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Time-Varying and Constant Switching
Frequency-Based Sliding-Mode Control

Methods for Transformerless DVR Employing
Half-Bridge VSI

Hasan Komurcugil, Senior Member, IEEE, and Samet Biricik, Member, IEEE

Abstract—This paper presents time-varying and constant
switching frequency based sliding-mode control (SMC)
methods for three-phase transformerless dynamic voltage
restorers (TDVRs) which employ half-bridge voltage source
inverter. An equation is derived for the time-varying switch-
ing frequency. However, since the time-varying switching
frequency is not desired in practice, a smoothing operation
is applied to the sliding surface function within a narrow
boundary layer with the aim of eliminating the chattering
effect and achieving a constant switching frequency opera-
tion. The control signal obtained from the smoothing opera-
tion is compared with a triangular carrier signal to produce
the pulse width modulation signals. The feasibility of both
SMC methods has been validated by experimental results
obtained from a TDVR operating under highly distorted grid
voltages and voltage sags. The results obtained from both
methods show excellent performance in terms of dynamic
response and low total harmonic distortion (THD) in the
load voltage. However, the constant switching frequency-
based SMC method not only offers a constant switching
frequency at all times and preserves the inherent advan-
tages of the SMC, but also leads to smaller THD in the load
voltage than that of time-varying switching frequency-based
SMC method.

Index Terms—Constant switching frequency, dynamic
voltage restorer (DVR), sliding-mode control (SMC), time-
varying switching frequency.

I. INTRODUCTION

DYNAMİC voltage restorers (DVRs) are custom power de-
vices used to protect sensitive loads from the voltage sags,

swells, and harmonics existing in the electrical grid at the point
of common coupling (PCC) [1], [2]. Generally, the DVR cir-
cuit consists of a dc voltage source, a voltage source inverter
(VSI) together with an LC filter and a series transformer [3].
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The load protection is achieved successfully if the DVR injects
a desired compensating voltage through the series transformer
into the grid such that the load voltage is unaffected from the
undesired voltage variations at PCC. In order to inject the de-
sired compensating voltage, the DVR should be operated by
using a proper control strategy, which offers a fast transient re-
sponse, possesses strong robustness to parameter variations, and
requires less complexity in a practical implementation.

The requirements mentioned above have been fulfilled by
various control strategies proposed for conventional DVRs
[4]–[20]. They are based on feedback control [4], [5], H-infinity
control [6], fuzzy logic control [7], repetitive control [8], hys-
teresis control with constant switching frequency [9], different
voltage injection methods developed in the synchronous refer-
ence frame [10], and sliding-mode control [11]–[15]. The design
of capacitor-supported DVR topologies are also investigated
[16]–[18]. The interline DVR presented in [19] consists of sev-
eral DVRs and shares a common dc link connecting independent
feeders. In [20] and [21], the DVR is realized by employing a
multilevel inverter.

The aforementioned DVR topologies and control strategies
yield various advantages and disadvantages related to dynamic
response, steady-state error in the load voltage, controller
complexity, robustness, and switching frequency. A detailed
comparison of different DVR topologies and control strategies
is presented in [22]. The common component of the DVR
topologies mentioned so far is the series transformer used to in-
ject the compensating voltage into the grid. Although the series
transformer provides an electrical isolation between the PCC
and DVR, it makes the DVR to be bulky and costly which is not
suitable for office and home environments. Furthermore, it may
enter into the saturation due to the magnetization phenomenon.
Despite the saturation is prevented in [23], the use of series
transformer still results in a bulky and costly DVR device.

Hence, there is a tendency to design transformerless DVR
(TDVR) topologies [24]–[26] as well as universal active power
filters [27]–[29] and operate them so as to achieve the required
objectives without requiring a bulky and costly series injection
transformer. In the case of TDVR, the filter capacitor of the
TDVR is connected in series between the grid and load. There-
fore, the objective of TDVR is to control the voltage across the
series-connected capacitor such that the load voltage is not af-
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fected from the voltage variations in the grid. In [24] and [25],
the capacitor voltage is controlled by employing H-bridge VSI.
Recently, Kumar and Mishra [26] proposed a TDVR employ-
ing a half-bridge VSI which is controlled using a predictive
control approach to achieve the capacitor voltage control. Al-
though the presented results are satisfactory, the prediction of
the reference capacitor voltage is essential and dependent on the
filter parameters. Therefore, the performance of the predictive
control is subject to degradation when the reference capacitor
voltage prediction is not accurate due to the variations in the
filter parameters.

