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a b s t r a c t

The aim of this research is to use holographically recorded diffractive optical elements (DOEs) recorded in
photopolymer in order to effectively collect and concentrate solar radiation. The potential for recording
high diffraction efficiency DOEs with a large angular and wavelength range of operation in acrylamide
based photopolymer and the optimum recording conditions have been presented in our previous work
(Akbari et al., 2014b, 2014a). Theoretical modelling and experimental test are presented which demon-
strate that low spatial frequency components, around 300 line pairs/mm, have an appropriate spectral
bandwidth, high efficiency and very limited polarization dependence. Pairs of concentrating off-axis
lenses are fabricated in photopolymer and arranged to concentrate light on a c-Si cell. The optical record-
ing process is described and discussed. The results from electrical characterization confirm that with the
(two) spherical DOEs (each of area 113 mm2) in place, the output current of c-Si solar cells is approxi-
mately doubled for the solar cells with area of 12 mm2.

� 2017 Published by Elsevier Ltd.
1. Introduction

There are a number of approaches to improving the efficiency of
photovoltaic (PV) systems. Concentrating solar energy onto a PV
material reduces cell area per unit electrical output and, for certain
cell materials and designs, increases PV conversion efficiency (Rabl,
1976). This enables the total system cost to be reduced per unit of
energy delivered, (Winston and Hinterberger, 1975; Kennedy et al.,
2009; Norton et al., 2011; Wisam et al., 2016; Kabeel and
Abdelgaied, 2017). Solar concentration is usually undertaken by
imaging optics refractively using lens (Xie et al., 2011; Xu et al.,
2016) or reflectively using mirrors (Arancibia-Bulnes et al., 2017)
or non-imaging optics (using compound parabolic concentrators
(Eames and Norton, 1977; Mallick et al., 2015; Singh and Tiwari,
2017), or luminescent solar concentration, (Goetzberger and
Greubel, 1977; Reisfeld et al., 1988; Barnham et al., 2000;
Gallagher et al., 2007; Chandra et al., 2015). The limitations of each
are mainly determined by concentration ratio required and cost,
where imaging optics can achieve much higher concentration of
direct radiation to intensities greater than 1000 suns, and non –
imaging concentrators such as CPCs have much lower concentra-
tion ratios but they have wider acceptance angles.
In this paper we investigate a diffractive solar concentrator
which also collects solar radiation over a large area and redirects
it onto a smaller area, where it can be converted for example into
electrical energy using PV cells. Holographically recorded diffrac-
tive optical elements (DOE) are investigated for use in the collec-
tion of solar radiation from a moving source, such as the sun,
and its redirection onto a fixed detector/convertor for solar concen-
trator applications.

Holographically recorded volume Diffractive Optical Elements
(DOEs) have potential as solar concentrators because of their abil-
ity to diffract light at large offset angle, and the potential for mul-
tiplexing a number of optical components in the same layer. Recent
research has demonstrated different diffractive elements in a vari-
ety of arrangements for solar applications that will re-direct and
focus incoming light to the desired ‘line’ or ‘spot’ for conversion
(Bañares-Palacios et al., 2015; Castro et al., 2010; Ghosh et al.,
2015; Hsieh et al., 2011; Hung et al., 2010; James and Bahaj,
2005; Kostuk et al., 2011; Kostuk and Rosenberg, 2008; Sam
et al., 2011; Shakher and Yadav, 2000).

A number of researchers have demonstrated novel designs over
the years (Sreebha et al., 2015; Belendez et al., 1991; Breitenbach
and Rosenfeld, 2000; Mohan and Islam, 2006). For example
Sreebha et al., 2015, have reported results on the recording of
transmission holographic optical elements in a silver halide mate-
rial. The wavelength selectivity and focusing properties of the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.solener.2017.04.067&domain=pdf
http://dx.doi.org/10.1016/j.solener.2017.04.067
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Fig. 1. Experimental set up: S: shutter, CL: collimating lens, BS: beam splitter, SF:
spatial filter, M: mirror, PS: photopolymer sample.
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recorded holographic lens was used to design a concentrator for
dye sensitized solar cells. The fabricated holographic lens was
reported to achieve 32.9% energy enhancement with the HOE in
place while the dye cells were collecting the yellow radiation of
the solar simulator light source.

