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Tobin NP, Henehan GT, Murphy RP, Atherton JC, Guinan
AF, Kerrigan SW, Cox D, Cahill PA, Cummins PM. Helico-
bacter pylori-induced inhibition of vascular endothelial cell func-
tions: a role for VacA-dependent nitric oxide reduction. Am J
Physiol Heart Circ Physiol 295: H1403-H1413, 2008. First pub-
lished July 25, 2008; doi:10.1152/ajpheart.00240.2008.—
Epidemiological and clinical studies provide compelling support for
a causal relationship between Helicobacter pylori infection and en-
dothelial dysfunction, leading to vascular diseases. However, clear
biochemical evidence for this association is limited. In the present
study, we have conducted a comprehensive investigation of endothe-
lial injury in bovine aortic endothelial cells (BAECs) induced by H.
pylori-conditioned medium (HPCM) prepared from H. pylori 60190
[vacuolating cytotoxin A (Vac™)]. BAECs were treated with either
unconditioned media, HPCM (0-25% vol/vol), or Escherichia coli-
conditioned media for 24 h, and cell functions were monitored. Vac™
HPCM significantly decreased BAEC proliferation, tube formation,
and migration (by up to 44%, 65%, and 28%, respectively). Posttreat-
ment, we also observed sporadic zonnula occludens-1 immunolocal-
ization along the cell-cell border, and increased BAEC permeability to
FD40 Dextran, indicating barrier reduction. These effects were
blocked by S5-nitro-2-(3-phenylpropylamino)benzoic acid (VacA in-
hibitor) and were not observed with conditioned media prepared from
either VacA-deleted H. pylori or E. coli. The cellular mechanism
mediating these events was also considered. Vac* HPCM (but not
Vac™) reduced nitric oxide (NO) by >50%, whereas S-nitroso-N-
acetylpenicillamine, an NO donor, recovered all Vac™ HPCM-
dependent effects on cell functions. We further demonstrated that
laminar shear stress, an endothelial NO synthase/NO stimulus in vivo,
could also recover the Vac™ HPCM-induced decreases in BAEC
functions. This study shows, for the first time, a significant proathero-
genic effect of H. pylori-secreted factors on a range of vascular
endothelial dysfunction markers. Specifically, the VacA-dependent
reduction in endothelial NO is indicated in these events. The athero-
protective impact of laminar shear stress in this context is also evident.

vacuolating cytotoxin A; shear stress

HELICOBACTER PYLORI 1s a gram-negative, spiral-shaped bacte-
rium that colonizes the human gastric epithelium and is the
causative agent in chronic gastritis, peptic ulceration, and
gastric carcinoma (33). In recent years, evidence that chronic
H. pylori infection plays a role in the extra-gastric initiation
and progression of vascular diseases has been mounting (14,
16, 20, 35). Seroepidemiological and eradication studies have
demonstrated a causal relationship between H. pylori infection
and atherosclerosis (3, 16, 31). Elevated levels of homocys-

teine (9), asymmetric dimethylarginine (ADMA) (45), and
serum lipids (25, 39), all independent risk factors for vascular
disease, have also been associated with H. pylori infection.

Various mechanisms have been proposed to account for
the contribution of H. pylori to vascular diseases. Molecular
mimicry, oxidative modifications, bacterium-platelet interac-
tions, and even direct plaque modification, leading to endothe-
lial dysfunction or inflammation, have been proposed (12, 26,
43). With respect to plaque modification, perhaps the most
persuasive single piece of evidence supporting this role was the
identification of H. pylori DNA in atherosclerotic plaques. This
finding was key in pointing to the direct involvement of the
bacterium in this specific pathology (1, 2, 17, 36).