The sliding-mode control (SMC) offers significant advan-
tages like fast dynamic response, strong robustness to the pa-
rameter variations, and simplicity in the practical implementa-
tion. The SMC strategy with these advantages is applied to the
control of DVRs [11]–[15]. In [11], the sliding surface function
is formed by using capacitor voltage and inductor current errors
in which the measurements of inductor current and capacitor
voltage are required. In addition, the computation of the sliding
surface function requires two coefficients which increase the
implementation complexity. In [12] and [13], the computation
of the sliding surface function is based on the capacitor volt-
age error and its derivative using only one coefficient. Recently,
an SMC method with maximized existence region is proposed
for single-phase DVR which employs an injection transformer
[15]. Although the existence region is maximized by selecting
the optimum sliding coefficient, the switching frequency is still
time varying.

In this paper, time-varying and constant switching frequency-
based SMC methods are presented for three-phase TDVRs
employing half-bridge VSI. The existence conditions of the
sliding-mode are determined. In addition, the time-varying
switching frequency equation is derived analytically which can
be used to predict the switching frequency. However, since the
time-varying switching frequency is not desired in practice, a
smoothing operation is applied to the sliding surface function
within a narrow boundary layer with the aim of eliminating the
chattering effect and achieving a constant switching frequency
operation. The pulse width modulation (PWM) signals of the
switching devices are generated by comparing the control
signal obtained from the smoothing operation with a triangular
carrier signal. The theoretical considerations and feasibility of
both SMC methods are validated by the experimental results
under distorted grid voltage and voltage sag conditions.

II. MATHEMATICAL MODEL OF THREE-PHASE TDVR

Fig. 1 shows the block diagram of a three-phase TDVR with
the proposed SMC methods. Each phase of TDVR consists of a
half-bridge VSI, a coupling inductor Lf , and a series-connected
capacitor Cse . The output terminals of the half-bridge VSI are
connected across Cse so as to inject a compensation voltage
when needed. The operation of the system can be described by
the following equations:

Lf
difk
dt

= ukVdc + vse,k (1)

Cse
dvse,k

dt
= −isk − ifk (2)

Fig. 1. Block diagram of three-phase TDVR with the proposed SMC
methods. (a) Time-varying switching frequency based SMC method.
(b) Constant switching frequency-based SMC method.

where uk denotes the control input defined as

uk =
{

1 Tk on
−1 T̄k on , k = a, b, c. (3)

The switching of Tk and T̄k should be done in such a way that
a compensation voltage is produced across Cse with the aim of
keeping the load voltage sinusoidal and at a desired level for all
times during the voltage distortions and sags occurring in the
grid voltage.

III. SMC AND ITS EXISTENCE CONDITION

Let us define the state variables as

x1k = vse,k − v∗
se,k (4)

x2k = ẋ1k = v̇se,k − v̇∗
se,k (5)

where v∗
se,k is the reference for vse,k . The sliding surface func-

tion and its derivative can be defined as

Sk = λx1k + x2k (6)

Ṡk = λẋ1k + ẋ2k (7)

where λ denotes the positive sliding coefficient. Taking
the derivative of (5) and substituting (2) into the resulting
equation yields

ẋ2k = − 1
Cse

disk
dt

− 1
Cse

difk
dt

− d2v∗
se,k

dt2
. (8)

Substitution of (1) in (8) gives

ẋ2k = − 1
Cse

disk
dt

− 1
Lf Cse

(vse,k + ukVdc) −
d2v∗

se,k

dt2
. (9)

Now, substituting vse,k = x1k + v∗
se,k in (9) and rearranging

results in

ẋ2k = −ω2
o (x1k + ukVdc) − ω2

o Dk (t) (10)
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where ω2
o = 1/Lf Cse and Dk (t) denotes the disturbance given

by

Dk (t) = −Lf
disk
dt

− Lf Cse
d2v∗

se,k

dt2
+ v∗

se,k . (11)

