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Probabilistic Risk Assessment of Power Quality
Variations and Events Under Temporal and Spatial

Characteristic of Increased PV Integration in
Low-Voltage Distribution Networks

Shivananda Pukhrem , Student Member, IEEE, Malabika Basu , Member, IEEE,
and Michael F. Conlon, Member, IEEE

Abstract—The aim of this paper is to perform a probabilistic
risk assessment of power quality variations and events that may
arise due to high photovoltaic distributed generation (PVDG) inte-
gration in a low-voltage distribution network (LVDN). Due to the
spatial and temporal behavior of PV generation and load demand,
such an assessment is vital before integrating PVDG at the exist-
ing load buses. Two power quality (PQ) variations such as voltage
magnitude variation and phase unbalance together with one PQ
abnormal event are considered as the PQ impact metrics. These
PQ impact metrics are assessed in terms of two PQ indices, namely
site and system indices. A Monte Carlo based simulation is applied
for the probabilistic risk assessment. From the results, site over-
voltage shows a likely impact to observe as the PVDG integration
increases. The probability of 20% of customers violating 1.1 p.u.
at 100% penetration level is 0.5. Integration of PVDG reduces the
voltage unbalance as compared with no or low PVDG penetration.
There is a higher probability of observing deep sag at the site as
PVDG integration increases. This probabilistic approach can be
used as a tool to assess the likely impacts due to PVDG integration
against the worst-case scenarios.

Index Terms—Distributed generation, photovoltaic, power dis-
tribution planning, overvoltage, voltage unbalance, voltage sag,
Monte Carlo methods, temporal, spatial.

I. INTRODUCTION

CURRENTLY, most PVDGs are integrated either in passive
or reactive approach. Both passive and reactive integra-

tion approaches suffer potential deterioration of the LVDN and
subsequently create the requirement of oversizing the LVDN
[1]. Again, the reactive integration approach may have resolved
some of the critical issues at the operational stage, but difficul-
ties persist in coping with the curtailment of energy from PVDG
and the associated network losses. To overcome such potential
deterioration of the network, an active planning approach can
be envisaged for the given specific network. Such an active
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planning approaches include an exhaustive assessment of the
risk associated with increased integration of PVDG in the
LVDN.

Increasing integration of non-firm single phase PVDG in
LVDN may degrade the power quality of supply, possibly be-
yond general limits [2]. Notably, the increased integration of
PVDG impact the level of transients due to large current varia-
tions, on observed voltage fluctuation due to intermittent sources
[3], on phase unbalance due to dispersed integration of single
phase PVDG and on voltage sags due to increased short circuit
currents [4]. According to [2], there are two types of power qual-
ity (PQ) impact metrics which are distinguished by the method
of measurement. They are i) PQ variations which are recorded
at predefined instants and ii) incidents triggering cascaded PQ
events in the network. These two PQ impact metrics can be
further categorised into two PQ indices [4], namely site and
system indices. For each index and for each PQ impact metric,
the risk associated with integrating large numbers of dispersed
PV generations can be assessed [5].

