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Infant formula is a humanmilk substitute generally based upon fortified cowmilk components. In order tomimic
the composition of breast milk, trace elements such as copper, iron and zinc are usually added in a single opera-
tion using a premix. The correct addition of premixes must be verified to ensure that the target levels in infant
formulae are achieved. In this study, a laser-induced breakdown spectroscopy (LIBS) system was assessed as a
fast validation tool for trace element premixes. LIBS is a promising emission spectroscopic technique for elemen-
tal analysis, which offers real-time analyses, little to no sample preparation and ease of use. LIBS was employed
for copper and iron determinations of premix samples ranging approximately from 0 to 120 mg/kg Cu/
1640 mg/kg Fe. LIBS spectra are affected by several parameters, hindering subsequent quantitative analyses.
This work aimed at testing three matrix-matched calibration approaches (simple-linear regression, multi-linear
regression and partial least squares regression (PLS)) as means for precision and accuracy enhancement of LIBS
quantitative analysis. All calibration models were first developed using a training set and then validated with an
independent test set. PLS yielded the best results. For instance, the PLSmodel for copper provided a coefficient of
determination (R2) of 0.995 and a root mean square error of prediction (RMSEP) of 14mg/kg. Furthermore, LIBS
was employed to penetrate through the samples by repetitively measuring the same spot. Consequently, LIBS
spectra can be obtained as a function of sample layers. This information was used to explore whether measuring
deeper into the sample could reduce possible surface-contaminant effects and provide better quantifications.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Infancy is an important period of development, in which an ade-
quate nutrition is essential for the growth of a healthy child. Infant for-
mula is a human milk substitute, typically commercialized in powder
form, which is generally made from cow milk with the addition of lac-
tose, whey protein, vegetable oils, minerals and vitamins [1,2]. Minerals
and vitamins are usually added using a premix [3]. Premixes are blends,
typically added prior to spray-drying, which are designed to contain
specified nutrients in a predetermined and fixed ratio [3,4]. Trace ele-
ments (Fe, Cu, Zn, Se, Mn and I) are present in μg or lower concentra-
tions per 100 kcal−1 and are normally incorporated via blending with
a single premix [1,4].

Infant formulae face strict quality controls. The composition of each
batch or in-process batch must be verified before packaging; as well as
ingredients, includingpremixes, produced by themanufacturer orwith-
out a supplier's certificate [5,6]. To guarantee correct addition and

uniform distribution of premixes, manufacturers may determine the
levels of indicator nutrients (e.g. iron) in-process or at the final product
assessment [7,8]. The Codex Alimentarius establishes minimum levels
for trace elements: iron (0.45 mg/100 kcal), zinc (0.5 mg/100 kcal)
and copper (35 μg/100 kcal). While no maximum limits are provided,
guided upper levels are indicated for zinc (1.5 mg/100 kcal) and copper
(120 μg/100 kcal) [9]. Iron, zinc and copper determinations in infant for-
mula are traditionally conducted by atomic absorption spectrometry
(AAS) following the AOAC 985.35 [10].

Invented in the 1960s, laser-induced breakdown spectroscopy
(LIBS) is a growing and promising technique for elemental analysis
[11]. LIBS is an atomic emission spectroscopic technique which uses
highly energetic laser pulses as an excitation source. The interaction be-
tween laser pulses and the sample gives rise to material ablation and
subsequent hot-plasma formation [12,13]. This plasma is composed of
excited ionic and atomic species—and in some cases molecular species
[14]—which emit radiation as the plasma cools down and the species re-
turn to their fundamental state [12]. These emissions are characteristic
of the atoms and ions present in the plasma, known as characteristic
spectral emission lines of the elements, and constitute the signal/
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spectrum recorded in LIBS [12,13]. LIBS provides a number of advan-
tages over traditional methods such as fast analysis, minimal sample
preparation,multi-element capability, ease of use and no need of chem-
ical reagents [15–17]. This features make LIBS adequate for in- and on-
line applications [18].