Substitution of (8) in (7) results in

Ṡk = λx2k − ω2
o (x1k + ukVdc) − ω2

o Dk (t). (12)

Let the control input described in (3) be generated by

uk = sign(Sk ). (13)

In the sliding-mode, the state trajectory should be maintained
on Sk = 0 by making a zigzag motion. As pointed out in [13],
[15], [30]–[32], such motion (see Fig. 3) can be easily obtained
by (13). It is obvious from (6) and (13) that the SMC does not
depend on system parameters implying that the SMC is robust
against parameter variations.

In designing a sliding-mode controller, the assurance of
the existence condition during the sliding-mode operation is
essential. The existence of the sliding-mode can be assured
if Sk and Ṡk have the opposite signs satisfying the following
condition [30]:

Sk Ṡk < 0. (14)

The existence condition of the sliding-mode for each switch-
ing device can be obtained as the following.

When T̄k is turned ON,

Sk < 0 ⇒ uk = −1 (15)

Ṡk > 0 ⇒ l1k = Ṡk = −ω2
o x1k + λx2k + d1k (t) > 0 .

(16)

When Tk is turned ON,

Sk > 0 ⇒ uk = 1 (17)

Ṡk < 0 ⇒ l2k = Ṡk = −ω2
o x1k + λx2k + d2k (t) < 0.

(18)

In (16) and (18), d1k (t) and d2k (t) are defined as

d1k (t) = ω2
o [Vdc − Dk (t)] (19)

d1k (t) = −ω2
o [Vdc + Dk (t)] . (20)

The existence area of the sliding-mode is bounded by lines
l1k and l2k . When the sliding-mode exists, the sliding surface
function is enforced to slide toward the origin (x1k = x2k = 0)
along the sliding line (Sk = 0). Therefore, the sliding surface
function and its derivative are both zero during the sliding-
mode (Sk = 0, Ṡk = 0). Hence, in the sliding-mode, (7) can be
written as

ẍ1k + λẋ1k = 0. (21)

The solution of the above differential equation can easily be
obtained as

x1k (t) = x1k (0)e−λt (22)

where −λ is the pole of the sliding-mode dynamics. It is evident
from (22) that x1k (t) converges to zero if the sliding coefficient

Fig. 2. Stability area in the phase plane.

Fig. 3. Evolution of Sk and switching logic.

is selected as λ > 0. With x1k (t) = 0, it follows from (5) that
x2k converges to zero as well. It is worth to note that the TDVR
injects vse,k in the case of grid voltage anomalies. In the absence
of these voltage anomalies in the grid (vLk = vsk), both state
variables are zero since the actual and desired capacitor voltages
are zero (v∗

se,k = v∗
Lk − vsk = 0). Since x1k (t) → 0 and x2k →

0 in the sliding-mode, it can be concluded that the stability of
the system is guaranteed during the voltage anomalies existing
in the grid. Fig. 2 shows the stability area in the phase plane
(x1k , x2k plane). It is important to note that the sliding-mode
occurs if the trajectory hits the sliding line between the points
S1k and S2k . When the voltage sag occurs in the grid, x1k

becomes negative as shown in the third quadrant of Fig. 2.
Thereafter, the trajectory is directed toward the line Sk = 0.
When it hits Sk = 0, the proposed control starts to govern the
movement of the trajectory. As mentioned before, the sliding-
mode is known to be insensitive to parameter variations. This
fact can be clearly seen from (22).

It should be noted that the implementation of the control
input described in (13) results in a very high switching fre-
quency which in turn causes undesired chattering. Therefore,
the switching frequency is controlled and chattering is reduced
by employing a hysteresis control consisting of a boundary layer
as follows:

uk =
{

1 , Sk > +h
−1 , Sk < −h

. (23)

Evolution of the sliding surface function and switching logic
are shown in Fig. 3. The sliding surface function is forced to slide
along Sk = 0 within lower (−h) and upper (+h)boundaries.
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When Sk goes below −h, T̄k is turned ON and−Vdc is applied
to the Lf Cse filter. On the other hand, when Sk goes above +h,
Tk is turned ON and +Vdc is applied to the filter.

