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A B S T R A C T   

This paper presents the steps involved in undertaking an analysis of hydrating cements with different levels of 
limestone powder using the PHREEQC geochemical software with the Notepad++ editor. The analysis begins 
with determining which solid phases are thermodynamically predicted to precipitate and form using the oxide 
compositions of commercial CEM I and CEM II/A-L cements. When the phases are known, PHREEQC is pro-
grammed to provide predictions of the phase dissolution and phase assemblage over time (here, 1000 days of 
hydration) as well as the pore solution chemistry. 

Thermodynamics has been successfully applied to the field of cement hydration to predict phase assemblages 
and pore solution changes. With an appropriate cement-based thermodynamic database, PHREEQC has the 
potential to be a very powerful tool in the ongoing development of sustainable cements into the future. The paper 
also discusses the ongoing work to couple PHREEQC with the HYDCEM model to provide users with an all-in-one 
platform to undertake a complete simulation of cement hydration.   

1. Introduction 

Thermodynamic modelling of cement hydration is a powerful tech-
nique to aid in understanding the equilibrium between phase assem-
blages, their pore solutions and the influence of temperature and 
chemical compositions upon them. Thermodynamic modelling, partic-
ularly in the interpretation of results, requires an understanding of 
which solids may be expected to dissolve or precipitate as reactions 
proceed to reach thermodynamic equilibrium. As the production of ce-
ments moves towards using more sustainable methods and materials, 
accurate predictions of hydrated phase assemblages will become 
increasingly important. Much research has been undertaken to predict 
phase assemblages using thermodynamic models using oxide pro-
portions, water to cement (w/c) ratios and curing temperatures. An 
increasingly popular choice of thermodynamic analysis for cement hy-
dration modelling is GEMS [1], which employs the Gibbs free energy 
minimization approach and uses the CEMDATA thermodynamic data-
base [2] for cementitious materials. Examples of these cement hydration 
thermodynamic predictions using GEMS and PHREEQC can be found in 
the literature [3,4] and are shown in Fig. 1. 

PHREEQC is an ion-pairing model written in C/C++ that is 
commonly used to perform geochemical predictions between solids, 

liquids and gases at equilibrium. Using appropriate databases, 
PHREEQC can perform speciation and saturation-index calculations, 
simulate kinetically controlled reactions and transport calculations, 
along with many other reaction types, details of which can be found in 
Parkhust and Appelo [5]. 

Thermodynamics has made it possible to predict the assemblages of 
hydrating cement pastes. Pioneering work in this area by Rothstein [6] 
and Lothenbach [3,7,8] has demonstrated the capability of thermody-
namics to predict the phase assemblages and aqueous pore solution 
chemistry, amongst other outputs, for most cementitious binders, with 
appropriate input data including oxide composition, phase proportions, 
w/c ratios and curing temperature. Much of the work using thermody-
namics to model cement hydration has utilised the GEMS model [1] to 
predict the hydrated solid phase assemblage formed from dissolving 
cement phases over time. Lothenbach’s and colleagues’ work in devel-
oping cement-based databases for modelling hydration [2], coupled 
with the GEMS software, has made the prediction of solid phase pre-
cipitation and aqueous changes over time achievable. GEMS is one of 
several models available to undertake cement hydration and reaction 
studies that includes the EQ3/6 [9] and CHESS [10] software packages. 

Previous work on modelling cement with limestone includes that by 
Lothenbach et al. [3] who modelled the addition of 4% limestone 
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powder blended with a Portland cement. This limestone content is 
within the limits for a CEM I cement but is much lower than the 20% 
permissible for a CEM II/A-L under EN197-1 [11] which is investigated 
here. Bentz [12] modelled limestone additions up to 20% using the 
CEMHYD3D cement hydration model by blending a Cement and Con-
crete Reference Laboratory (CCRL) [13] with a fine limestone powder. 
Bentz concluded that limestone accelerated cement hydration in lower 

w/c ratio blends by creating additional sites for nucleation and growth 
of hydration products. He also concluded that up to 20% limestone 
powder replacement did not have any detrimental effect on the perfor-
mance and would help reduce the environmental impact of cement 

Fig. 1. Previously modelled phase assemblages using (a) GEMS [3] and (b) PHREEQC [4] for non-limestone cements.  

Fig. 2. (a) Phase assemblage and (b) pore solution chemistry modelling by 
Elakneswaran et al. [4] for OPC. 

Fig. 3. Phase assemblage modelling by Elakneswaran et al. [4] and [30] for (a) 
slag (60:40 GGBS:OPC) and (b) fly ash (35:65 FA:OPC [212,220]). 

N. Holmes et al.                                                                                                                                                                                                                                 
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production. Mohamed et al. [14] modelled the effect of different lime-
stone additions (5,10,15 and 20%) using the µic microstructural hy-
dration model and they found, like Bentz [12], that the limestone helps 
to create additional hydration products to form monocarbonate rather 
than monosulfate. In all of the above work, limestone powder was 
blended with cement to form a composite material. 

A comprehensive summary of the effects of limestone additions on 
cement hydration in terms of its mechanical performance, solid hydrate 
development and pore solution chemistry can be found in [3]. Between 5 
and 10% limestone replacement, there is little effect on the compressive 
and flexural strength, due to the fine particle size distribution of the 
powder. Limestone promotes the precipitation of monocarbonate rather 
than monosulfate over time, which stabilises ettringite and in turn in-
creases the overall volume of the assemblage. Compared with the pore 
solution of a plain Portland cement, limestone binders have a minor 

effect. However, the presence of monocarbonate and stable ettringite 
results in lower aluminium and higher sulfate and carbonate concen-
trations. Measured heat of hydration curves using isothermal conduction 
calorimetry show a slightly accelerated rate of cement hydration in the 
presence of limestone and the presence of additional surfaces for the 
nucleation and growth of hydration products [15]. 