During the last decades, LIBS has seen its use in severalfields [19,20].
Yet, in food applications, the technology is still in its early days [21]. LIBS
has demonstrated its ability for qualitative analysis of milk and infant
formula powders [22]. However, performing quantitative analysis is
not straight forward. In LIBS, element emission responses are influenced
by the analyte-matrix combination and the environment, affecting the
precision and accuracy of the measurements [12,14,23–25]. Since food
samples are rather complex and heterogeneous, matrix effects may
play an important role. Accurate and precise determination of food ele-
ments still remains an important challenge. To overcome these draw-
backs of LIBS, some quantification approaches such as univariate
analysis, multivariate analysis and calibration-free methods have been
employed [25]. A calibration-free approachwas applied for the determi-
nation of several mineral elements inmilk powders [26]. Current trends
in LIBS quantification include building calibration methods from ma-
trix-matched reference standards, especially via chemometric/multi-
variate analysis [20] since they are less affected by fractionation issues
(non-stoichiometric ablation) [27] and have been reported to reduce
such matrix effects [28]. LIBS combined with multivariate analysis was
used to determine whey adulterations in milk powders [29]. More re-
cently, LIBS has demonstrated its ability to determine major minerals
such as Ca in milk powders [30] and infant formulas [31]. LIBS is essen-
tially a surface analysis technique; therefore, the surface condition of
the samples may have an impact on the measurements [28]. However,
repetitive sampling at the same location can be used to penetrate
through the surface layer, providing information on bulk composition
and homogeneity. Additionally, this information could be used to ex-
plore whether more accurate quantifications can be obtained from the
analysis of the inner-sample-layer spectra. Performing conditioning
shots could help deal with possible surface contaminants such as Na.

This work aims to assess the ability of a LIBS system to determine
trace-elements of copper and iron within premix samples varying in
proportion blends between pure premix to pure lactose. Asmention be-
fore, quantitative analyses of LIBS are complex and subsequently re-
quire methodological approaches to reduce matrix effects, and
improve precision and accuracy. In this study, three methodologies
based on matrix-matched calibration have been appraised: univariate
analysis, multi-linear regression and partial least squares regression.
The selection of analytical characteristic emission lines formodel devel-
opment is discussed, along with the effect of considering emission lines
not directly related to the analyte emission. Furthermore, measuring
deeper into the sample was explored as a means to avoid influences
from possible surface contaminants. LIBS holds great potential as an
at-line validation tool for infant formula manufacture. An optimized
LIBS quantitative approach would provide fast elemental analyses of
premixes, providing the means to rapidly verify that target concentra-
tions of premixes added to infant formula are achieved.

2. Material and methods

2.1. Sample preparation

A trace-mineral premix containing 1640mg/kg of Fe and 120mg/kg
of Cuwas acquired fromVitablend (Netherlands) and lactose (α-lactose
monohydrate ≥99%)was purchased fromSigmaAldrich (Ireland). Apart
from iron and copper, the premix also contained other traceminerals as
all these nutrients are usually added together in a single operation [4].
The amounts of each nutrient in the premix kept the same inter-ele-
ment ratios as in infant formulae. Similar to industrial premixes, iron
and copper were incorporated in sulphate form (FeSO4 and CuSO4)

with lactose used as the carrier [1]. The complete composition of the
premix is shown in Table S1.

In order to assess a range of trace-element concentrations, a series of
mixtures with varying proportion of lactose and premix were prepared.
Blend concentrations of the premix and lactose were calculated on the
basis of the following target copper levels: 0, 5, 10, 20, 40, 60, 80, 100
and 120 mg/kg; whose iron levels were then approx. 0, 68, 137, 273,
547, 820, 1093, 1367 and 1640 mg/kg, respectively. For all mixtures, a
final weight of 100 g was prepared via dry-blending using a laboratory
V-mixer (FTLMV-1L&, Filtra Vibracion S.L., Spain). Three independent
batches of mixtures containing each of the nine Cu and Fe levels were
prepared (27 samples in total). For LIBS analysis, 3 pellets were made
from each sample (81 pellets in total). The pellets were manufactured
using a single die manual hydraulic press (Specac Ltd., UK) in which
approx. 400 mg were pressed at 10 tons for 3 min.

2.2. Atomic absorption spectrometry

Iron and copper determinations were conducted via atomic absorp-
tion spectrometry (AAS). Since iron levels ranged from approx. 1 to
1600 mg/kg, determination were carried out with flame AAS (FAAS)
(Varian 55B AA, Agilent Technologies, USA). Copper contents (approx.
from 1 to 120 mg/kg) were determined with graphite furnace AAS
(GFAAS) using the Zeeman option (Varian AA240Z and AA280Z Zee-
man, Agilent Technologies, USA) as FlameAASwas not sensitive enough
to quantify the lower Cu levels. Both AASmethods are based on building
a calibration curve from standard solutions of the desired element. Cop-
per (cat. no. 38996) and iron (cat. no. 16596) standard solutions were
purchased from SigmaAldrich (Ireland). As similar sample preparations
were required, the same sample aliquots were used for both determina-
tions. Analyseswere conducted according to the standardmethod of the
AOAC (1998) for mineral determination in infant formula (method
985.35) with some variations. Approx. 1.5 g of the premix sample, pre-
viously dried in an oven at 102 °C for approx. 16 h, were transferred to a
crucible in triplicates, providing a total of 81 aliquots (3 batches ∗ 9 conc
∗ 3 replicates). The crucibles were covered with lids since lactose is lia-
ble to overflow or cause partial sample ejection when heated. To facili-
tate digestion, samples were pre-ashed on a hot plate with correct 1 ml
of purified nitric acid (CAS 7697-37-2, Sigma Aldrich) until blackened.
Samples were placed in a muffle furnace at 525 °C until grey/white
ashes were obtained (approx. 3 h). Nitric acid 1 mol/l was used to
rinse the lids and crucibles and dissolve the ashes into 25ml volumetric
flasks. From these solutions, two further dilutions in parallel, one for
copper and the other for iron, were performed in order to bring both el-
ement concentrations within the FAAS (1 to 15 mg/kg Fe) and GFAAS
(0–30 μg/kg Cu) optimum measuring ranges. All AAS analyses were
conducted in triplicates. Results were calculated as mg/kg of copper
and iron of dried matter (DM).

