
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference papers School of Computer Sciences

2017

Dynamic behavior analysis of android applications for malware Dynamic behavior analysis of android applications for malware

detection detection

Latika Singh

Markus Hofmann

Follow this and additional works at: https://arrow.tudublin.ie/scschcomcon

 Part of the Computer Sciences Commons

This Conference Paper is brought to you for free and
open access by the School of Computer Sciences at
ARROW@TU Dublin. It has been accepted for inclusion in
Conference papers by an authorized administrator of
ARROW@TU Dublin. For more information, please
contact arrow.admin@tudublin.ie,
aisling.coyne@tudublin.ie, gerard.connolly@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 4.0 License

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomcon
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomcon?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Dynamic Behavior Analysis of Android Applications
for Malware Detection

Latika Singh and Markus Hofmann
ITB Ireland

latikasingh@ncuindia.edu
markus.hofmann@itb.ie

Abstract: Android is most popular operating system for
smartphones and small devices with 86.6% market share (Chau
2016). Its open source nature makes it more prone to attacks
creating a need for malware analysis. Main approaches for
detecting malware intents of mobile applications are based on
either static analysis or dynamic analysis. In static analysis, apps
are inspected for suspicious patterns of code to identify
malicious segments. However, several obfuscation techniques are
available to provide a guard against such analysis. The dynamic
analysis on the other hand is a behavior-based detection method
that involves investigating the run-time behavior of the
suspicious app to uncover malware. The present study extracts
the system call behavior of 216 malicious apps and 278 normal
apps to construct a feature vector for training a classifier. Seven
data classification techniques including decision tree, random
forest, gradient boosting trees, k-NN, Artificial Neural Network,
Support Vector Machine and deep learning were applied on this
dataset. Three feature ranking techniques were usedto select
appropriate features from the set of 337 attributes (system calls).
These techniques of feature ranking included information gain,
Chi-square statistic and correlation analysis by determining
weights of the features. After discarding select features with low
ranks the performances of the classifiers were measured using
accuracy and recall. Experiments show that Support Vector
Machines (SVM) after selecting features through correlation
analysis outperformed other techniques where an accuracy of
97.16% is achieved with recall 99.54% (for malicious apps). The
study also contributes by identifying the set of systems calls that
are crucial in identifying malicious intent of android apps.

Keywords: Android malware detection, predictive, analytics

1. INTRODUCTION

In the present digital era, smartphones have become an
essential part of our daily lives. According to Gartner(Release
2017), the mobile usage has reached 90 %penetration in the
regions of America, Europe, Japan and Asia/Pacific. A wide
range of services are provided through applications (apps) of
smartphones including games, social media,banking, etc. On
one hand, it is very convenient to have all these services
through a small portable device, however, on the other hand,
it carries considerable risk to have these on the web, as our
personal details are vulnerable to attacks. Since the last
decade, several malware authors have reportedly started
writing apps for stealing crucial information (Mobile
Security) (F-Secure, 2014).

At present, Android is the most popular operating system
amongst all the available mobile-devices. International Data
Corporation reported that Android has a market share of
86.6% (in 2016) in global market (Chau). This is mainly due
to its open source nature and the availability of free apps on
official as well as third party markets. However, its open
source nature makes it more prone to attacks through apps
with embedded malwares. As per reports, 99% of the mobile
device attacks are on Android(F secure). Due to gravity of
this problem, several researchgroups are working on
designing systems that can detect the malicious apps to make
Android safer for users. Most of the newly proposed systems
are based on analyzing the static or dynamic features of apps.
In static analysis, code of an app is analyzed without
executing it with the aim to identify malicious segments.
Whereas this approach is quick, itoften fails against code
obfuscation in which code is transformed into polymorphic
form to avoid its reverse engineering. To overcome this
problem, researchers have thought of capturing and modeling
the run-time behavior of apps. In these approaches,various
features of running apps are extracted which are then used to
train classifiers. (Ham & Choi, 2013) used a feature set
consisting of Network data, SMS, CPU utilization, power
consumed, memory occupied by libraries and virtual memory
utilization to train Naïve Bayes, Logistic Regression, Random
Forest and SVM. It was found that Random forest algorithm
outperformed the other algorithms in detecting the apps with
malware intent. However, very few malware samples were
taken in this study and the number of normal apps was much
higher than the malware ones that might have led to class
imbalance problems. Also the feature set used was taken
assuming the malware apps are resource exhaustive which
might also be characteristic properties of benign apps. In a
similar study Lu, et al(2013), collected runtime behavior
features like use of permission to change the network state,
send SMS, etc. Chi-square test was then applied for feature
selection. The selected features served as input to Bayesian
method for classification which classified the samples with
89% accuracy. The study can be extended by using more
feature selection approaches and supervised learning
algorithms to improve the efficiency of detection.
Tenenboim-Chekina, et al.(2013) had collected network
related features of apps in execution at regular intervals to
capture the details of upgrades by these apps. The correlation
between these features was also calculated to detect the

