
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference papers School of Computer Sciences

2017

Multiparty computations in varying contexts Multiparty computations in varying contexts

Paul Laird

Sarah Jane Delany

Pierpaolo Dondio

Follow this and additional works at: https://arrow.tudublin.ie/scschcomcon

 Part of the Computer Sciences Commons

This Conference Paper is brought to you for free and
open access by the School of Computer Sciences at
ARROW@TU Dublin. It has been accepted for inclusion in
Conference papers by an authorized administrator of
ARROW@TU Dublin. For more information, please
contact arrow.admin@tudublin.ie,
aisling.coyne@tudublin.ie, gerard.connolly@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 4.0 License

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomcon
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomcon?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F378&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F378&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Multiparty Computations in Varying Contexts

Paul Laird
Dublin Institute of Technology

Email: paul.laird@dit.ie

Sarah Jane Delany
Dublin Institute of Technology

Email: sarahjane.delany@dit.ie

Pierpaolo Dondio
Dublin Institute of Technology

Email: pierpaolo.dondio@dit.ie

Abstract—Recent developments in the automatic transforma-
tion of protocols into Secure Multiparty Computation (SMC)
interactions, and the selection of appropriate schemes for their
implementation have improved usabililty of SMC. Poor per-
formance along with data leakage or errors caused by coding
mistakes and complexity had hindered SMC usability. Previous
practice involved integrating the SMC code into the application
being designed, and this tight integration meant the code was not
reusable without modification. The progress that has been made
to date towards the selection of different schemes focuses solely on
the two-party paradigm in a static set-up, and does not consider
changing contexts. Contexts, for secure multiparty computation,
include the number of participants, link latency, trust and
security requirements such as broadcast, dishonest majority etc.
Variable Interpretation is a concept we propose whereby specific
domain constructs, such as multiparty computation descriptions,
are explicitly removed from the application code and expressed
in SMC domain representation. This mirrors current practice
in presenting a language or API to hide SMC complexity, but
extends it by allowing the interpretation of the SMC to be adapted
to the context. It also decouples SMC from human co-ordination
by introducing a rule-based dynamic negotiation of protocols.
Experiments were carried out to validate the method, running a
multiparty computation on a variable interpreter for SMC using
different protocols in different contexts.

I. INTRODUCTION

Secure multiparty computation (SMC) is a growing domain

of both pure and applied research interest. It allows multiple

parties to learn the result of some computation on data held

by the parties, without any party revealing their data. The only

information which may be gained by a dishonest participant

is that which may be deduced from the function output and

input known to the participant. There are several different

general-purpose SMC schemes, both for binary and arithmetic

computations, and families of more specialised protocols for

calculating the result of a particular function on the inputs

of the parties. While specialised protocols are less flexible,

they can be faster than general purpose SMC, depending on

context. Some specialised protocols also offer advantages in

terms of security thresholds. Different contexts impact various

protocols to differing degrees. Some protocols can scale easily

in the number of participants, while others cannot, but scale

well in the message space (the range of values acceptable as

input). Some are computationally bound, while others suffer

severely from network latency issues. Some provide higher

thresholds of tolerance for dishonest parties while others

provide greater security guarantees for a given threshold. There

is no one protocol which is most suitable in all contexts.

It is frequently the case that the SMC logic is baked into

application code, and the choice of protocol is based on

what was suitable for the first use of the application, limiting

reusability of programs. More recently, the SMC logic is

represented in an abstract language at design time, but with

either a predetermined implementation strategy [12], or an

implementation baked into the configuration at deployment

time [37]. We argue that for some applications, a context-

neutral representation of secure multiparty computations is

more appropriate, allowing the detailed interpretation of the

computation to be selected based on the relevant contexts.

Our contribution is a framework in development, in which

multiparty computations are requested on behalf of client

applications. Protocols are dynamically and autonomously

negotiated between the various parties using the framework,

and orchestrated using the most suitable protocol for the

context which provides the necessary security guarantees.

In section II we examine state of the art in SMC frame-

works, section III sets out our goals and contribution, section

IV describes our feasibility analysis and experiments and

section V lists conclusions and future work.

II. BACKGROUND AND RELATED WORK

The first realisation of Secure Multiparty Computation was

introduced by Yao with the millionaires’ problem [43], eval-

uating an inequality over a limited input space with computa-

tional security, using a one-out-of-n oblivious transfer. Since

then, many variations have emerged, and advances have been

realised, in efficiency, security and adversary model. Schemes

have been based on not just garbled circuits, but also secret

shares, including boolean [17], additive arithmetic [4], [14] or

Shamir [40]. Specialised adaptations include anonymity [42],

deniability [6] and covert operation [7].

A. Classification of Secure Multiparty Computation Protocols

While many different forms of SMC exist, they can be

broadly categorised as being general purpose or specialised.

General purpose protocols represent arbitrary non-branching

computations as arithmetic circuits, typically using Beaver’s

efficient multiplication [1]; boolean circuits using the GMW

[17] protocol, or binary circuits garbled using derivatives of

Yao’s [43] original technique. Many specialised protocols for

arithmetic or statistical operations trade generality for greater

efficiency, increased collusion tolerance or other advantages.978-1-5090-5569-2/17/$31.00 c©2017 IEEE

400
Authorized licensed use limited to: Technological University Dublin. Downloaded on January 26,2022 at 16:30:32 UTC from IEEE Xplore. Restrictions apply.

B. Multiparty Computation in different contexts

Existing practice, until recently, in multiparty computation

involved one of: Trusted computation, Universal application

of SMC, or custom coding. Mixed-mode programming and

flexible implementation are two recent trends making secure

multiparty computation more practical and usable. Delegating

computation functions to a trusted party is not SMC, but is

appropriate in some circumstances.