2.3. LIBS instrumentation and measurements

LIBS spectral data was obtained with a LIBSCAN-150 system (Ap-
plied Photonics Limited, UK), which comprises of a Q-switched
Nd:YAG laser operating at 1064 nmwith a pulse energy of 150 mJ, rep-
etition rate of 1 Hz and pulse duration of 5 ns; coupled with a six-spec-
trophotometer array (AvaSpec Avantes spectrometers, Netherlands)
covering the wavelength range from 185 to 904 nm. Plasma emission
was recorded at 1.27 μs delay time with an integration time of 1.1 ms.
Pellets were measured individually in a sample chamber equipped
with an XYZ translation stage (Applied Photonics Limited, UK)which fa-
cilitates multiple-point data acquisition. The optimum focal distance
was approx. 84mm from the laser aperture. Spectral acquisition of a sin-
gle pellet consisted of the consecutive recording of 5 spectra at the same
spot from 100 different locations following a 10 × 10 grid pattern with
an inter-spot distance of 0.85 mm. From a spatial point of view, the set
of data points can be seen as cube of 5 layers and a base of 10 × 10
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locations (500 spectra per pellet in total). Measurements were per-
formed with neither conditioning shots nor accumulations and the
three independent batches were analysed on different days. The ap-
proximate measuring time per sample was almost 9 min. The spectral
acquisition and x-y-z translation of the stage were controlled through
LIBsoft software (Applied Photonics Limited, UK).

2.4. LIBS quantitative analysis

Spectral pre-processing and data analysis were performed in R (R
Core Team, 2014)with the use of R commands and packages, including;
baseline, stats and pls, as well as other in-house functions.

Data pre-processing is usually performed prior to model develop-
ment in order to remove extraneous signal variations [32] introduced
by fluctuations in experimental conditions and matrix effects [33]. The
background signal can be removed from LIBS spectra using a baseline
correction algorithm [34]. To this end, the Iterative Restricted Least
Squares (IRLS) algorithm included in R [35]was applied to the rawspec-
tra. Additional pre-processing was explored, however the approach
proved detrimental to the model's performance. The baseline corrected
spectra were averaged to obtain a single spectra per sample/pellet (100
locations ∗ 5 layers) and also per each of the 5 layers/depths (100 loca-
tions). The former were used to develop models with several quantita-
tive approaches, while the latter was used to explore whether
measuring deeper into the sample could help deal with possible surface
contamination.

LIBS quantitative analyses were conducted by means of univariate
and multivariate analysis. Respective matrix-matched calibration
models were developed from the correlation of LIBS data, after baseline
removal and averaging per sample, to the variation of copper and iron,
separately. Spectral data, along with the respective reference values,
was equally divided into training and test sets for all the calibration ap-
proaches. The training set consisted of two independent sample batches
(N=54); while the test set comprised a third independent batch (N=
27).

2.4.1. Univariate analysis
Univariate analysis or simple linear regression (SLM) is the simplest

approach for predicting a quantitative response Y (e.g. copper content)
from a single predictor variable X (e.g. intensity at a copper line) by as-
suming that there is a linear relationship between X and Y [36]. Two
simple linearmodels were built, one for copper and one for iron, by cor-
relating the intensity of the most prominent Cu or Fe emission line to
the reference values. The copper curve used the peak intensity at
324.754 nm, which corresponds to a CuI persistent line; while the iron
model used the signal at 438.36 nm which is associated with a FeI per-
sistent line [37]. Model evaluation was carried out through the figures
of merit detailed in Section 2.4.3. Additionally, the limit of detection
(LOD) was calculated according to Eq. (1) [38]:

LOD ¼ 3� SDblank

s
ð1Þ

where SDblank is the standard deviation of the blank samples and s is the
slope of the calibration curve.

