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A Chalcogenide Multimode Interferometric
Temperature Sensor Operating at a

Wavelength of 2 μm
Lin She, Pengfei Wang, Weimin Sun, Xianfan Wang, Wenlei Yang, Gilberto Brambilla, and Gerald Farrell

Abstract— This paper investigated the fabrication of a
singlemode-multimode-singlemode fiber structure based on a
chalcogenide (As2S3 and AsxS1−x) multimode fiber sandwiched
between two standard silica singlemode fibers using a commercial
fiber fusion splicer. The temperature dependence of this hybrid
fiber structure was investigated and a first proof of concept
showed that the hybrid SMS fiber structure has an average
experimental temperature sensitivity of circa 84.38 pm/°C over
a temperature range of 20 °C∼100°C at the wavelength range
around 2 µm. The measured results show a general agreement
with numerical simulations based on a guided-mode propagation
analysis method. Our result provides a potential platform for the
development of compact, high-optical-quality, and robust sensing
devices operating at the midinfrared wavelength range.

Index Terms— Chalcogenide fiber, multimode interference,
temperature sensor.

I. INTRODUCTION

IN RECENT years, multimode interference (MMI) effects
have been intensively investigated in designing photonic

integrated waveguides and the unique performance of self-
imaging [1] of the input light field has been employed in a
range of photonic devices, such as beam multiplexers com-
biners and splitters for applications in optical communications
[2]–[4]. More recently MMI occurring in a singlemode–
multimode–singlemode (SMS) fiber structures has been stud-
ied for applications in a range of sensing devices, e.g.,
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displacement sensor [5], strain sensor [6], temperature sen-
sor [7], refractometric sensor [8] and also as an edge filter for
wavelength measurements [9].

Chalcogenides glasses are rapidly establishing themselves as
technologically superior materials for emerging applications
in non-volatile memory and high speed switching [10] and
have been considered for a range of other optoelectronic
technologies exploiting their extraordinary nonlinear optical
properties. Chalcogenide fibers have been widely implemented
in fiber evanescent spectroscopy experiments for detection
of biochemical molecules in various applications, such as
combustion gas detection [11], biochemical [12] and spec-
troscopy applications [13]. Also, recent research has shown
that the mid-infrared signature of gases filling the holes of
chalcogenide microstructured fiber can be easily detected [14].
To date, several applications, including ultrafast all-optical
switching [15], supercontinuum generation [16], broadband
wavelength conversion [17], all-optical signal processing [18]
and Raman fiber lasers [19], have been demonstrated using
chalcogenide glass fibers. Previously we have demonstrated a
chalcogenide SMS fiber structure packaged in an UV epoxy
and its multimode interference variation was observed as a
result of photo-induced refractive index changes arising from
either localized laser irradiation at a wavelength of 405 nm
or through the use of a UV lamp [20]. In this work, to
improve mechanical stability, a custom splicing method is
used to replace the high precision translation stages and UV
curable epoxy previously used for maintaining the mechan-
ical alignment between the multimode fiber (MMF) and the
singlemode fibers (SMFs). On the other hand, the diameter
of the chalcogenide MMF previously employed was 275 μ
m, much larger than that of the standard SMF. Therefore the
mechanical stability of that SMS fiber structure was poor and
also the alignment process was particularly challenging due
the difference in fiber diameters between the silica SMFs and
the chalcogenide MMF fixed by a UV curable epoxy.

In this paper, we present a customized chalcogenide fiber
with a diameter of 125 μm based multimode interference
device which was directly fabricated using a conventional
fusion splicing method. Due to the large thermo-optical
coefficient (TOC) and thermal expansion coefficient (TEC)
of chalcogenide glass compared with silica, the temperature
dependence of the transmission spectral response of this hybrid
SMS structure is higher than that of conventional silica fiber
based SMS devices, particularly at the mid-IR wavelength of

1558-1748 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Technological University Dublin. Downloaded on February 02,2022 at 09:35:37 UTC from IEEE Xplore.  Restrictions apply. 



1722 IEEE SENSORS JOURNAL, VOL. 17, NO. 6, MARCH 15, 2017

Fig. 1. Schematic of an SMS fiber structure based on silica singlemode
fiber-chalcogenide multimode fiber-silica singlemode fiber.