IV. SMC WITH TIME-VARYING AND CONSTANT

SWITCHING FREQUENCY

A. Time-Varying Switching Frequency-Based SMC

The switching frequency expression in terms of hysteresis
band and other parameters plays an important role in the real-
ization of the control method in real time. Here, the switching
frequency derivation is done for Ta and T̄a . Assuming that
the state variables are negligibly small (x1a = x2a = 0) in the
steady state, (12) can be written as

Ṡa
∼= −ω2

o [uaVdc + Da(t)] . (24)

The reference voltage for the series-connected capacitor can
be written as

v∗
se,a = VLa sin(ωt) − Vsa sin(ωt) = Vse sin(ωt). (25)

The second derivative of (25) with respect to time is
obtained as

d2v∗
se,a

dt2
= −ω2Vse sin(ωt). (26)

Assume that the load draws the following sinusoidal current
from the grid

isa = iLa = Is sin(ωt − θ). (27)

Taking the derivative of (27) yields

disa
dt

= ωIs cos(ωt − θ). (28)

Now, substituting (25), (26), and (28) into (11) results in

Da(t) = K cos(ωt − ϕ) (29)

where

K =
√

K2
1 + K2

2 + 2K1K2 sin(θ) (30)

K1 = −Vse
(
(ω2

o + ω2)/ω2
o

)
(31)

K2 = ωLf Is (32)

ϕ = tan−1 ((K1 + K2 sin(θ))/K2) . (33)

Substituting (29) into (24), we obtain

Ṡa
∼= −ω2

o [uaVdc + K cos(ωt − ϕ)] . (34)

It is worth to note that for the values used in the simulation
and experimental studies, the phase shift can be approximated as
ϕ ∼= −90◦. This implies that K cos(ωt + 90◦) = −K sin(ωt)
and

Ṡa
∼= −ω2

o [uaVdc − K sin(ωt)] . (35)

Fig. 4. Effect of changing h on the THD and fsw ,av with different Vdc
values.

The ON and OFF durations of Ta and T̄acan be formulated as

ton =
−2h

Ṡ |u=1
=

2h

ω2
o [Vdc − K sin(ωt)]

(36)

toff =
2h

Ṡ |u=−1
=

2h

ω2
o [Vdc + K sin(ωt)]

. (37)

Now, the switching frequency equation can be obtained as

fsw =
1

ton + toff
=

ω2
o Vdc

4h
− ω2

o K2

4hVdc
sin2(ωt). (38)

It is evident from (38) that the switching frequency is time
varying and dependent on the filter parameters, hysteresis band,
and dc input voltage. Although the switching frequency can
be controlled by the hysteresis band, the effect of chattering
is not completely eliminated and the time-varying switching
frequency still exists. The average switching frequency can be
obtained by integrating (38) as follows:

fsw ,av =
1
π

∫ π

0
fswdωt =

ω2
o

8hVdc
(2V 2

dc − K2). (39)

Targeted fsw ,av can be achieved by selecting the appropriate
values of Vdc , h, Lf , and Cse . For a fixed Vdc value, increasing h
would result in smaller fsw ,av and vice versa. However, the effect
of changing h (for the sake of obtaining the targeted switching
frequency) on the THD of load voltage should be investigated.
Using the parameters provided in Section V, various simulations
have been carried out using MATLAB/Simulink. The results are
shown in Fig. 4. It is evident that h and Vdc are to be selected to
make a compromise between the THD load voltage and average
switching frequency.

B. Constant Switching Frequency-Based SMC

An alternative way to eliminate the chattering effect and
achieve a constant switching frequency is to employ a PWM
instead of the hysteresis modulation. The PWM is based on com-
paring the desired control signal with a triangular carrier signal.
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The comparison process produces an output signal whose fre-
quency is equal to the frequency of the carrier signal. The desired
control signal is obtained from a smoothing operation applied
to the control discontinuity within a narrow boundary layer in-
troduced in the vicinity of the sliding surface function [30]. It is
worth to note that the smoothing operation is performed to elim-
inate the chattering. All trajectories starting inside the boundary
layer should be maintained inside the boundary layer. On the
other hand, the trajectories starting outside the boundary layer
are directed toward the boundary layer.