1) Universal SMC: Domain specific languages for some

time [21], [31], [34] sought to capture intentions of SMC

programmers at a higher level. Computations are described

in a language for secure multiparty computation, and all com-

putation is performed collaboratively in a privacy-preserving

manner. This guarantees that all computations are privacy-

preserving, but may be inefficient [20].

2) Custom coded approach: A program involving multi-

party computations, one or more of which must be carried

out in a privacy-preserving manner, is coded such that those

computations requiring secrecy are carried out using some

SMC protocol which fulfills the requirements. The protocols

may be hand-coded into the application, or generated with tool

assistance [20], reducing errors, but requiring expertise on the

part of the programmer, such as binary circuit description.

3) Mixed-mode programming: Wisteria [38] improves the

tradeoff between ease of programming and efficiency where

not all operations need to be carried out securely, allowing

very similar lines of code, labelled parallel (local, non-SMC)

and secure, for programs which carry out the same instructions

in a secure multiparty or local open fashion.

4) Flexible implementation: A description of the computa-

tion to be performed is provided in terms of an SMC API [37],

and is closest to our work. The SMC API includes operations

which can be performed by garbled circuits, boolean and

arithmetic secret sharing: addition, multiplication;

boolean sharing and garbled circuits: subtract, and,
xor, mux, equality, greater-equal. The ability

to select protocols on a per-node basis is facilitated by efficient

conversions between arithmetic, boolean and Yao shares [12].

Previous work treating the two-party paradigm established

that, even for just decisions involving only two schemes, the

computational and network costs would be difficult to optimise

by hand [23].

Computational, network, or financial (e.g. computation +

network costs on Amazon) costs are used for two-party com-

putation protocol selection [37]. Selection by number of partic-

ipants, collusion threshold, message space size, repeatability,

auditability or security model, is not seen in the literature.

C. Comparison of frameworks for SMC

There are a range of frameworks to support secure mul-

tiparty computation available, with differing characteristics,

strengths, weaknesses, and appropriate circumstances of use.

Table I lists some important features of frameworks for

secure computation. Some can accommodate an unbounded

(except computationally) number of participants, while others

are restricted to two or three-party computation. Almost all of

the frameworks listed here use an associated language which

abstracts from the complexity of multiparty computation.

1) Types of Secure Computation: Several of the frameworks

offer computation on integers distributed as uniformly random

additive shares in Zp or Z2l ; these require secure channels

for privacy in the n > 2 models. Additive shares do not

tolerate misbehaving parties, and can be thought of as an

n-out-of-n sharing, although not an issue where n = 2.

Replication using pseudorandom secret sharing [9] allows

larger (approx. 3 < n < 15) groups tolerating a small

number of misbehaving parties. Shamir secret sharing [40] also

requires secure channels for privacy, and can tolerate t < n
3

corrupted parties, the maximum for the information-theoretic

setting. Boolean shares are single bits, shared in a similar

manner so that any k > t parties can reconstruct each bit. Yao

garbled circuits and values are encrypted by one party, with

keys for the other party’s values obliviously transferred to that

party. Homomorphic encryption allows blind computations on

encrypted data supplied by another party. Schemes for future

inclusion in our framework are marked ’f ’ in table I.

2) Specialised Protocols: Specialised protocols for many

functions outperform generic formulations of the equivalent

function in general-purpose secure multiparty computation

schemes. Only ObliVM [28] offers explicit support for spe-

cialised protocols, though its authors caution against their

use as a waste of developer and cryptographer time. If how-

ever, concerns surrounding privacy and profiling of online

footprints [24], [33] and DNA [13] continue to grow, then

mitigation measures [11], [35] will increase in importance.

Many specialist protocols, such as privacy-preserving classi-

fiers [5], perform far better than standard privacy-preserving

implementations of the basic algorithms. The development of

high performance specialised protocols for secure multiparty

computation of statistical functions is seen as a priority in a

European Commission sponsored SMC publication [41].

3) Mixed Protocols: Some frameworks allow interactions

to be built as trees of nodes in which different SMC protocols

are used. The ability to convert shares from one form to

another [9] facilitates a much wider selection of possible

solutions, where one part of a computation uses one form of

shares, which are converted to another form for subsequent

computation. Performance evaluations of the ABY [12] frame-

work showed these often outperform single protocol solutions.

4) Automatic Selection: While ABY supports these mixes

of SMC schemes, it is the responsibility of the programmer

to specify which to use for what portions of the computation,

a task which grows considerably with circuit size, particularly

difficult if the programmer is not a domain or SMC expert.

CheapSMC [37] uses heuristics to assign an efficient combi-

nation of SMC schemes to the nodes of the computation.

5) Parties, Security model, Thresholds: Many frameworks

are restricted to two parties, and each must assume the other

is corrupt. For frameworks supporting three or more parties,

however, the number and type of corruption which may be

tolerated is important, as it may determine whether a compu-

tation may proceed, for a particular set of parties. Frameworks

401
Authorized licensed use limited to: Technological University Dublin. Downloaded on January 26,2022 at 16:30:32 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Feature Comparison of Secure Multiparty Computation Frameworks