Breitenbach and Rosenfeld (2000) investigated the optical prop-
erties of thin HOEs. The spatial and spectral distributions of light
transmitted by the HOE were measured for a range of wavelengths
between 300 and 2100 nm and for various angles of incidence. The
results demonstrate the capability of HOEs to separate the visible
light from the infrared part of solar spectrum. This can be very ben-
eficial in solar applications since daylighting and the solar gain can
be controlled individually.

The design of multi-channel HOE has been demonstrated by
Mohan and Islam (2006). A range of HOEs were recorded in silver
halide recording material using five reference beams in order to
concentrate light at a range of incident angles. The maximum effi-
ciency of 15% was achieved for a HOE with the dimensions of
58 mm � 58 mm over an angle-span of 12�. HOEs were recorded
by using five reference beams.

A planar concentrator using a low-cost holographic film that
selects the most useful bands of the solar spectrum and concen-
trates them onto the surface of the photovoltaic cell has been
demonstrated by Kostuk et al. (2007). The holographic elements
have been implemented in 5–25 lm thick layers of dichromated
gelatin (DCG). The result show a 25% increase in the output from
the cell over the output without the holographic element. How-
ever, it can be assumed that stacking multiple gratings or multi-
plexing several gratings in the same volume could significantly
improve the module efficiency.

Photopolymers are excellent materials for producing similar
diffractive elements, being thin, lightweight, inexpensive and
highly efficient, but challenges remain in reducing the angular
selectivity of these relatively thick layers and in applying the tech-
nology to natural light in real-world applications. High efficiency
diffractive optical elements have been recorded in photopolymer
material previously for this and other applications (Fernández
et al., 2008; Fimia et al., 1994; Gallego et al., 2008; Gleeson et al.,
2008; Guntaka et al., 2002; Jenney, 1970; Martin et al., 1998;
Srivastava et al., 2012; Tarjányi et al., 2009). Multiplexing of thick
transmission holograms in photopolymer has also been investi-
gated. For example, Naydenova et al. (2013) reported on recording
multiplexed cylindrical holographic lenses with high diffraction
efficiency in order to direct the light in a fixed direction indepen-
dently of the direction of incoming light. Bianco et al. (2015),
reported on recording an array of three spherical lenses in a sol-
gel photopolymer which can be used as solar concentrator.

Altmeyer et al. (2013) demonstrated the potential of multiplex-
ing of thick transmission holograms in photopolymer. The varia-
tion of the diffraction efficiency of the multiplexed grating with
respect to the angle of incidence and the wavelength are theoreti-
cally shown. The experimental results of the angular acceptance of
the single and four multiplexed holograms are compared with the
simulation results. A maximum diffraction efficiency of 60% was
achieved for a layer with thickness 16 lm. This demonstrates the
potential for recording multiple high efficiency elements simulta-
neously in photopolymer layers. However further work is required
to design combinations of elements that direct the light in single
direction in order to make it useful for solar applications.

Thick transmission holograms and diffraction gratings recorded
in acrylamide based photopolymer can be used to change the
direction of a light beam with greater than 90% efficiency but are
generally only efficient over a small range of angles close to the
Bragg angle. Previous work by the authors addressed the issue of
increasing the angular working range in photopolymers and
demonstrated photopolymer spherical and cylindrical focussing
elements that had very high efficiency when measured with
monochromatic, linearly polarized laser sources (Akbari et al.,
2014a, 2014b). The aim of this work is to test cylindrical and spher-
ical focusing diffractive elements using an unpolarised broadband
source, and also to fabricate and test combinations of pairs of ele-
ments designed to direct and focus this light onto the same solar
cell. Silicon cells are used as the convertor. The relative increase
of the output current of c-Si solar cells using the DOEs is investi-
gated using a solar simulator.
2. Materials and methods

2.1. Photopolymer solution preparation

The composition of the acrylamide-based photopolymer used in
this study consists of two monomers (Acrylamide and NN’methyle
nebisacrylamide), an electron donor (Triethanolamine), a dye sen-
sitizer (Erythrosine B, sensitive to light of 532 nm wavelength) and
a binder (Polyvinylalcohol) which keeps all of the components sus-
pended. The solutions were mixing for 90 min to ensure that the
monomers are completely dissolved The thickness of the layer
was 50 ± 5 lm thick, as measured by white light interferometry.

2.2. Layer preparation

0.5 ml of the photopolymer solution was spread evenly using
the gravity settling method on a 26 � 76 mm2 glass substrate
and then placed on a levelled surface and allowed to dry for 18–
24 h in darkness with temperature and relative humidity ranging
between 20–25 �C and 40–60% RH.