Endothelial dysfunction provides a crucial link by which H.
pylori, and indeed other pathogens, may contribute to
atherogenesis (55, 60). In this regard, a number of in vitro
studies have previously reported H. pylori-dependent endo-
thelial injury by way of reduced angiogenesis (28, 29),
reduced proliferation (29, 37, 52), and elevated apoptosis
(37). H. pylori-dependent elevations in neutrophil recruit-
ment and transendothelial migration have also been reported
(5, 15). Although this evidence points to a role for H. pylori
in endothelial dysfunction in vivo, certain key issues remain
unresolved. Many of these studies are limited to only one
aspect of endothelial dysfunction and frequently lack sub-
stantial mechanistic elaboration with respect to the induction
of cellular injury. Moreover, most studies were carried out
using whole cell aqueous extracts of H. pylori (which may
include unforeseen target protein modifications resulting from
extract preparation) and have not directly examined the specific
contribution of secreted virulence factors (using bacterially
conditioned media, for example). The demonstrated transloca-
tion of the bacterium and its biochemical components from the
gastric mucosa into the systemic circulation (21, 47, 54) is in
agreement with the endothelium exposure to H. pylori-secreted
virulence factors. Thus, at atherosclerotic plaque sites, these
factors may reach sufficiently high levels within the vessel wall
microenvironment (relative to the systemic circulation) to in-
fluence endothelial dysfunction and lesion development.

A model incorporating H. pylori in atherosclerosis must
demonstrate clear biochemical mechanisms whereby the bac-
terium can cause vascular endothelial dysfunction. In the
present study, we have conducted a comprehensive investiga-
tion of endothelial injury in bovine aortic endothelial cells
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(BAECs) in response to treatment with H. pylori-conditioned
medium (HPCM). Our findings show significant effects on
endothelial proliferation, tube formation, migration, and barrier
properties. Moreover, we show for the first time that multiple
aspects of H. pylori-induced endothelial dysfunction can be
attributed to vacuolating cytotoxin A (VacA), a H. pylori-
secreted virulence factor that elicits its effects by modulating
plasma and mitochondrial membrane ion permeability (63) as
well as altering intracellular vesicular trafficking leading to
vacuole formation (57). Finally, the VacA-dependent reduction
in endothelial nitric oxide (NO) is indicated in our model, as is
the atheroprotective influence of laminar shear stress.

MATERIALS AND METHODS

All reagents used in this study were of the highest purity and,
unless otherwise stated, were obtained from Sigma-Aldrich.

Cell Culture

BAECs were obtained from Coriell Cell Repositories (NJ-Cat No.
AG08500). BAECs were routinely grown in RPMI-1640 media sup-
plemented with 10% fetal calf serum and antibiotics (50 U/ml peni-
cillin and 50 pg/ml streptomycin), hereafter referred to as RPMI
complete media. The cells were maintained in a humidified atmo-
sphere of 5% C0O,-95% air at 37°C. For all experiments, cells between
passages 7 and 14 were used.

Bacterial Culture and Conditioned Media Preparation

H. pylori 60190 Vac™ (ATCC No. 49503) and Vac~ (VacA
gene-deleted 60190; John Atherton, University Hospital Nottingham)
strains were innoculated onto pylori agar plates (BioMérieux; Marcy
1'Etoile) and incubated at 37°C under microaerobic conditions for 7
days. Bacterial colonies were scraped off and resuspended in 3 ml
phosphate-buffered saline (PBS). The optical density of the suspen-
sion was determined at 600 nm and adjusted by dilution in PBS to a
final absorbance of 1.0 (corresponding to 5 X 10° bacteria/ml) (26).
Exactly 2.5 ml of bacterial suspension were added to a T25 tissue
culture flask containing 40 ml of RPMI complete media and incubated
at 37°C under microaerobic conditions for 24 h. The conditioned
media was then sterile filtered using a 0.2 pm filter to yield HPCM.
Dilutions of HPCM in RPMI complete media were routinely
prepared for individual experiments (i.e., undiluted HPCM =
100% vol/vol; 1:2 dilution = 50% vol/vol; control = 0% vol/vol,
etc.). Conditioned media using Escherichia coli (strain BL21) was
also prepared, sterile filtered, and diluted in RPMI complete media
in a similar manner to HPCM for inclusion as a gram-negative
bacterial control in specific experiments (0.01-0.1% vol/vol).
Most experiments involved the treatment of static (unsheared)
BAECs with either RPMI or bacterium-conditioned media, after
which changes in cell proliferation, migration, tube formation, and
barrier function were monitored. For inhibition studies, 10 wg/ml jack
bean urease (15), 100 pM 5-nitro-2-(3-phenylpropylamino)benzoic
acid (NPPB; a VacA inhibitor) (63), and 1 mM N®-nitro-L-arginine
methyl ester [L-NAME; an endothelial NO synthase (eNOS) inhibitor]
were included in media when required. The NO donor S-nitroso-N-
acetyl-penicillamine (SNAP) was also employed for specific studies
(proliferation, 0.25 pM; tube formation, 5 wM; migration, 1 wM; and
permeability/immunocytochemistry, 1 wM). Bradford assay was used
for protein measurement with BSA as standard (4).