In order to achieve these requirements, the sliding surface
function is interpolated inside the boundary layer with a thick-
ness Φ by replacing the discontinuous control in (13) by Sk/Φ.
However, as mentioned in [30], the result of smoothing does not
guarantee a perfect tracking and, therefore, Φ is to be selected
to make a compromise between tracking error and smoothing
operation. Replacing Sk by Sk/Φ gives

Sk

Φ
=

λx1k + x2k

Φ
=

λx1k

Φ
+

1
ΦCse

(ise,k − i∗se,k ). (40)

The capacitor current error can be written as

ise,k − i∗se,k = −(ifk + iLk) − Cse
dv∗

se,k

dt
. (41)

Substituting iLk = (ΔvLk + v∗
Lk)/RL in (41) for a resistive

load of RL gives

ise,k − i∗se,k = −(ifk − i∗fk) − (ΔvLk/RL ) (42)

where ΔvLk = vLk − v∗
Lk . Since the main objective of TDVR

is to maintain the load voltage at the desired level, then the
load voltage error can be considered zero for all times (ΔvLk
= 0). Now, substitution of (42) with ΔvLk set to zero into (38)
results in

Sk

Φ
=

λx1k

Φ
− 1

ΦCse
(ifk − i∗fk). (43)

The λx1k term in (43) denotes the multiplication of capacitor
voltage error with the slope of the sliding line [31]. Since the
inductor current ripple is much greater than the capacitor voltage
ripple, then (43) can be approximated as

Sk

Φ
∼= −1

ΦCse
(ifk − i∗fk). (44)

In [32], the slope of (44) is defined as

SlopeSk /Φ = Vdc/(4Lf CseΦ). (45)

On the other hand, the slope of a triangular carrier can be
expressed as [33]

Slopecarrier = 4Vpfsw (46)

where Vp and fsw denote the amplitude and frequency of the
carrier signal, respectively. It is well known that the PWM gen-
eration process can work properly if the following condition
holds:

SlopeSk /Φ = (Vdc/(4Lf CseΦ)) < 4Vpfsw = Slopecarrier .
(47)

Hence, the lower bound of Φ is determined from

(Vdc/(16Lf CseVpfsw )) < Φ. (48)

In order to achieve a proper smoothing process, the value of
Φ should be determined precisely. With Ṡk /Φ, following the
same approach applied in the derivation of (15)–(20), the same
stability area shown in Fig. 2 can be obtained.

V. SIMULATION AND EXPERIMENTAL VERIFICATION

The performances of both SMC methods have been veri-
fied with experiments performed by using OPAL-RT real-time
platform and its associated tools [34]. The OPAL-RT controls
the interactions between the console PC, CPUs, and field pro-
grammable gate array (FPGA) architecture. Hardware imple-
mentation of the proposed power system was achieved with
an FPGA architecture which was developed using the Xil-
inx system generator tool. Block diagram of the three-phase
TDVR with the proposed SMC methods is shown in Fig. 1.
In the experimental tests, which are obtained by using the sys-
tem parameters Vdc = 350 V, Lf = 0.6867 mH, Cse = 50 μF,
Vg = 230

√
2 V, RL load = 54.16 Ω + 50 mH, λ = 5397, h =

200 000, Φ = 282 000, and Vp = 1 V, the harmonic compen-
sation and voltage sag compensation abilities of the proposed
SMC methods are investigated.