λ = 2 μm. The fabricated device offers the potential for low-
cost, robustly assembled fully integrated sensing devices for
the measurement of temperature or refractive index over the
near- and mid-infrared wavelength ranges, and also provides a
promising platform for developing a range of nonlinear fiber
devices with non-linearity thresholds orders of magnitudes
lower by comparisonto conventional all-silica based fiber
devices.

An SMS fiber structure consists of input and output sil-
ica singlemode fibers (SMFs) with a short section of mul-
timode fiber (MMF) sandwiched between them as shown
in Fig. 1. While multimode interferometers usually employ
silica MMFs, in this paper a chalcogenide MMF section was
sandwiched between two standard silica singlemode fibers.

II. THEORETICAL ANALYSIS

The input field provided by the SMF can be approximated as
a Gaussian beam with a field distribution of E(r,0) because of
the symmetric cylindrical characteristic of fundamental mode
of the input SMF. Traditionally the input Gaussian beam can
excite a specific number of guided high-order modes in the
MMF, namely, the input field can be decomposed by the
eigenmodes of linearly polarized (LP) mode of LPnm. However
in fact only the LP0m modes can be effectively excited due to
the circular symmetry of the input field and assuming an ideal
alignment of the central axes of the fibers cores of the SMF
and MMF. The details regarding this theoretical analysis have
been addressed in [21].

In order to gain a better insight into the operation of the
device, the SMS spectral properties were simulated using a
conventional cylindrical wide-angle beam propagation method
presented in [22]. As well-known, the wave-equation for the
light propagating in an MMF is

∂2 E

∂r2 + 1

r

∂ E

∂r
+ ∂2 E

∂z2 + k2n2 E = 0 (1)

where k = 2π/λ and λ is the wavelength in free-space. Here a
slowly varying envelope approximation involves replacing the
quickly varying component with a slowly varying function
is used to solve the above wave-equation, i.e., E(r, z) =
Ê(r, z) exp( jkn0z) (where n0 is reference refractive index and
j = √−1). For Ê (r, z), the beam propagation equation can
be written as follows:

∂ Ê

∂z
=

j
2kn0

P Ê

1 − j
2kn0

∂ Ê
∂z

(2)

where P Ê =
[

∂2 Ê
∂r2 + 1

r
∂ Ê
∂r + k2

(
n2 (r, z) − n2

0

)
Ê

]
. Consid-

ering a number of approximation and numerical calculation
methods, such as the Padé approximation, Crank-Nicholson
finite-difference scheme and multi-step method, the above

Fig. 2. (a) Intensity distribution within the chalcogenide multimode fiber
section of the SMS structure. (b) Intensity distribution within a silica multi-
mode fiber section of the SMS structure. (c) Calculated transmissivity to the
output singlemode fiber for different chalcogenide & silica multimode fiber
lengths when the operating wavelength is λ = 2 μm.

Eq.(1) can be solved iteratively, namely, for the i-th step, we
have

a∗
i η− Ê

l+ i
n

m−1 + [
1 + a∗

i ς
]

Ê
l+ i

n
m + a∗

i η+ Ê
l+ i

n
m+1

= aiη− Ê
l+ i−1

n
m−1 + [1 + aiς ] Ê

l+ i−1
n

m−1 + aiη+ Ê
l+ i−1

n
m+1 (3)

where η± = 1
�r2 ± 1

2r�r and ς =
(

k2
(
n2 − n2

0

) − 2
�r2

)
. ai

and a∗
i (i = 1, 2, . . . n) are determined by the polynomials

based on the Padé approximation. At the fiber axis, r = 0,
therefore L’ Hospital’s rule is used and the corresponding
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Fig. 3. Microscope image of chalcogenide multimode fiber cross section.

Fig. 4. Image of a chalcogenide multimode fiber with a length of circa
24.75 mm spliced with a silica singlemode fiber.

equation can be written as:
[
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0

)
− 4
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)]
E
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[
4

�r2

]
E
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n

1 (4)

Here in the theoretical model, only the half-plane of the
proposed SMS structure, i.e. 0 ≤ r ≤ R is used as the
calculation window and as usual the perfectly matched layer
is adopted at the boundary of the calculation area (r = R)
based on the symmetric cylindrical coordinate system of the
proposed SMF fiber structure,

To calculate the transmission loss of the SMS fiber structure,
the overlap integral is used as follows:

Ts (l) = 10 log10

⎛
⎜⎜⎜⎜⎜⎝

∣∣∣∣∣
∞∫

−∞
E (l, r ) F (r) dr

∣∣∣∣∣
2

∞∫
−∞

|E (l, r )|2 dr
∞∫

−∞
|F (r)|2 dr

⎞
⎟⎟⎟⎟⎟⎠

(5)

where l is the length of multimode fiber section, E (l, r) is
the calculated field at the interface between the MMF section
and the output SMF and F(r) is the eigenmode of the output
SMF.