BAEC Proliferation

Flow cytometry (Becton Dickinson FACSCaliber) was routinely
used to monitor BAEC proliferation (and apoptosis). Cells were
seeded into six-well plates (2 X 10* cells/well) and allowed to grow
for 24 h. The cells were then washed once with Hanks’ balanced salt

Helicobacter pylori AND ENDOTHELIAL DYSFUNCTION

solution before 1 ml of 5 WM carboxy-fluorescein diacetate succin-
imidyl ester (CFDA; prepared in Hanks’) was added to each well for
15 min at 37°C. Following incubation, CFDA was replaced with fresh
media and cells were allowed to recover for 12 h before overnight
quiescence. The cells were then treated with HPCM (0-25%; 2
ml/well), harvested every 24 h for up to 5 days by trypsinization/
centrifugation, and washed twice with 1 ml ice-cold PBS (containing
0.1% BSA) before fluorescence-activated cell sorting (FACS) analy-
sis. Proliferation was also routinely monitored by cell counting using
a bright line hemocytometer. For cell counting studies, proliferation
was typically reported for day 4. For NPPB studies, proliferation was
monitored over a 2-day period.

BAEC Migration

Wound heal assay was routinely used to monitor BAEC migration,
as previously described (13). BAECs were seeded into 24-well plates
(5 X 10* cells/well) and allowed to grow to confluency. The cells
were then quiesced overnight and treated with HPCM (0-25% + 2.5
pg/ml mitomycin C; 1 ml/well) for 24 h. Following treatment, a
wound or scratch was created in each well by scraping cells with
a pipette tip. Cells were then washed, and HPCM was replaced. To
monitor wound closure, the wound was photographed at two
predefined positions every 2 h and the distance between the two
wound edges was digitally measured using Macintosh Free Ruler
v1.6. Migration was expressed in terms of the average decrease in
wound width for the assay period.

BAEC Tube Formation

Collagen gel assay was routinely used to monitor BAEC tube
formation, as previously described (66). BAECs were seeded into
24-well plates (5 X 10* cells/well) and allowed to grow to confluency.
Cells were then quiesced overnight and treated with HPCM (0-25%;
1 ml/well) for 24 h. Following treatment, cells were trypsinized,
resuspended in HPCM, and seeded into collagen gels (24-well format;
1.5 X 10* cells/well). Tube formation proceeded overnight (16—18 h)
and was monitored by standard light microscopy with digital photog-
raphy (Olympus SP-350 camera). Four random fields were photo-
graphed from each well, and tube formation was quantified by
measuring the average length of the network of connected cells using
imaging software for life sciences and microscopy (Olympus cell*F
Image and Analysis software).

BAEC Barrier Property

Transwell permeability assay. BAECs were seeded into six-well
plates (5 X 10* cells/well) and allowed to grow to confluency. Cells
were then quiesced overnight and treated with HPCM (25%) for 24 h
under 10 dynes/cm? laminar shear (i.e., to induce barrier formation),
as described in Shear Stress. Posttreatment, cells were trypsinized and
replated (2.5 X 10° cells/well) into Millipore-Clear plates with poly-
ester membrane inserts (6-well format; 0.4 pm pore; 24 mm diameter;
Millipore). At confluency, transendothelial permeability was moni-
tored as previously described (7) using fluorescein isothiocyanate-
labeled 40-kDa Dextran (FD40 Dextran). Results are given as percent
transendothelial exchange of FD40 Dextran (taken as the total sublu-
minal fluorescence at a given time expressed as percentage of total
abluminal fluorescence at t = 0).