Framework Supporte
d

Par
tie

s

Abstr
ac

t Defi
niti

on

Additi
ve

Sham
ir

Boolea
n

Yao Hom
om

orp
hic

M
ix

ed
Pro

to
co

ls

Spec
ial

ise
d

Pro
to

co
ls

Auto
m

ati
c

Sele
cti

on

Thre
sh

old
/S

ec
urit

y

Sec
ure

Chan
nels

Custo
m

isa
ble

Thre
sh

old
s

Obliv
io

us
RAM

Dynam
ic

Neg
otia

tio
n

Sharemind [4] 3
√ √ × × × × × × × 1p

√ × × ×
VIFF [10], [15] ≥ 2

√ √ √ × × √ × × × v
√ √ × ×

FairPlay [2], [31] n
√ × × √ √ × × × × n

2
p × × × ×

TASTY [18] 2
√ × × × √ √ × × × p × × × ×

Huang et al. [20] 2 × × × × √ × × × × p × × × ×
VMCrypt [30] 2

√ × × × √ × × × × p × × × ×
PICCO [45] ≥ 3

√ √ √ × × × × × × n
2
p

√ × × ×
Wisteria [38] n

√ × × √ × × × × × n
2
p × × × ×

ObliVM [27], [28] 2
√ × × × √ × √ × × p × × √ ×

Obliv-C [44] 2
√ × × × √ × × × × p × × × ×

Frigate [32] 2
√ × × × √ × × × × p × × × ×

PCF [25] 2
√ × × × √ × × × × v × × × ×

CBMC [19] 2
√ × × × × √ × × × p × × × ×

ABY [12] 2
√ √ × √ √ × × √ × a × × × ×

CheapSMC [37] 2
√ √ × √ √ × × √ √

a × × × ×
Our framework n

√ √
f f f f

√ √ √
v v

√ × √

actively secure against malicious or byzantine adversaries are

marked ’a’ in table I; those which provide passive protection

against semi-honest adversaries are denoted ’p’. PCF [25] is

adversary-model agnostic, denoted ’v’. Some schemes require

authenticated secure channels between all parties, including

by definition those providing information-theoretic security.

There is no advantage, and frequently a performance penalty in

forcing a higher threshold or security level than is considered

adequate, motivating variable thresholds, as in VIFF [10].

6) Oblivious RAM: Almost all available SMC frameworks

operate on the basis of a circuit, with all inputs being

treated equally, meaning searching data requires time O(n)
in the size of the dataset. Oblivious RAM [16] avoids linear

overheads, but the large constant terms in asymptotically

sublinear solutions remained an obstacle until a two-server

model was proposed [29]. ObliVM [28] is the only secure

multiparty computation framework which explicitly supports

private computations using oblivious RAM.

7) Dynamic Negotiation: Prior to the development of the

frameworks discussed, the main effort involved in carrying

out a secure multiparty computation consisted of its manual

translation into code with no support built in. This has,

for the most part, changed, so that once an interaction has

been specified in a suitable language, it can be deployed

and executed without delay. Research continues to improve

the efficiency of the underlying protocols, but the issue of

deployment and agreement to perform the computation has yet

to be addressed. If secure multiparty computation is used to

mitigate the potential effects of an advanced persistent threat,

then ad-hoc solutions are viable. For multiple parties across

different administrative domains, this is not possible however,

and the bottleneck becomes the deployment, authorisation, and

coordination of protocol commencement. We are not aware

of any other currently available framework supporting the

dynamic request for and negotiation of parameters of a desired

multiparty computation, necessary for on-the-fly execution of

desired multiparty computations.

D. Execution Cost Projections

The principle of parametric estimation of computational

costs has been shown to be valid for two-party computation

[39], and the model could be extended to multiparty contexts,

with adjustment where environmental or privacy constraints

or resource limitations impact the running time. As protocol

running times should leak no information, performance data

could be reported to a community repository, such as github,

to serve as reference values for future inferences.

III. OUR CONTRIBUTION

A. Goals

Fundamentally, our goal is to allow secure multiparty com-

putations, which are described in abstract SMC languages to

• Run in a wider range of contexts (broadcast, dishonest

majority etc.);
• Support a greater number of participants than is permitted

by state of the art secure multiparty computation frame-

works;

• change the protocol used in response to context change;

while ensuring protocols used satisfy all security requirements.

B. Illustrative Motivating Example

Consider the example of three parties computing simple

sums of values for an hourly commodity auction, communi-

cating over a local network. The fact that three independent

trading companies have servers on a physical LAN is not

unusual, as data centre or rack co-location with stock exchange

servers allows leased server space command a significant

premium [3]. The exceptionally small latency between the

companies’ machines means that communicational cost is of

limited concern to the parties, due to its limited impact on

the cost of the protocol. Three party computations could be

written in SecreC [21], a C-like language which is optimised

for three parties. This would allow a C programmer with

limited SMC expertise write and/or modify the program to

reflect adjustments to the rules of the auction.

402
Authorized licensed use limited to: Technological University Dublin. Downloaded on January 26,2022 at 16:30:32 UTC from IEEE Xplore. Restrictions apply.

Consider the impact of a fourth company joining the compu-

tation. The new company may not trust the existing three not

to collude against it, and therefore schemes designed for three

parties are not a viable option. The interaction is rewritten in

another scheme. A fifth company joins, this time from a geo-

graphically remote location, changing the latency and network

costs. The revised scheme is now not necessarily the optimal

solution, and the system is revised. As others join and leave the

interaction, one joins who specifies that the corruption of all

but one party must be tolerated, forcing a further revision and

change of protocol, and so on. With a human already unlikely

to reliably select a near-optimal configuration [23], the state

explosion introduced by the additional parameters described

makes this infeasible. Heuristic searches have been shown to

find solutions which perform far better than a single SMC

scheme in many scenarios [37] [23].

C. Solution

We refer to our solution as Variable Interpretation of Secure

Multiparty Computation. A proof-of-concept variable inter-

preter for SMC is written in python using the twisted frame-

work [26]. Protocols, requirement specifications and protocol

adaptation logic modules are pluggable, allowing arbitrary ex-

tension to new protocols or adaptation of non-core interpreter

behaviour. A participant in the network can issue an ad-hoc

request for an evaluation, receive replies from the candidate

parties indicating whether they will participate, under what

constraints; and proceed with an appropriate protocol.