The need for probabilistic studies on determining the impact
of PV generation in LV networks was highlighted in [2] and
[6]. A report from EPRI [7] recommends a stochastic approach
in determining the PV hosting capacity in a distribution net-
work. The stochasticity was mainly on the position and size of
the PV generation while the steady state impact was performed
deterministically i.e., considering worst case scenarios such as
maximum recorded PV generation with minimum recorded load
profiles. As specified by the authors in [2], the long-term mea-
surement data is valuable in determining the steady state impact
in a power distribution feeder. Further, EN 50160 [8] presents
the voltage characteristic in a probabilistic manner such as the
95% level over a given time, the voltage magnitude should
be within a given limit. Above all, a specific customer with a
PV installed may not coincide with the worst-case scenarios.
Consideration of worst case scenarios may strictly restrict in es-
timating the PV hosting capacity. For this reason, a combination
in stochasticity of the PV location, size, and generation profiles
together with the demand load profiles will represent a proba-
bilistic scenario based study. A similar study was reported in [9]
where the authors performed probabilistic impact assessment
from the low carbon technologies in an LV distribution system.
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Therein, the authors leverage Monte-Carlo simulation. In the
same vein, Klonari et al. in [10] utilizes smart meter data to per-
formed probabilistic estimation of PV hosting capacity. But [9]
considered only voltage variation due to varying PV generation
as a PQ impact study. A probabilistic power flow analysis was
studied in [11] where the probability distribution of power flow
responses are estimated using a non-parametric fixed bandwidth
kernel density estimation. The choice of bandwidth highly in-
fluences the kernel density estimation [12] and therefore, the
choice of constant bandwidth may not represent an appropri-
ate probability distribution for power system responses. A new
probabilistic technical impact assessment was studied in [13].
But, [13] again lacks the stochasticity in the peak PV generation
value and profile together with PVDG location. A Monte-Carlo
based PV hosting capacity was reported in [14] but considers
the hourly stochastic analysis of PV and load profile by taking
the time periods of the day when PV generation is likely to be
high. Further, [14] lacks the temporal and spatial characteristic
of both PV generation and load demand profiles.

Consideration of the high amount of PVDG integration in an
existing LVDN requires statistical information on its impact on
the operation of a power system. The distribution network is
highly dispersed and diverse and often characterised as a het-
erogeneous system [1]. In this work, the temporal and spatial
characteristics of both load demand and PV generation pro-
files are leveraged to perform a stochastic random process study
through a Monte-Carlo simulation. This aims to quantify the
likely impacts of the operation of the power system by consid-
ering two PQ impact metrics. The succeeding aim is to further
assess the impact observed from the Monte-Carlo simulation
against the worst-case scenarios. Here the worst-case scenarios
are i) maximum demand with no generation and, ii) no demand
with maximum generation. The remaining part of the paper is
sectionalized as follows, Section II briefly describes the spec-
ification of the distribution network and the assumption made
in this work. Section III summarizes the impact metrics consid-
ered. Section IV presents the PQ impact studies. Probabilistic
analysis and conclusion are presented in Sections V and VI,
respectively.

II. NETWORK DESCRIPTION AND ASSUMPTIONS

A. Network Description

The original IEEE European LVDN [15] is considered as a
test bed for this study and is shown in Fig. 1. It has a Dy (delta-
star) sub-station transformer of 800 kVA rating and consists of
905 three phase nodes. This distribution network represents a
typical 4 wires 3 phase low-voltage distribution network as seen
in most part of the European countries.

The original test bed had 55 single-phase domestic customers.
Out of the 55 customers, phases A, B, and C accommodate
38.2%, 34.5% and 27.3% of the loads respectively.

B. Assumptions

For this study, a high-atitude demographic region is cho-
sen. From the Whitworth Meteorological Observatory [16], a
5-minute resolution of 30 sunny days representing the month

Fig. 1. One-line diagram of the European low voltage test feeder.

Fig. 2. Checkerboard plot of the PV profiles for the month of June 2015 in
per unit.

of June from the year 2015 is considered for the PV generation
profiles and is shown in Fig. 2. As an example, it can be seen
from Fig. 2, the per unit solar generation at 12 noon on 15th
of June is in between 0.1 and 0.2, whereas, the per unit solar
generation at 12 noon on 11th of June is in between 0.9 and 1.
Similarly, a pool consisting of 200 load profiles with 5-minute
resolution, which reflects the temporal behavior of load con-
sumption pattern from Low Carbon Technology (LCT) project
[17] is considered as the domestic load profiles and is shown
in Fig. 3. From Fig. 3, typically it can be seen that the per unit
load consumption is in between 0–0.3 for the duration between
midnight until 3 am. Again, starting from 6 pm until midnight,
most of the houses consume more electricity showing a generic
load consumption pattern.