2.4.2. Multivariate analysis
In contrast to univariate analysis, multivariate calibration takes into

account several predictor variables X (spectral responses) measured
from a number of samples to predict the quantitative response Y (e.g.
copper concentration) [39]. Two multivariate analysis approaches
were used: multi-linear regression (MLR) and partial least squares re-
gression (PLS).

MLRmodels for copper and iron were built by correlating the signal
from various Cu and Fe emission lines respectively to their reference
values. The most prominent emission lines, in which the intensity

increased with the analyte-concentration, were chosen as the predictor
variables. The copper model comprised two CuI lines (324.7 and
327.4 nm); while the iron model used FeI (438.36 nm), FeII

(259.95 nm), FeI (358.119 nm), FeI (373.486 nm), FeI (430.79 nm) and
FeI (432.576 nm).Model assessmentwasperformed in the same fashion
as for the univariate analysis.

PLS is awidely employedmultivariate analysis technique [40]where
the calibration models are developed from linear combinations of the
predictor variable, rather than the original variables [39]. These predic-
tor variables, known as factors or components, are selected so that they
are highly correlated with the response variable and also explain the
variation in the predictor variables [39]. The full LIBS spectra were cor-
related to the variation of copper and iron, separately, by means of
PLS. Both Cu and Fe calibrations were built using the training data set.
Additionally, cross-validation using the leave-one-out (LOO) method
was conducted as it provides guidance on the optimal number of factors
to include in the calibrationmodel, preventing possible overfitting issues
[41]. Parameters such as the determination coefficient of cross-valida-
tion (R2cv) and root mean square error of cross-validation (RMSECV)
were also considered for model assessing. Furthermore, PLS was simi-
larly applied on the five data sets obtained from averaging the spectra
per sample layer/depth, providing five additional calibrations per
element.

For the multivariate calibration models, the pseudounivariate LOD
(LODpu) proposed by the IUPAC was calculated according to Eq. (2)
[42,43]:

LODpu ¼ 3:3 s−1
pu 1þ h0 min þ 1=Ið Þ varpu

� �1=2 ð2Þ

where spu
−1 is the slope of the pseudounivariate line, h0min is the mini-

mum leverage when analyte concentration is zero, and varpu is the var-
iance of the regression residuals.

2.4.3. Assessment of the calibration approaches
In order to provide comparisons, several figures of merit were esti-

mated for all the calibration approaches. The parameters used for
assessing the calibration performanceswere the coefficients of determi-
nation (R2) and rootmean square error of calibration (RMSEC) comput-
ed from the correlations of the training set to the element variation.
Once the calibration models were fitted, they were tested to predict
the copper and iron concentrations from an independent sample set
(test set). The predictive ability was then appraised by the root mean
square error of prediction (RMSEP) and the determination coefficient
(R2p) generated with the fitted values from the test set.

3. Results and discussion

3.1. Atomic absorption spectrometry

GFAAS and FAAS were conducted as reference methods for copper
and iron determinations of the premix samples, respectively. Both tech-
niques require building a calibration curve from the reference standard
solutions, whose performance will determine the accuracy of the re-
sults. Good calibration curves with high coefficients of determination
were obtained for both elements: copper by GFAAS (R2 ≥ 0.992) and
iron by FAAS (R2 ≥ 0.998). The results, expressed asmg/kg in drymatter,
are shown in Table 1.

3.2. LIBS spectral features

Exploratory analysis of various spectra was performed in order to
identify the main element emission lines as well as determine the
major spectral differences among the samples studied, with particular
regard to copper and iron characteristic lines. Fig. 1 shows the full LIBS
spectra baseline corrected and averaged to a single spectrumper sample
(including the 5 depths) of pure lactose, premix-lactose mixture at 50%
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(approx. 60 mg/kg Cu and 820 mg/kg Fe) and pure premix (approx.
120 mg/kg Cu and 1640 mg/kg Fe). A series of characteristic emission
lines can be observed in all three spectra. With reference to the NIST
[37] database, these lines were identified as CI (247.8 nm), CaI (422.7
and 616.2 nm), CaII (393.3 nm), Na I (589 nm), HI (656.3 nm), NI

(746.9, 818.5, 821.6 and 868 nm), KI (766.5), OI (777.2 and 844.6 nm).
Additionally, all three spectra included the molecular emission band of