This paper will show how PHREEQC can be used to undertake sol-
ubility calculations and predict stable hydrate assemblage and solution 
chemistry during the hydration of commercial CEM I and CEM II/A-L 
cements, as described in IS EN 197-1 [11] rather than blended pow-
ders. Using an appropriate thermodynamic database, there are only very 
minor differences between the GEMS and PHREEQC predictions, albeit 
varying in the analysis. This paper will also describe how PHREEQC can 
be coupled with the HYDCEM model [16] to allow the user to undertake 
multiple analyses (solubility and solids prediction, phase assemblage 
programming and aqueous solution chemistry) under one umbrella 
software upon inputting the cement system data (oxide composition, 
phase proportions, w/c ratios, temperature, etc.). HYDCEM is a cement 
hydration model developed by the authors that has, most recently, been 
shown to be capable of predicting phase assemblages by successfully 
coupling with PHREEQC after details of the hydrating cement have been 
inputted [17]. 

2. PHREEQC geochemical model 

PHREEQC is a long-established model predominantly used in 
aqueous geochemical calculations [18] but offering great flexibility for 
use elsewhere. It undertakes its thermodynamic equilibrium calcula-
tions by solving equations based on the law of mass action (LMA) at a 
specified temperature and pressure. It undertakes thermodynamic 
equilibrium calculations [5,19] to determine if a phase is likely to 
dissolve or precipitate. This approach is also used by EQ3/6 and CHESS 
software whereas GEMS undertakes its predictions by minimising the 
Gibbs free energy of the system under analysis. Both approaches are 

Table 1 
CEM I and CEM II/A-L oxide proportions.  

Oxide proportions (g/100 g cement) 

CEM I CEM II/A-L 

SiO2
a 19.04 SiO2

a  17.5 
]Al2O3

a 5.01 Al2O3
a  4.6 

Fe2O3
a 2.83 Fe2O3

a  2.6 
CaOa 63.4 CaOa  62.0 
MgOa 2.31 MgOa  2.3 
Na2Oa 0.28 Na2Oa  0.26 
K2Oa 0.54 K2Oa  0.50 
CaO freeb 1.71 CaO freeb  1.62 
CO2

c 1.32 CO2
c  6.27 

SO3
a 2.65 SO3

a  2.45 
Periclased 1.0 Periclased  1.0 
LOI Not available LOI  7.22 
Blaine fineness (m2/kg) 
386 474 

aCalculated using XRF; bCalculated using titration. 
cCalculated from Carbon; dCalculated using XRD. 

Fig. 4. Ternary diagrams for a CEM I cement.  

Fig. 5. Ternary diagram for a CEM II/A-L cement.  

N. Holmes et al.                                                                                                                                                                                                                                 
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proven to be reliable, with very minor differences in the predictions 
using the same database. 

An IPhreeqc set of modules allows PHREEQC to be coupled with 
programming languages without the need to read from or write to files 
[20] through a library. The IPhreeqc COM module can be used by any 
software that supports the COM interface whereas the C++ class, li-
braries and dynamic link libraries (DLLs) can be compiled into C-based 
programmes [20]. Input information and results transfer occurs via the 
internal computer memory exchange between PHREEQC and the 
coupled programme. The IPhreeqc module allows PHREEQC to be run 
within models like HYDCEM simultaneously without having to move 
between separate models and securing data transfer including results. 
Coupling PHREEQC with other programmes such as DuCOM [21], a 
speciation solver [22], COMSOL [23] and EXCEL [4] to model cement 
hydration has been reported in the literature. In such applications, 
PHREEQC has proven to be a robust and flexible chemical simulator 
which is readily coupled to other codes, facilitating chemical predictions 
as required. 

PHREEQC uses Equation (1) [4,18] to determine if a phase is in 
equilibrium, dissolved or precipitated, where K is the thermodynamic 
equilibrium constant for the phase, γi is the ion activity coefficient, ci is 
the ion concentration (mol/L) and ni is the stoichiometric coefficient of 
the ion in the phase. 

The thermodynamic equilibrium constant for the phase, K, at a given 
temperature T (in Kelvin) is determined using Equation (2) where ΔrGT

0 

is the standard Gibbs energy of reaction at temperature T (Equation (3)), 
R is the universal gas constant (8.31451 J/(mol K)) and ΔfGT

0 is the 
Gibbs free energy of formation for a species (product or reactant) at a 
given temperature [4]. 

K =
∏

i
(γici)

ni (1)  

Kp = exp
(

−
Δf G0

T

RT

)

(2)  

ΔrG0
T =

∑
Δf G0

T,products −
∑

Δf G0
T,reactants (3)  

3. Previous use of PHREEQC for cement hydration modelling 

PHREEQC was used as a sub-model by Elakneswaran and Ishida [24] 
to assess the behaviour of cementitious materials in aggressive envi-
ronments. It was coupled with the DuCOM [25] model to solve multi-
species transport problems together with a comprehensive set of 
geochemical reactions as hydration continued. Computed and measured 
literature data gave good correlations and the authors concluded that 
coupled platforms could give a reasonable assessment of cementitious 
materials in aggressive environments. PHREEQC was used to calculate 
speciation and saturation index, mineral-solution equilibrium, ion- 

exchange equilibrium and surface-complexation in a variety of 
aqueous geochemical environments. 