Each of the 55 customers are assumed to have a 0.95 lagging
power factor whereas the PVDG is assumed to export power
at unity power factor. The peak PV generation levels are ran-
domly varied between 1 and 5 kW in steps of 1 kW. Similarly,
the peak load demands are randomly varied between 1 and
10 kW in steps of 1 kW. The IEEE EU LVDN is characterised
by the spatial and temporal behavior of the load demand. To-
gether with the temporal behavior of PV generation, various
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Fig. 3. Checkerboard plot of the load demand for the 200 days representing a
temporal behavior in per unit.

stochastic scenarios can be analyzed. Furthermore, the consid-
eration of randomness in defining the peak PV generation, peak
load demand and location of PV generation provides stochas-
ticity in performing a probabilistic risk assessment. Here, the
PV generations are allowed to connect only to the existing load
buses i.e., 55 load buses in total. A quasi-time series power flow
OpenDSS [18] for every 5 minutes is chosen as the preferred
simulation tool. The implementation of the probabilistic study is
performed in a co-simulation platform between MATLAB and
OpenDSS.

III. IMPACT METRICS

A. PQ Impact Metrics

As discussed earlier, there are two types of PQ impact metrics
considered, namely PQ variations and PQ events respectively.
The PQ variations are small variations in voltage and current
waveforms which primarily occur in the normal operating con-
dition of the power system [2], [4]. For instance, PQ variations
include long and short voltage fluctuations, unbalances and har-
monics. Accumulated PQ variations could lead to premature
aging of the LVDN assets such as transformer insulation, tap
position etc. [19], whereas very high levels of variation may
lead to equipment failure [20]. The PQ events are characterised
by large and sudden deviations from the normal voltage wave-
form. Voltage sags and transients are known PQ events [19].
Further PQ events can be classified into normal which are ex-
pected events and abnormal events [2]. Normal events are due
to power system switching occurrence during transformer and
capacitor energisation. Abnormal events are more concerned
with the integration of distributed generation such as PVDG.
For instance, short circuits and earth faults are considered as ab-
normal events. About 70% of the faults in a distribution network
are unsymmetrical single to line ground (SLG) faults [21] and is
considered one of high risked abnormal events. Such abnormal
events lead to severe voltage sags [19]. Under such abnormal
events, large reactive power flows are required during voltage
recovery after the faults. But this requirement of large reactive
power may lead to high inrush current from the capacitance
which may lead blowing up the fuses or other sensitive power

electronic components [19]. Voltage sag is a multi-dimensional
phenomenon that includes measuring voltage sag and detecting
them [22]. In this work, overvoltage and voltage unbalance due
to the stochastic integration of increased PVDG are considered
as PQ variations whereas voltage sag due to random SLG faults
is taken as a PQ events.

B. PQ Impact Indices

Two PQ indices, namely site and system indices are con-
sidered here. The single site index refers to any particular PQ
impact metrics at the point of connection of PVDG to the utility
grid. The system index refers to a segment or the entire distribu-
tion system. Normally, the system index represents a value of a
weighted distribution [4]. In this work, a segment of the distri-
bution network observed by the monitoring device located at the
secondary terminal of Dy sub-station transformer is assumed to
provide the PQ system indices.

IV. PQ IMPACT STUDIES

A. Probabilistic Study

For each PQ impact metrics namely variations and events, a
probabilistic study considering both temporal and spatial is per-
formed. Fig. 4 represents the Monte Carlo simulation to assess
PQ variation metrics. Herein, both PVDG and load demand are
characterized by each respective pool of profiles. The location
of each load bus is obtained in to order connect new PVDG
randomly in the existing load buses. A penetration level, n, is
defined at the beginning of the Monte Carlo simulation. So,
when the number of PVDG installed customer i.e., N pv is
11, then penetration level n is equal to 20%. The penetration
level is incremented by 20% up to 100% for every 100 different
stochastic scenarios (see the appendix). Each stochastic process
designated by ‘MC’ is characterised by re-defining the existing
loads and connecting new PVDGs randomly in the existing load
buses for each penetration level. In total, there are 500 different
stochastic processes. The existing loads are re-defined in two
manners, peak load values and load demand profiles. The peak
load demand values for each 55 customers are randomly var-
ied from 1 to 10 kW and has a rectangular distribution [20].
Similarly, the corresponding load demand profile is randomly
selected from the pool of 200 load profiles and also has a rect-
angular distribution. The rectangular distribution is defined by
its probability density function (pdf) ‘f(x)’ and has a uniform
value between the lower bound ‘a’ and the upper bound ‘b’. The
pdf is given by

f (x) =
1

b − a
; a ≤ x ≤ b. (1)