D. Design and Interaction Model

Each node has an interpreter, which communicates with

interpreters on remote nodes. From the node’s perspective

the interpreter is seen as a black box, taking proposals for

execution and returning results or failure. The interpreter also

stores the variables on which it may compute in collaboration

with other parties, with restrictions on what computations may

be performed, and security requirements. Variables’ values

may be set, along with constraints on the use of those

variables, upon variable initialization.

A multiparty computation is described in a Javascript Object

Notation (JSON)-based format listing the participants in the

computation, their named variables, and an abstract syntax

tree-based description of the evaluation to be performed. This

format is detailed in section III-F. The computation is passed

to an interpreter as a proposed evaluation. That interpreter

takes on the role of controller for the evaluation, and sends

the proposed evaluation to all prospective participant nodes

for approval. The participants reply with their conditions of

participation, in terms of requirements for thresholds of col-

luding participants which may be tolerated, adversary model

etc., along with their relative preferences for minimisation of

CPU, memory and network costs.

The controller selects a protocol which satisfies the con-

straints which have been imposed by the participants, in a man-

ner so as to minimise the weighted cost in terms of resources.

This selection, identified by a unique ID, is sent to participants,

along with the proposal, and the communication pattern for

the protocol. When all participants are ready, the controller

initiates the protocol. The participants communicate with each

other as prescribed in the initiated protocol instance, until the

computation outputs a value, returned by the controller.

Participation is always based on the agreement of the

parties, who check the characteristics of the selected protocol

against their requirements, to ensure it is acceptable. The

controller therefore has an incentive to honestly present the

most suitable protocol with an appropriate communication

pattern. It is important to note that the role of controller is not a

privileged or trusted role with respect to the computation. The

concept of a controller which is not in a privileged position

with respect to the participants is not new, in fact it is taken

a step further in the Secure Computation System [22] of the

U.S. National Institute of Statistical Sciences, in that the co-

ordinator of the interaction may be unaware of the function

being computed by the participants. Although acting as the

controller of inter-party communications, the initiator of the

interaction is not necessarily the co-ordinator of the MPC.

This can be for one of two reasons:

• The selected protocol is a decentralised protocol, without

a co-ordinator in the security model. In this case there

is no need for central co-ordination, and the imposition

of one is unnecessary, and may even impact proofs of

security.

• The role of the protocol co-ordinator is computationally

intensive, for example involving a brute-force search

of the message space for a discrete logarithm. In this

case the initiator may delegate co-ordination to a more

computationally capable party.

One consequence of the consensual nature of interactions is

that the only effective attack admitted by our solution using

a conservative policy is time wasting, at reputational cost to

the attacker. It is clear that any attack against a protocol a

participant is prepared to use remains a valid threat where

that protocol is employed. This includes the publication, by

the co-ordinator, of a false value at the end of the protocol, if

the underlying protocol does not guard against this possibility.

The variable interpreter depends on the variety and quality of

protocols and the accuracy of their descriptions.

E. Protocol Description

An Instantiation of a Secure Multiparty Computation Pro-

tocol is represented in our framework by a tuple:

< P,N, T,M, S,C,R > many of whose values are fixed by

the nature of the computation to be performed, or determinis-

tically negotiated by the participants.

P is a Unique Identifier (UID), used only to identify the

protocol

N is the number of distinct participants in a protocol ex-

ecution, This is inherent in the request for an evalua-

tion, unless the evaluation is FairPlay-style with a small

number of servers performing a computation for a larger

number of clients, who trust the servers not to collaborate

to reveal their data.

403
Authorized licensed use limited to: Technological University Dublin. Downloaded on January 26,2022 at 16:30:32 UTC from IEEE Xplore. Restrictions apply.

T is the number of corrupt participants which must be tol-

erated without compromising the security of the protocol

instance, which is the maximum threshold demanded by

any participant.

M is the size of the message space. This is determined by the

maximum value which must be supported in the compu-

tation, for example in binary polling of 1000 participants

this would be 10 (bits) while other computations may

require 32 bit, 64 bit or custom length integers.

S is a security parameter for computationally secure proto-

cols, in the same way as ECC and integer factorisation

based encryption protocols are compared to the number

of bits of an AES system of equivalent security.

C is the number of clients in a server-evaluated protocol.

This is relevant for systems like FairPlay where a large

group of clients trust a smaller group of servers not to

collaborate. Where this is not relevant, C = N
R is the number of times the protocol is requested to be

run. If protocols amortise a set-up cost across multiple

iterations, this is used to adjust the cost of these protocols.

It is assumed that R = 1 if not otherwise stated.

P can be thought of as the abstract protocol, or a class or

family of protocols, specialised by the other parameters.

P also has certain characteristic binary attributes:

• IT: Whether information-theoretic security is provided by

the protocol, in the presence of secure channels.

• Broadcast: Whether the protocol is compatible with inse-

cure channels, i.e. it does not render the protocol insecure

if all messages are read by all parties, including the

adversary.

• Set-up: Is a special set-up required prior to initiation

of the protocol? Some protocols require some secrets

to be shared prior to commencement of the protocol,

typically yielding a simplified, efficient protocol. The cost

of providing the setup is then amortised over several

instances of the protocol.

• Self-opening: Can any participant extract the result from

the communication record, or is a special collaborative

operation required to open the result?

• Owner-Evaluators: Are the data owners the evaluators of

the computation?

• Malicious: Can arbitrary behaviour by up to T partici-

pants be tolerated without compromising the privacy of

participants’ data?

• Multi-Run: Is the amortised cost of the protocol di-

minished when it is run multiple times with the same

participants?

There are also further characteristics which can be expressed

as a value or a function of protocol parameters, such as:

• Computational Cost: expressed as a function of number

of participants N , solution space bits M (Particularly

relevant for computations in the exponent, which are then

subject to calculation of a discrete log), and Threshold T .