The intensity distribution of the propagation field and the
transmissivity of the SMS structure was calculated using
the above WA-BPM and are presented in Fig. 2. From the
simulation results presented in Fig. 2a, one can see that the
light converges periodically while propagating in the chalco-
genide MMF section. The first convergence occurs around the
length of 10 mm due to the maximal interference between
different modes of the multimode fibre. However for Fig. 2b,
the first significant convergence occurs about the length of
5 mm of the silica MMF section. To better characterize the
difference between the two MMFs, the transmissivities of both

Fig. 5. Calculated (black line) and measured (blue dashed line) spectral
response of the hybrid silica-chalcogenide SMS device over a wavelength
range of 1950∼2050 nm.

Fig. 6. Calculated spectral responses of the hybrid silica-chalcogenide SMS
device over a wavelength range of 1950∼2050 nm at room temperature (20 °C,
dark line), 60 °C (red dashed line), 100 °C (blue dashed dot line).

SMS structures were calculated based on the Equation (5),
the calculated results are presented in Figure 2c. Figure 2c
shows that the transmissivity of the chalcogenide MMF (blue
solid line) reaches a maximum value of -46.45 dB at a
propagation position of z = 51.2 mm at λ = 2 μm. Compared
with the calculated results of silica MMF (red dashed line),
the calculated results of chalcogenide MMF show that the
eigenmode interference within the MMF section is determined
by both the size and the refractive index of the As2S3 MMF
core. In terms of all the modelled results, for chalcogenide
MMF, the input light is re-imaged at a propagation distance
34.46 mm from the input fiber with a transmissivity of
-0.1601 dB along the chalcogenide MMF, which is signifi-
cantly different from the results of the silica SMS fiber device
with multiple re-imaging positions at 20.78 mm, 41.55 mm
and 57.52 mm.

III. EXPERIMENTAL INVESTIGATION AND DISCUSSION

The chalcogenide fiber used in the experiments was a step-
index multimode fiber with an As2S3 core (diameter is 82 μm)
and AsxS1−x (0.15 ≤ x ≤ 0.43) cladding (diameter is 125 μm).
The refractive index of the core and the cladding of the
input/output SMF is 1.4438 and 1.4381 and the refractive
index of the core and the cladding of chalcogenide MMF is
2.4261 and 2.4087 at the wavelength of 2 μm, respectively.

Authorized licensed use limited to: Technological University Dublin. Downloaded on February 02,2022 at 09:35:37 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 7. Experimental setup for the temperature measurements of the hybrid
SMS fiber structure.

The chalcogenide multimode fiber cross section is shown in
Fig 3.

The SMS sample was manufactured by sandwiching the
chalcogenide multimode fiber between two silica SMFs and
fusing the joints using a high precision Ericsson manual
control fusion splicer (FSU-995PM). Fig. 4 shows the resulting
hybrid SMS structure manufactured from a 24.75 mm long
chalcogenide multimode fiber spliced with a silica singlemode
fiber. A transmission spectra for the fabricated hybrid SMS
fiber device were recorded using a supercontinuum light source
(450∼2100 nm) and an optical spectrum analyzer (YOKO-
GAWA AQ6375).

Figure 5 presents the calculated and measured transmission
spectra of the hybrid silica-chalcogenide SMS structure over
a wavelength range of 1950-2050 nm, where the chalcogenide
MMF length is circa 24.75 mm. The measured results show
a general agreement with theoretical predictions. The discrep-
ancy between the calculated and measured results could be
due to the central alignment between the silica SMFs and
the chalcogenide MMF, the deformation of the chalcogenide
MMF over the splicing joint induced by arc heating, the length
control of the chalcogenide MMF and the approximations
made in the calculation (simulated transmission for an SMS
includes some approximations in the WA-BPM mode, such as
assuming only LP0m fundamental modes were excited in the
theoretical model, slowly varying envelope approximation and
Padé approximation).