Zonnula occludens-1 immunocytochemistry. BAECs were seeded
into six-well Bioflex plates (5 X 10* cells/well) (Dunn Labortechnik,
Asbach, Germany) and allowed to grow to confluency. Cells were
then quiesced overnight and treated with HPCM (25%) for 24 h under
10% equibiaxial cyclic strain (i.e., to induce barrier formation), as
previously described (8). Posttreatment, Bioflex wells were excised
with a scalpel and prepared for immunocytochemistry, again as
previously described (8). The primary antibody was 0.25 pg/ml rabbit
anti-zonnula occludens-1 (ZO-1) monoclonal IgG for 2 h (Zymed, San
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Francisco, CA). The secondary antibody was 1:400 Alexa 488-
conjugated goat anti-rabbit IgG for 1 h (Molecular Probes, Eugene,
OR). Controls included the exclusion of primary antibody and 4,6-
diamidino-2-phenylindole (DAPI) nuclear staining (500 ng/ml;
3 min).

Shear Stress

With the use of an orbital rotator to apply physiological levels of
laminar shear stress, as previously described (7), the impact of shear
on HPCM-dependent changes in BAEC proliferation, tube formation,
and migration was examined. BAECs were seeded into six-well plates
(5 X 10* cells/well) and allowed to grow to confluency. Cells were
quiesced overnight and treated with HPCM (25%; 4 ml/well) for 24 h
at either 0, 1, or 10 dynes/cm? of shear. Postshear, BAECs were
incorporated into proliferation, tube formation, and migration assays
(as described in BAEC Proliferation, BAEC Migration, and BAEC
Tube Formation).

Nitrite Assay

BAECs were seeded into six-well plates (5 X 10* cells/well) and
allowed to grow to confluency. Cells were quiesced overnight and
treated with HPCM (25%; 2 ml/well) for 24 h. Assay for nitrite in
BAEC media following experimental treatments was performed by
2,4-diaminonapthalene assay, as previously described (6). NO levels

A 160.0 1

140.0 1

1
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were determined on a per well basis and were not normalized to cell
number per well because all wells were initially seeded with an
identical number of cells and no statistical difference in cells per well
was observed between conditions following treatment, as determined
by hemocytometer cell counting.

Western Immunoblotting

Following shearing experiments, BAECs were harvested and total
lysate samples were resolved by 10% SDS-PAGE under reducing
conditions according to the method of Laemmli (38). Gels were
electroblotted onto nitrocellulose membranes using an ATTO semi-
dry transfer system (1 h; 100 V), and membranes were blocked for 2 h
in Tris-buffered saline [10 mM Tris (pH 8.0) and 150 mM NaCl]
containing 5% wt/vol BSA. The preparation of BAEC lysates, protein
assay, and immunostaining for eNOS have all been described previ-
ously (6, 7).

Statistical Analysis

Results are expressed as means = SE. Experimental points were
performed in triplicate with a minimum of three independent exper-
iments (n = 3). Statistical comparisons between control and treatment
groups were made by Student’s unpaired z-test.
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Fig. 1. Effect of Helicobacter pylori-conditioned medium (HPCM) on bovine aortic endothelial cell (BAEC) functions. BAECs were treated with vacuolating
cytotoxin A (Vac)* HPCM (0-25%) and monitored for changes in proliferation (4 days), tube formation (24 h), and migration (24 h). Control is unconditioned
RPMI-1640 complete media. HPCM treatment times are shown in parentheses. Histograms were averaged from 3 independent experiments = SE.
A: proliferation. *P = 0.01 vs. control. Fluorescence-activated cell sorting (FACS) analysis (right) shows untreated control cells (gray-shaded area) relative to
HPCM-treated cells (unshaded area). B: tube formation. $P = 0.001; 8P = 0.0001 vs. control. Representative images (right) show reduction in endothelial
sprouting (white arrows) following treatment. C: migration. *P = 0.01 vs. control.
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RESULTS

HPCM Decreases BAEC Functions: Proliferation, Tube
Formation, and Migration

The effect of HPCM (0-25%) on BAEC proliferation, tube
formation, and migration was examined. At 25% HPCM, we
observed a substantial decrease in proliferation, as determined
by cell counts (Fig. 1A). This finding was also verified by
FACS analysis (Fig. 1A). Significant decreases in both tube
formation and migration were also noted at 25% HPCM (Fig.
1, B and O).

