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Abstract: Android is most popular operating system for 
smartphones and small devices with 86.6% market share (Chau 
2016). Its open source nature makes it more prone to attacks 
creating a need for malware analysis. Main approaches for 
detecting malware intents of mobile applications are based on 
either static analysis or dynamic analysis. In static analysis, apps 
are inspected for suspicious patterns of code to identify 
malicious segments. However, several obfuscation techniques are 
available to provide a guard against such analysis. The dynamic 
analysis on the other hand is a behavior-based detection method 
that involves investigating the run-time behavior of the 
suspicious app to uncover malware. The present study extracts 
the system call behavior of 216 malicious apps and 278 normal 
apps to construct a feature vector for training a classifier. Seven 
data classification techniques including decision tree, random 
forest, gradient boosting trees, k-NN, Artificial Neural Network, 
Support Vector Machine and deep learning were applied on this 
dataset. Three feature ranking techniques were usedto select 
appropriate features from the set of 337 attributes (system calls). 
These techniques of feature ranking included information gain, 
Chi-square statistic and correlation analysis by determining 
weights of the features. After discarding select features with low 
ranks the performances of the classifiers were measured using 
accuracy and recall. Experiments show that Support Vector 
Machines (SVM) after selecting features through correlation 
analysis outperformed other techniques where an accuracy of 
97.16% is achieved with recall 99.54% (for malicious apps). The 
study also contributes by identifying the set of systems calls that 
are crucial in identifying malicious intent of android apps. 

Keywords: Android malware detection, predictive, analytics

1. INTRODUCTION 

In the present digital era, smartphones have become an 
essential part of our daily lives. According to Gartner(Release 
2017), the mobile usage has reached 90 %penetration in the 
regions of America, Europe, Japan and Asia/Pacific. A wide 
range of services are provided through applications (apps) of 
smartphones including games, social media,banking, etc. On 
one hand, it is very convenient to have all these services 
through a small portable device, however, on the other hand, 
it carries considerable risk to have these on the web, as our 
personal details are vulnerable to attacks. Since the last 
decade, several malware authors have reportedly started 
writing apps for stealing crucial information (Mobile 
Security) (F-Secure, 2014).   

At present, Android is the most popular operating system 
amongst all the available mobile-devices. International Data 
Corporation reported that Android has a market share of 
86.6% (in 2016) in global market (Chau). This is mainly due 
to its open source nature and the availability of free apps on 
official as well as third party markets. However, its open 
source nature makes it more prone to attacks through apps 
with embedded malwares. As per reports, 99% of the mobile 
device attacks are on Android(F secure). Due to gravity of 
this problem, several researchgroups  are working on 
designing systems that can detect the malicious apps to make 
Android safer for users. Most of the newly proposed systems 
are based on analyzing the static or dynamic features of apps. 
In static analysis, code of an app is analyzed without 
executing it with the aim to identify malicious segments.
Whereas this approach is quick, itoften fails against code 
obfuscation in which code is transformed into polymorphic 
form to avoid its reverse engineering. To overcome this 
problem, researchers have thought of capturing and modeling 
the run-time behavior of apps. In these approaches,various 
features of running apps are extracted which are then used to 
train classifiers. (Ham & Choi, 2013) used a feature set 
consisting of Network data, SMS, CPU utilization, power 
consumed, memory occupied by libraries and virtual memory 
utilization to train Naïve Bayes, Logistic Regression, Random 
Forest and SVM. It was found that Random forest algorithm 
outperformed the other algorithms in detecting the apps with 
malware intent. However, very few malware samples were 
taken in this study and the number of normal apps was much 
higher than the malware ones that might have led to class 
imbalance problems.  Also the feature set used was taken 
assuming the malware apps are resource exhaustive which 
might also be characteristic properties of benign apps. In a 
similar study Lu, et al(2013), collected runtime behavior 
features like use of permission to change the network state, 
send SMS, etc. Chi-square test was then applied for feature 
selection. The selected features served as input to Bayesian 
method for classification which classified the samples with 
89% accuracy. The study can be extended by using more 
feature selection approaches and supervised learning 
algorithms to improve the efficiency of detection. 
Tenenboim-Chekina, et al.(2013) had collected network 
related features of apps in execution at regular intervals to 
capture the details of upgrades by these apps. The correlation 
between these features was also calculated to detect the 
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abnormalactivities. This was referred to as cross feature 
analysis.They were able to detect the repacked malicious app; 
however, the details of number and type of samples were not 
provided in the paper, making it difficult to analyse their 
work. Also, more can be done to improve this work by 
examining higher order statistics of the features collected. In 
2013,Alam&Vuong(2013) extracted runtime features related 
to battery, binder, memory, CPU, network and permissions. 
Training Random Forest classification model yielded 99% 
accuracy. The details about falsepositives are not mentioned 
in the paper.. A study (iMas’ud, Sahib, Abdollah, Selamat, 
&Yusof, 2014)was conducted where different feature 
selection methods were applied before applying five different 
machine learning algorithms. They applied Chi-square and 
information gain for selecting the features before training the 
classifiers: Naïve Bayes, K-NN, Decision Tree, Multi-layer 
perceptron and Random Forest. The best results were 
obtained from neural network model after feature selection 
where accuracy of 83% was achieved. This study can be 
extended by applying deep learning method which might 
provide better accuracy. (Ng & Hwang, 2014) demonstrated 
that Dendritic Cell algorithm is better for classifying the 
normal and malicious app. They extracted system call 
behavior of the apps while the apps were running.  However, 
the dataset used for this study was not sufficient and 
comparison with other algorithms on the same dataset was not 
provided. In a study conducted by Kim & Choi in 2014 
extracted memory, CPU and Network related features and 
applied feature selection approach in which onefeature was 
removed and performance of the classifier was measured. The 
best performance of 95.97% was achieved after removing 23 
features. However, this way of removing the feature is not 
very useful as some of the features might be good when they 
are considered with other features and the joint statistics 
couldhave led to better results. A similar study that 
investigated the anomalies of features at execution time like 
power consumption, network traffic and battery temperature 
was done by Kurniawan, Rosmansyah, &Dabarsyah in
2015.They applied four machine learning algorithms 
including J48, Random Forest, SVM and LMT on 
combination of three types of features. Results indicate that 
batterytemperature was not contributing much to the detection 
and with the remaining two features J48 outperformed the 
other machine learning algorithm. 