2017 International Conference on Intelligent Communication and Computational Techniques (ICCT)
Manipal University Jaipur, Dec 22-23, 2017

978-1-5386-3030-3/17/$31.00 ©2017 IEEE 1

Authorized licensed use limited to: Technological University Dublin. Downloaded on January 20,2022 at 16:19:19 UTC from IEEE Xplore. Restrictions apply.

abnormalactivities. This was referred to as cross feature
analysis.They were able to detect the repacked malicious app;
however, the details of number and type of samples were not
provided in the paper, making it difficult to analyse their
work. Also, more can be done to improve this work by
examining higher order statistics of the features collected. In
2013,Alam&Vuong(2013) extracted runtime features related
to battery, binder, memory, CPU, network and permissions.
Training Random Forest classification model yielded 99%
accuracy. The details about falsepositives are not mentioned
in the paper.. A study (iMas’ud, Sahib, Abdollah, Selamat,
&Yusof, 2014)was conducted where different feature
selection methods were applied before applying five different
machine learning algorithms. They applied Chi-square and
information gain for selecting the features before training the
classifiers: Naïve Bayes, K-NN, Decision Tree, Multi-layer
perceptron and Random Forest. The best results were
obtained from neural network model after feature selection
where accuracy of 83% was achieved. This study can be
extended by applying deep learning method which might
provide better accuracy. (Ng & Hwang, 2014) demonstrated
that Dendritic Cell algorithm is better for classifying the
normal and malicious app. They extracted system call
behavior of the apps while the apps were running. However,
the dataset used for this study was not sufficient and
comparison with other algorithms on the same dataset was not
provided. In a study conducted by Kim & Choi in 2014
extracted memory, CPU and Network related features and
applied feature selection approach in which onefeature was
removed and performance of the classifier was measured. The
best performance of 95.97% was achieved after removing 23
features. However, this way of removing the feature is not
very useful as some of the features might be good when they
are considered with other features and the joint statistics
couldhave led to better results. A similar study that
investigated the anomalies of features at execution time like
power consumption, network traffic and battery temperature
was done by Kurniawan, Rosmansyah, &Dabarsyah in
2015.They applied four machine learning algorithms
including J48, Random Forest, SVM and LMT on
combination of three types of features. Results indicate that
batterytemperature was not contributing much to the detection
and with the remaining two features J48 outperformed the
other machine learning algorithm.

The present study tries to fill the gaps discussed in the
mentioned studies. We have extracted system calls invoked
by normal and malicious apps duringexecution. The system
calls were chosen as features since all the resources are
ultimately allocated by the Linux kernel to the apps through a
set of system calls. Counting particular system call requests,
allows us to estimate the resource utilization of the app.

2. DATASET

For behavior analysis, 278 non-maliciousapps and 216
malicious apps were used. The normal apps were taken from
the Google Play Store whereas the malicious appswere taken

from the contagio project (Parkour, 2016).These apps were
installed in the emulator (API Level 16, version 4.1.1) using
adb(Android Debug Bridge)install command.All the apps
were executed using the monkeytool(UI/Application Exerciser
Monkey)which simulates the usage of the application and is
generally used for stress testing of the applications being
developed. System call behavior (337 system calls of Linux)
of each app was monitored using an automatic script that was
written as a shell script. The data was retrieved from the
emulator shell using adb tool and a Python script was written
to format the dataset. The feature vector consisted of 337
attributes corresponding to each system call. The value of the
attribute was the number of times that particular system call
was invoked during the execution of the app.