The effect of NPPB (a VacA inhibitor) on the above
changes was next examined. In the absence of NPPB,
HPCM (25%) reduced proliferation, tube formation, and
migration, as described above (Fig. 2, A—C). These effects
were completely prevented by NPPB. A baseline inhibitory
effect of NPPB on proliferation and tube formation levels
was also noted (44, 58).
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HPCM Decreases BAEC Barrier Properties

The effect of HPCM on BAEC barrier properties was ex-
amined. Cells were treated with HPCM (25%) in the absence
and presence of NPPB and stained for ZO-1 immunoreactivity.
Consistent with an intact endothelial barrier, ZO-1 exhibited
continuous immunolocalization along the cell-cell border in
untreated controls (Fig. 2Di). HPCM treatment led to ZO-1
localization becoming extremely jagged and sporadic along the
cell-cell border (Fig. 2Diii), an effect that was prevented by
NPPB (Fig. 2D, ii and iv).

HPCM-Induced Changes in BAEC Function are Mediated
by VacA

The role of VacA in these events was examined. BAECs
were separately treated with HPCM (25%) prepared from
either Vac™ or Vac™ H. pylori 60190 or with E. coli-condi-
tioned media. The Vac™ HPCM substantially decreased BAEC
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Fig. 2. Effect of 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) on HPCM-induced changes in BAEC functions. BAECs were treated with Vac™ HPCM
(25%) in the absence and presence of 100 wM NPPB and monitored for changes in proliferation (2 days), tube formation (24 h), migration (24 h), and barrier
integrity (24 h). Control is unconditioned RPMI complete media. HPCM treatment times are shown in parentheses. Histograms were averaged from 3 independent
experiments = SE. A: proliferation. 3P = 0.0001 vs. control; €P = 0.001 vs. 25%. B: tube formation. bP = 0.001; 8P = 0.0001 vs. control; €P = 0.0001 vs.
25%. C: migration. 8P = 0.0001 vs. control; €P = 0.0001 vs. 25%. D: barrier integrity. White arrows indicate cell-cell border localization of zonnula occludens-1
(ZO-1) immunoreactivity. 4,6-Diamidino-2-phenylindole (DAPI)-stained nuclei are clearly visible in blue. Images are representative.
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proliferation, tube formation, and migration relative to un-
treated controls (Fig. 3, A—C). Neither Vac™ HPCM nor E.
coli-conditioned media, however, had any significant effects.

The impact of VacA on BAEC barrier properties was also
examined using a similar treatment paradigm to above. As seen
earlier, ZO-1 immunoreactivity along the cell-cell border be-
came highly discontinuous and jagged in response to Vac™
HPCM, consistent with the disruption of intercellular tight
junction integrity. Moreover, Vac™ HPCM treatment sharply
increased FD40 Dextran transendothelial flux across BAEC
monolayers (Fig. 4). Again, neither Vac™ HPCM nor E. coli-
conditioned media had any significant effects.

HPCM Decreases BAEC NO Production
in a VacA-Dependent Manner

The effect of HPCM on BAEC NO levels was examined.
Cells were treated with either Vac™ or Vac™ HPCM (25%) or
with E. coli-conditioned media. Vac™ HPCM substantially
decreased NO production relative to untreated controls
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(Fig. 5A). Neither Vac© HPCM nor E. coli-conditioned
media had any significant effect on NO levels, however,
whereas L-NAME (an eNOS inhibitor) almost completely
ablated NO production (Fig. 5A). Furthermore, 25% HPCM
(Vac* or Vac ™) had no significant effect on eNOS total protein
levels following 24 h treatment (data not shown).

HPCM-Induced Changes in BAEC Function Involve
VacA-Dependent NO Reduction

The putative link between HPCM-induced change in BAEC
functions and NO levels was examined. BAECs were treated
with Vac™ HPCM (25%) in the absence and presence of SNAP
(an NO donor). In the absence of SNAP, HPCM reduced
proliferation, tube formation, and migration, as described in
BAEC Proliferation, BAEC Migration, and BAEC Tube For-
mation. These effects were almost completely recovered by
SNAP (Fig. 5, B-D).