The present study tries to fill the gaps discussed in the 
mentioned studies. We have extracted system calls invoked 
by normal and malicious apps duringexecution. The system 
calls were chosen as features since all the resources are 
ultimately allocated by the Linux kernel to the apps through a
set of system calls. Counting particular system call requests,
allows us to estimate the resource utilization of the app.

2. DATASET 

For behavior analysis, 278 non-maliciousapps and 216 
malicious apps were used. The normal apps were taken from 
the Google Play Store whereas the malicious appswere taken 

from the contagio project (Parkour, 2016).These apps were 
installed in the emulator (API Level 16, version 4.1.1) using 
adb(Android Debug Bridge)install command.All the apps 
were executed using the monkeytool(UI/Application Exerciser 
Monkey)which simulates the usage of the application and is 
generally used for stress testing of the applications being 
developed. System call behavior (337 system calls of Linux) 
of each app was monitored using an automatic script that was 
written as a shell script. The data was retrieved from the 
emulator shell using adb tool and a Python script was written 
to format the dataset. The feature vector consisted of 337 
attributes corresponding to each system call. The value of the 
attribute was the number of times that particular system call 
was invoked during the execution of the app. 

3. METHODOLOGY 

Once the feature set was constructed, the classifier models 
were trained and validated. To improve the performance of 
these classifiers, feature ranking and selection techniques 
were also applied and the performance before and after 
application were compared. The block diagram of the process 
followed is shown in Figure 1.  

2.1 Pre-processing:- During this step, attributes with 
zero variance were removed. These features 
correspond to the system calls that were never 
invoked by any app of the sample set. Out of the 
original 337 system calls 43 attributes (excluding 
nominal class label) were selected. The parallel plot 
of these 43 attributes shown in Figure 2 indicates 
that some of these attributes have predictive power 

2.2 Classification: It is a process in which a training 
data set with input and output pairs is analyzed by 

Feature set 
with 337 

1 Pre-
processing 

2 Train and 
test the 

3 Feature Ranking 
or selection  

4 Train and test 
the classifiers  

5 Compare the 
performances   

Figure 1 Block diagram of the process 
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the algorithm to learn a mapping function which can 
later be used for predicting the unknown outputs for 
some input data. In the present case, the input 
attributes are the  

frequencies of system calls invoked and the output variable is 
the type of app (benign or malicious). Once the mapping 
function is inferred we can monitor the system call behavior 
of unknown apps and judge whether these have malicious 
intent or not. Seven machine learning algorithms were 
applied,namely Decision Trees, K-nearest Neighbors (K-NN), 
Support Vector Machine, Neural Network and Deep 
Learning. These are briefly described as follows: 