3. METHODOLOGY

Once the feature set was constructed, the classifier models
were trained and validated. To improve the performance of
these classifiers, feature ranking and selection techniques
were also applied and the performance before and after
application were compared. The block diagram of the process
followed is shown in Figure 1.

2.1 Pre-processing:- During this step, attributes with
zero variance were removed. These features
correspond to the system calls that were never
invoked by any app of the sample set. Out of the
original 337 system calls 43 attributes (excluding
nominal class label) were selected. The parallel plot
of these 43 attributes shown in Figure 2 indicates
that some of these attributes have predictive power

2.2 Classification: It is a process in which a training
data set with input and output pairs is analyzed by

Feature set
with 337

1 Pre-
processing

2 Train and
test the

3 Feature Ranking
or selection

4 Train and test
the classifiers

5 Compare the
performances

Figure 1 Block diagram of the process

2

Authorized licensed use limited to: Technological University Dublin. Downloaded on January 20,2022 at 16:19:19 UTC from IEEE Xplore. Restrictions apply.

the algorithm to learn a mapping function which can
later be used for predicting the unknown outputs for
some input data. In the present case, the input
attributes are the

frequencies of system calls invoked and the output variable is
the type of app (benign or malicious). Once the mapping
function is inferred we can monitor the system call behavior
of unknown apps and judge whether these have malicious
intent or not. Seven machine learning algorithms were
applied,namely Decision Trees, K-nearest Neighbors (K-NN),
Support Vector Machine, Neural Network and Deep
Learning. These are briefly described as follows:

3.1Decision Tree Classification: This classification algorithm
builds the model in the form of a decision tree which is a tree-
like graph where internal nodes are attributes; branches
denote values that satisfy some conditions or tests and leaf
nodes are class labels (Quinlan, 1986). The decision tree is
constructed using a greedy algorithm in which the tree is built
recursively by choosing appropriate attribute as root of the
tree(Rokach & Maimon, 2008). The choice of attribute is
done by finding optimal splitting condition such that after
applying this condition on the selected attribute, the resulting
partitions are as pure as possible.

3.2 Random Forest :are also referred as random decision
forests. Random Forest classification is an ensemble learning
method for classification and is based on decision tree
learning(Ho, 1995). Decision tree learning suffers the
drawback of over-fitting where the trees with deeper levels
represent irregular patterns as they overfit the training dataset.
To overcome this problem, random forest classification
averages multiple decision trees that are trained on different
parts of the same training dataset(Breiman, 2001). The idea is
to reduce the variance that is observed in trees that have
grown very deep. This process substantially enhances the
performance of the model and is a part of bagging approach
where random samples of data are taken to train different
trees which are later averaged to find better performing
model.

3.3 Gradient Boosted Trees:Boosting is similar to bagging
except that the instead of training the trees with random
training data, the trees are grown to weighted versions of the
dataset where more weights are given to observations that are
harder to learn(Freidman, 1999). Due to weighting, the trees
are de-correlated by focusing on regions that are missed by
the previously trained trees.

3.4k-NN (K nearest neighborhood): is a lazy learner
classifier in which the process of modeling is delayed until it
is needed to classify the given input sample(Coomans &
Massart, 1982). In this method the data are dividedinto test
data and training data. For each sample row of test data, k
nearest neighbors are determined by computing the proximity
of the test tuple with the rest of the tuples or data points using
distance functions like Euclidean distance. The output class of
the test rowis then assigned the value of majority class of
these neighbors.

3.5 Support Vector Machine (SVM) : is a classification
technique based on statistical learning theory. The Linear
SVM identifies hyper-plane with maximum margin to
separate the two classes(Press, Teukolsky, Vetterling, &
Flannery, 2007).