BAEC barrier properties were also examined in this context.
In the absence of SNAP, Vact* HPCM (25%) increased
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Fig. 3. Effect of VacA on HPCM-induced changes in BAEC functions. BAECs were treated with either Vac™ or Vac™ HPCM (25%) or Escherichia
coli-conditioned media and monitored for changes in proliferation (4 days), tube formation (24 h), and migration (24 h). Control is unconditioned RPMI complete
media. HPCM treatment times are shown in parentheses. Histograms were averaged from 3 independent experiments * SE. A: proliferation. $P = 0.001 vs.
control. FACS analysis (right) shows untreated control cells (gray-shaded area) relative to cells treated with conditioned media from either Vac™ or Vac™ H.
pylori or wild-type E. coli (unshaded areas). B: tube formation. 8P = 0.0001 vs. control. C: migration. 8P = 0.0001 vs. control.
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Fig. 4. Effect of VacA on HPCM-induced changes in BAEC barrier properties. BAECs were treated for 24 h with either Vac* or Vac™ HPCM (25%) or E.
coli-conditioned media, and intact monolayers were monitored for permeability to FD40 Dextran. Control is unconditioned RPMI complete media. Histogram
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experiments = SE. &P = 0.001 vs. control. Posttreatment, intact monolayers were also monitored for ZO-1 immunoreactivity (right). White arrows indicate
cell-cell border localization of ZO-1. DAPI-stained nuclei are clearly visible in blue. Images are representative.

FD40 Dextran transendothelial flux relative to untreated
control (Fig. 6). Moreover, ZO-1 immunoreactivity along the
cell-cell border became highly discontinuous and jagged, also
consistent with endothelial barrier reduction (Fig. 6). We
further observed that either effect could be recovered by
SNAP.

HPCM-Induced Changes in BAEC Functions are Absent
Under Shear Stress

The impact of laminar shear stress on the HPCM-induced
change in BAEC functions was examined. BAECs were treated
with either Vac®™ or Vac™ HPCM (25%), or with E. coli-
conditioned media, at a shear rate of 0, 1, or 10 dynes/cmz. At
static and low shear rates, Vac™ HPCM (but not Vac~ HPCM
or E. coli-conditioned media) substantially decreased NO pro-
duction (Fig. 7A), proliferation (Fig. 7B), tube formation (Fig.
7C), and migration (Fig. 7D) relative to untreated controls. At
high shear rate, the inhibitory effects of Vac™ HPCM on all of
the aforementioned BAEC functions were recovered to the
high shear baseline levels exhibited by control, Vac™, and E.
coli treatments (Fig. 7B—D). Under control conditions, levels of
eNOS protein expression were also elevated at high shear (Fig.
TA, inset).

DISCUSSION

This comprehensive study shows, for the first time, a sig-
nificant proatherogenic effect of H. pylori-secreted factors on a
wide range of vascular endothelial dysfunction markers. Our
investigations demonstrated that a chronic exposure of BAECs
to 25% HPCM significantly reduced proliferation (while in-
creasing apoptosis and vacuolation at higher concentrations;
data not shown). These findings are consistent with earlier
studies on H. pylori aqueous extracts, which report antiprolif-
erative and proapoptotic effects on human microvascular en-
dothelial cells and umbilical vein endothelial cells (29, 37, 52).
We also observed HPCM-dependent reductions in BAEC tube
formation and migration, further evidence that H. pylori ex-

hibits antiangiogenic properties (28, 29). Moreover, the
HPCM-induced elevation of BAEC monolayer permeability to
FD40 Dextran, in conjunction with sporadic ZO-1 membrane
localization, as observed in this study, verifies the barrier-
lowering properties of H. pylori-secreted factors (7, 8), again
consistent with earlier reports (5, 15).

The cytotoxin-associated gene pathogenicity island and
outer membrane proteins are known determinants of H. pylori
pathogenicity (18). However, these factors require direct bac-
terium-cell contact, and in the case of the former, a specialized
type IV secretion system (23), likely ruling out their contribu-
tion to the HPCM effects observed in this study. Other deter-
minants of H. pylori pathogenicity include urease and VacA.
The former, accounting for almost 10% of total H. pylori
protein, facilitates bacterial colonization in the acidic gastric
mucosa (30). The latter functions by forming anion-selective
channels in lipid bilayers, thereby modulating membrane de-
polarization (63). VacA can also enter cells and modulate
mitochondrial membrane permeability and cytochrome C re-
lease (59). As both factors are secreted by H. pylori, we
hypothesized a role for one or both in the HPCM-mediated
effects observed.