• Communicational Cost: in messages per participant. Rel-

evant in low-power wireless scenarios to minimise radio

transmission costs.

• Rounds of Communication: For high-latency connections

this is a limiting factor.

• Bandwidth: Communicational Cost in bytes.

• Entropy: Of relevance where the entropy available to the

device is limited or known (e.g. embedded sensors).

• Memory: cost per participant - again relevant in resource-

limited scenarios.

F. Co-ordination Protocol

Without loss of generality we use the term participants in

the sense of owner-evaluators. The parties who supply input

data execute the SMC protocol. The controller receives an

evaluation request and forwards the proposed evaluation to

the other participants. The proposal is structured as follows:

{<tag>, <uid>, <participants>, <operands>,
<function>}
Where <tag> identifies the type of message; <uid>
is a unique identifier assigned to the evaluation;

<participants> is a list of participants details,

where the <participants> [index] may be used to

identify each participant thereafter; <operands> is a list of

inputs to the proposed function, identifying which participant

owns the data, and a label for the data; <function> is

an abstract syntax tree based description of the function

to be evaluated. It is outside the scope of this work to

determine how labels should be mapped to local variables by

the participant, except to note that in the entirely plausible

scenario where parties use the same software system, this

would be straightforward. Manual mappings to local variables

is even preferable to manual intervention to load data at

runtime.

The participants respond with:

<tag>, <uid>, <pid>, <response>,
<constraints>
Where <pid> identifies the participant; <response>
is a boolean indicating willingness to proceed with the

computation, subject to all security criteria being met;

<constraints> are the constraints which must be

satisfied for the computation to take place, for example

{"t":4} would indicate that default parameters are

acceptable, so long as the threshold of collusion tolerance

exceeds four corrupted parties (t is used to denote the

threshold for collusion tolerance). Constraints may also

indicate the maximum number of CPU cycles required, or

some other resource-based metric, for resource-constrained

devices, along with (advisory) preferences for the relative

weighting of CPU, memory, communication bytes and

communication rounds in picking the protocol from the

shortlist satisfying all actual constraints.

The controller selects a suitable protocol. If a participant has

declined to participate, the controller may issue a revised

proposal, taking account of the departure, at the same time

as suggesting a protocol. Otherwise, the controller selects

a protocol by identifying the subset of applicable protocols

which satisfy constraints imposed by the participants, and

404
Authorized licensed use limited to: Technological University Dublin. Downloaded on January 26,2022 at 16:30:32 UTC from IEEE Xplore. Restrictions apply.

selecting the protocol from that set which minimises a

weighted cost metric. It then sends a message as follows:

{<tag>, <uid>, <protocolID>, <setup> }
Where <protocolID> is a unique identifier for the

protocol, hashed with any applicable version number to

ensure no incompatibility; <setup> is the proposed

communication pattern and any other setup information

required for any protocol which is not deterministic or

symmetric in its configuration. <participants>,
<operands>, <function> may also be re-sent if

adjustment is necessary, and in such case participants may

alter their acceptance criteria for the computation.

The participants, upon receiving this message, if they are to

take part, i.e. if the protocol is acceptable, then set up the

protocol and prepare to handle protocol-specific messages,

before responding positively.

The controller then sets up the protocol, prepares to receive

the final values, and initiates the protocol execution. If

applicable the controller distributes the final value after the

computation has finished.

G. Restrictions

Certain types of SMC are by definition excluded from the

available protocols. Covert multiparty computations [7] must

be arranged in advance and hide participation unless the result

is favourable - seeking the computation leaks information in

this scenario, so it cannot be used with the variable interpreter.

Protocols incompatible with the operation of the variable

interpreter, were not considered further.

IV. EVALUATION

The goal of the experiments is neither to demonstrate nor

compare the performance of the protocols, which can be

reasonably inferred from theoretical calculations, but rather

to demonstrate the feasibility of dynamically negotiating the

protocol, and the utility of changing to a better protocol where

a change in context justifies it. An appropriately selected pro-

tocol is more desirable than an arbitrarily chosen or statically

selected protocol across all contexts. In this initial work a

limited number of protocols are utilised, but the principle is

to demonstrate feasibility before expansion to a wider set of

protocols.

Executions of secure multiparty computations using the

framework were carried out on a DELL Latitude E5440 with

4GB RAM and a Dual Core Intel R© CoreTM i3-4030U CPU

@ 1.90GHz running Ubuntu 16.4. Each replicate involved a

protocol being executed ten times, and the time for ten evalua-

tions being recorded, and four replicates were run for each set-

up. Experiments were run in the context of a simulated wide

area network, with latencies simulated by introducing a delay

of 100ms on delivery of packets. This is, to a large extent,

responsible for the relatively long execution times, but this is

a realistic level of delay for executions across continents.

Protocol 1 was an Information-Theoretic (requiring point-

to-point secure channels) secure, computationally light pro-

tocol requiring a number of rounds of communication linear

in the number of users, which offers no protection against

colluding adversaries [8], denoted Round Robin. Protocol

2 was a computationally secure, computationally expensive

protocol requiring two rounds of protocol communication per

computation, secure against n − 2 colluding adversaries [36]

denoted PCL. The framework was initially set up to force

selection of protocol 1 or protocol 2 for the experiments,

followed by executions where the protocol was selected based

on the parameters.
The results of specific protocol executions are graphed in

figure 1, with protocol 1 denoted by triangles, and protocol

2 denoted by squares in figures 1a and 1b. One element

of the context, the number of participants, had a significant

impact on which protocol performed better. In the case where

output message space was fixed at 16 bits (Figure 1a), with

up to five participants, protocol 1 was more efficient than

protocol 2, but with six or more participants, protocol 2 was

more efficient. Another element of the context, message space,

impacted performance of protocol 2 but not protocol 1. Where

input message space was fixed, output message space is n
times larger, and protocol 1 remained more efficient below 7