It is well-known that chalcogenide glasses have a lower
working temperature (from 300 °C to 400 °C, e.g. As2S3
has a working temperature of 310 °C), a larger thermo-
optic coefficient (TOC) of circa 5 × 10−5/°C and thermal
expansion coefficient (TEC) of 2.14 × 10−5/°C, compared
with those of conventional fused silica material. Based on
the WA-BPM model in a symmetric cylindrical coordinate
system consisting of the TOC and TEC effects of each fiber
layer [23], the transmission of the silica-chalcogenide-silica
SMS structure was simulated and is presented in Fig. 6. The
calculated transmission responses of the hybrid SMS fiber
over a wavelength range from 1950 nm to 2050 nm for three
temperatures, T = 20°C, 60°C and 100°C, are plotted in Fig. 6,
which are based on simulations of light propagating through
the whole length of 24.75 mm hybrid SMS fiber structure.

From Fig. 6, it is clear that the dip wavelength redshifts
to longer wavelengths when the surrounding temperature

Fig. 8. Dip wavelength as a function of temperature. The blue squares
represent the measured data from low to high temperature, the red circles the
measured data from high to low; blue and red lines represent the linear fits,
respectively.

increases which is expected given both the TOC and TEC of
the chalcogenide material. The average simulated temperature
sensitivity over the temperature range from 20°C to 100°C
was circa 87.5 pm/°C which is one order of magnitude
higher than 8.7 pm/°C, recorded in the silica SMS structure
reported by Wu et al. in [24]. This behavior indicates that
temperature-induced variations in the transmission response of
the multimode interferences within the chalcogenide MMF are
strongly influenced by the surrounding environment and such
a temperature dependence can be used for a high sensitivity
temperature sensing applications over a mid-infrared wave-
length range. Also, the temperature sensitivity of the proposed
hybrid SMS fiber structure can be affected by the length and
the core diameter of the chalcogenide fiber, and by the sensing
scheme used in the measurements. Further work to improve
the temperature sensitivity is under way.

To experimentally study the temperature dependence of the
hybrid SMS fiber structure, the sample was placed on a ther-
moelectric cooler (TEC) as shown in Fig. 7. The temperature
of the TEC element was controlled by a temperature controller.
A thermistor was used to provide temperature feedback to
the controller from the TEC element. An additional handheld
thermometer was used to confirm the temperature changes
on the TEC surface. The entire setup was placed inside a
small controlled environmental chamber. For the purpose of
this experiment the ambient temperature inside the chamber
was fixed at 20° C (room temperature) as a starting point.
A supercontinuum source was used for launching power into
the SMS device and the wavelength shifts was monitored by
an optical spectrum analyzer.

To determine the temperature dependence of the device
the interference peak shift was observed while varying the
temperature of the device from 20° C to 100° C. Fig. 8
shows the measured temperature dependence for the hybrid
SMS device over a temperature range from 20 °C to 100 °C.
When the temperature is increased from 20° C to 100° C in
intervals of 10°C the interference peak exhibits minute shifts
to longer wavelengths. Both data sets show a good linearity,
demonstrated by a linear regression value of R2 = 0.9998
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and 0.9986, respectively. As expected the measured thermal
sensitivity of the SMS device is reasonable high, confirmed
by the thermal sensitivity obtained in the experiment for the
hybrid SMS device which is circa 84.38 pm/° C. The measured
results have a good agreement with the theoretical prediction
of 87.5 pm/° C. Overall, the temperature sensitivity measured
in our work is higher than the experimental results presented
in [24].

IV. CONCLUSION

In conclusion, as a first proof of concept, we have proposed
and demonstrated a chalcogenide MMF based hybrid SMS
structure using a conventional fusion slicing method. The
experimental characterization showed a good agreement with
numerical simulations. Due to the high TOC and TEC of
the chalcogenide glass material itself, the chalcogenide SMS
fiber structure has a high measured temperature sensitivity
of 84.38 pm/° C which is higher than that of a silica fiber
based SMS device. Also thanks to the ultra-broad transmission
window of the chalcogenide glass itself, this hybrid SMS
fiber structure can be further developed to sense a range of
physical parameters, such as temperature, refractive index and
strain over near- and mid-IR wavelength ranges if we replace
the silica SMFs to chalcogenide SMFs. This geometry may
also become a promising platform for developing a range of
nonlinear fiber devices with thresholds orders of magnitudes
lower compared to conventional silica based fiber devices.
Corresponding research on this topic is underway.
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