3.6 Artificial Neural Networks:are inspired by the biological
neural system. It is composed of nodes and
connections(Minsky & Papert, 1969). The network will have
an input layer, intermediary hidden layers and an output layer.
In a feed-forward neural network, the nodes in one layer are
connected to nodes of the next layer. The connections have
some weights that are randomly assigned atthe beginning and
slowly learnt based on the training data(Artifical Neural
Network 2017). Each node calculates the output based on the
weighted input received and its activation function. The final
outputs are then matched with the expected outputs and are
errors are calculated. The errors are propagated back and the
weights are adjusted. This is known as back-propagation.

3.7 Deep Learning: is based on a multi-layer feed-forward
artificial neural network that is trained with stochastic
gradient descent using back-propagation. In this cascade of
many layers of neurons (processing units) is used for feature
extraction and transformation. More layers as compared to
other leaners are used in deep learning. At each layer the
parameters of inputs are learned and transformed. It is based
on distributed representations.(Deng & Yu, 2014).

3.8 Feature Ranking and Selection: The performance of
classifiers can improve if we relieve the assumption that all
the features are of equal importance for predicting the class
label (Kolcz & Teo, 2009). The feature can be assigned some
weight based on criteria like information gain ratio, Chi-
square statistics, etc. The higher the weight of an attribute the
more relevant it becomes for predicting the class label. This
paper examines the impact of three feature selection
techniques based on weighting techniques on performance of

Figure 2 Parallel plot of 43 features for 2 output categories
(red – normal, blue – malicious)

3

Authorized licensed use limited to: Technological University Dublin. Downloaded on January 20,2022 at 16:19:19 UTC from IEEE Xplore. Restrictions apply.

the classifiers, namely information gain ratio, Chi-square
statistics and correlation. These are explained as follows

3.8.1 Feature weighting using information gain: The
attributes including the output class are taken as random
variables. The information gain is determined by knowing the
presence and absence of an attribute with the aim to find out
how much information gain is achieved by adding an attribute
in the input feature set that is used for training the model
(Mladenic, Brank, Grobelnik, & Milic-Frayling, 2004). This
can be calculated by using information-theoretic definition.
Assuming C is output class (label) and K is one of the
predictor attribute (both are considered random variables)
then information gain can be defined as

 (1)

3.8.2 Feature weighting using Chi-square statistic: The Chi-
square test is a statistical test used to determine the
independence or dependence between two variables. This can
be applied in feature selection as we can determine the
dependence of each input attribute and target output class and
weight/rank the input attributes accordingly. The attribute
which is more dependent is given higher weight and the
attribute which is not dependent is discarded. For continuous
variables or numerical data the Chi-square is applied after
binning the values. The value of the Chi-square is

(2)

Where = Pearson’s cumulative test static, Oi =
number of observations of type I, Ei= expected frequency
of type I, and n=number of rows in the table

3.8.3 Feature weighting using correlation:A feature is
considered useful if it is correlated well with category
membership. In this technique we try to find a subset that
contains features that are highly correlated with the output
label and un-correlated with each other. The following
equation finds the merit of a feature subset D consisting of m
features:

(3)

Where is the average value of all feature-
classification correlations and is the average value of
all feature-feature correlations.

4. PERFORMANCE MEASURES

Evaluation of the performance of classifier is based on the
number of samples that are correctly or incorrectly
categorized by the classification model. The measures used in
this paper are accuracy, recall and precision.

4.1 Accuracy: Accuracy is a measure of how many of the
total instances are correctly predicted by the model. It is
defined by the equation

4.2 Precision and Recall: The accuracy measures do not treat
the class differently and more parameters are required to
analyse datasets with imbalance. Usually, the rare class (for
example malware) is more interesting than the majority class
(normal apps). Precision refers to the fraction of the examples
that are actually positive in the group that the classifier has
predicted as a positive class. In our paper, precision indicates
how many apps were actually malicious out of the predicted
ones. Higher value of precision means lower false positive
rates. Recall, on the other hand, measures the fraction of
positive examples that are correctly predicted as positive by
the classifier. For our study this means that out of all the
malicious apps how many were correctly predicted as
malicious. In this paper it is more important to have better
recall (for malicious class) than for the non-malicious class
because the risk of categorizing malicious app as normal is
more dangerous than identify normal as malicious (false
positive).