participants (Figure 1b). Where protocol 2 was executed with

input message space of 20 bits, its execution times increased

greatly, as shown by the circles, in contrast to the squares (16

bit input) in Figure 1d
Average running time for 10 evaluations of an integer sum

in the variable interpreter, with 100ms link latency (to simulate

Wide-Area-Network performance), n participants, were as

follows:
Protocol 1 execution times varied to a large degree with

changing number of participants, and had a minimum exe-

cution time for the ten evaluations of 10.1 for n = 3, and

maximum of 15.22 for n = 8, unaffected by bit length of the

message space. Protocol 2 had execution time which varied

mostly with the bit length of the result. For a fixed maximum

result in 16 bits, it showed little variation in execution time

with changing n, with minimum execution time of 12.37s
and maximum of 12.58s. Protocol 2 execution times varied

considerably more with bitlength of the message space. When

input bitlength is fixed, output bitlength grows with log2(n).
For a maximum input bitlength of 16, i.e. maximum resulting

value of n × 216, it had minimum execution time of 12.87s
for n = 3 and maximum of 15.4s for n = 8. For a

maximum input bitlength of 20, minimum execution time was

19.2s for n = 3 and maximum execution time was 30.6s
for n = 8. The execution involving protocol selection was

run with parameters derived from the results for individual

protocols and simplified: Communicational cost: Protocol 1:

latency∗(n+1), Protocol 2: 4∗ latency; Computational cost:

Protocol 1: 0, Protocol 2: 100 +
√
m
2 . With equal weighting

of communication and computation, this resulted in the most

efficient protocol being executed except possibly for the point

at which the performance is approximately equal: n = 7, m =
n ∗ 216. The performance under variable interpretation was

equal, within the variance exhibited, to the relevant single

protocol experiment for that number of participants. Minimum

405
Authorized licensed use limited to: Technological University Dublin. Downloaded on January 26,2022 at 16:30:32 UTC from IEEE Xplore. Restrictions apply.

3 4 5 6 7 8

10
11

12
13

14
15

16

Number of Participants

R
un

ni
ng

 T
im

e
(s

)

3 4 5 6 7 8

10
11

12
13

14
15

16

Running time, Round Robin vs. PCL 16−bit output

(a) RR vs PCL 16-bit output

3 4 5 6 7 8

10
11

12
13

14
15

16

Number of Participants

R
un

ni
ng

 T
im

e
(s

)

3 4 5 6 7 8

10
11

12
13

14
15

16

Running time, Round Robin vs. PCL 16−bit input

(b) RR vs PCL 16 bit input

3 4 5 6 7 8

10
11

12
13

14
15

16

Running time, Variable Interpretation 16−bit input

Number of Participants

R
un

ni
ng

 T
im

e(
s)

(c) Variable Int. 16 bit input

●

●

●
●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

3 4 5 6 7 8

10
15

20
25

30

Running time PCL, Individual values 16 bit vs 20 bit

Number of Participants

R
un

ni
ng

 T
im

e
(s

)

3 4 5 6 7 8

10
15

20
25

30

Number of Participants

R
un

ni
ng

 T
im

e
(s

)

(d) PCL 16 vs 20 bit input

Fig. 1: Time to negotiate and execute
∑n

1 vi 10 times, where each value vi is held privately by participant pi in various contexts

execution time was 10.11s for n = 3 and maximum was

14.98s for n = 8 (Figure 1c).

It is not necessary to evaluate these protocols for different

collusion thresholds, as protocol 1 has no tolerance for inter-

party collusion. If collusion must be tolerated, protocol 2

must be used rather than protocol 1. On the other hand if

numbers of large bitlength were also required, the discrete

logarithm would become intractable, due to its
√
m (where

message space m = 2bitlength) theoretical complexity. In such

circumstances a different protocol would be required.

A. Relationship to Theoretical Values

The experiments were carried out using the pessimistic 6

round negotiation, so for protocol 1, as expected, the time

taken is dominated by the 6 + (n+ 1) times network latency,

reflecting the required rounds of communication. For protocol

2, there is a significant computation in the final discrete

logarithm, and while there is no n term in the number of

rounds of communication, the baseline is 5. The performance

of this protocol was in line with expectations, in that time

taken, over 11 times latency, rose with message space m, at

approximately O(
√
m). While the crossing point in figure 1a

indicates an advantage for protocol 2 for high numbers of

participants, the advantage would be reduced at lower link

latency. The time cost for protocol 1 also does not increase

with the size of the solution space, unlike protocol 2, where

the discrete logarithm dominates the execution time for that

protocol for large numbers - in figures 1b and 1d the solution

space grows with n. The effect of this can also clearly be seen

in a comparison between 16 bit (square) and 20 bit (round)

input values (figure 1d)

B. Limitations of the Results

The results were obtained by executing several independent

processes on a single machine, and non-optimal implemen-

tations of protocols were used. Protocols incur an overhead

from the execution of the protocol negotiation, which is

currently set to prefer extra rounds of negotiation to incurring

spurious setup costs. A variation of the co-ordination protocol,

employing optimistic negotiations, where the controller makes

assumptions about the likely requirements of the participants,

and participants which do not reject the proposal assume all

parties accept it, would save 4 rounds of communication.

This would be more appropriate in the high latency context,

while avoiding spurious set-up costs may justify the longer

negotiation in low-latency environments. The degree of vari-

ation in evaluation times suggests that a sufficiently volatile

context justifies the overhead. The two protocols themselves

are chosen for illustrative purposes, being opposites in many

characteristics.