CN (from 385.03 to 388.31 nm). Detection of C, H and O was expected
since these elements constitute the lactose molecule. Yet, high intensi-
ties observed at the O lines together with the N signal indicated atmo-
spheric contributions [44]. Na, Ca and K detections were also expected
as these alkali and alkaline earth metals are typically present in dairy
derivates and are easily detected by LIBS. However, high intensities
may indicate surface contamination as these elements are naturally
present in most environments. Unlike the lactose spectrum, premix
spectra (Fig. 1(b) and (c)) clearly revealed a series of lines from the
emission of copper, iron and zinc. Copper's most prominent emission
lines were observed at 324.7 and 327.4 nm, while iron emitted at
259.95 nm (FeII) and 438.4 nm (FeI) [37]. Fig. 2 displays a closer view
of all LIBS spectra at (a) CuI 324.7 nm and (b) FeII 259.95 nm. In general,
higher intensities were observed with increases in Cu and Fe
concentrations.

3.3. Calibration models

Quantitative analysis of LIBS is not straightforward and requires an
adequate calibration strategy [25]. Matrix-matched calibration ap-
proaches, where standards and unknown sample have the same bulk
composition, can provide better results as factors such as matrix effects
are minimized [25,28]. In this section, univariate analysis (SLR) and
multivariate analysis (MLR and PLS) approaches were tested and com-
pared as calibration methodologies for LIBS quantitative analysis.

3.3.1. Simple-linear regression (SLM)
Calibration curves were developed by correlating the peak intensity

of the characteristic lines CuI (324.75 nm) and FeI (438.36 nm) respec-
tively to the copper and iron values determined by AAS. The R2 values
were 0.85 for copper and 0.88 for iron, indicating a notable linear rela-
tionship between the element concentration and the emission signal.
Additionally, the low RMSEC values (15 mg/kg Cu and 186 mg/kg Fe)
demonstrated reasonable accuracy in the frame of calibration. The pre-
dictive ability of themodelswas evaluated by testing themodels against

Table 1
Copper and iron contents in dry matter (DM) of the lactose-premix samples determined
by GFAAS and FAAS, respectively.

Batch Sample Cu content (mg/kg DM)a Fe content (mg/kg DM)a

0 Lactose 0.9 ± 0.2 1.0 ± 0.257
1 Premix 5 4.79 ± 0.22 63.83 ± 2.30

Premix 10 9.29 ± 0.36 132.69 ± 3.40
Premix 20 19.50 ± 1.84 278.50 ± 9.07
Premix 40 35.99 ± 0.53 524.15 ± 18.02
Premix 60 58.10 ± 3.91 797.68 ± 10.84
Premix 80 74.11 ± 4.29 1045.41 ± 35.59
Premix 100 86.46 ± 23.83 1283.32 ± 45.26
Premix 120 108.76 ± 3.79 1537.55 ± 71.89

2 Premix 5 5.44 ± 0.11 65.44 ± 0.92
Premix 10 12.03 ± 0.24 158.70 ± 3.27
Premix 20 22.19 ± 1.26 279.67 ± 6.97
Premix 40 41.49 ± 0.37 542.43 ± 3.75
Premix 60 62.68 ± 3.03 803.77 ± 19.95
Premix 80 79.38 ± 1.59 1074.54 ± 19.58
Premix 100 99.43 ± 4.95 1358.60 ± 29.69
Premix 120 118.30 ± 3.52 1615.19 ± 42.90

3 Premix 5 5.08 ± 0.15 63.51 ± 4.24
Premix 10 10.74 ± 0.24 130.72 ± 5.01
Premix 20 21.72 ± 0.23 261.18 ± 1.57
Premix 40 41.71 ± 0.32 520.22 ± 5.27
Premix 60 61.02 ± 1.84 769.19 ± 10.05
Premix 80 85.52 ± 1.70 1065.62 ± 28.60
Premix 100 104.22 ± 5.60 1272.54 ± 45.85
Premix 120 115.15 ± 7.27 1543.16 ± 108.81

a Contents expressed as mean ± standard deviation of three replicates.

Fig. 1. Full LIBS spectra after baseline correction and averaging to a single spectrumper sample of (a) pure lactose, (b) premix-lactosemixture at 50% (approx. 60mg/kg Cu and 820mg/kg
Fe) and (c) pure premix (approx. 120 mg/kg Cu and 1640 mg/kg Fe).
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the test sample set. The R2p and RMSEP values generated with the cop-
per model were 0.646 and 24.4 mg/kg, whilst the iron model provided
values of 0.797 and 240.9 mg/kg, respectively. Thus, reasonably good
simple-linear calibrations were obtained; however, appreciable values
of RMSEP indicated poor predictive performance. Low accuracy may
be due to variations between set measurements. The LOD vales were
22.03 and 513.5 mg/kg for the Cu and the Fe models respectively.

