, the related control circuit should first
calculate the reference grid compensation current; i�s , then the required reference compen-
sation current, i�c ; can be determined by subtracting it from the measured load current,
iL, i.e.

i�c ¼ i�s � iL: (8)

It is evident that the main issue is the determination of the grid reference current, i�s , since
the decision from the control circuit mainly depends on this calculation. For this reason,
the pre-settled dc-link capacitor voltage, u�dc, is subtracted from the actual measured dc-
link capacitor voltage, udc, to obtain instantaneous error, Δudc, as

Δudc ¼ udc � u�dc: (9)

Then this instantaneous error, Δudc, is evaluated using a proportional integral (PI)
regulator to compute the amplitude of the grid current; thus

Is ¼ kpΔudc þ ki

ð
Δudcdt; (10)

where kp and ki are the proportional and integral gains of the dc-link PI regulator, which
is found the usual way. The reference grid current, i�s , can be obtained by multiplying
the magnitude of the grid current, Is, with sin ωtð Þ (unity sine function). Since the grid
current and grid voltage need to be in phase, the generation of the unity sine function
using the measured grid voltage (Us:sin ωtð Þ), is a viable solution, as in Equation (11)
(Komurcugil & Kukrer, 2006; Tsang & Chan, 2006). The unity sine function is given by

us
0 ¼ 1

Us
½Us: sin ωtÞð �; (11)

where Us is the amplitude of the grid voltage.
However, the result in Equation (11) will be difficult to obtain when grid voltages are

distorted, i.e. contain harmonics, as will be shown in Section 4. Under such conditions,
the pure sinusoid in Equation (11) cannot be obtained correctly, causing degradation in the
system performance. As a consequence, it may not be possible to reduce the grid-current
total harmonic distortion (THD) to less than 5%, as specified in IEEE 519-1992.

3. Proposed control method

To date, the STF has only been applied to three-phase APF systems in an effort to combat
the effects of non-ideal grid voltages (Abdusalam et al., 2009; Biricik et al., 2014; Ghamri
et al., 2012; Mesbahi et al., 2014). The STF transfer function is obtained from the
integration of the synchronous reference (Abdusalam et al., 2009), and is defined as
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H sð Þ ¼ Vxy sð Þ
Uxy sð Þ ¼

sþ jω
s2 þ ω2

; (12)

where Vxy sð Þ and Uxy sð Þ are the input and output signals of the STF algorithm, respec-
tively. Using the inverse Laplace transform, it can be shown that the impulse response of
the STF is

h tð Þ ¼ cosωt þ j sin ωt ¼ e jωt: (13)

From this we see that the STF is a filter with complex coefficients, describing a complex
sinusoid. Given a cosine function on one of the inputs and a sine function on the other
input, it adaptively seeks to generate a complex sinusoid. The feedback elements of the
STF give it a degree of freedom in order to adaptively construct the complex sinusoid
while suppressing the effects of any unwanted signals. The STF can also be viewed as a
matched filter, which is ‘matched’ to the linear combination of the in-phase and quad-
rature-phase components of the complex sinusoid. That is, it is an adaptive matched filter
to pure tones separated in phase by 90o. For the three-phase power system, the in-phase
and quadrature-phase components, uα and uβ, respectively, are made available via the
Clark (or Park) transform. These signals are naturally 90o apart in phase, as required by
the STF in order to synthesise the complex sinusoid. Equivalently, the STF adaptively
matches to the linear combination of the two sinusoidal components, uα and uβ, while
suppressing unwanted signals, such as harmonics.

However, in the case of the single-phase system, there is only one sinusoidal input,
and so there is no notion of the in-phase and quadrature-phase components. In order to
successfully apply the STF, there is a requirement for a second signal that is 90o out of
phase with the single-phase input signal. This will allow the STF to generate (or match to)
the complex sinusoid. For example, consider that the single-phase input signal (measured
line voltage) is a sine function, uα tð Þ ¼ sinωt. Then a quadrature-phase component can be
synthesised for the STF by phase-shifting uα tð Þ by 90o, i.e.

uβ tð Þ ¼ sin ωt þ π
2

� �
¼ cosωt: (14)

Note that the signal uβ tð Þ can be obtained, e.g. using the Hilbert transform. Also, note that
in order to have unit magnitude, i.e. H sð Þj j ¼ 0 dB, a constant K is incorporated into
Equation (12), i.e.