V. CONCLUSIONS AND FUTURE WORK

The feasibility of variable interpretation of simple secure

multiparty computation programs, including dynamic negoti-

ation of the protocols used has been demonstrated, with two

different protocols being automatically executed to carry out

the same command in different contexts. A marked difference

in relative performance is noted between the two protocols for

different parameters, with the relative advantage determined

in this case by the number of participants in the computation,

and solution space. Much work remains to be completed to

fully demonstrate the practical utility of the virtual interpreter

with respect to SMC, but its feasibility has been demonstrated

in principle. Existing work for the two-party context is well

developed in respect of minimisation of computational time,

bandwidth, or a monetary function of these, as a metric for

the selection of protocols or sharing schemes in a static

context. This work motivates and examines the inclusion of

thus far unconsidered options such as specialised protocols,

and unexplored parameters in the context of protocol selection,

such as number of participants, message space, and collusion

tolerance threshold; in the dynamic negotiated selection of

multiparty protocols for more than two parties.

The integration of further protocols including general pur-

pose schemes is the focus of future work. Integration of

general purpose schemes will allow the direct comparison

of execution time including negotiation with predetermined

execution patterns. Other important future work includes the

development of policies and agents to move away from manual

authorisation and triggering of all multiparty computations.

This is where we envisage the real-world bottleneck will lie,

once the technology for protocol execution has plateaued,

much as the human decision to trade stock was the slowest

406
Authorized licensed use limited to: Technological University Dublin. Downloaded on January 26,2022 at 16:30:32 UTC from IEEE Xplore. Restrictions apply.

part of a trade following computerisation, leading to the rise

in algorithmic automated trading.

REFERENCES

[1] BEAVER, D. Efficient multiparty protocols using circuit randomiza-
tion. In Annual International Cryptology Conference (1991), Springer,
pp. 420–432.

[2] BEN-DAVID, A., NISAN, N., AND PINKAS, B. FairplayMP: a System
for Secure Multi-Party Computation. In Proceedings of the 15th ACM
conference on Computer and communications security (2008), pp. 257–
266.

[3] BOEHMER, E., FONG, K. Y., AND WU, J. J. International evidence on
algorithmic trading. In AFA 2013 San Diego Meetings Paper (2014).

[4] BOGDANOV, D., LAUR, S., AND WILLEMSON, J. Sharemind: A frame-
work for fast privacy-preserving computations. In European Symposium
on Research in Computer Security (2008), Springer, pp. 192–206.

[5] BOST, R., POPA, R. A., TU, S., AND GOLDWASSER, S. Machine
learning classification over encrypted data. In NDSS (2015).

[6] CANETTI, R., AND GENNARO, R. Incoercible multiparty computation.
In Foundations of Computer Science, 1996. Proceedings., 37th Annual
Symposium on (1996), IEEE, pp. 504–513.

[7] CHANDRAN, N., GOYAL, V., OSTROVSKY, R., AND SAHAI, A. Covert
multi-party computation. In Foundations of Computer Science, 2007.
48th Annual IEEE Symposium on (2007), IEEE, pp. 238–248.

[8] CLIFTON, C., KANTARCIOGLU, M., VAIDYA, J., LIN, X., AND ZHU,
M. Y. Tools for privacy preserving distributed data mining. ACM
SIGKDD Explorations Newsletter 4, 2 (2002), 28–34.

[9] CRAMER, R., DAMGÅRD, I., AND ISHAI, Y. Share conversion, pseudo-
random secret-sharing and applications to secure computation. In Theory
of Cryptography Conference (2005), Springer, pp. 342–362.

[10] DAMGÅRD, I., GEISLER, M., KRØIGAARD, M., AND NIELSEN, J. B.
Asynchronous multiparty computation: Theory and implementation. In
International Workshop on Public Key Cryptography (2009), Springer,
pp. 160–179.

[11] DE CRISTOFARO, E., FABER, S., GASTI, P., AND TSUDIK, G. Gen-
odroid: are privacy-preserving genomic tests ready for prime time? In
Proceedings of the 2012 ACM workshop on Privacy in the electronic
society (2012), ACM, pp. 97–108.

[12] DEMMLER, D., SCHNEIDER, T., AND ZOHNER, M. Aby–a framework
for efficient mixed-protocol secure two-party computation. In Proceed-
ings of the Network and Distributed System Security Symposium (2015).

[13] ERLICH, Y., AND NARAYANAN, A. Routes for breaching and protecting
genetic privacy. Nature Reviews Genetics 15, 6 (2014), 409–421.

[14] GEISLER, M. Viff: Virtual ideal functionality framework. Homepage:
http://viff. dk (2007).

[15] GEISLER, M. J. B. Cryptographic Protocols:: Theory and Implementa-
tion. PhD thesis, Aarhus Universitet, 2010.

[16] GOLDREICH, O. Towards a Theory of Software Protection and Simula-
tion by Oblivious RAMs. In Proceedings of the nineteenth annual ACM
symposium on Theory of computing (1987), pp. 182–194.

[17] GOLDREICH, O., MICALI, S., AND WIGDERSON, A. How to play any
mental game. In Proceedings of the nineteenth annual ACM symposium
on Theory of computing (1987), ACM, pp. 218–229.

[18] HENECKA, W., KÖGL, S., SADEGHI, A.-R., SCHNEIDER, T., AND

WEHRENBERG, I. TASTY: Tool for Automating Secure Two-partY
computations. In 17th ACM Conference on Computer and Commu-
nications Security (2010), pp. 451–462.

[19] HOLZER, A., FRANZ, M., KATZENBEISSER, S., AND VEITH, H. Se-
cure two-party computations in ansi c. In Proceedings of the 2012 ACM
conference on Computer and communications security (2012), ACM,
pp. 772–783.

[20] HUANG, Y., EVANS, D., KATZ, J., AND MALKA, L. Faster Secure
Two-Party Computation using Garbled Circuits. In USENIX Security
Symposium (2011), pp. 1–16.