When BAECs were treated with unconditioned media in the
absence and presence of 10 pg/ml jack bean urease, an enzyme
known to display many of the same properties as H. pylori
urease (48), no significant effects on cell function were ob-
served. The putative role of VacA was next explored. Earlier
studies investigating endothelial injury do not clearly identify
a role for VacA (5, 15, 28, 37, 41). The barrier-lowering (53),
antiproliferative (50, 62), and proapoptotic (11) effects of H.
pylori on other cell types (e.g., gastric epithelial cells, T-
lymphocytes), however, have definitively been attributed to
this virulence factor. Importantly, a number of these studies
confirm the dose-dependent effects of VacA on cell functions
and further demonstrate a threshold VacA concentration in the
lower nM range for the induction of these effects. Use of the
VacA-selective inhibitor NPPB (63) completely prevented the
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HPCM-dependent effects on all BAEC dysfunction markers
examined. This finding clearly points to a highly significant
role for VacA in HPCM-induced endothelial injury. The lack
of any effects on the aforementioned BAEC functions follow-
ing treatment with conditioned media from VacA gene-deleted
H. pylori (Vac— HPCM) further strengthened this conclusion.
Furthermore, the preparation of Vac™ and Vac* HPCM from
the same strain (60190), in addition to the clear agreement of
data from both inhibitor and mutant studies, suggests that the
involvement of other bacterium-derived factors is unlikely.
Finally, whereas VacA levels were not definitively quantified
in our HPCM preparations, the steep concentration dependence
at 25% HPCM, which was particularly notable in our prolif-
eration study (Fig. 1A), possibly reflects a threshold concen-
tration effect as outlined above.

We next considered the cellular mechanism mediating VacA
involvement in this model. VacA is a multifunctional toxin that
exhibits pleiotropic effects on mammalian cells (10). Its cyto-
toxic effects are an important feature of cellular injury and
pathology. In the human gastric mucosa, for example, VacA
causes extensive epithelial vacuolation, proinflammatory cyto-
kine release, and apoptosis, leading to reduced epithelial cell
viability and gastric ulceration (11, 50, 61, 67). The importance
of VacA cytotoxicity to endothelial dysfunction and athero-
genesis in vivo, however, is not understood. It should be noted
that the Vac® HPCM range (0-25%) chosen for the bulk of
these studies did not induce cell vacuolation (phase-contrast
microscopy), and it did not reduce cell viability (trypan blue
exclusion and propidium iodide incorporation assays; data not
shown). This greatly reduces the possibility that the functional
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changes observed are due to cytotoxic actions of VacA and
suggests that subtoxic levels of VacA can induce endothelial
injury. The well-described ability of VacA to alter cell function
independently of its cytotoxic actions (10, 53) is therefore
relevant to our model and suggests the VacA-dependent mod-
ulation of endothelial signaling pathways.

We hypothesized that HPCM-induced endothelial injury
could be mediated by VacA-dependent NO reduction. NO
plays a key role in vascular homeostatic regulation (59).
Endothelial dysfunction and atherogenesis are characterized by
reduced NO bioavailability owing to diminished eNOS expres-
sion or activation, reactive oxygen species (ROS) overproduc-
tion, and inhibition of eNOS activity by either the overproduc-
tion/reduced clearance of endogenous ADMA or the induction
of an arginase activity. Moreover, previous studies have attrib-
uted all of the above mechanisms to H. pylori pathogenicity in
various gastric and nongastric injury models (19, 41, 45, 51).
Correspondingly, treatment of BAECs with Vac* (but not
Vac™) HPCM reduced endogenous NO production by over
50%, whereas all of the observed Vac™ HPCM-dependent
changes in endothelial function could be recovered by an
exogenous NO source (SNAP). Importantly, HPCM treatment
(Vac™ or Vac™) did not appear to significantly alter total
BAEC eNOS protein levels (data not shown), suggesting that
the observed HPCM-induced NO reduction is not attributable
to eNOS expression changes and that alternate mechanisms
(i.e., eNOS activation, ROS production, etc.) are more likely
associated with this phenomenon. We further demonstrated
that a known stimulus for NO production in vivo, namely
laminar shear stress (65), could also recover Vact HPCM-
induced changes in BAEC proliferation, tube formation, and
migration. These findings confirm a central role for NO deple-
tion in VacA-induced endothelial injury. Moreover, they fur-
ther suggest that the atherogenic impact of H. pylori in vivo
would be most acute at arterial branch points and curvatures,
the principal sites of atherosclerotic lesion development, where
the atheroprotective influence of laminar shear stress is atten-
uated (due to turbulence) and NO depletion could be further