2.3. Experimental set-up

2.3.1. Holographic set-up for recording DOEs
In this report, DOEs were recorded using a 532 nm Nd:YVO4

laser and a Helium-Neon laser (He-Ne) at 633 nm was used as a
probe beam. The recording set up is shown in Fig. 1. The S polarized
beam was split in two via a non-polarizing beam splitter and re-
combined at the photopolymer plate using reflection at a plane
mirror. The inter-beam angle was set at 9.14� in air in order to pro-
duce gratings with a central spatial frequency of 300 ± 30 line
pairs/mm. The exposure time was kept constant at 60 s, thus expo-
sure energy of 60 mJ/cm2 in a layer of thickness 50 ± 5 lm was
achieved. Optical lenses with a range of focal lengths (3–10 cm)
were placed in the object beam. In order to maximize the aperture
of recorded HOE, it was essential that the object beam and the ref-
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erence beam fully overlapped at the photosensitive layer. The
recording geometry is shown in Fig. 2(a).

2.3.2. Holographic set-up for testing DOEs using laser light
The absorption of this formulation of the photopolymer at

633 nm is negligible even before exposure; therefore, a 633 nm
He-Ne laser was used as a probe beam to characterize the dif-
fracted efficiency dependence on the incident angle of the probe
beam. The reconstruction geometry is shown in Fig. 2(b). Except
where otherwise stated, the probe beam was linearly polarized
in the plane perpendicular to the optical table (plane of incidence)
i.e. S polarized light. A rotation stage (Newport, ESP 300) was used
to vary the angle of the probe beam with respect to the recorded
DOE. An optical power meter (Newport 1830-C) recorded the
intensity of the diffracted beam and the data was transferred to a
computer via a data acquisition card. A LabVIEW program was
used to control the experiment and to record the data. The diffrac-
tion efficiency, g, of the recorded grating was defined as the ratio
of the intensity of the first diffraction order and the intensity of the
probe beam. The diffraction efficiency of each focusing DOE was
determined by measuring the diffracted beam’s intensity close to
the focal point. For the studies of the dependence of the diffraction
efficiency on the state of polarization of the probe beam the laser
was rotated by 90� i.e. P polarized light was used instead of the S
polarized light. Fig. 2 shows the ray diagram for (a) recording (b)
reconstruction beam angles inside the recording medium. In
Fig. 2, h1 and h2 are the angles of incidence of the two recording
beams where h01 and h02 are the refraction angles inside the photo-
sensitive material according to Snell’s law. Angle hB is the angle
between the incident beam and the grating fringes, angle / is the
angle between grating fringes and the normal and ᴧ is the grating
period.

2.3.3. Electrical characterization with solar simulator light source
The electrical characterization was carried out by measuring the

Current–Voltage (I-V) characteristics of c-Si solar cells (Solar cap-
ture technologies) with and without the DOE placed in front of
the cell in such a way as to re-direct and focus additional light onto
the solar cell.

I-V curve of the solar cell represents the output current Vs out-
put voltage at which the solar cell is operating when the condition
of irradiation (1000 W/m2) and temperature (25 �C) were held con-
stant. Five I-V measurements were taken for each device test and
the results were averaged. The standard deviation between mea-
surements was within 3%.

I-V measurements were performed with a Keithley 2400 SMU
(Source Meter Unit) with a Labview interface, using a set up shown
in Fig. 3. Two DOEs were recorded on the left and right of a glass
Fig. 2. Geometry of (a) recording and (b) reco
plate so as to gather additional light and deflect it onto the solar
cell. Their position and focal length were chosen so as to ensure
overlap of the beams at the solar cell location, as shown in Fig. 3.
The light source used was a metal halide discharge lamp (Griven,
GR0262).

The individual current and voltage output from each solar cell is
read by a data acquisition card (DAQ). The measured current and
voltage values were acquired by a computer programme written
in NI Labview.

It was important to align the DOE so that the diffracted beam
was directed onto the solar cell since the recorded DOEs are off-
axis elements. The distance between the DOE and the silicon cells
was the same as the focal length of the DOEs which in this case was
5 cm ± 0.1 cm. This arrangement tests the effect of two DOE ele-
ments; however, the final application would involve larger number
of arrays of such elements surrounding the cell, each contributing
additional light.