Spectral normalization prior to model building may help compen-
sate for matrix differences [38]. For this purpose, various normalization
approaches using different line intensities were tested: C at 247.87 nm,
O at 777.224 nm and the maximum intensity observed within each
spectral range. However, performances of the SLRmodel built with nor-
malized data were similar to those provided by the models developed
with baseline-corrected data. A summary table of the performances is
detailed in Table S2. Univariate analysis without internal validation
may be subject to repeatability issues [25], Yet, in food applications
such as infant formula premixes, sample matrixes are rather complex
and heterogeneous hindering internal validation as finding a constant
element and knowing its concentration is often not possible [25,33].
Therefore, in these cases, univariate analysis should be reserved for
obtaining the first understanding of the relationship between analyte
emissions and analyte concentration.

3.3.2. Multi-linear regression (MLR)
MLR was employed to develop calibration models considering vari-

ous responses of the target element only. Thus, copper characteristic
lines were correlated to the copper variance determined by GFAAS
and iron lines to the iron reference values determined by FAAS. The cop-
permodel included two CuI lines (324.75 and 327.4 nm); while the iron
model used FeI (438.36, 358.119, 373.486, 430.79, 432.576 nm) and FeII

(259.95 nm). These emission lines correspond to the most prominent
emission lines of the elements identified with reference to the NIST da-
tabase [37] during the exploratory analysis of the spectral data (Section
3.2.). Similarly to SLR, models presented reasonable fits and modest ac-
curacy. For example, the copper model provided an R2 of 0.857 and a
RMSEP of 24.0 mg/kg. Compared to SLR, MLR performed slightly better
in calibration; however no appreciable improvement on the predictive
ability was observed in validation. This result was attributed to the

fact that the element emission lines selected for building the MLR
model were highly correlated.

3.3.3. Partial least squares regression (PLS)
PLSmodels for copper and ironwere built by correlating the full LIBS

spectra to the reference values. Selection of the optimal number of PLS
factors to include in the models was based on the RMSECV since it pro-
vides information about the deviation of themodel from their reference
values [45]. For both models, the RMSECV resulted in a minimumwhen
four factors were included. Performances in calibration were evaluated
through the R2 and the RMSEC computed with the training set. The es-
timated values of R2 and RMSEC were 0.995 and 2.8 mg/kg for copper,
and 0.995 and 38.7 mg/kg for iron, indicating highmodel fitting and ac-
curacy in the frame of calibration. However, when cross-validation was
applied, the R2CV and the RMSECV were 0.821 and 16.5 mg/kg for cop-
per, and 0.819 and 231.5mg/kg for iron. The decrease in fit and accuracy
was less prominent when the models were validated with the test data
set, indicating that the models were not overffited. The copper model
yielded an R2p of 0.88 and a RMSEP of 14 mg/kg, while the iron model
provided an R2p of 0.89 and a RMSEP of 179 mg/kg. The improvement
observed when validating with external data, as opposed to cross-vali-
dation, could be due to the presence of outliers within the training set.
Roughly, cross-validation LOO conducts an internal validation by con-
secutively testing the model using a different data point from the train-
ing set. Consequently, the presence of outliers within the training set
will have an impact on the robustness-assessing parameters. On that ac-
count, some recently proposed methodologies for LIBS data pre-pro-
cessing include discarding of outliers [33].

Furthermodel evaluationwas conducted through the loading values
which inform about the wavelengths/lines that contributed to each fac-
tor. The loadings of the Cu and Femodels, together with the most prob-
able contributing lines, are displayed in Fig. 3. For both models, the first
factor was mainly based on the emission intensities of copper, iron and
zinc, demonstrating that themodels were principally built on the varia-
tion of these elements. Themodels also accommodated lines from C, Ca,
Na and K, which, despite some possible Na contamination, were mainly
matrix constituents. Nitrogen, oxygen and hydrogen also played an im-
portant role on the loadings, however their impact is difficult to

Fig. 2. Closer view of pre-processed and averaged LIBS spectra recorded for all batches at (a) 324.75 nm (CuI) and (b) 438.35 nm (FeI).
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evaluate due to the involvement of the surrounding air. Attention was
also drawn to the fact that both Cu and Fe calibrations were mostly
based on identical analytical lines (mainly Fe, Cu, Zn, C, Ca, Na, K, H, O
and N) with variations in their loadings. Simultaneous contribution
from copper, iron and zinc to both element models was expected
since the variation of these elements across the samples was propor-
tional. In applications such as the control of premix addition during
themanufacture of infant formula, this phenomenonmay be beneficial.