The modelling of hydration of ordinary Portland cement (OPC) and 
ground granulated blast-furnace slag (GGBS) blended cements was un-
dertaken by Elakneswaran et al. [4] using the IPhreeqc module [20] 
with MS Excel®. PHREEQC was coupled (using the IPhreeqc module 
[22]) with Excel® to carry out thermodynamic calculations over time at 
suitable time-steps. The dissolution rates of the clinker were solved for in 
Excel® and transferred to PHREEQC (via IPhreeqc) to predict the solu-
tion composition and precipitated phases using thermodynamic prop-
erties from CEMDATA 07 [3] and others [26]. Examples of the outputs 
for OPC, GGBS and Fly-ash using this approach are shown in Fig. 2 and 
Fig. 3. For both GGBS and fly ash, the authors found that the predicted 
phases assemblages and pore solutions were comparable with measured 
data in the literature. As shown, the change in phase weight demon-
strates how PHREEQC is capable of predicting the phase assemblage 
over time for plain cements and those containing GGBS and fly-ash. 

Follow-on work in similar areas can be found in [27–29] that further 
shows the suitability of PHREEQC to model either part, or full-hydration 
of cementitious materials including OPC, GGBS and Fly ash. The 
following section will present how PHREEQC has been coded into the 
Notepad++ for PHREEQC editor to model the hydration of two cement 
types with different limestone contents. Results from PHREEQC pre-
dictions will be compared to those from the established GEMS [1] 
thermodynamic software which has a proven track record in modelling 
cementitious systems that have been verified through experimental 
analysis. 

4. Cement hydration modelling using PHREEQC 

This section will describe a full hydration analysis for CEM I and CEM 
II/A-L cements with different limestone contents including predictions 
of which (i) solid phases will precipitate, (ii) phases assemblage, cement 
clinker dissolution, silicates and aluminate changes over time and (iii) 
pore solution chemistry changes occur in PHREEQC using the experi-
mentally derived oxide proportions shown in Table 1 [11]. The pro-
portions shown are determined using a combination of XRF, titration 
and XRD analyses. A CEM I cement consists of at least 95% clinker with 
5% of minor constituents, such as limestone powder. The CEM II/A-L 
cement contains circa 15% limestone additions in accordance with [11]. 

The hydration of the two cements are modelled with a w/c ratio of 
0.5 and a starting temperature of 20 ◦C. All programming described 
herein used Notepad++ software as the PHREEQC editor, which pro-
vides a number of useful tools such as auto completion of terms and 
keywords, coloured numbers, bracket checking, etc. The model will be 
made up of three separate main input files using appropriate thermo-
dynamic data. Further analyses of the effects of increasing temperature 
and heat of hydration are also presented. 

Table 2 
Normalised phase compositions for the CEM I and CEM IIA-L cements in Figs. 4 and 5.  

CEM I cement CEM II/A-L cement 

Phase g/100 g mmol/100 g Mineral Moles Phase g/100 g mmol/100 g Mineral moles 

C3S  59.84  255.78 C3S  0.2621 C3S  47.86  205.07 C3S  0.2096 
C2S  10.78  61.11 C2S  0.0626 C2S  15.17  86.19 C2S  0.0881 
C3A  8.70  31.41 C3A  0.0322 C3A  7.96  28.83 C3A  0.0295 
C4AF  8.82  17.72 C4AF  0.0182 C4AF  8.09  16.28 C4AF  0.0166 
CaO_free  1.75  30.49 Gypsum  0.0265 CaO_free  1.66  28.89 Gypsum  0.0245 
CaCO3  5.13  49.99 MgO  0.0587 CaCO3  14.57  142.47 MgO  0.0583 
CaSO4  4.57  25.91 Calcite  0.0512 CaSO4  4.21  23.94 Calcite  0.1456 
K2SO4  0.92  5.16 Lime  0.0312 K2SO4  0.85  4.78 Lime  0.0295 
Na2SO4  0.30  2.03 Na2O  0.0025 Na2SO4  0.27  1.89 Na2O  0.0024 
K2O  0.06  0.57 K2O  0.0006 K2O  0.05  0.53 K2O  0.0005 
Na2O  0.16  2.48 Na2SO4  0.0021 Na2O  0.15  2.31 Na2SO4  0.0019 
MgO  2.37  57.31 K2SO4  0.0053 MgO  2.35  57.07 K2SO4  0.0049 
SO3  0.11  1.40 SO3  0.0014 SO3  0.11  1.40 SO3  0.0014  

N. Holmes et al.                                                                                                                                                                                                                                 
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Using Ternary diagrams ([31], free to download from [32]), the 
cements in Table 1 are expected to form Calcium Silicate Hydrate gel (C- 
S-H), Portlandite and AFm/AFt phases from the diagrams in Fig. 4 and 
Fig. 5. The higher limestone present in the CEM II/A-L cement is also 
predicted to contain significantly more CaCO3, as expected. 