3.1Decision Tree Classification: This classification algorithm 
builds the model in the form of a decision tree which is a tree-
like graph where internal nodes are attributes; branches 
denote values that satisfy some conditions or tests and leaf 
nodes are class labels (Quinlan, 1986). The decision tree is 
constructed using a greedy algorithm in which the tree is built 
recursively by choosing appropriate attribute as root of the 
tree(Rokach & Maimon, 2008). The choice of attribute is 
done by finding optimal splitting condition such that after 
applying this condition on the selected attribute, the resulting 
partitions are as pure as possible. 

3.2 Random Forest :are also referred as random decision 
forests. Random Forest classification is an ensemble learning 
method for classification and is based on decision tree 
learning(Ho, 1995). Decision tree learning suffers the 
drawback of over-fitting where the trees with deeper levels 
represent irregular patterns as they overfit the training dataset. 
To overcome this problem, random forest classification 
averages multiple decision trees that are trained on different 
parts of the same training dataset(Breiman, 2001). The idea is 
to reduce the variance that is observed in trees that have 
grown very deep. This process substantially enhances the 
performance of the model and is a part of bagging approach 
where random samples of data are taken to train different 
trees which are later averaged to find better performing 
model. 

3.3 Gradient Boosted Trees:Boosting is similar to bagging 
except that the instead of training the trees with random 
training data, the trees are grown to weighted versions of the 
dataset where more weights are given to observations that are 
harder to learn(Freidman, 1999). Due to weighting, the trees 
are de-correlated by focusing on regions that are missed by 
the previously trained trees. 

3.4k-NN (K nearest neighborhood): is a lazy learner 
classifier in which the process of modeling is delayed until it 
is needed to classify the given input sample(Coomans & 
Massart, 1982). In this method the data are dividedinto  test 
data and training data. For each sample row of test data, k
nearest neighbors are determined by computing the proximity 
of the test tuple with the rest of the tuples or data points using 
distance functions like Euclidean distance. The output class of 
the test rowis then assigned the value of majority class of 
these neighbors. 

3.5 Support Vector Machine (SVM) : is a classification 
technique based on statistical learning theory. The Linear 
SVM identifies hyper-plane with maximum margin to 
separate the two classes(Press, Teukolsky, Vetterling, & 
Flannery, 2007). 

3.6 Artificial Neural Networks:are inspired by the biological 
neural system. It is composed of nodes and 
connections(Minsky & Papert, 1969). The network will have 
an input layer, intermediary hidden layers and an output layer. 
In a feed-forward neural network, the nodes in one layer are 
connected to nodes of the next layer. The connections have 
some weights that are randomly assigned atthe beginning and 
slowly learnt based on the training data(Artifical Neural 
Network 2017). Each node calculates the output based on the 
weighted input received and its activation function. The final 
outputs are then matched with the expected outputs and are 
errors are calculated. The errors are propagated back and the 
weights are adjusted. This is known as back-propagation. 

3.7 Deep Learning: is based on a multi-layer feed-forward 
artificial neural network that is trained with stochastic 
gradient descent using back-propagation. In this cascade of 
many layers of neurons (processing units) is used for feature 
extraction and transformation. More layers as compared to 
other leaners are used in deep learning. At each layer the 
parameters of inputs are learned and transformed. It is based 
on distributed representations.(Deng & Yu, 2014). 

3.8 Feature Ranking and Selection: The performance of 
classifiers can improve if we relieve the assumption that all 
the features are of equal importance for predicting the class 
label (Kolcz & Teo, 2009). The feature can be assigned some 
weight based on criteria like information gain ratio, Chi-
square statistics, etc. The higher the weight of an attribute the 
more relevant it becomes for predicting the class label. This 
paper examines the impact of three feature selection 
techniques based on weighting techniques on performance of 

Figure 2 Parallel plot of 43 features for 2 output categories
(red – normal, blue – malicious)
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the classifiers, namely information gain ratio, Chi-square 
statistics and correlation. These are explained as follows 

3.8.1 Feature weighting using information gain: The 
attributes including the output class are taken as random 
variables. The information gain is determined by knowing the 
presence and absence of an attribute with the aim to find out 
how much information gain is achieved by adding an attribute 
in the input feature set that is used for training the model 
(Mladenic, Brank, Grobelnik, & Milic-Frayling, 2004). This 
can be calculated by using information-theoretic definition. 
Assuming C is output class (label) and K is one of the 
predictor attribute (both are considered random variables) 
then information gain can be defined as 