Trace elements in a premix are present in a fix and predetermined ratio;
therefore, keeping this proportionally within the PLS model may help
alert of a compositional change in the premix. Finally, attention was
also drawn to the variance explained by themodels.While, for example,
thefirst Fe factor explained 87%of the variancewithin the iron variation,
it only accounted for approx. 5% of variance within the spectral data.
This phenomenon could be interpreted as a small part of the whole
spectral variation described the changes in iron content and hence, a

Fig. 3. Loading plots of the PLS models developed for (a) copper and (b) iron predictions.

Table 2
Summary of model performances conducted for calibration and validation sets.

Element Calibration Cross Validation Validation

Dataa Method Comp R2 RMSECb R2CV RMSECV R2p RMSEPb LODb

Cu Av. SLRc 1 0.851 15.0 – – 0.646 24.4 22.03
Cu Av. MLRd 2 0.857 14.7 – – 0.658 24.0 54.7
Cu Av. PLS 4 0.995 2.8 0.821 16.5 0.884 14.0 9.48
Cu D1 PLS 4 0.994 2.9 0.818 16.6 0.601 25.9 10.01
Cu D2 PLS 4 0.994 3.1 0.773 18.6 0.836 16.6 10.8
Cu D3 PLS 4 0.996 2.6 0.824 16.3 0.905 12.6 8.85
Cu D4 PLS 4 0.996 2.5 0.817 16.6 0.927 11.1 8.67
Cu D5 PLS 4 0.998 1.9 0.829 16.1 0.934 10.6 6.57
Fe Av. SLRe 1 0.883 186.3 – – 0.797 240.9 513.5
Fe Av. MLRf 6 0.905 167.9 – – 0.768 257.6 606.9
Fe Av. PLS 4 0.995 38.7 0.819 231.5 0.887 179.3 133.5
Fe D1 PLS 4 0.996 36.7 0.826 227.4 0.622 328.5 126.4
Fe D2 PLS 4 0.993 44.2 0.770 261.4 0.840 213.5 152.5
Fe D3 PLS 4 0.995 36.9 0.820 231.1 0.910 160.6 127.1
Fe D4 PLS 4 0.996 35.6 0.816 233.5 0.918 153.0 122.5
Fe D5 PLS 4 0.998 27.4 0.827 226.4 0.925 146.5 94.32

a Data refers to the average approach: average of all the spectra recorded per samples (all layers), which is indicated as Av; and averages of all the spectra recorded per depth,which are
indicated as D1 (depth 1/surface), D2 (depth 2), etc.

b RMSEC, RMSEP and LOD units are mg/kg of Cu or Fe.
c SLR for Cu used LIBS data at 324.73 nm.
d MLR for Cu used LIBS data at 324.73 and 327.36 nm.
e SLR for Fe used LIBS data at 438.36 nm.
f MLR for Fe used LIBS data at 438.36, 259.95, 358.119, 373.486, 430.79, 432.576 nm.
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major variation was present along the spectral data. The most probable
variation was the bulk composition since samples were obtained by
adding pure lactose to a commercial premix, causing large matrix vari-
ations among the samples.

3.3.4. Comparison of the calibration approaches
Three matrix-matched calibration approaches (SLR, MLR and PLS)

were tested as feasible LIBS-data processing methodologies. Table 2
summarises the performances in calibration and validation of all the cal-
ibration models developed for copper and iron. Best results were ob-
tained when PLS was applied resulting in substantial improvements
for all the figures of merit. For instance, the RMSEP of the copper
model decreased from 24 mg/kg (SLR) to 14 mg/kg (PLS) while the R2

rose from 0.851 (SLR) to 0.995 (PLS).
The calibration approaches were further compared via prediction

plots. Fig. 4 displays the copper and iron values predicted with each of
the calibration approaches versus the measured values determined by
AAS. In accordance with the figures of merit, SLR (Fig. 4(a)) and MLR
(Fig. 4(b)) yieldedmodestmodelswith noticeable lack of fit and accura-
cy, especially in the frame of validation. In contrast, PLS (Fig. 4(c))
showed excellent fitting and good accuracy. In general, less accuracy
was observed when targeting samples of Cu and Fe levels close to the
limits of the concentration range. This effect was probably due to a sub-
stantial change in matrix, including composition and particle features
[46], as the samples of lower and upper concentration limits were
pure lactose and premix, respectively. Contrary, when targeting

premix-lactose blends, predictions were notably more accurate, espe-
cially by means of PLS. Overall results corroborated that chemometric
methods such as PLS, inwhich several or the entire spectral information
is considered for calibration building, reduces matrix effects, improving
the accuracy of the quantifications [19,20,25].