4.1. Determining solid phases 

The first step is to convert the OPC oxide proportions (in g/100 g of 
cement) in Table 1 into moles, as PHREEQC operates such that each 
simulation is calculated in terms of molal quantities – that is, moles of 
substance per kilogram of solution. To do this, the number of moles in 
each of the oxides is calculated using its molar mass and is distributed in 
whole or in part to the phase composition shown in Table 2, which is 
then normalised to 100 g of cement. The hydrating cement has a w/c 

ratio of 0.5 so 50 g of water (or 0.05 kg) is added to the system. 
The starting pH is set to 7 but charge balanced at equilibrium to 

reflect the solution composition. The water content and pH are input 
under the SOLUTION keyword in PHREEQC. To determine which solid 
phases will form, users can specify particular phases and set their 
saturation index (SI) equal to zero under the EQUILIBRIUM_PHASES 

Table 3 
Thermodynamic data used for the hydration analysis @ 20 ◦C.  

Mineral Composition log10 Keq Reference 

OPC Clinker 
C3S Ca3SiO5  75.1542 [33-35] 
C2S_beta Ca2SiO4  39.6590 [33-35] 
C3A Ca3Al2O6  115.5542 [33,36,37] 
C4AF Ca4Al2Fe2O10  144.1621 [38]  

Oxides dissolved in OPC clinker 
K2O K2O  85.3723 [39,40], 
Na2O Na2O  68.4877 [39,41,42] 
MgO MgO  21.7924 [35,40,43] 
SO3 SO3  23.3404 [44]  

Oxides 
Lime CaO  33.1659 [35,42,45] 
Periclase MgO  21.7924 [35,40,43]  

Carbonate & sulfates 
Calcite CaCO3  1.9285 [35,36,42,46] 
Gypsum CaSO4(H2O)2  –4.4644 [47-49] 
Arcanite K2SO4  –1.8561 [43] 
Thenardite Na2SO4  − 0.2954 [37,43] 
Syngenite K2Ca(SO4)2(H2O)  –7.3086 [50-52] 
Anhydrite CaSO4(H2O)2  − 4.4743 [47-49]  

C-S-H & Portlandite 
Portlandite Ca(OH)2  23.1906 [53,54] 
C-S-H (CaO)1.65(SiO2)(H2O)2.1167  29.5062 [55-79]  

AFt phases 
Ettringite Al Ca6(Al 

(OH)6)2(SO4)3(H2O)26  

57.8723 [60,80-87] 

Ettringite Fe Ca6(Fe 
(OH)6)2(SO4)3(H2O)26  

56.7452 [42,81,88]  

AFm phases 
Hemicarbonate 

Al 
(Ca2Al 
(OH)6)2((CO3)0.5(OH)) 
(H2O)5.5  

93.6658 [42,89-91] 

Hemicarbonate 
Fe 

(Ca2Fe 
(OH)6)2((CO3)0.5(OH)) 
(H2O)3.5  

89.2458 [42,91,92] 

Monocarbonate 
Al 

(Ca2Al(OH)6)2(CO3)(H2O)5  82.3657 [60,89-99] 

Monocarbonate 
Fe 

(Ca2Fe(OH)6)2(CO3)(H2O)6  76.6598 [42,88,91,92] 

Monosulfate Al (Ca2Al(OH)6)2(SO4)(H2O)8  73.4309 [81,90,98,100- 
105] 

Monosulfate Fe (Ca2Fe(OH)6)2(SO4)(H2O)6  68.0928 [42,81,106,107]  

Hydrogarnets 
Hydrogarnet_SS Ca3Al2(SiO4)0.8(OH)8.8  74.2623 [71,90,108-111] 

Ca3Fe2(SiO4)0.84(OH)8.64  58.1385 [42,81,111]  

Magnesium phases 
Hydrotalcite Mg6Al2(OH)18(H2O)5  101.0621 [42,59,112] 
Brucite Mg(OH)2  17.4518 [43,113-117]  

Fe phases 
Ferrihydrite Fe(OH)3  4.2120 [118]  

Table 4 
Log equilibrium constants, Keq (20℃) for formation reactions and ion size pa-
rameters, åi (Å) of aqueous species/complexes.  

Aqueous species/ 
complex 

log10 Keq
(a) åi 

(Å) 
Reference 

Al(OH)2
+ − 10.8887 4.0 [119] 

Al(OH)3 − 16.8662 Set 
Al(OH)4

– –23.4354 4.0 
Al3+ 0 9.0 
AlOH2+ − 5.1038 4.5 [119,120] 
AlSiO(OH)3

2+ − 2.583 4.5 [121-124] 
Ca2+ 0 6.0 [125,126] 
CaAl(OH)4

+ − 21.6869 4.0 [127] 
CaCO3 − 7.0989 Set [46,128] 
CaFe(OH)4

+ − 12.6075 4.0 [127] 
CaHCO3

+ 1.0894 4.0 [46,129-135] 
CaOH+ − 12.9637 4.0 [46,136,137] 
CaSiO(OH)3

+ − 8.7884 4.0 [128,138,139] 
CaSiO2(OH)2 − 19.5039 Set [79,127] 
CaSO4 2.1018 Set [140,128] 
CO2 6.4245 Dru [126,141] 
CO3

2– − 10.384 4.5 [126,142] 
Fe(OH)2

+ − 5.8978 4.0 [54,137] 
Fe(OH)3 − 14.5203 Set [143,144] 
Fe(OH)4

– –22.5098 4.0 [111,143-151] 
Fe3+ 8.7793 9.0 [137,152,153] 
FeOH2+ − 2.32 4.5 [54,137] 
H+ 0 9.0 [126] 
H2 − 46.9143 Dru [141,153] 
H2O 0 GC [154-158] 
HCO3