H sð Þ ¼ Vxy sð Þ
Uxy sð Þ ¼ K

sþ Kð Þ þ jω

sþ Kð Þ2 þ ω2
: (15)

The undistorted two-phase voltages (�uα; �uβ) can be obtained by processing the distorted
grid voltages (uα; uβ) with the STF algorithm; thus

�uα sð Þ ¼ K

s
uα sð Þ � �uα sð Þ½ � � ω

s
�uβ sð Þ (16)

and
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�uβ sð Þ ¼ K

s
uβ sð Þ � �uβ sð Þ� �þ ω

s
�uα sð Þ: (17)

The obtained �uα can be considered as the filtered grid voltage, i.e.

�us ¼ �uα; (18)

where �uα is obtained by Equation (16). Finally, the correct unity sine function can
be determined by dividing �us with the amplitude of the grid voltage. The amplitude of
the grid voltage may be considered as constant since it is known. However, in this case,
the control method can be affected even by small voltage fluctuations. The most preferred
method is using a peak detector, or by multiplying the measured rms grid voltage withffiffiffi
2

p
. Then the reference grid current, i�s , can be calculated by multiplying the amplitude of

the grid current, Is, with the unity sine function (Hsu & Wu, 1996; Komurcugil & Kukrer,
2006; Palandöken et al., 2003; Tsang & Chan, 2006), i.e.

i�s ¼ Is sin ωtð Þ: (19)

Once the target reference grid current waveform is determined, the reference compensation
current, i�c , can be obtained correctly, as given in Equation (8). Then the compensation current
error, Δic, can be obtained by subtracting i�c from the measured compensation current, ic; thus

Δic ¼ i�c � ic; (20)

where the compensation current error is used to drive the VSI switches (S1, S2, S3 and S4).
The actual compensating current, ic, at the PCC can be controlled by a hysteresis current
controller, which has been widely used for active filter applications because of its simple
structure. The controller aims to keep the controlled current inside a defined region around
the desired reference current by tracing the desired reference current, i�c . The overall
system of the studied topology and proposed control method is given in Figure 2.

4. Design of the proposed single-phase APF circuit parameters

In this subsection, the operation principle and design concept of the proposed single-phase
APF is studied in detail. In particular, we present the design of the proposed converter, the
converter coupling inductances and the dc-link capacitor.

4.1. Determination of the dc-link capacitor voltage (udc)

The purpose of the dc-link capacitor (Cdc) is threefold: (1) to maintain the udc with
minimal ripple in steady state, (2) to serve as an energy storage element to supply the
reactive/harmonic power of the load and (3) to supply the real power difference between
the load and source during the transient period (Khadem, Basu, & Conlon, 2014).
Therefore, the size of Cdc should be selected, and the controller should be designed in
such a way that the APF can compensate for the real power difference, for a short
transient period (typically a number of ms), after which the controller should be able to
adjust the reference current. Thus the rating udc can be maintained at a reference value.
The capacitor voltage rating selection is made according to the peak value of the grid
voltage. In order to transfer the capacitor current to the load, the capacitor voltage must be
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chosen higher than the peak value of the grid voltage; however, it should also be limited
because a high voltage ratio can increase the switching losses on the converter. Moreover,
if the dc-link capacitance is not sufficiently high, the filter inductor current cannot change
smoothly. Also, if the capacitance is greater than is necessary, the dynamic response of the
system reduces. According to Biricik (2013), the minimum voltage ratio of the dc-link
capacitor can be determined as follows:

The maximum dc-link voltage of the single-phase converter can be determined as

udc maxð Þ ¼ 1:5
ffiffiffi
2

p
us: (21)

The minimum voltage ratio of the dc-link capacitor can be determined as follows:

udc minð Þ ¼
ffiffiffi
2

p
us: (22)

Therefore, the required dc-link voltage for the single-phase APF is

u�dc ¼
udc maxð Þ þ udc minð Þ

2
; (23)

where udc minð Þ is the minimum and udc maxð Þ is the maximum dc-link voltage. Finally
Equation (23) can be simplified as

Figure 2. Block diagram of the proposed single-phase APF.
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udc ¼ 1:25
ffiffiffi
2

p
us: (24)

4.2. Design of dc-link capacitance value (Cdc)

The main aim of the dc-link capacitor is to absorb or supply real power demand of the load
during transience (Singh, Singh, & Mitra, 2007). In Benchaita, Saadate, and Salem (1999)
the following method is proposed to determine the dc-link capacitor value:

Cdc ¼ ~p

2πf :udc:Δudc
; (25)

where udc is the voltage across the dc-link capacitor, ~p is the harmonic power to be
generated by the converter and Δudc is acceptable dc voltage ripple. Alternatively, the
method proposed by Chatterjee et al. (1999) can be used to obtain the value of the dc-link
capacitor. This method is based on the maximum active power rating of the load.
Therefore, during the peak power of the load, the maximum energy demanded from the
dc-link capacitor for the worst case in transient behaviour should be calculated. This
energy is given by