The connection of new PVDG is allowed only to the buses
where the loads are already existed in the LVDN. For each
penetration level ‘n’, the customer that wishes to install PVDG
is determined by ‘N_pv’ permutation of total load buses i.e., ‘L’
through an ordered sampling without replacement [23]. This
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Fig. 4. Monte Carlo simulation to assess PQ variation metrics.

type of sampling is designated by ‘PL
N pv ’, and is given by

PL
N pv = L ∗ (L − 1) ∗ . . . . ∗ (L − Npv + 1) . (2)

The peak PVDG generation (‘PV kW ’) values randomly
vary from 1 to 5 kW and have a rectangular distribution given
by (1). Similarly, the corresponding PVDG generation profile
is randomly selected from the pool of 30 PV profiles and has
a rectangular distribution. A phasor mode power flow is solved
in OpenDSS for every 5 minutes through the MATLAB COM
interface. Finally, the PQ variation metrics are obtained from the
power flow for further statistical analyses. Before proceeding to
the next Monte-Carlo simulation, i.e., when MC = i + 1, all
the installed PVDGs are disconnected and repeats the same
process of re-defining and connecting new PVDG in the LVDN.
The EN 50160 [8] is adopted to measure the voltage magnitude
variation i.e., the voltage magnitude should be within ±10% of
the nominal voltage for 95% of a defined period (typically one
week) and voltage unbalance i.e., the unbalance should be less
than 2% for 95% of a defined period (typically one week).

Fig. 5 represents the Monte Carlo simulation to assess PQ
event metrics. A penetration level, n, is defined at the beginning

Fig. 5. Monte Carlo simulation to assess PQ event metrics.

of the Monte-Carlo simulation. The penetration level is incre-
mented by 20% up to 100% for every 100 different stochastic
scenarios. The location of each load bus is obtained to connect
new PVDG randomly in the existing load buses. As discussed
earlier, for each penetration level, ‘n’, the new PVDG connec-
tion to the existing load bus is performed by ‘N_pv’ permutation
of ‘L’ through an ordered sampling without replacement. A list
of SLG faults is defined for all the load buses which will later
select one randomly at a time for each Monte-Carlo fault study.
Voltage drop and recovery are associated with applying and
clearing the fault but observing the voltage sag depends on the
method of monitoring the sag [19]. From the network descrip-
tion, there are 55 loads in the LVDN. Therefore, there will be 55
SLG faults in which phases A, B and C represent 38.2%, 34.5%
and 27.3% of the total SLG faults respectively.

Herein, both PVDG and load demand are characterized by
their peak value in order to assess the voltage sag at the sys-
tem and site (where loads are connected) due to SLG faults.
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Each stochastic process, MC, is characterised by re-defining
the peak values of the existing loads and PVDGs for each pen-
etration level followed by performing a random SLG fault. In
total, there are 500 different stochastic processes. The peak val-
ues of each load randomly vary between 1 to 10 kW and have
a rectangular distribution. Similarly, for each penetration level,
the peak value of each PVDG is also randomly varied between
1 to 5 kW and has also rectangular distribution. The random
selection of each SLG fault from the 55 SLG faults is again
represented by a rectangular distribution. A Monte-Carlo fault
study is performed in OpenDSS [24] and finally, the PQ event
metrics are obtained for further statistical analyses. The fault
study mode in OpenDSS selects a random fault object from
the list of faults and disables the current fault object before the
next Monte-Carlo fault study proceeds. Only the peak magni-
tude of the voltage sags for a recorded duration (i.e., sampled
either for one cycle or for half cycle) due to the SLG fault
will be monitored in this fault study analysis. The remaining
voltage will adopt to quantify the voltage sag during SLG fault
events [19]. So, the term ‘deep sag’ and ‘shallow sag’ will be
used here. A deep sag is a sag with a low magnitude of re-
maining voltage whereas the shallow sag is a sag with a large
magnitude of remaining voltage. Voltage sag duration, phase an-
gle jumps during the unsymmetrical faults and point-on-wave,
waveform distortion, or the transients at the start and end of the
events are not considered for this study. It is further considered
that, due to the assumption of monitoring the voltage sag as a
peak magnitude, an overshoot immediately after the sag will be
observed.