5. EXPERIMENTAL RESULTS

A 10-fold cross validation using stratified sampling was
applied, creating 10 mutually exclusive subgroups each used
for training and testing. . The results of all the classifiers before
applying any feature select are presented in Table 1.

TABLE 1 PERFORMANCE OF CLASSIFIERS BEFORE APPLYING
FEATURE SELECTION

Classifier Parameter
setting Accuracy Precision Recall

Decision
Tree

Gini Index for
splitting

98.26% +/- 1.58% 98.57% 95.96%

Random
Forest

30 trees 96.77% +/- 2.37% 99.23% 90.45%

Gradient
Boosting
Trees

20 trees 98.50% +/- 1.66% 98.52% 96.73%

K-NN K=1 94.29% +/- 2.73% 94.28% 87.31%

Support
Vector
Machine

Anova kernel 96.51% +/- 3.39% 97.63% 91.15%

Neural
Network

Epocs=1000 94.07% +/- 3.31% 89.51% 92.95%

Deep
Learning

Epocs=15 96.03% +/- 2.52% 94.72% 92.69%

It is evident from Table 1 that the Gradient Boosting Trees
algorithm is giving the best accuracy amongst all the
methods. The next section provides the performance of these
classifiers after applying the feature selection algorithms.

4

Authorized licensed use limited to: Technological University Dublin. Downloaded on January 20,2022 at 16:19:19 UTC from IEEE Xplore. Restrictions apply.

5.1 Performance after feature selection using information
gain

The normalized weights of the features were calculated using
information gain. The features having weights less than 0.05
are rejected, which led to improvement in performance of the
classifiers. Rejecting features beyond this was leading to a
reduction in performance of the classifier, thus 0.05 was taken
as optimal threshold. The parameters of the models mentioned
in Table 2 were not changed. Three attributes were rejected
during this process; these are rt_sigreturn, flock and mkdir.
This new subset of features was used to train the classifiers
again and the performances were measured (see Table 2). The
comparative performances are shown in Figure 3. In this
figure the suffix –p is used with name of the classifier to
denote the classifier performance before applying the feature
selection. For example supportvector machine-p and support
vector machine correspond to performance of support-vector
machine before and after applying the feature selection
respectively.

TABLE 2 PERFORMANCE OF CLASSIFIERS AFTER FEATURE
SELECTION USING INFORMATION GAIN

Classifier Accuracy Precision Recall

Decision Tree 97.64% +/- 2.06% 98.57% 95.83%

Random Forest 94.56% +/- 3.47% 91.6% 96.30%

Gradient Boosting
Trees

98.38% +/- 1.51% 99.06% 97.22%

K-NN 96.56% +/- 4.24% 95.85% 96.3%

Support Vector
Machine

96.76% +/- 2.27% 93.48% 99.54%

Neural Network 95.75% +/- 2.30% 94.12% 96.30%

Deep Learning 97.17% +/- 1.34% 98.13% 97.22%

Figure 3- Comparison in performance after feature selection using
information gain

Substantial improvement in recall of k-NN, Deep learning,
SVM, Random forest and neural network can be seen. This is

very favorable to the objective of the study as it is important
to have a good recall (for malicious class) that may come at
cost of misclassifying some of the normal apps as malicious.
In the next section, performance of classifiers after feature
selection using Chi-square statics are presented.

5.2 Performance after feature selection using Chi-square
statistics

The Chi-square statistics is used to determine weight of
attributes where the highest weight is given to the most
relevant attribute. The attributes having a weight less than
0.05 were rejected; using this threshold six attributes were
rejected, namely,rt_signreturn, flock, mkdir, lstat64, statfs64,
epoll_ctl. Out of these six, three attributes were also
recommended for rejection using the information gain
approach. The classifiers were trained using the feature subset
and performances were measured. The results are described in
Table 3.