                  (1) 

3.8.2 Feature weighting using Chi-square statistic: The Chi-
square test is a statistical test used to determine the 
independence or dependence between two variables. This can 
be applied in feature selection as we can determine the 
dependence of each input attribute and target output class and 
weight/rank the input attributes accordingly. The attribute 
which is more dependent is given higher weight and the 
attribute which is not dependent is discarded. For continuous 
variables or numerical data the Chi-square is applied after 
binning the values.  The value of the Chi-square is  

(2) 

Where = Pearson’s cumulative test static, Oi =
number of observations of type I, Ei= expected frequency 
of type I, and n=number of rows in the table 

3.8.3 Feature weighting using correlation:A feature is 
considered useful if it is correlated well with category 
membership. In this technique we try to find a subset that 
contains features that are highly correlated with the output 
label and un-correlated with each other. The following 
equation finds the merit of a feature subset D consisting of m 
features: 

(3) 

Where  is the average value of all feature-
classification correlations and is the average value of 
all feature-feature correlations.  

4. PERFORMANCE MEASURES 

Evaluation of the performance of classifier is based on the 
number of samples that are correctly or incorrectly 
categorized by the classification model. The measures used in 
this paper are accuracy, recall and precision. 

4.1 Accuracy: Accuracy is a measure of how many of the 
total instances are correctly predicted by the model. It is 
defined by the equation 

4.2 Precision and Recall: The accuracy measures do not treat 
the class differently and more parameters are required to 
analyse datasets with imbalance. Usually, the rare class (for 
example malware) is more interesting than the majority class 
(normal apps). Precision refers to the fraction of the examples 
that are actually positive in the group that the classifier has 
predicted as a positive class. In our paper, precision indicates 
how many apps were actually malicious out of the predicted 
ones. Higher value of precision means lower false positive 
rates. Recall, on the other hand, measures the fraction of 
positive examples that are correctly predicted as positive by 
the classifier. For our study this means that out of all the 
malicious apps how many were correctly predicted as 
malicious. In this paper it is more important to have better 
recall (for malicious class) than for the non-malicious class 
because the risk of categorizing malicious app as normal is 
more dangerous than identify normal as malicious (false 
positive). 

5. EXPERIMENTAL RESULTS

A 10-fold cross validation using stratified sampling was 
applied, creating 10 mutually exclusive subgroups each used 
for training and testing. . The results of all the classifiers before 
applying any feature select are presented in Table 1. 

TABLE 1 PERFORMANCE OF CLASSIFIERS BEFORE APPLYING 
FEATURE SELECTION 

Classifier Parameter 
setting Accuracy Precision Recall

Decision 
Tree

Gini Index for 
splitting

98.26% +/- 1.58% 98.57% 95.96% 

Random 
Forest

30 trees 96.77% +/- 2.37% 99.23%  90.45%  

Gradient 
Boosting 
Trees

20 trees 98.50% +/- 1.66% 98.52%  96.73% 

K-NN K=1 94.29% +/- 2.73% 94.28%  87.31%  

Support 
Vector 
Machine 

Anova kernel 96.51% +/- 3.39% 97.63% 91.15% 

Neural 
Network

Epocs=1000 94.07% +/- 3.31% 89.51% 92.95% 

Deep 
Learning

Epocs=15 96.03% +/- 2.52% 94.72% 92.69%  

It is evident from Table 1 that the Gradient Boosting Trees
algorithm is giving the best accuracy amongst all the 
methods. The next section provides the  performance of these 
classifiers after applying the feature selection algorithms. 
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5.1 Performance after feature selection using information 
gain

The normalized weights of the features were calculated using 
information gain. The features having weights less than 0.05 
are rejected, which led to improvement in performance of the 
classifiers. Rejecting features beyond this was leading to a
reduction in performance of the classifier, thus 0.05 was taken 
as optimal threshold. The parameters of the models mentioned 
in Table 2 were not changed. Three attributes were rejected 
during this process; these are rt_sigreturn, flock and mkdir. 
This new subset of features was used to train the classifiers 
again and the performances were measured (see Table 2). The 
comparative performances are shown in Figure 3. In this 
figure the suffix –p is used with name of the classifier to 
denote the classifier performance before applying the feature 
selection. For example supportvector machine-p and support 
vector machine correspond to performance of support-vector 
machine before and after applying the feature selection 
respectively.  