B. Worst Case Study

Consideration of worst case study will enable in compar-
ing the results obtained from the probabilistic study in further
assessing the PQ impact metrics due to increased PVDG inte-
gration. For the PQ variation metrics, two worst case scenarios
can be considered, namely, ‘Worst case 1’ i.e., 100% penetration
level of PVDG together with maximum recorded PV generation
with minimum recorded load profiles or zero load demand, and
‘Worst case 2’ i.e., 0% penetration level of PVDG together with
maximum recorded load demand profiles. For the Worst case 1,
all the 55 customers have PVDG installed in their premises with
peak generation of 5 kW at unity power factor (upf) and follow
the maximum recorded PV generation profile from the pool of
30 sunny days. Furthermore, there is no consideration of load
demand in this case. In the Worst case 2 all the 55 customers
have peak load demand of 10 kW with no PVDG installed and
follows the maximum recorded load demand profile from the
pool of 200 load profiles. The maximum recorded PV genera-
tion and load demand profiles from their respective pools are
shown in Fig. 6.

Similarly, for PQ events two worst case scenarios can be
considered, namely, ‘Worst case 3’ i.e., 100% penetration level
of PVDG with peak generation of 5 kW at upf. In this case, there
is no consideration of load demand. And ‘Worst case 4’ i.e., 0%
penetration level of PVDG together with peak load demand of
10 kW for all the 55 customers.

Fig. 6. Maximum recorded PV generation and load demand profiles.

Fig. 7. CDF of site indices for overvoltage metric.

V. PROBABILISTIC ANALYSIS

A. PQ Variations Metrics and Indices

From the Monte Carlo simulation, cumulative distribution
functions (CDFs) can be computed for each case study and for
each PQ variation metrics and indices. For overvoltage metrics,
voltage in per unit represents the random variable x and F(x)
represents the CDF of x. In total, there are 8 CDFs for each
penetration level. The corresponding CDF enables to measure
the probability of occurring overvoltage at the site for each case
study. From Fig. 7, the probability of occurring overvoltage i.e.,
1.1 p.u at the site is 0.78 approximately for ‘Worst case 1’.
Further, it can be seen that the CDFs of all the penetration
levels stay within the two worst case scenarios. Again, from
Fig. 7 the CDFs of case studies, namely 60%, 80% and 100%
penetration levels together with ‘Worst case 1’ show that there
is a probability of occurrence of overvoltage by a certain per-
centage of the customers. This is explained in Fig. 8.

Referring to Fig. 8, the percentage of customers violating
1.1 p.u represent the random variable xs and F(xs) represents
the complementary CDF (CCDF) evaluated at xs in four case
studies, namely 60%, 80% and 100% penetration levels to-
gether with ‘Worst case 1’. The CCDF allows to represent how
frequent a random variable exceeds a particular limit. From
Fig. 8, the probability of 20% of customers violating 1.1 is 0.5
in the case of 100% penetration level, 0.35 in the case of 80%
penetration level and 1 in the case of ‘Worst case 1’. Again, the
probability of maximum percentage, i.e., 85% (approximately)

Authorized licensed use limited to: Technological University Dublin. Downloaded on January 19,2022 at 20:40:46 UTC from IEEE Xplore.  Restrictions apply. 