– 0 4.0 [126,142] 
HSO4

– 1.9291 4.0 [126] 
K+ 0 3.0 [125,126] 
KAl(OH)4 − 24.8669 Set [159] 
KCO3

– − 11.1607 4.0 [127] 
KFe(OH)4 − 14.6174 Set 
KHCO3 − 0.6326 Set 
KHSO4 − 1.6 Set [128,160] 
KOH − 15.1046 Set [159] 
KSiO(OH)3 − 10.1018 Set [127] 
KSiO2(OH)2

– –23.7604 4.0 
KSO4

– 0.8808 4.0 [128,161-163] 
Mg2+ 0 8.0 [126,141,164] 
MgAl(OH)4

+ − 18.9623 4.0 [127] 
MgCO3 − 7.4281 Set [128,133,165] 
MgFe(OH)4

+ − 11.604 4.0 [127] 
MgHCO3

+ 1.0412 4.0 [128,166] 
MgOH+ − 11.9153 4.0 [120,137,167–170] 
MgSiO(OH)3

+ − 8.5704 4.0 [128,138] 
MgSiO2(OH)2 − 8.5704 Set [128,138] 
MgSO4 2.2344 Set [171] 
Na+ 0 4.0 [119,125] 
NaAl(OH)4 − 24.1969 Set [119] 
NaCO3

– − 9.2323 4.0 [130,134,172–175] 
NaFe(OH)4 − 14.0028 Set [127] 
NaHCO3 0.132 Set [172-176] 
NaHSO4 − 1.3682 Set Using methods described in  

[127] 
NaOH − 14.9528 Set [119] 
NaSiO(OH)3 − 8.275 Set [177] 
NaSiO2(OH)2

– –22.5373 4.0 [127] 
NaSO4

– 0.9445 4.0 [178] 
O2 − 87.4702 

(d) 
Dru [141,179,126,153] 

OH– − 14.1741 3.5 [125,126] 
Si(OH)4 0 Dru [180-197] 
SiO(OH)3

– − 9.8905 4.0 [138,198-209] 
SiO2(OH)2

2– –23.3917 4.5 [203-205,207,209] 
SO4

2– 0 4.0 [125,126]  
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keyword. If, following an initial analysis, a solid phase has a negative SI, 
it is assumed to be under-saturated and will dissolve into the solution. If 
the SI is positive, the solution is over-saturated and the solid may form. 
To expedite this, users can specify which solids PHREEQC should 
consider, rather than all contained in the database. 

The thermodynamic data in Table 3 and Table 4 were used for the 
analysis. Along with setting the SI for the solid phases to zero, the 
amount of moles of each phase that can dissolve is input. As may be seen 
for the two cements (Table 5), the predicted hydrates to form include C- 
S-H, Portlandite, ettringite and monosulfate. Using the SELECTE-
D_OUTPUT and USER_PUNCH keywords, PHREEQC can also output the 
fully hydrated mass (g) of each solid phase as a *.txt file, for example. 

By using these keywords, the complex output files that are produced 
after successfully running PHREEQC can be summarised into easy-to- 
read output files. These outputs provide a preliminary snapshot of the 
products of the fully hydrated cement including the final water content. 
As may be seen in Table 5 monocarbonate is precipitated in place of 
monosulfate due to the presence of calcite. This is confirmed by a suite of 
analyses that varied the percentage of CaCO3 in the system, as sum-
marised in Fig. 6(a). As may be seen, the initial formation of monosulfate 
is replaced by monocarbonate when the proportion of CaCO3 is greater 
than approximately 1%. This has been studied by others [210] who 
found similar behaviour using GEMS (Fig. 6(b)). 

4.2. Programming the phase assemblage 

PHREEQC uses the BASIC programming language and statements are 
written on numbered lines and variables can be defined as needed. The 
keywords utilised to produce phase assemblages are RATES, KINETICS, 
INCREMENTAL_REACTIONS, SOLUTION, USER_PUNCH, SELECTE-
D_OUTPUT and USER_GRAPH. The mathematical rate of each cement 
phase’s kinetic reaction is calculated under the RATES keyword using 
the method developed by Parrott and Killoh [211] for the dissolution of 

the clinker only. The dissolution of each clinker phase is determined 
using Equations (4) to (6) which represent nucleation and growth, 
diffusion and formation of a hydration shell respectively. The control-
ling rate (Rt) is the lowest value from Equations (4–6) for any time step. 
A and A0 represent the cement surface area and reference surface area 
(385 m2/kg) respectively. T and T0 are the curing and reference (of 
293.15 K) temperatures respectively and the fraction of clinker hydrated 
at each time step (αt) is given by αt = αt − 1 + Δt∙Rt− 1, where time (t) is 
in days. An arbitrary value of 1x10-15 is chosen as the first clinker 
fraction hydrated. The effect of w/c ratio is accounted for by using the 
factor (f(w/c)) as given in Equation 7 where αt is the overall degree of 
hydration of the four clinker phases. 

The K, N and H values used in Equations (4–7) for the three phases 
are those proposed by Lothenbach et al. [3] as shown in Table 6. The 
Parrot and Killoh method [211] was coded into PHREEQC using the 
CALCULATED_VALUES and RATES keywords with the parameters in 
Table 6. The kinetic parameters for the reactions are defined in the KI-
NETICS data block. It should be highlighted that while the addition of 
limestone can affect the rate of clinker dissolution over time, as dis-
cussed above, it has not been accounted for here as currently no nu-
merical/modelling method exists to predict its effect over time. Also, it is 
assumed that the volume of calcite in the resulting phase assemblages 
remains constant throughout. 