3.4. Surface versus inner-sample measurements

LIBS can be employed to penetrate through the sample by repetitive-
ly firing the laser at the same spot. This featuremay be useful to provide
information about the bulk composition aswell as to clean the surface of
the sample and expose underlying material before element analysis. In
this section, in-depth recording was investigated in terms of effect on
the spectral quality and also as a mechanism to avoid possible surface
contaminants. To this end, each depth was assessed individually.

As for previous PLS models developed per sample, the spectral
data—here arranged by depth—was correlated to the reference values,
providing 5 extra PLS models per element. The resulting figures of
merit are detailed in Table 2, together with the values of themodels de-
veloped with the average spectra of all the sample layers. In contrast to
the all-layers models, the models developed with the first-layer (sur-
face) data, indicated in the table as D1, showed a poor performance in
the frame of validation (RMSEP values of 25.9 mg/kg Cu and
228.5 mg/kg Fe). However, model performances improved as the mea-
suring depth increased, providing better results than the all-layers
model. This effect is also visible in Fig. 4(d), which displays Cu predicted

Fig. 4. Predicted vs measured plots for copper obtained with (a) SLR, (b) MLR, (c) PLS and (d) PLS at depth 5.
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values obtained with the depth-5model versus reference values. Poorer
predictive ability when analysing surface data may indicate presence of
external elements, probably introduced due to surface contamination.

In order to disclose possible surface contamination, the presence of
sodium through the 5 layers was investigated. Sodium is easily detected
by the LIBS system, which means that slight variations of its levels may
have a considerable impact on the LIBS signal andhence on the chemical
analysis. Fig. 5 displays some of the sodium responses obtained for the
premix samples at 50% (approx. 60 mg/kg Cu). The first sub-plot,
Fig. 5(a), shows the intensity mean and deviation at the Na line
589.05 nm as a function of the measured layer. Both statistics tended
to decrease with the measuring depth. Yet, from the surface (depth 1)
to depth 2, the drop in both statistics is remarkable. For comparison pur-
poses, the variance of copper across the measured depths was also
displayed in Fig. 5(a). Unlike sodium, copper variations did not show a
clear pattern associated with depth. Fig. 5(b) and (c) display sodium
chemical maps of the same pellet at depth 1 and depth 5, respectively.
As expected, the image provided at the surface (Fig. 5(b)) revealed
some spots with high Na intensity values as well as large Na variation
across the scanned area. This result indicated that some surface loca-
tions contained high Na concentrations and also that Nawas not homo-
geneously distributed. Conversely, as evident in Fig. 5(c), the image of
the inner measurement disclosed modest intensity values and varia-
tions. Thus, Na detected at the surface may not only be from the sample
matrix but also from an external source. Then, models built with surface
data may include Na variation not matrix related resulting in less accu-
racy. These results leads us to conclude that performing conditioning
shots prior to recording LIBS spectra may help avoid possible surface
contamination issues.

4. Conclusions

LIBS in combination with chemometric techniques including PLS re-
gression was successfully applied for copper and iron quantifications in
infant formula premixes. The study provided a comparison between
three matrix-matched approaches: simple linear regression (SLR),
multi-linear regression (MLR) and partial least squares regression
(PLS). While SLR and MLR demonstrated to be appropriate for deter-
mining exploratory relationships between the analyte and the spectral
information, PLS proved its capability as a quantitative approach of
LIBS data. Good performances of the PLS approach have been demon-
strated via figures of merit (e.g. R2 of 0.995 and RMSEP of 14 mg/kg
Cu), prediction plots and loading values. The latter revealed that main
contributing emission lines were related to premix trace elements,
namely Cu, Fe and Zn, as well as to the matrix and the surrounding
air. Therefore, the analyte-matrix and analyte-environment combina-
tions have an active role in the LIBS spectra. On that account, better pre-
dictive ability may be obtained by including both related and non-

directly related element emission lines into the model. PLS allows
such consideration and, in this study, has demonstrated its overall ben-
efits. Furthermore, LIBSwas used to bore through the sample in order to
explore whether better spectral quality could be obtained at deeper
sample layers. Results indicated that surface measurements should be
avoided, possibly due to surface contaminations. To conclude, this
work served to corroborate that chemometric approaches/multivariate
analysis such as PLS help deal with matrix effects leading to more accu-
rate quantifications. Therefore, LIBS followed by PLS holds significant
potential as a rapid quantitative tool for trace element analysis of infant
formula premixes during manufacture.

Prior to data recording, laser radiation can be used to clean the sur-
face of the sample and expose underlyingmaterial before element anal-
ysis. This feature may be especially useful when absence of surface
contaminants cannot be guaranteed. Benefits of analysing inner layers
were investigated using sodium as example. Sodium is highly detected
by LIBS, consequently; it mayhave a considerable impact on subsequent
chemical analyses.
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