Emax ¼ Pmax:20� 10�3J ; (26)

and the minimum dc-link voltage is

Emax ¼ 1

2
Cdcu

2
dc �

1

2
Cdcu

2
dc minð Þ: (27)

Finally, the size of the dc-link capacitor is obtained as follows:

Cdc ¼ 2Pmax:20� 10�3

u2dc 1� udc minð Þ
udc

� �2
� 	 : (28)

The correct method for calculating Cdc largely depends on the condition of operation.
The first method in Equation (25) gives the optimum capacitor value if the maximum
harmonic power is known, and therefore cannot be relied upon when the character-
istics of the load groups are not known well. The second method, as given in
Equation (28), is based on the total active power of the load groups. This method
can be useful when harmonic analysis of the system is not practical, such as when the
load groups are highly variable. For the system under consideration, the first method,
i.e. Equation (25), is adopted, since harmonic analysis of our system can be achieved.

4.3. Design of interfacing inductor (Lc)

In single- or three-phase full-bridge systems, the filter is based on the single- or three-
phase full-bridge topology, and compensates for the harmonic current by way of a
hysteresis (current) controller. In this case, the value of Lc can be calculated as follows
(Khadem et al., 2014):
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Lc ¼ uc 0ð Þ
4hfswmax

¼ udc
4hfswmax

; (29)

where fswmax is the considered maximum switching frequency for the insulated-gate
bipolar transistor of the hysteresis controller and h is the hysteresis band, which is usually
taken as

h ¼ 0:05 to 0:15ð ÞIc: (30)

5. Simulation results

The proposed control method is simulated using MATLAB/Simulink along with the
power system block set for performance verification purposes. Two variable RL (resistive
and inductive)-type non-linear loads (Load 1 and Load 2) are used to observe dynamic
performances of the single-phase APF. The parameter values used in this work are given
in Table 1.

Simulation results have shown that the distorted grid voltage has a THD of 18.5% (see
Figure 4). The THD of the load current (Load 1) is 29.96%, while the rms current is
10.04 A; when both loads (Load 1 and Load 2) are connected to the grid, the THD
increases to 25.54% with an rms current of 17.35 A. The grid voltage and load current
waveforms are shown in Figure 3 (a). In Figure 3 (b), it can be seen that the grid voltage is
not sinusoidal; correspondingly, the two-phase versions, α and β, obtained in Section III,
are also non sinusoidal – see Figure 3 (c). From Figure 3 (d), we can see that, as expected,
the filtered two-phase voltages, (�uα;�uβ), are sinusoidal. The quantity �uα, obtained by way
of Equation (16), is the filtered grid voltage, and is shown in Figure 3 (e) along with the
voltage amplitude, Us: In Figure 3 (f), we can see that the unit amplitude sine function has
been successfully generated. In Figure 3 (g), it is evident that the dc-link capacitor voltage
is maintained, as required during the load change. Finally, the injected converter current
can be seen in Figure 3 (h) and the resulting grid current waveforms are presented in
Figure 3 (j). As a result of this, the THD of the grid current is reduced to 3.77% in the first
load combination (see Figure 5(a)) and it is reduced to 3.57% in the second load
combination (see Figure 5(b)), which meets the IEEE 519-1992 recommended standard.

Table 1. Parameters of the analysed system.

Symbol Quantity Value

uS, f Line to Neutral Volt. & Freq. 240 V, 50 Hz
Zs Grid Impedance 1 mΩ,0.7 mH
Zc Converter Impedance 1 mΩ, 16mH
ZL Load Impedance 1 mΩ,6.8mH
Load 1 Non-Linear Load Res. and Ind. 30 Ω,80 mH
Load 2 Non-Linear Load Res. and Ind. 40 Ω,80 mH
Cdc APF dc Capacitor 800 µf
Udc dc-link reference voltage 425 V
Kp & Ki Proportional & Integral Gain 0.03 & 2.9
K STF Gain 50
Ts Sample Time 25 µS
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(a) (b) (c)

(d) (e) (f)

(g) (h) (j)

Figure 3. (a) Grid voltage, us, and distorted load current, iL; (b) distorted grid voltage, us, (c) α�
and β � axis grid voltages, (uα;uβ); (d) STF output signal (�uα;�uβ); (e) the obtained undistorted
voltage signal, �us, and the magnitude of the source voltage, Us; (f) unity sine function; (g) dc-link
voltage; (h) converter current, ic; and (j) grid voltage, us, and source current, is:

Figure 4. Fast Fourier transform (FFT) analysis (a) grid voltage, (b) load 1, (c) Load 1 and Load 2.