TABLE 3 PERFORMANCE OF CLASSIFIERS AFTER FEATURE
SELECTION USING CHI-SQUARE STATISTICS

Classifier Accuracy Precision Recall

Decision Tree 97.17%+/- 2.06% 97.64% 95.83%

Random Forest 95.15% +/- 2.73% 92.48% 96.76%

Gradient Boosting
Trees

98.38% +/- 1.51% 99.06% 97.22%

K-NN 96.56% +/- 4.24% 95.85% 96.30%

Support Vector
Machine

96.96% +/- 2.28% 93.89% 99.54%

Neural Network 95.15% +/- 3.76% 92.48% 96.76%

Deep Learning 96.97% +/- 1.00% 97.18% 95.83%

Similar results were obtained where recall (corresponding to
malicious class) was improved in all models except decision
trees.

5.3 Performance Feature selection using correlation
Finally, feature selection was performed by calculating the
ranks of the attributes using the correlation approach which
attemptsto find a subset of features that are highly correlated
with the output class and least correlated with each other. In
this case, the threshold for selection was 0.2 which means that
attributes having less than 0.2 weight (normalized) were
rejected. Using this approach 12 attributes were rejected,
namely, rt_sigreturn, flock, mkdir, gettid, gettimeofday,
fstat64, lstat64, epoll_ctl, statfs64, fork, pipe and futex. The
performances of classifiers trained on this feature subset are
mentioned in Table 4.

80.00%
82.00%
84.00%
86.00%
88.00%
90.00%
92.00%
94.00%
96.00%
98.00%

100.00%
102.00%

Accuracy Precision Recall

5

Authorized licensed use limited to: Technological University Dublin. Downloaded on January 20,2022 at 16:19:19 UTC from IEEE Xplore. Restrictions apply.

TABLE 4 PERFORMANCE OF CLASSIFIERS TRAINED ON
FEATURE SUBSET SELECTED USING CORRELATION

APPROACH

Classifier Accuracy Precision Recall

Decision Tree 97.58% +/- 2.34% 97.22% 97.22%

Random Forest 96.56% +/- 1.58% 95.02% 97.22%

Gradient
Boosting Trees

99.19% +/- 0.99% 99.07% 99.07%

K-NN 98.79% +/- 2.05% 98.61% 98.61%

Support Vector
Machine

97.16% +/- 1.63% 94.30% 99.54%

Neural Network 93.13% +/- 4.50% 93.33% 90.74%

Deep Learning 97.17% +/- 1.34% 96.33% 97.22%

With all three feature subsets, the best recall for malicious
class was obtained using a support vector machine classifier.
However, this is true only when a suitable subset of feature
was selected. The performance of SVM with all the three
feature subsets is shown in Figure 4.

Figure 4 Comparison of SVM performances with various feature sets

Since recall for malicious class with SVM in all the three
feature subsets is equal, the accuracy and precision can be
used to evaluate the performance of the right feature subset.
In conclusion, we can state that SVM with feature selection
using correlation marginally outperformed all other classifier
and feature selection techniques.
In summary, during the initial screening of 337 systems calls
as features, 294 features were discarded as these system calls
were never invoked by the 494 apps collected in this study.
The remaining 43 features were used to train the classifier and
anacceptable accuracy was achieved. However, to improve
the performance further, three features techniques were
applied. A maximum of 12 features were removed by feature
selection using the correlation technique (with 0.2 as

threshold). This selected subset consisting of 31 features as a
training set for support vector machine yielded very good
class recall of 99.54%. We can therefore state that system
calls are useful and can be monitored for identifying
suspicious activities and therefore malicious mobile
applications on Android device.