A. Dynamic Harmonic Compensation Test

Fig. 5 shows experimental results obtained by the time-
varying switching frequency-based SMC method under highly
distorted grid voltages. The total harmonic distortion (THD) of
grid voltages is 12.38% as shown in Fig. 5(a). Also, the three-
phase grid voltages are unbalanced such that phase to neutral
voltages for each phase are 240.4, 226.3, 247.5 V, respectively.
This means that the grid voltages are not only distorted, but are
also unbalanced. It is evident from Fig. 5(b) that the TDVR in-
jects the necessary compensation voltages (vse,k ) for each phase
during the distortions and unbalances occurring in the grid with
the aim of compensating the harmonic voltage distortions and
achieving balanced three-phase voltages on the load terminals.
Clearly, when there is no distortion in the grid, the TDVR does
not attempt to inject any voltage to the grid. Despite the highly
distorted and unbalanced grid voltages, the TDVR with the pro-
posed time-varying switching frequency-based SMC is quite
successful in maintaining the desired sinusoidal voltages on the
load terminals as can be seen in Fig. 5(c). The THD of the
voltage is reduced from 12.38% to 1.83%.

Fig. 6 shows the experimentally obtained results using the
constant switching frequency-based SMC method under the
same grid voltage conditions mentioned in Fig. 5. The switch-
ing frequency is set to 12.5 kHz. It is obvious from Fig. 6(b)
that the TDVR injects the required compensation voltages for
each phase avoiding the occurrence of harmonics and unbalance
on the load terminals. It is evident from Fig. 6(c) that the load
voltages are three-phase-balanced sinusoidal waveforms which
are almost not affected from the variations in the grid. The THD
of the load voltage is reduced from 12.38% to 1.33%.
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Fig. 5. Experimental responses of vsk , vse ,k , and vLk obtained by the time-varying switching frequency-based SMC under distorted grid voltages.
(a)vsk , (b) vse ,k , and (c) vLk .

Fig. 6. Experimental responses of vsk , vse ,k , and vLk obtained by the constant switching frequency-based SMC under distorted grid voltages.
(a)vsk , (b) vse ,k , and (c) vLk .

Fig. 7. Experimental responses of vsk , vse ,k , and vLk obtained by the time-varying switching frequency-based SMC under voltage sags. (a)vsk ,
(b) vse ,k and (c) vLk .

Comparing the THDs of load voltages obtained by both SMC
methods under a distorted and unbalanced grid voltage con-
dition, one can easily see that the THD for constant switching
frequency-based SMC is smaller than that of time-varying-based
SMC. The main contribution of this THD improvement comes
from the constant switching frequency operation of the VSI.
It is worth to note that in the case of time-varying switching
frequency-based SMC, the frequency varies between 10.5 and
14.5 kHz (see Fig. 9) which makes the THD of load voltage
larger compared with the constant switching frequency opera-
tion.

B. Dynamic Voltage Sag Compensation Test

In this section, the performance of both SMC methods are in-
vestigated under voltage sags occurring in the grid. The amount
of voltage sag is considered to be 70 V (rms). Fig. 7 shows
the experimental responses of grid, injected, and load volt-
ages obtained by the time-varying switching frequency-based
SMC method when voltage sags exist in all phases in the grid.
Fig. 7(a) shows the response of grid voltages under the voltage
sags from 230 (rms) to 160 V (rms) and back to 230 V (rms).
The performance of the controller for these sags can be seen in

Fig. 7(b) and (c). Clearly, the TDVR with the proposed control
method injects the required compensation voltages to compen-
sate the voltage sags and maintain the load voltages at the desired
level. Note that when there is no voltage sag, the TDVR does
not inject any voltage. It is evident from Fig. 7(c) that the load
voltage waveforms are balanced and undistorted. The THD of
the load voltage is measured to be 1.92%.

The experimental performance of the constant switching
frequency-based SMC system is also tested under the same volt-
age sag condition presented in Fig. 7. The results are depicted
in Fig. 8. Clearly, the TDVR injects the required compensation
voltages as shown in Fig. 8(b). As a consequence of the injected
compensation voltages, the load voltages are almost not affected
from the voltage sags and are maintained to be sinusoidal, bal-
anced, and undistorted as can be seen in Fig. 8(c). The THD of
load voltage is measured to be 1.34%. Comparing the THDs of
load voltages obtained by both SMC methods under this voltage
sag condition, the constant switching frequency-based SMC is
seen to lead to smaller THD than that of time-varying-based
SMC.