[21] JAGOMÄGIS, R. Secrec: a privacy-aware programming language with
applications in data mining. Master’s thesis, University of Tartu (2010).

[22] KARR, A. F., FULP, W. J., VERA, F., YOUNG, S. S., LIN, X., AND

REITER, J. P. Secure, Privacy-Preserving Analysis of Distributed
Databases. Technometrics 49, 3 (2007), 335–345.

[23] KERSCHBAUM, F., SCHNEIDER, T., AND SCHRÖPFER, A. Automatic
protocol selection in secure two-party computations. In International
Conference on Applied Cryptography and Network Security (2014),
Springer, pp. 566–584.

[24] KOSINSKI, M., STILLWELL, D., AND GRAEPEL, T. Private traits
and attributes are predictable from digital records of human behavior.
Proceedings of the National Academy of Sciences 110, 15 (2013), 5802–
5805.

[25] KREUTER, B., SHELAT, A., MOOD, B., AND BUTLER, K. R. Pcf: A
portable circuit format for scalable two-party secure computation. In
Usenix Security (2013), vol. 13, pp. 321–336.

[26] LEFKOWITZ, G. Twisted Matrix Labs.

[27] LIU, C., HUANG, Y., SHI, E., KATZ, J., AND HICKS, M. Automating
efficient ram-model secure computation. In Security and Privacy (SP),
2014 IEEE Symposium on (2014), IEEE, pp. 623–638.

[28] LIU, C., WANG, X. S., NAYAK, K., HUANG, Y., AND SHI, E. Oblivm:
A programming framework for secure computation. In Security and
Privacy (SP), 2015 IEEE Symposium on (2015), IEEE, pp. 359–376.

[29] LU, S., AND OSTROVSKY, R. Distributed oblivious RAM for secure
two-party computation. In Theory of Cryptography. Springer, 2013,
pp. 377–396.

[30] MALKA, L. Vmcrypt: modular software architecture for scalable secure
computation. In Proceedings of the 18th ACM conference on Computer
and communications security (2011), ACM, pp. 715–724.

[31] MALKHI, D., NISAN, N., PINKAS, B., AND SELLA, Y. Fairplay—a
Secure Two-Party Computation System. In USENIX Security Symposium
(2004), pp. 287–302.

[32] MOOD, B., GUPTA, D., CARTER, H., BUTLER, K., AND TRAYNOR, P.
Frigate: A validated, extensible, and efficient compiler and interpreter
for secure computation. In Security and Privacy (EuroS&P), 2016 IEEE
European Symposium on (2016), IEEE, pp. 112–127.

[33] NARAYANAN, A., AND SHMATIKOV, V. Robust de-anonymization of
large sparse datasets. In Security and Privacy, 2008. SP 2008. IEEE
Symposium on (2008), IEEE, pp. 111–125.

[34] NIELSEN, J. D., AND SCHWARTZBACH, M. I. A Domain-Specific Pro-
gramming Language for Secure Multiparty Computation. In Proceedings
of the workshop on Programming languages and analysis for security
(2007), ACM, pp. 21–30.

[35] NIKOLAENKO, V., IOANNIDIS, S., WEINSBERG, U., JOYE, M., TAFT,
N., AND BONEH, D. Privacy-preserving matrix factorization. In
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security (2013), ACM, pp. 801–812.

[36] PATSAKIS, C., CLEAR, M., AND LAIRD, P. Private aggregation with
custom collusion tolerance. In Information Security and Cryptology
(2014), Springer, pp. 72–89.

[37] PATTUK, E., KANTARCIOGLU, M., ULUSOY, H., AND MALIN, B.
Cheapsmc: A framework to minimize secure multiparty computation
cost in the cloud. In IFIP Annual Conference on Data and Applications
Security and Privacy (2016), Springer, pp. 285–294.

[38] RASTOGI, A., HAMMER, M. A., AND HICKS, M. Wysteria: A pro-
gramming language for generic, mixed-mode multiparty computations.
In Security and Privacy (SP), 2014 IEEE Symposium on (2014), IEEE,
pp. 655–670.

[39] SCHROEPFER, A., AND KERSCHBAUM, F. Forecasting run-times of
secure two-party computation. In Quantitative Evaluation of Sys-
tems (QEST), 2011 Eighth International Conference on (2011), IEEE,
pp. 181–190.

[40] SHAMIR, A. How to Share a Secret. Communications of the ACM 22,
11 (1979), 612–613.

[41] SMART, N. P., ARCHER, D., BOGDANOV, D., BOLDYREVA, S., KA-
MARA, S., KERSCHBAUM, F., LINDELL, Y., LU, S., NIELSES, J. B.,
OSTROVSKY, R., PAGTER, J. I., SADEGHI, A.-R., AND WALLER, A.
Future directions in computing on encrypted data. Tech. rep., 2015.

[42] STAJANO, F., AND ANDERSON, R. The Cocaine Auction Protocol:
On the Power of Anonymous Broadcast. In Information Hiding,
A. Pfitzmann, Ed., vol. 1768 of Lecture Notes in Computer Science.
Springer, 2000, pp. 434–447.

[43] YAO, A. C. Protocols for Secure Computations. In Proceedings of the
23rd Annual Symposium on Foundations of Computer Science (1982),
pp. 160–164.

[44] ZAHUR, S., AND EVANS, D. Obliv-c: A language for extensible data-
oblivious computation. IACR Cryptology ePrint Archive (2015), 1153.

[45] ZHANG, Y., STEELE, A., AND BLANTON, M. Picco: a general-purpose
compiler for private distributed computation. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security

(2013), ACM, pp. 813–826.

407
Authorized licensed use limited to: Technological University Dublin. Downloaded on January 26,2022 at 16:30:32 UTC from IEEE Xplore. Restrictions apply.

	Multiparty computations in varying contexts
	untitled