PUKHREM et al.: PROBABILISTIC RISK ASSESSMENT OF POWER QUALITY VARIATIONS AND EVENTS 3251

Fig. 8. CCDF of % of customer violating overvoltage.

Fig. 9. Voltage checkerboard plot of all 55 customers in p.u for ‘worst case
1’ study.

of the customers violating 1.1 p.u is 0.8 in the case of ‘Worst
case 1’. Whereas, the probability of maximum percentage, i.e.,
25% (approximately) of the customers violating 1.1 p.u is 0.2
in the case of 100% penetration level. But less than 5% of cus-
tomers are likely to experience overvoltage in all the four cases.
Thus, these CCDF trails show that as the penetration level in-
creases, there is a higher probability of percentage of customers
observing overvoltage.

It can be seen in Fig. 7 that, the probability of occurrence
of minimum voltage, i.e., 1.05 p.u is about 0.43 for ‘Worst
case 1’. This can be further seen in Fig. 9 that most of the cus-
tomers have a minimum voltage in between 1.04 p.u to1.06 p.u.
Fig. 9 represents the checkboard plot for the voltages observed
in all 55 nodes. This particular plot is made for ‘Worst case 1’. It
can be observed here that under ‘Worst case 1’, voltage profile
starts to increase down the feeder. From midday till afternoon
maximum voltage rise can be observed from node 25 onwards.

Similarly, in the case of overvoltage system indices, voltage in
per unit represents the random variable X and F(X) represents
the CDF of X . In total, there are 8 CDFs for each penetration
level. The corresponding CDF enables to measure the probabil-
ity of occurrence of overvoltage at the site for each case study.
From Fig. 10, the probability of occurrence of overvoltage (i.e.,
1.1 p.u) at the system is 0 for all the 8 cases. But the probability
of occurrence of minimum voltage of 1.045 p.u is 0.4 in the case
of ‘Worst case 1’. This can be further seen in Fig. 11 that the
minimum voltage for all the three phase voltages at substation
transformer is about 1.04 p.u in the case of ‘Worst case 1’.

Fig. 10. CDF of system indices for overvoltage metric.

Fig. 11. Three phase voltages at substation transformer.

Fig. 12. Percentage of site voltage unbalance factor.

For each index, the unbalance factor is computed and quanti-
fied against the standard i.e., the voltage unbalance factor should
be less than 2% for 95% of a defined period. The unbalance
site indices are computed at the three-phase node where the
customers connect their single-phase service cable. Therefore,
there are 55 three phase nodes to consider for site voltage un-
balance. To quantify the percentage of occurrence of voltage
unbalance that exceeds a defined threshold limit, a cumulative
plot of voltage unbalance factor versus percentage of occur-
rence (i.e., duration) are shown in Figs. 12 and 13. These graphs
are essentially a CCDF. Fig. 12 shows the site voltage unbalance
factor for 8 different cases. It can be seen here that the percent-
age of occurring the voltage unbalance factor of almost 1.8 is
60% in the three cases, namely, 0% penetration level, ‘Worst
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Fig. 13. Percentage of site voltage unbalance factor.

case 1’ and ‘Worst case 2’. This increase in voltage unbalance
at 0% penetration is a normal due to unbalance loading in the
LVDN. However, ‘Worst case 1’ and ‘Worst case 2’ are the ex-
treme conditions and stays within the limit. The percentage of
occurring maximum voltage unbalance factor of 1.907 is 54.3%
in the case of ‘Worst case 1’. And, the percentage of occurring
maximum voltage unbalance factor of 1.821 is 41.29% in the
case of ‘Worst case 2’. The unbalance factor primarily depends
on the loading in each phase. It can be recalled that out of the
55 customers, phases A, B and C accommodate 38.2%, 34.5%
and 27.3% of the loads respectively, showing a certain level of
balance loading and is shown in Fig. 12 as 0% penetration.