5. CONCLUSION AND FUTURE WORK

The present study was conducted to develop models that can
identify the malicious intents of android apps using their run-
time behavior. This dynamic behavior was measured by
looking at the frequency of system calls made by a mobile
app when it was running as process in the Linux kernel of the
android operating system. After pre-processing and applying
feature selection techniques it was found that 31 out of 337
system calls are excellent predictors of malicious apps. An
accuracy of 97.16% and recall of 99.54% was achieved using
a support vector machine classifier which performed better
than decision trees, random forests, gradient boosted trees,
neural network, k-NN and deep learning. Though the
accuracy of gradient boosted tree was higher than SVM,the
class recall was slightly lower which is more relevant for the
problem under investigation. It is less risky to have a normal
app being predicted as malicious than predicting a malicious
one as normal. Most of the studies that have been conducted
to analyse the dynamic behavior have looked at the statistics
and usage of the resources like CPU time, network packets
etc. In the present study we have examined the system call
behavior because any resource be it CPU or network will be
accessed through operating system system-calls. We have not
come across any studies which have done comparative
analysis of performances of various classification algorithms
in predicting the malicious apps through system call behavior.
Moreover the present study has identified a set of 31 system
calls that are crucial in differentiating between normal and
malicious apps (mentioned in Table 5).During the
experiments one laptop on which emulator was installed
crashed and an android device on which the experiments were
conducted came under a ransom ware attack.
However, the study can be extended in several dimensions.
The training set can be increased by collecting more
malicious apps of various categories. The feature set can be
made richer by adding static and dynamic features. More
feature learning techniques can be explored such as
evolutionary techniques particle optimization, or any colony
optimization.

TABLE V LIST OF SYSTEM CALLS IMPORTANT IN
IDENTIFYING MALWARE BEHAVIOR

S.No Name of the
system call

Function of the system call

1 Read Read data from files/device
2 Write Write data to device/files
3 Open Open file
4 Close Close file
5 Unlink Delete files
6 Chmod Change permission

96.51% 96.76% 96.96% 97.16%97.63%

93.48% 93.89% 94.30%

91.15%

99.54% 99.54% 99.54%

SVM with original
dataset

SVM with feature
subset (Information

Gain)

SVM with feature
subset (Chi Square

Statistic)

SVM with feature
subset (Correlation)

Accuracy Precision Recall

6

Authorized licensed use limited to: Technological University Dublin. Downloaded on January 20,2022 at 16:19:19 UTC from IEEE Xplore. Restrictions apply.

7 Lseek Change location of read/write pointer
8 Getpid Get process identifier
9 Access Check access to a file
10 Rename Renames a file
11 Dup Creates copy of file descriptor
12 Brk Change the location of program break
13 Ioctl Manipulate device parameters of special files
14 Umask sets the calling process's file mode creation

mask (umask) to
 mask & 0777

15 Munmap deletes the mappings for the specified
address range

16 Uname returns system information
17 Fsync synchronize a file's in-core state with storage
18 Clone create a child process
19 Mprotect set protection on a region of memory
20 Sigprocmask examine and change blocked signals
21 Select synchronous I/O

 multiplexing
22 Writev write data into multiple buffers
23 Sched_yield yield the processor
24 Nanosleep high-resolution sleep
25 Pread64 read from a file descriptor at a given offset
26 Stat64 get file status
27 Madvise give advice about use of memory
28 Getdents64 get directory entries
29 Fcntl64 manipulate file descriptor
30 Epoll_wait wait for an I/O event on an epoll file

descriptor
31 Clock_gettime retrieve and set the time of the specified

clock clk_id.

REFERENCES

[1] Mobile Security. (n.d.). Retrieved Dec 29, 2006, from Wikipedia:
https://en.wikipedia.org/wiki/Mobile_security#cite_note-
FOOTNOTESchmidtSchmidtBatyukClausen2009a3-27

[2] F-Secure. (2014). Mobile Threat Report.
[3] Chau, M. (n.d.). Smart Phone OS Market Share 2016. Retrieved Dec

30, 2016, from http://www.idc.com/promo/smartphone-market-share/os
[4] Ham, H.-S., & Choi, M.-J. (2013). Analysis of Android Malware

Detection Performance using machine learning classifiers. 2013
International Conference on ICT Convergence (ICTC) (pp. 490-495).
IEEE.

[5] Lu, Y., Zulie, P., Jingju, L., & Yi, S. (2013). Android Malware
Detection Technology Based on Improved Bayesian Classification. 3rd
International conference on instrumentation, measurement, computer,
communication and control (pp. 1338-1341). IEEE

[6] Tenenboim-Chekina, L., Barad, O., Shabtai, A., Mimran, D., Rokach,
L., Shapira, B., et al. (2013). Detecting Application Update Attack on
Mobile Devices through Network Features. Computer Communications
Workshop INFOCOM (pp. 91-92). IEEE.