Rt=
K
N
(1− αt)(− ln(1− αt))

(1− N)∙
A
A0
∙exp

[
Em

a

R

(
1
T
−

1
T0

)]

∙
(

RH− 0.55
0.45

)
4∙f(

w
c
)

(4)  

Rt =
K(1 − αt)

2
3

1 − (1 − αt)
1
3
∙exp

[
Em

a

R

(
1
T
−

1
T0

)]

∙
(

RH − 0.55
0.45

)
4∙f(

w
c
) (5)  

Rt = K(1 − αt)
N∙exp

[
Em

a

R

(
1
T
−

1
T0

)]

∙
(

RH − 0.55
0.45

)
4∙f(

w
c
) (6) 

Table 5 
Predicted mass (g) of fully hydrated products.  

CEM I  CEM II/A-L  

Hydration product Mass (g) Hydration product Mass (g) 

C-S-H 61.93 C-S-H 56.78 
Portlandite 28.39 Portlandite 23.96 
Hydrotalcite 4.34 Hydrotalcite 4.31 
Monosulfate 0 Monosulfate 0 
Monocarbonate 16.59 Monocarbonate 14.60 
Ettringite 13.93 Ettringite 13.05 
Water 13.38 Water 16.84  

Fig. 6. Effect of CaCO3 on the behaviour of hydrating cements by (a) PHREEQC and (b) GEMS [210] (Different cements used).  

Table 6 
Parameters used in the Parrot and Killoh degree of hydration analysis [3].  

Parameter C3S C2S C3A C4AF 

K1 1.5 0.5 1.0 0.37 
N1 0.7 1.0 0.85 0.7 
H 1.8 1.35 1.60 1.45 
K2 1.1 0.7 1.0 0.4 
N2 3.3 5.0 3.2 3.7 
K3 0.05 0.02 0.04 0.015 
Ea (J/mol) 41,570 20,785 54,040 34,087  
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Fig. 7. PHREEQC calculated phase assemblages, clinker dissolution and aluminate phases for the CEM I and CEM II/A-L cement described in Table 1.  
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f (w/c) = (1 + 3.333 ∗ (H ∗ w/c − αt) )
4; αtH ∗ w/c (7)  

Here, the initial moles of the reactant (C3S, C2S, etc.) calculated are 
added to the phase name (also C3S or Alite, etc.). Also provided in the 
KINETICS data block are the steps (here 0.01 to 1,000 days) and interval 
(step_divide) of the analysis. Steps defines the time steps to integrate the 
rate expressions(s). The step_divide input is used for the integration 
calculations by the Runge-Kutta solver [18]. The keyword INCRE-
MENTAL_REACTIONS is set as true in this analysis to provide an in-
cremental amount of reaction and time. The SOLUTION data block 
inputs the water content (50 g for a w/c ratio of 0.5) and curing tem-
perature (20 ◦C). 

The main programming code is within the USER_GRAPH data block 
and outputs the results. The volume of each predicted hydration phase is 
calculated over time. The code below shows an example of the calcu-
lations undertaken to determine the volume of Portlandite based on the 
reaction equations for the two silicates phases, where 150 is the BASIC 
line number, rAli and rBeli are the Alite and Belite rates of reaction, 1.3 
and 0.3 are the molar reaction ratios of C3S and C2S (C3S + 5.3H → C-S- 
H + 1.3CH; C2S + 4.3H → C-S-H + 0.3CH) respectively and 33.060 is the 
molar volume (cm3/mol). The full list of reaction equations used in this 
work are given in Equations (8) to (15). 

150 V_Portlandite = ((rAli * 1.3) + (rBeli * 0.3)) * 33.06 

1.0C3S+ 5.3H→1.0CSH + 1.3CH (8)  

1.0C2S+ 4.3H→1.0CSH + 0.3CH (9)  

1.0C3A+ 6.0H→1.0C3AH6 (10)  

1.0C3A+ 3.0C$H2 + 26H→1.0C6A$3H32 (11)  

2.0C3A+ 1.0C6A$3H32 + 4H→3.0C4A$H12 (12)  

4MgO+ 1.0Al(OH)4 +H→1M4AH10 (13)  

3.0C4ASH12 + 2.0CaCO3 + 18H→C6ASH32 + 2.0C4ACH11 (14)  

C3A+ 0.5CH+ 0.5CaCO3 + 11.5H→C4AC0.5H12 (15) 

The calculations continue iteratively for the various reactions using 
the predicted solids from the previous analysis. The outputs include the 

phase assemblages over time for the CEM I and CEM II/A-L cements, as 
shown in Fig. 7. 

As may be seen, in both cements, gypsum is completely dissolved 
within 7–8 h, the monocarbonate phase precipitates and ettringite re-
mains stable over time. As brucite was not predicted to form (as 
described earlier), only the increase in hydrotalcite is considered further 
as the ‘sink’ for magnesium. Finally, as ettringite remains present in the 
system, hydrogarnet growth is constrained. In this way, the hydrate 
mineral assemblage is defined by maintaining thermodynamic equilib-
rium between the solids and their pore solution at each incremental 
stage of reaction. There is also good agreement between the clinker 
dissolution calculated by PHREEQC and [3]. The volume of both ce-
ments is similar but, with more clinker present in the CEM I, it is likely 
that it will yield slightly lower porosities and higher mortar compressive 
strengths over time [213]. As expected, there is more calcite (CaCO3) in 
the CEM II/A-L assemblage as up to 14% is permitted for CEM II/A-L 
binders compared to 5% for CEM I, as shown in Table 2. 