TABLE 2 PERFORMANCE OF CLASSIFIERS AFTER FEATURE 
SELECTION USING INFORMATION GAIN 

Classifier Accuracy Precision Recall

Decision Tree 97.64% +/- 2.06% 98.57% 95.83% 

Random Forest 94.56% +/- 3.47% 91.6%  96.30% 

Gradient Boosting 
Trees

98.38% +/- 1.51% 99.06% 97.22% 

K-NN 96.56% +/- 4.24% 95.85% 96.3% 

Support Vector 
Machine 

96.76% +/- 2.27% 93.48% 99.54%

Neural Network 95.75% +/- 2.30% 94.12% 96.30%

Deep Learning 97.17% +/- 1.34% 98.13% 97.22%

Figure 3- Comparison in performance after feature selection using 
information gain 

Substantial improvement in recall of k-NN, Deep learning, 
SVM, Random forest and neural network can be seen. This is 

very favorable to the objective of the study as it is important 
to have a good recall (for malicious class) that may come at 
cost of misclassifying some of the normal apps as malicious. 
In the next section, performance of classifiers after feature 
selection using Chi-square statics are presented. 

5.2 Performance after feature selection using Chi-square 
statistics 

The Chi-square statistics is used to determine weight of 
attributes where the highest weight is given to the most 
relevant attribute. The attributes having a weight less than 
0.05 were rejected; using this threshold six attributes were 
rejected, namely,rt_signreturn, flock, mkdir, lstat64, statfs64, 
epoll_ctl. Out of these six, three attributes were also 
recommended for rejection using the information gain 
approach. The classifiers were trained using the feature subset 
and performances were measured. The results are described in 
Table 3.

TABLE 3 PERFORMANCE OF CLASSIFIERS AFTER FEATURE 
SELECTION USING CHI-SQUARE STATISTICS 

Classifier Accuracy Precision Recall

Decision Tree 97.17%+/- 2.06% 97.64% 95.83%

Random Forest 95.15% +/- 2.73% 92.48% 96.76%

Gradient Boosting 
Trees

98.38% +/- 1.51% 99.06% 97.22%

K-NN 96.56% +/- 4.24% 95.85% 96.30%

Support Vector 
Machine

96.96% +/- 2.28% 93.89% 99.54%

Neural Network 95.15% +/- 3.76% 92.48% 96.76%

Deep Learning 96.97% +/- 1.00% 97.18% 95.83%

Similar results were obtained where recall (corresponding to 
malicious class) was improved in all models except decision 
trees. 

5.3 Performance Feature selection using correlation
Finally, feature selection was performed by calculating the 
ranks of the attributes using the correlation approach which 
attemptsto find a subset of features that are highly correlated 
with the output class and least correlated with each other. In 
this case, the threshold for selection was 0.2 which means that 
attributes having less than 0.2 weight (normalized) were 
rejected. Using this approach 12 attributes were rejected,
namely, rt_sigreturn, flock, mkdir, gettid, gettimeofday, 
fstat64, lstat64, epoll_ctl, statfs64, fork, pipe and futex. The 
performances of classifiers trained on this feature subset are 
mentioned in Table 4.

80.00%
82.00%
84.00%
86.00%
88.00%
90.00%
92.00%
94.00%
96.00%
98.00%

100.00%
102.00%

Accuracy Precision Recall
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TABLE 4 PERFORMANCE OF CLASSIFIERS TRAINED ON 
FEATURE SUBSET SELECTED USING CORRELATION 

APPROACH

Classifier Accuracy Precision Recall

Decision Tree 97.58% +/- 2.34% 97.22% 97.22%

Random Forest 96.56% +/- 1.58% 95.02% 97.22%

Gradient 
Boosting Trees

99.19% +/- 0.99% 99.07% 99.07%

K-NN 98.79% +/- 2.05% 98.61% 98.61%

Support Vector 
Machine 

97.16% +/- 1.63% 94.30% 99.54%

Neural Network 93.13% +/- 4.50% 93.33% 90.74%

Deep Learning 97.17% +/- 1.34% 96.33% 97.22%

With all three feature subsets, the best recall for malicious 
class was obtained using a support vector machine classifier.
However, this is true only when a suitable subset of feature 
was selected. The performance of SVM with all the three 
feature subsets is shown in Figure 4.