[7] Alam, M. S., & Vuong, S. T. (2013). Random Forest Classification for
Detecting Android Malware. Green Computing and Communications
(pp. 663-669). IEEE.

[8] i Mas’ud, M. Z., Sahib, S., Abdollah, M. F., Selamat, S. R., & Yusof, R.
(2014). Analysis of feature selection and machine learning classifier in
android malware detection. International conference on information
science and application (pp. 1-5). IEEE

[9] Ng, D. V., & Hwang, J.-I. G. (2014). Android malware detection using
dendritic cell algorithm. International Conference on Machine Learning
and cybernetics (pp. 257-262). Lanzhou: IEEE

[10] Kim, H.-H., & Choi, M.-J. (2014). Linux kernel-based feature selection
for Android malware detection. Asia Pacific Network Operation and
Management Symposium (pp. 1-4). IEEE.

[11] Kurniawan, H., Rosmansyah, Y., & Dabarsyah, B. (2015). Android
anomaly detection system using machine learning classification.
International Conference on Electrical Engineering and Informatics
(pp. 288-293). IEEE.

[12] Parkour, M. (2016, July 9). Contagio Mobile. Retrieved March 2016,
from http://contagiominidump.blogspot.in/

[13] Android Debug Bridge. (n.d.). Retrieved Dec 12, 2016, from Android
Developers: https://developer.android.com/studio/command-
line/adb.html

[14] Artifical Neural Network. (n.d.). Retrieved Dec 22, 2016, from
Wikipedia: https://en.wikipedia.org/wiki/Artificial_neural_network

[15] Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.
[16] Coomans, D., & Massart, D. L. (1982). Alternative k-nearest neighbour

rules in supervised pattern recognition : Part 1. k-Nearest neighbour
classification by using alternative voting rules. Analytica Chimica Acta,
15-27.

[17] Deng, L., & Yu, D. (2014). Deep Learning Methods and Applications.
Foundations and trends in signal processing, 3-7.

[18] Freidman, J. H. (1999). Greedy Function Approximation: A Gradient
Boosting Machine. http://www-stat.stanford.edu/~jhf/ftp/trebst.pdf.

[19] F-Secure. (2014). Mobile Threat Report.
[20] Ho, T. K. (1995). 3rd International Conference on Document Analysis

and Recognition. Proceedings of the 3rd International Conference on
Document Analysis and Recognition, Montreal, QC.

[21] Kolcz, A., & Teo, C. H. (2009). Feature weighting for improved
classifier robustness. Sixth conference on email and anti-spam, (pp. 1-
8). California.

[22] Minsky, M., & Papert, S. (1969). Perceptrons: An Introduction to
Computational Geometry. MIT Press.

[23] Mladenic, D., Brank, J., Grobelnik, M., & Milic-Frayling, N. (2004).
Feature selection using linear classifier weights: interaction with
classification models. SIGIR (pp. 1-8). Sheffield: ACM.

[24] Mobile Security. (n.d.). Retrieved Dec 29, 2006, from Wikipedia:
https://en.wikipedia.org/wiki/Mobile_security#cite_note-
FOOTNOTESchmidtSchmidtBatyukClausen2009a3-27

[25] Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P.
(2007). Numerical Recipes: The Art of Scientific Computing. New
York: Cambridge University Press.

[26] Quinlan, J. R. (1986). Induction of Decision Trees. Machine Learning.
Kluwer Academic Publishers.

[27] Release, G. P. (n.d.). Gartner Newsroom. Retrieved Feb 28, 2017, from
Gartner Newsroom: http://www.gartner.com/newsroom/id/3339019

[28] Rokach, L., & Maimon, O. (2008). Data mining with decision trees:
theory and applications. World Scientific Pub Co Inc.

[29] UI/Application Exerciser Monkey. (n.d.). Retrieved Dec 12, 2016, from
Android Developer:
https://developer.android.com/studio/test/monkey.html

7

Authorized licensed use limited to: Technological University Dublin. Downloaded on January 20,2022 at 16:19:19 UTC from IEEE Xplore. Restrictions apply.

	Dynamic behavior analysis of android applications for malware detection
	untitled