The predictions are similar to those obtained by Lothenbach et al. [3] 
1 for cements with a limestone percentage of 4% by weight (see Fig. 8). 
Similarly, monocarbonate replaces monosulfate and ettringite is stable. 

4.3. Modelling pore solution chemistry 

Modelling the changes in the aqueous solution in PHREEQC is via the 
PHASES, SOLUTION, EQUILIBRIUM_PHASES, KINETICS and INCRE-
MENTAL_REACTIONS data blocks, as previously described above. The 
calculations are based on the assumption that the sulphates (Na2SO4, 
K2SO4, CaSO4/gypsum), free lime (CaO_free) and calcite react instan-
taneously upon contact with water. The cement phases (C3S, C2S, etc.), 
K2O and Na2O are slower to react. The analysis required the computa-
tion of element concentrations, namely Na, Ca, K, OH–, Al, Fe, S and Si in 
units of mmol/kg water as well as the changing pH over 1,000 h of 
hydration for the cements described in Table 1. In Fig. 9, PHREEQC, 
unsurprisingly, models quite well the change in aqueous solution 
chemistry over time as it was originally designed to model the chemistry 
changes of aqueous solutions. As may be seen in Fig. 10, the predictions 
are similar to those measured and obtained using GEMS, which 
compared well with measured pore solution concentrations, thereby 
providing confidence in the PHREEQC predictions. 

As may be seen in Fig. 9, the pore solution contains high levels of 
potassium and sulfate. The calcium, hydroxide and sulfate contents are 

Fig. 8. Phase assemblage using the GEMS thermodynamic model for a cement with a limestone replacement level of 4% by weight [3].  
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strongly influenced by the precipitation/dissolution of gypsum and 
portlandite, ettringite and C–S–H. There is a marked shift in chemistry, 
particularly the calcium and sulphates as gypsum is depleted and the 
system reaches equilibrium with further precipitation of the hydrate 
solids. Despite the higher calcite content in the CEM II/A-L cement, 
there is little difference between it and the CEM I pore solution chem-
istry. However, comparing with OPC systems [8], there are some dif-
ferences in the sulfate and aluminium concentrations due to the 
precipitation of monocarbonate and the stable behaviour in ettringite, 
whereas the presence of monosulfate would lead to higher aluminium 
and lower sulfate and carbonate concentrations [3]. 

The pore chemistry and pH are quite similar for both cements with 
only minor differences throughout. Previous work on modelling pore 
chemistry in hydrating cements concluded that the solution is over-
saturated with respect to gypsum, portlandite and ettringite, particu-
larly within the first 12 h [8]. Similar to that work, anhydrite (CaSO4) is 
referred to here as gypsum. When the gypsum is depleted, there is 
sudden change in the pore chemistry due to the oversaturation of sul-
phates in solution. 

4.4. Modelling the heat of hydration 

The output from the dissolution of the cement clinker, gypsum and 

ettringite has been used to predict the rate and cumulative heat of hy-
dration over 1,000 days. This work was aimed at including the second 
peak or shoulder which is due to sulphates previously bound to the C-S- 
H dissolving into solution and creating the environment for a second 
release of heat. Previous work to model the heat of hydration by Jensen 
et al. [214,215] and Hesse et al. [216] concluded that only the silicates 
and aluminates contributed significantly to the heat of hydration using 
the molar reaction equations for C3S (Equation (16)) and the hydration 
of C3A and dissolution of gypsum to form ettringite (Equation (17)). The 
enthalpies of reaction of dissolution and precipitation reactions used by 
Jensen et al. [214] are given in Table 7. It is postulated here that the heat 
of hydration is driven by Equations (16) and (17) but the hydration of 
C2S (Equation (18)) with an enthalpy of 262 J/g [16] also has an in-
fluence on the overall heat produced. 

For the two cements analysed, there appears to be a slightly higher 
and earlier peak (~15.5 J/hr.100 g of cement) but lower cumulative 
heat (~370 J/100 g of cement) in the CEM II/A-L than CEM I ((~14.5 J/ 
hr.100 g of cement) and (~420 J/100 g of cement)) respectively. This is 
likely to be due to the higher calcite proportion in the CEM II/A-L 
cement (5.13 g and 14.57 g in CEM I and CEM II/A-L respectively, 
Table 2). It has been shown in the literature [3] that binders with greater 
limestone contents will generate slightly higher rates of heat evolution 
over the initial 8–10 h than plain cement. This is due to limestone 

Fig. 9. Modelled pore solution chemistry and pH over time for the CEM I and CEM II/A-L cements.  
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creating more sites for nucleation and growth of hydration products. 
However, over time, the cumulative heat evolution is lower. 

C3S+ 5.3H→C1.7SH2.6 + 1.3CH (16)  

C3A+ 3Gypsum+ 26H→C6A$3H32(Ettringite) (17)  

C2S+ 4.3H→C1.7SH2.6 + 0.3CH (18) 

The heat of hydration curves in Fig. 11 were developed using the 
clinker dissolution (in g) determined by PHREEQC and the enthalpies of 
reaction for Equations (8)–(10). No account is taken of the heat pro-
duced by the precipitation of ettringite in Equation (9). Also, it is 
assumed that the reaction of the C3A in Equation (9) is restrained until 
the gypsum is dissolved into solution. As may be seen in Fig. 11, the 
predicted rate and cumulative heat of hydration is reasonable and also 
clearly demonstrates the second peak or shoulder at approximately 1 
day relative to the silicate’s heat evolution. Examples of measured heat 
flow rates from the literature are shown in Fig. 12 in which they all peak 
at between 8 and 12 h, with the second peak occurring at approximately 
15 h. 