3. Results

3.1. Recording high efficiency diffractive optical elements at low spatial
frequency

The DOEs were made by interfering a focussed by a cylindrical
lens beam with a reference beam (collimated) and arranging the
photopolymer layer at the area of overlap as described in Sec-
tion 2.3.1. Since the spatial frequency of the grating planes will
vary across the DOEs, the maximum and minimum spatial fre-
quency was calculated using the geometry of the experimental
set up, and was found that the spatial frequency ranges between
112 line pairs/mm - 485 line pairs/mm can be achieved in each
grating.

A range of DOEs with an off-axis focusing effect were recorded
in order to demonstrate focusing elements with low spatial fre-
quency, extended working angular and wavelength range and min-
imal sensitivity to the polarization state of the source. The
variation of diffraction efficiency with angle of incidence for a
recorded cylindrical and spherical DOE with central spatial fre-
quency of 300 line pairs/mm with thickness 50 ± 5 lm is shown
in Fig. 4. The results are compared with the theoretical result
which is presented in a solid line. These gratings are thick, volume
phase gratings with very small slant angles, so Kogelnik’s Coupled
Wave Theory can be successfully used to model the diffraction
behavior. For accurate comparison, the probe beam was placed in
the centre of the gratings throughout the measurements. The
experimental FWHM of the cylindrical and spherical DOE are
3.0 ± 0.1� and 4.0 ± 0.1� respectively, demonstrating an angular
range of operation that is large in comparison to other DOEs
nstruction of diffractive optical elements.



Fig. 3. Diagram of the experimental setup for electrical measurements.
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Fig. 4. Diffraction efficiency vs. angle for (a) spherical DOE and (b) cylindrical DOE at central spatial frequency of 300 line pairs/mm and recording intensity of 1 mW/cm2. The
solid line is the theoretical curve for a 300 line pairs/mm grating 50 lm thick, probed with 633 nm light.
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(Akbari et al., 2014b). Diffraction efficiency at Bragg incidence is
over 95% (corrected for reflection at front and back surface).
3.2. Variation of the diffraction efficiency with state of polarization of
the probe beam

The difference in efficiency for different polarizations can be
also be modelled using Kogelnik Theory (Kogelnik, 1969) and has
been previously exploited in order to make specific types of
polarization-sensitive elements. For example, Habraken et al. pre-
sented theoretical and experimental results in Dichromated Gela-
tin demonstrating the possibility of making polarizers using
plane diffraction gratings (Habraken et al., 1995). The dependence
of the first order diffraction efficiency of volume phase holographic
transmission grating on the polarization of the incoming light has
also been discussed in detail by Baldry et al. (2004).
For unpolarized light the Kogelink Diffraction Efficiency is given
by:

g ¼ 1
2
sin2 pDn2d

k cosa

� �
þ 1
2
sin2 pDn2d

k cosa
cosð2aÞ

� �
ð1Þ

Where the first term is for S-polarized light and the second term is
for P-polarized light and Dn is refractive index modulation, d is the
grating thickness and k is the wavelength of the reconstruction
beam and a is defined as the angle between the incident beam
and the grating fringes. As can be seen from the above equation,
as small value for a should make the efficiency for the P-
polarized light approach that of the s polarized light.

a will be smaller for low spatial frequency fringes, so elements
with lower spatial frequencies (having lower Bragg angles) are less
sensitive to polarization direction. These low spatial frequency
gratings were tested experimentally with two orthogonal polariza-
tion directions. Fig. 5 shows the dependence of first order diffrac-
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Fig. 5. Dependence of first order diffraction efficiency on grating thickness for
spatial frequency of a 300 line pairs/mm grating for S h j and P polarization.
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tion efficiency on the angle of incidence of the reading beam for S
and P polarized light, for spatial frequency of 300 line pairs/mm.
There is a difference in the peak Diffraction Efficiency of less than
5%. This implies that the Diffraction Efficiency of these gratings
(300 line pairs/mm, 60 lm thick) will be high in unpolarized light.