exacerbated by VacA. A recent study by Liuba et al. (41), in
which the authors demonstrate that coinfection of apoE-knock-
out mice with C. pneumoniae and H. pylori leads to impaired
bioactivity of endothelial NO and increased VCAM-1 expres-
sion at arterial branch points, supports this conclusion. Inter-
estingly, shear stress did not appear to prevent the barrier-
lowering effects of Vact HPCM. The reasons for this are
unknown, although insufficient shear-induced NO production,
NO-independent effects of VacA, and/or experimental artifact
are possible explanations. A more detailed investigation of the
dynamic relationship between shear stress and VacA-induced
endothelial injury is therefore warranted.

The precise nature of VacA signaling in vascular endothelial
cells is undefined at present, although one can speculate as to
the intermediates involved. As a member of the Rho-GTPase
family of signaling enzymes, Racl integrates multiple signal-
ing events and is known to function upstream of eNOS acti-
vation and NO production in vascular endothelial cells in
various physiological contexts (27, 34, 40). Interestingly, the
VacA-dependent inhibition of Racl has been shown to prevent
repair of gastric mucosal injury and ulcer reepithelialization, an
NO-dependent process (50). Studies have also recently dem-
onstrated that VacA can induce cellular effects independently
of its vacuolating function through the activation of a p38
MAPK stress signaling pathway, which leads to the activation
of the transcription factors activating transcription factor-2,
cAMP-response element-binding protein, and NF-kB (24, 32).
Since p38 MAPK activation has also been directly linked to the
superoxide-induced reduction of NO bioavailability in differ-
ent vascular injury models (56, 64), this suggests the possible
applicability of this signaling pathway to the HPCM-induced
NO reduction observed in our BAEC model. Downstream of
NO, signaling possibilities are numerous. Of note, NO is
known to inhibit the SNAP receptor-mediated exocytosis of
endothelial Weibel-Palade bodies, which mediate vascular in-
flammation and adaptive remodeling (46). Thus VacA-depen-
dent NO reduction could ultimately lead to the excessive
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release of inflammatory mediators, with predictable conse-
quences for endothelial dysfunction.

To summarize, we have conducted a comprehensive inves-
tigation of how H. pylori-secreted factors play a role in vas-
cular endothelial injury. With the use of an in vitro aortic
endothelial cell model, our findings demonstrate, for the first
time, the antiproliferative, antiangiogenic, and barrier-lowering
properties of H. pylori-secreted VacA, events consistent with
endothelial dysfunction. Moreover, the VacA-dependent im-
pairment of endothelial NO bioavailability is strongly indicated
in these events, as is an atheroprotective role for laminar shear
stress. These findings establish a clearer vascular context in
which H. pylori infection contributes to endothelial dysfunc-
tion and atherogenesis in vivo. Although the precise organiza-

tion of the VacA signaling pathway, and indeed its dynamic
relationship with shear stress, is beyond the scope of this paper,
we have begun to elucidate the cellular intermediates involved
and believe the present study provides an excellent foundation
for further investigations in this field.

Finally, although the present study adds further weight to a
causal relationship between H. pylori infection and atheroscle-
rosis, one is mindful of the complex debate surrounding the
contribution of the infectious burden to endothelial dysfunction
and vascular disease. Indeed, researchers have provided evi-
dence both in support of and against a role for H. pylori in this
pathophysiological context, findings chronicled primarily
through in vivo modeling studies (41, 42), epidemiological
investigations (12, 20, 22, 25, 49, 55), and the identification of
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H. pylori DNA in atheromatous vascular tissue (1, 17, 36, 68).
We believe that the in vitro plausibility study described in this
paper makes an extremely important and timely contribution to
this debate and will undoubtedly serve as an important corre-
late to ongoing clinical/eradication studies directly addressing
this issue.
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