Fig. 9 shows the experimental waveforms of the switching
frequency for the switching devices (Ta and T̄a ) on phase A
leg of VSI and compensation voltage (vse,a ) that correspond
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Fig. 8. Experimental responses of vsk , vse ,k and vLk obtained by the constant switching frequency-based SMC under voltage sags. (a)vsk ,
(b) vse ,k , and (c) vLk .

Fig. 9. Experimental waveforms of fsw and vse ,a under voltage
sags. (a) fsw and vse ,a obtained by time-varying switching frequency-
based SMC method, (b) fsw and vse ,a obtained by constant switching
frequency-based SMC method.

to the voltage sag cases presented in Figs. 7 and 8. Fig. 9(a)
shows the experimental waveforms of time-varying switching
frequency together with the injected compensation voltage. It
can be clearly seen that the switching frequency during the volt-
age injection period is time varying. It is worth to note that, in
the experimental system, the switching frequency has been ob-
served at the output of a monostable that is triggered by the gate
signal of switching devices. Except the spikes occurring due to
the noise in the gate signal of switching devices, the minimum
and maximum switching frequencies were observed as 10.5 and
14.5 kHz, respectively. The minimum and maximum switch-
ing frequencies computed from (38) are 10.22 and 12.74 kHz,
respectively. While computed and measured minimum switch-
ing frequencies agree well, there is a small discrepancy be-
tween computed and measured maximum frequencies due to
the assumptions made in simplifying the theoretical derivation
of the switching frequency. On the other hand, the sinusoidal
behavior of the switching frequency at 100 Hz (see (38)) is not
clearly visible in the experimental results due to the sampling
time.

Fig. 9(b) shows the experimental waveforms of constant
switching frequency together with the injected compensation
voltage. It is clear that the switching frequency is always
constant at 12.5 kHz before and during the voltage injection
period.

C. Fault Ride-Through Capability

The amount of the voltage sags considered in Figs. 7 and 8 was
approximately 30.43% of the grid voltage. In such a case, a short
circuit current flows into a fault in the grid. The performance

of the proposed SMC methods can also be investigated under
worst grid faults such as single-phase to ground (asymmetrical)
fault and three-phase to ground (symmetrical) fault. Fault ride-
through (FRT) of the TDVR is the capability to restore and
maintain the load voltage at the desired level in case of a fault
occurs in the grid for a short period of time. However, due to
the limited space, the FRT capability of the constant switching
frequency-based SMC method is presented only. Fig. 10 shows
the simulation results of grid, injected, and load voltages under
a three-phase to ground fault in the grid at t = 0.04 s. It can
be seen from Fig. 10(a) that the fault lasts two cycles. The
TDVR injects the desired compensation voltages to clear the
fault as shown in Fig. 10(b). As a consequence of this voltage
injection, the load voltages are quickly restored after the fault
[see Fig. 10(c)]. This indicates that the three-phase TDVR with
the proposed constant switching frequency-based SMC method
provides sufficient FRT behavior for a symmetrical fault existing
in the grid.

Fig. 11 shows the simulation results of grid, injected, and load
voltages under a single-phase to ground fault in the grid. It is
evident that the TDVR compensates the faulted phase voltage
quickly and restores the load voltage after the fault. These results
clearly show that the TDVR operates efficiently to protect the
loads under the asymmetrical and symmetrical faults existing in
the grid.

D. Comparison With Existing Control Methods

The proposed SMC methods have considerably simpler struc-
ture compared with most of the existing control approaches.
The TDVR with the proposed SMC methods and the DVR with
the optimized SMC method proposed in [15] are modeled in
Simulink using the same parameters given in [26]. These pa-
rameters are Vdc = 600 V, Lf = 10 mH, Cse = 20 μF, Vg =
230

√
2 V, f = 50 Hz, fsw ,av = 4.2 kHz, λ = 2236, and three-

phase linear RL load (60 Ω + 199.9 mH, 40 Ω + 249.9 mH,
50 Ω + 159.9 mH). The hysteresis band was set to h = 75000
in order to have an average switching frequency of 4.2 kHz.

The simulation studies were carried out under linear RL load
when 30% voltage sag exists in the grid. Fig. 12 shows the
simulation results of vsk , vse,k , and vLk obtained by the SMC
method presented in [15]. The THD of load voltage is computed
to be 1.21%.