A further observation from Fig. 12 shows that the integration
of PVDG reduces the voltage unbalance factor. This is primar-
ily due to the phase cancellation between the phases. But as
the PVDG penetration increases from 20% to 100%, the volt-
age unbalance factor starts to increase by a small factor. The
percentage of occurring maximum voltage unbalance factor of
about 1 to 1.2 is 100% of all the 8 cases. This means that most of
the time the voltage unbalance factor at each three phase nodes
will be within 1–1.2 meaning it will stay within the limit. Over-
all, it can be concluded here that, PVDG integration alleviates
voltage unbalance in the LVDN.

The system index voltage unbalance factor is shown in
Fig. 13. The unbalance factor is within the limit for all the 8
cases. Similarly, here, as the penetration of PVDG increases
from 0% to 100%, the voltage unbalance increases by a small
factor. The percentage of occurring minimum voltage unbal-
ance factor of 0.74 is 44.44% in the case of ‘Worst case 1’. And,
the percentage of occurring minimum voltage unbalance factor
of 0.72 is 18.75% in the case of ‘Worst case 2’. Further, the
percentage of occurring maximum voltage unbalance factor of
about 0.7 to 0.75 is 100% of all the 8 cases. This means that
most of the time the voltage unbalance factor at the transformer
will be within 0.7 to 0.75. Overall, the voltage unbalance at the
transformer will be within the limit in all the 8 cases.

B. PQ Events Metrics and Indices

From the Monte Carlo simulation, cumulative distribution
functions (CDFs) can be computed for each case study and for
each PQ event metrics and indices. As discussed earlier, the

Fig. 14. CDF of site indices for voltage sag.

observed voltage sags will be represented as a percentage of the
remaining voltage due to Monte-Carlo fault study. For voltage
sags site index, the remaining voltage represents the random
variable y and F (y) represents the CDF of y. The corresponding
CDF enables to measure the probability of observing certain
percentage of the remaining voltage for a particular case study.
Higher percentage of remaining voltage means it is a shallow
sag i.e., the low fault current. Whereas, lower percentage of re-
maining voltage means it is a deep sag i.e., high fault current.
From Fig. 14, until 40% of remaining voltage, all the case stud-
ies have the same CDF except the ‘Worst case 3’. Starting from
45% of remaining voltage, the F(y) gradually increases as the
penetration of PVDG increases with ‘Worst case 3’ showing the
highest probability of occurring the remaining voltage ranging
between 30% to 80%. That means ‘Worst case 3’ has the highest
probability of seeing lower percentage of remaining voltage i.e.,
deep sag (high fault current). When F(y) = 0.4, ‘Worst case 4’
shows high percentage of remaining voltage around 85% which
mean a shallow sag. Again, the ‘Worst case 4’ shows the highest
probability of occurrence of high percentage of remaining volt-
age i.e., shallow sag. From this analysis, it can be concluded that
the presence of PVDG together with load demand contributes
to the fault current at the load buses leading to voltage drop.
As the penetration of PVDG increases, higher probability of
occurrence of lower percentage of remaining voltage or deep
sag is observed. But depending on the type of generator model,
voltage sags might be different. Here during Monte Carlo fault
study, the PV generator is switched into a dynamic mode by con-
verting it into the Thevenin’s equivalent and finally to Norton’s
equivalent [25].

Similarly, for voltage sags system index, the remaining volt-
age represents the random variable z and F (z) represents the
CDF of z. The corresponding CDF enables to measure the prob-
ability of observing certain percentage of the remaining voltage
for a particular case study. From Fig. 15, the CDFs of 40%,
60%, 80% and 100% penetration levels together with ‘Worst
case 3’ follow the same trail or relatively similar slope. This
trail signifies that all the CDFs correspond to shallow sag which
means low fault current at the point where these voltage sags are
measured i.e., at the secondary side of Dy transformer. This is
true because the integration of DG along the feeder will reduce
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Fig. 15. CDF of system indices for voltage sag.

or lower the fault current contribution at the beginning of the
feeder i.e., substation Dy transformer for fault beyond the DG
location [2]. This means that if the fault occurs beyond the DG
location down the feeder, the fault current seen at the upstream
feeder will be lower. Due to the random integration of PVDG
and random occurrence of SLG fault, the fault current seen at the
upstream feeder or secondary side of a substation transformer is
low. With the increased random integration of PVDG, the fault
current seen at the upstream feeder can be even lower and this
is one of the cases observed in Fig. 15.