Figure 5. Grid current FFT analysis during operation of (a) load 1, (b) loads 1 and 2.
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6. Real-time control in software-in-the-loop (SIL) configuration

The proposed system and power system have been verified using RT-LAB real-time platform
and associated tools to observe the performance in a real-time environment. RT-LAB
(v10.5.7.344) allows for the distributed tests of complex power systems using the OPAL-
RT (OP5600) platform, which manages the communications between the CPUs, FPGA
architecture and the console PC (from which the global simulation is controlled).
Specifically, the proposed system is realised on a field programmable gate array (FPGA)
architecture using the Xilinx system generator toolbox to demonstrate the performance of the
proposed control method, and results from real-time experimentation are presented in this
section. In particular, the effect of non-ideal supply conditions on the performance of APF is
investigated. The system parameters used in the experiments are given in Table 1. In order to
demonstrate the performance of the proposed control method, the real-time experimental
results are compared with a state-of-the-art technique described in Hsu and Wu (1996),
Khadkikar et al. (2009), Komurcugil and Kukrer (2006), Kunjumuhammed and Mishra
(2006), Palandöken et al. (2003), Torrey and Al-Zamel (1995) and Tsang and Chan (2006).

6.1. Analysis of the state of the art

In this subsection, we first evaluate the performance of the single-phase APF using the
sine multiplication theorem (Hsu & Wu, 1996; Khadkikar et al., 2009; Komurcugil &
Kukrer, 2006; Kunjumuhammed & Mishra, 2006; Palandöken et al., 2003; Torrey & Al-
Zamel, 1995; Tsang & Chan, 2006), under ideal grid-voltage conditions. It is important to
note that the common point of this study is the determination of the grid current, i�s .

However, the method for determining the amplitude of the grid current may differ from
system to system. As can be seen in Figure 6 (a), the grid current is adequately compensated for
using the sinemultiplicationmethod, as reported inHsu andWu (1996), Komurcugil andKukrer
(2006), Palandöken et al. (2003) and Tsang andChan (2006).Moreover, the effect of the reactive
power consumed by the load groups is compensated effectively, as seen in Figure 6 (b).

To show the effects of the non-ideal grid voltage on the performance of the single-phase
APF, voltage distortion is considered, as shown in Figure 6 (c), where channel 4 has a THD
of 10%. The load current waveforms under non-ideal grid-voltage conditions are shown in
Figure 6 (a) – channel 1. As can be seen, the THD of the grid current could not be reduced
sufficiently (see Figures 6 (d) and 7). It is clear that the non-ideal supply condition adversely
affects the behaviour of the APF while using the conventional method. This is mainly
because of the sine function determination method. Note the required reference grid current
and amplitude are determined using the method described in Section 2.

6.2. Analysis of the proposed method

The mentioned negative situation in Section 5.1 is rectified using the STF algorithm for
the single-phase system described in Section 3, and the proposed method is verified
experimentally in this subsection.

As discussed in Section 2, first the grid voltage is converted to the two-phase
coordinate system. In order to obtain these conditions in the single-phase system, the
measured single-phase grid voltage is considered as quantities on theα-axis, and the β-axis
is obtained by π=2 leading to grid voltage. As can be seen in Figure 8 (a), the THD of the
grid current is reduced to around 3%. Figure 8 (b) shows that the grid current is in phase
with the grid voltage. As seen in Figure 9, the THD of the grid current is reduced
considerably.
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Figure 7. Section of the grid current waveform.

(a) (b)

(c) (d)

Figure 6. (a) (CH1) load current, iL; (CH2) compensation current, ic, (CH3) grid current, is, and
(CH4) source voltage, us; (b) grid voltage, us, and grid current, is, under ideal grid-voltage
condition; (c) (CH1) load current, iL; (CH2) compensation current, ic, (CH3) grid current, is, and
(CH4) source voltage, us; (d) grid voltage, us, and grid current, is, under non-ideal grid-voltage
condition.
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7. Conclusion

In this paper, we show a method that uses the STF algorithm for the effective control of
the single-phase APF under the case of non-ideal grid-voltage conditions. The STF
algorithm has been adapted for application to the problem of controlling a single-phase
shunt APF. This was achieved by imposing a π=2 phase shift to the measured grid voltage
in order to obtain a second-phase function. Results reveal that the shunt APF successfully
reduces the grid current harmonics to around 3% for the case of distorted grid voltages,
achieving a THD of 18.5%. The results from real-time experiment verify the effectiveness
of the proposed control technique in this study.

Disclosure statement
No potential conflict of interest was reported by the authors.

(a) (b)

Figure 8. (a) (CH1) load current, iL; (CH2) compensation current, ic, (CH3) grid current, is, and
(CH4) source voltage, us; (b) grid voltage, us, and grid current, is, under ideal grid-voltage
condition.

Figure 9. Section of the grid current waveform.
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