Figure 4 Comparison of SVM performances with various feature sets 

Since recall for malicious class with SVM in all the three 
feature subsets is equal, the accuracy and precision can be 
used to evaluate the performance of the right feature subset. 
In conclusion, we can state that SVM with feature selection 
using correlation marginally outperformed all other classifier 
and feature selection techniques.  
In summary, during the initial screening of 337 systems calls 
as features, 294 features were discarded as these system calls 
were never invoked by the 494 apps collected in this study. 
The remaining 43 features were used to train the classifier and 
anacceptable accuracy was achieved. However, to improve 
the performance further, three features techniques were 
applied. A maximum of 12 features  were removed by feature 
selection using the correlation technique (with 0.2 as 

threshold). This selected subset consisting of 31 features as a 
training set for support vector machine yielded very good 
class recall of 99.54%. We can therefore state that system 
calls are useful and can be monitored for identifying 
suspicious activities and therefore malicious mobile 
applications on Android device.

5. CONCLUSION AND FUTURE WORK 

The present study was conducted to develop models that can 
identify the malicious intents of android apps using their run-
time behavior. This dynamic behavior was measured by 
looking at the frequency of system calls made by a mobile 
app when it was running as process in the Linux kernel of the 
android operating system. After pre-processing and applying 
feature selection techniques it was found that 31 out of 337 
system calls are excellent predictors of malicious apps. An 
accuracy of 97.16% and recall of 99.54% was achieved using 
a support vector machine classifier which performed better 
than decision trees, random forests, gradient boosted trees, 
neural network, k-NN and deep learning. Though the 
accuracy of gradient boosted tree was higher than SVM,the 
class recall was slightly lower which is more relevant for the 
problem under investigation. It is less risky to have a normal 
app being predicted as malicious than predicting a malicious 
one as normal. Most of the studies that have been conducted 
to analyse the dynamic behavior have looked at the statistics 
and usage of the resources like CPU time, network packets 
etc. In the present study we have examined the system call 
behavior because any resource be it CPU or network will be 
accessed through operating system system-calls. We have not 
come across any studies which have done comparative 
analysis of performances of various classification algorithms 
in predicting the malicious apps through system call behavior. 
Moreover the present study has identified a set of 31 system 
calls that are crucial in differentiating between normal and 
malicious apps (mentioned in Table 5).During the 
experiments one laptop on which emulator was installed 
crashed and an android device on which the experiments were 
conducted came under a ransom ware attack.   
However, the study can be extended in several dimensions. 
The training set can be increased by collecting more 
malicious apps of various categories. The feature set can be 
made richer by adding static and dynamic features. More 
feature learning techniques can be explored such as 
evolutionary techniques particle optimization, or any colony 
optimization.  

TABLE V LIST OF SYSTEM CALLS IMPORTANT IN 
IDENTIFYING MALWARE BEHAVIOR

S.No Name of the 
system call

Function of the system call

1 Read Read data from files/device
2 Write Write data to device/files
3 Open Open file
4 Close Close file
5 Unlink Delete files
6 Chmod Change permission 

96.51% 96.76% 96.96% 97.16%97.63%

93.48% 93.89% 94.30%

91.15%

99.54% 99.54% 99.54%

SVM with original 
dataset

SVM with feature 
subset (Information 

Gain)

SVM with feature 
subset (Chi Square 

Statistic)

SVM with feature 
subset (Correlation)

Accuracy Precision Recall
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7 Lseek Change location of read/write pointer
8 Getpid Get process identifier
9 Access Check access to a file
10 Rename Renames a file
11 Dup Creates copy of file descriptor
12 Brk Change the location of program break
13 Ioctl Manipulate device parameters of special files
14 Umask sets the calling process's file mode creation 

mask (umask) to
       mask & 0777

15 Munmap deletes the mappings for the specified 
address range

16 Uname returns system information
17 Fsync synchronize a file's in-core state with storage
18 Clone create a child process
19 Mprotect set protection on a region of memory
20 Sigprocmask examine and change blocked signals
21 Select synchronous I/O

       multiplexing
22 Writev write data into multiple buffers
23 Sched_yield yield the processor
24 Nanosleep high-resolution sleep
25 Pread64 read from a file descriptor at a given offset
26 Stat64 get file status
27 Madvise give advice about use of memory
28 Getdents64 get directory entries
29 Fcntl64 manipulate file descriptor
30 Epoll_wait wait  for  an I/O event on an epoll file  

descriptor
31 Clock_gettime retrieve and set the time of the specified 

clock clk_id.
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