Figs. 13 and 14 show the simulation results of vsk , vse,k

and vLk obtained by the time-varying and constant switching
frequency-based SMC methods, respectively. The THDs of load
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Fig. 10. Simulated responses of vsk , vse ,k , and vLk obtained by the constant switching frequency-based SMC under three-phase-to-ground fault.
(a)vsk , (b) vse ,k , and (c) vLk .

Fig. 11. Simulated responses of vsk , vse ,k , and vLk obtained by the constant switching frequency-based SMC under single-phase-to-ground fault.
(a)vsk , (b) vse ,k , and (c) vLk .

Fig. 12. Simulated responses of vsk , vse ,k , and vLk obtained by the SMC method presented in [15]. (a)vsk , (b) vse ,k , and (c) vLk .

Fig. 13. Simulated responses of vsk , vse ,k , and vLk obtained by the time-varying switching frequency-based SMC. (a)vsk , (b)vse ,k , and (c) vLk .

Fig. 14. Simulated responses of vsk , vse ,k , and vLk obtained by the constant switching frequency-based SMC. (a)vsk , (b) vse ,k , and (c) vLk .
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TABLE I
COMPARISONS OF TWO CONTROL METHODS WITH THE PROPOSED

SMC METHODS

Comparison [15] [26] Proposed SMC Methods

Category Time-Var. Constant
fsw fsw

THDv L (%) 1.21 1.20 0.91 0.80
Sensitivity to Insensitive Sensitive Insensitive Insensitive
syst. param.
Size Bulky with Smaller Smaller Smaller

transformer
Implementation Simple Complex Simple Simple
complexity
Switching Variable Fixed Variable Fixed
frequency
FRT capability Not Not Reasonably Reasonably

reported reported fast fast

Fig. 15. Spectrums of load voltages that correspond to Figs. 7 and 8
obtained by: (a) time-varying switching frequency-based SMC, (b) con-
stant switching frequency-based SMC.

voltages are computed as 0.91% and 0.8%, respectively. Com-
paring the results presented in Figs. 12–14 with the results pre-
sented in [26], one can see that the load voltages for the constant
switching frequency-based SMC are less distorted than the oth-
ers. These THD results together with the THD result in [26]
are presented in Table I. Furthermore, the proposed SMC meth-
ods not only offers a significant advantage from the robustness
point of view, but also leads to a relatively simpler implementa-
tion compared with the predictive voltage-based control method
presented in [26].

Fig. 15 shows the load voltage spectrums obtained by time-
varying and constant switching frequency-based SMC methods
under the voltage sag condition presented in Figs. 7 and 8.
Comparing the spectrums, the spectrum obtained by the time-
varying switching frequency based SMC contains third, fifth,
and seventh harmonics, while the spectrum obtained by the
constant switching frequency-based SMC contains only the fun-
damental component. This means that the constant switching
frequency-based SMC offers better quality load voltage. The
main reason of this performance improvement comes from the
fact that the load voltage distortion is minimized by the har-
monics when the VSI is operated with the constant switching
frequency.

VI. CONCLUSION

In this study, time-varying and constant switching frequency-
based SMC methods were presented for three-phase TDVR em-
ploying half-bridge VSI. An analytical equation is derived to

compute the time-varying switching frequency. Since, the time-
varying switching frequency is not desired in a real application, a
smoothing operation was applied to the sliding surface function
within a narrow boundary layer with the aim of eliminating the
chattering effect and achieving a constant switching frequency.
The control signal obtained from the smoothing operation was
compared with a triangular carrier signal to produce the PWM
signals. It was observed that the smoothing operation results
in a constant switching frequency operation at all times. The
feasibility of both SMC methods has been validated by experi-
mental results obtained from the TDVR operating under highly
distorted grid voltages and voltage sags. The results obtained
from both methods show excellent performance. However, the
constant switching frequency-based SMC method not only of-
fers a constant switching frequency at all times and preserves
the inherent advantages of the SMC, but also leads to smaller
THD in the load voltage than that of time-varying switching
frequency-based SMC method.
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