4.5. Modelling the effect of temperature on hydration 

PHREEQC can also undertake an analysis over a range of tempera-
tures (0–60 ◦C, for example) using the REACTION_TEMPERATURE 
keyword. The range of temperatures to be investigated are inputted and 
examined using the USER_GRAPH output facility. Previous studies in 
this area using GEMS [106,210] demonstrated that at approximately 
48 ◦C (Fig. 13), both ettringite and monocarbonate were unstable rela-
tive to monosulfate for a range of cements analysed. Using the CEM I and 
CEM II/A-L cements described above, an analysis was performed to 
investigate their predicted thermodynamic behaviour from 0 to 60 ◦C. 
As shown in Fig. 14 for the CEM I and CEM II/A-L cements, the change in 
stability of monocarbonate and ettringite with respect to monosulfate 
occurs at approximately 42 ◦C. In both cases, there is an accompanying 
reduction in volume above 42 ◦C, especially in the CEM II/A-L cement. 
While most concrete curing takes place around 20 ◦C in temperate cli-
mates, prefabrication often employs much higher temperatures that may 
cause a slight reduction in compressive strength as the monocarbonate 
and ettringite are converted to monosulfate with a corresponding drop 
in overall volume. 

5. Discussion 

It is clear that PHREEQC can reliably predict the formation of solid 
hydrates in a cement/limestone system, model the hydration of cement 
clinker phases, provide a phase assemblage plot over time and forecast 
the changing element chemical concentrations in the aqueous solution. 
It has the capability to model the effect of changing temperature on the 
phase behaviour as well as estimating the heat of hydration over time. 
However, to perform the above suite of calculations, four separate input 
files had to be prepared and analysed. It would be much more conve-
nient to couple the PHREEQC analysis within a bespoke software plat-
form that could provide a supporting/front end capability for user input 
along with facilitating a full PHREEQC analysis as described above. This 
software could also perform some preliminary calculations that feed into 
PHREEQC, such as converting the oxide contents into the normalised 
phase compositions in Table 2. These input variables could then be 
transferred to PHREEQC by the supporting software. The heat of hy-
dration predictions could be done in a similar way. 

Work is underway by the authors to develop Version 4 of the 
HYDCEM model [16,217,218] as a single platform to simulate the full 
hydration for cements with and without limestone upon input of 
appropriate data, such as oxide proportions, the w/c ratio and curing 
temperature, along with the Blaine fineness. Previously, HYDCEM pro-
duced its phase assemblages by employing volume stoichiometries from 
molar ratio reactions. Version 4 will be capable of maintaining ther-
modynamic equilibrium between the hydrates and their common pore 
solution at each reaction step. This will provide a more robust and 
realistic simulation of cement hydration than those of previous versions 
and allow a much wider range of blended cements to be considered. 

The authors have previously examined the relationship between the 
degree of hydration, as predicted by the Parrot and Killoh method [211], 
and the compressive strength, using the Powers ‘gel space’ model [219]. 
Comparisons between the predicted and measured compressive strength 
to BS EN 196 [220] using European cements are promising using 
appropriate values in the Powers model. More work is underway to 
relate the predicted porosities during hydration to measured compres-
sive strengths of mortars. Furthermore, work on heat of hydration pre-
dictions over time using thermodynamic data predictions is also 
underway. 

6. Conclusions 

The conceptual model employed to undertake the simulations pre-
sented in this paper operates on the basis that each step of the hydration 
involves a rapid re-establishment of thermodynamic equilibrium 

Fig. 10. GEMS predicted and experimentally measured pore solution concen-
trations with a 4% by weight limestone addition (PC4) and without (PC) [3]. 

Table 7 
Enthalpies of reaction of dissolution and precipitation reactions [214].  

Reaction Enthalpy (J/g) 

Equation (11) Silicate reaction 561 
Equation (12) dissolution of C3A 868 
Equation (12) dissolution of anhydrite 52 
Equation (12) precipitation of ettringite 214  
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between the solution and the hydrated fraction of the cement. The ac-
curacy of these simulations appears to justify this approach, showing 
close agreement with other models. Placing kinetic constraints on the 
reaction of the initial clinker minerals prevents their immediate and 
complete reaction with the entire pore solution. In this way, a reason-
ably robust approach to modelling hydration chemistry is demonstrated 
using PHREEQC as a chemical simulator of the HYDCEM model. How-
ever, it should be highlighted again that the cement dissolution 
modelled here using the Parrot & Killoh method, which has a significant 
influence on the precipitation of solid hydrates does not take account of 
the effect of limestone on the rate of hydration. 

Previous work using PHREEQC to model cement hydration focussed 
on OPC, GGBS and fly-ash. No previous literature exists, at the time of 
writing, which demonstrates PHREEQC’s capability to model the 

inclusion of limestone in cementitious binders. This paper demonstrates 
successfully that this is now possible, notwithstanding the assumptions 
around the binder dissolution and calcite volume over time mentioned 
above. 

Although the methods described here are complete and reliable, 
further development is ongoing to integrate hydration simulations into a 
single input file. Ultimately, this will facilitate the automatic modelling 
of the uptake of dissolved elements in the pore solution by the solid 
hydrates to complete the long-term evolution of cement hydration. 
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