In order to test the element’s performance with unpolarized
light, the diffraction efficiency of the DOE was measured using a
metal halide discharge lamp (Griven, GR0262) as a light source
(Ahmed et al., 2016) with filters to isolate a wavelength of
633 nm. A rotation stage was used to vary the angle of incidence
and the diffraction efficiency of the diffracted beam was measured
near to the focus point at range of angles. The results are shown in
Fig. 6. A maximum diffraction efficiency of over 85% was observed
at the Bragg angle, confirming that the DOEs perform well under
unpolarized light.
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Fig. 6. Diffraction efficiency vs. angle using unpolarized red light from a solar
simulator for a cylindrical DOEs.
3.3. Use of a multiplexed device to increase the concentration ratio of
solar cells

The current vs applied voltages of the c-Si solar cell was mea-
sured using an electrical set up and the I-V curve was obtained
(Fig. 7). In this study the area of the DOE was kept constant at
113 mm2. The short circuit current (Isc) output of the reference cell,
i.e. without the DOE in place, was approximately 3.7 ± 0.1 mA.
When a single cylindrical DOE was included, a relative increase
in Isc of 16% was observed in comparison to the reference cell.
When a single spherical DOE was included, an increase of 32% in
signal was observed. This is a significant improvement, and is
due to the fact that the light is focused in two dimensions instead
of one. This measurement was then carried out for an array of two
cylindrical and spherical DOEs, which resulted in an increase in the
Isc of 40% and 78% respectively. These results suggest that the use
of larger arrays of cylindrical and/or spherical DOEs can achieve
higher relative increase in Isc for smaller areas of solar cells. The
value for the short circuit current density (Jsc) of the Si solar cell
was estimated using the I-V curves data for spherical/cylindrical
DOE and pairs of DOE relative to the solar cell area which in this
case was 60 mm2. The results are presented in Table 1.

Fig. 8 presents the relative increase in the Isc for the c-Si solar
cells vs area of solar cells. The area of the DOE remained constant
at 113 mm2 throughout the experiment whereas the solar cell area
was varied between 9 mm2 and 100 mm2. In order to optimize the
concentration ratio, the preference is to use solar cells significantly
smaller than the DOEs. These results show that there is a signifi-
cant improvement in the output current obtained when using
the holographic focusing elements.

It has been observed that for solar cells with area of 9 mm2, a
52% increase in the output current is achieved for a single spherical
DOE compared to 11% for 100 mm2 solar cell. This is because the
smaller cell area makes better use of the focussing effect. A similar
trend was achieved using a single cylindrical DOE; however, the
concentration ratio was lower, as expected.

The relative increase was nearly double for an array of two
cylindrical DOE compared to the single cylindrical DOE.

4. Conclusions

DOEs designed for effective operation under illumination with
broadband unpolarised light were fabricated and tested with sili-
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Table 1
Calculated Jsc of the Si solar cell with range of DOE.

Isc (mA/cm2) D Isc D Isc %
±0.03

Jsc (mA/cm2)

Bare Si 3.7 0.061
With spherical DOE 4.9 1.2 32 0.081
With cylindrical DOE 4.3 0.6 16 0.071
Array of two spherical DOE 6.6 2.9 78 0.110
Array of two cylindrical DOE 5.2 1.5 40 0.086

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120
 Cylindrical DOE
 Spherical DOE
 Array of two cylindrical DOE
 Array of two spherical DOE

R
el

at
iv

e 
in

cr
ea

se
, %

Area of c-Si solar cell, mm2

Fig. 8. The percentage increase of output current of c-Si solar cells vs. area of the c-
Si cells for spherical DOE, cylindrical DOE and arrays of two cylindrical and
spherical DOEs.
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con cells. Both cylindrical and spherical off-axis focusing DOEs
were recorded with high efficiency. Focusing elements with low
spatial frequency, broad working range and minimal sensitivity
to the polarization state of the source were presented. Maximum
diffraction efficiencies of 95% with laser illumination and 85% with
an unpolarised source were observed in photopolymer layers of
50 ± 5 lm at spatial frequency of 300 line pairs/mm. The results
for electrical characterization of the solar cells with the DOEs in
place show that the DOEs can be beneficial for solar applications.
The relative increase of the output current of c-Si solar cells was
measured for cylindrical DOEs, spherical DOEs and pairs of two
spherical and cylindrical DOEs to be approximately 16%, 32% and
40% respectively for a cell with an area of around 60 mm2. The
results show that with a pair of DOEs designed to focus on the
same position in place there is just over 100% increase in the short
circuit current in the solar cell in the output current obtained for
the solar cells with area of 12 mm2. This can be improved by
increasing the number of DOEs in an array.

Future work will focus on fabrication of arrays of spherical DOE
and multiplexing or staking to broaden the angular working range.
This approach can be implementing in typical building integration
and grading applications.
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