For the case studies, 0% of penetration level, 20% of penetra-
tion level and ‘Worst case 4’ are concerned, the F(z) increases
as the percentage of remaining voltage increase. This is because
the fault current seen by the upstream feeder is normal since
there is less or no PVDG contribution towards the fault current.
With 20% of penetration level, the F(z) is lower as compared
with 0% of penetration and ‘Worst case 4’.

VI. CONCLUSION

This study proposes the consideration of two PQ impact met-
rics and indices as a means to measure the likely impacts of
increased PVDG integration under spatial and temporal behav-
ior of both PV generation and load demand. For each PQ impact
metrics, 8 different cases were considered, namely, PVDG pen-
etration levels at 0%, 20%, 40%, 60%, 80%, and 100%, a maxi-
mum generation with zero demand and maximum demand with
zero generation. A Monte Carlo simulation is chosen as a tool
for such stochastic process. From the results, site overvoltage
shows a likely impact that will persist as the PVDG integra-
tion increases. The probability of the maximum percentage of
customer violating 1.1 is higher in the case of ‘Worst case 1’
(i.e., maximum generation with zero demand) than in the case
of 100% penetration level. At the 100% penetration level, the
maximum percentage of customer violating 1.1 p.u is 25% and
the probability of occurrence is 0.2. Further about 20% of cus-
tomers will violate 1.1 p.u at the 100% penetration level and the
probability of occurrence is 0.5. However, less than 5% of the
customers will observe overvoltage in four case studies, namely
60%, 80% and 100% penetration levels together with ‘Worst
case 1’, whereas, the system overvoltage stays within the limit.

In terms of site voltage unbalance, integration of PVDG
reduces the voltage unbalance as compared with no PVDG

TABLE I
CONFIDENCE INTERVALS OF TWO SAMPLES SIZE NAMELY 100 AND 1000

FOR 5 CASES WITH 95% CONFIDENCE LEVEL

integration or low penetration level. This is mainly due to the
phase cancellation. This increase in voltage unbalance at 0%
penetration is a normal due to unbalance loading in the LVDN.
Overall, the site and system voltage unbalance stay within the
limit for all the 8 different cases. In the case of site voltage
sag, as the penetration of PVDG increases, higher probability
of occurrence of lower percentage of remaining voltage or deep
sag is observed. However, the system voltage sags are quite
different from that of the site. The probability of occurrence of
lower remaining voltage or deep sag reduces as the penetration
of PVDG increases. This is because PVDG integration reduces
the fault current seen at the upstream feeder.

In conclusion, the increased integration of PVDG poses some
threat to the performance of the power system. From the prob-
abilistic study, overvoltage poses the highest threat, whereas
voltage unbalance stays within the limit. Further, increased in-
tegration of PVDG will contribute towards fault current leading
to deep sag at the site. This probabilistic approach can be used
as a tool to identify the likely impacts due to PVDG integration
at the existing load buses. This will enable in quantifying the
likely impacts against the worst-case scenarios.

APPENDIX

The proposed Monte Carlo simulation considerd 100 samples
or simulations to estimate the parameter of interest. The choice
of this samples was determined to compromise between com-
putational time and the accuracy of the estimation. One specific
site PQ variation impact metric i.e., overvoltage was chosen to
determine the accuracy of the estimation. 1000 samples size
have chosen to perform Monte Carlo simulation to determine
the site overvoltage for 5 cases i.e., 0%, 20%, 40%, 60, 80%
and 100%. A confidence level of 95% is chosen which contains
a true parameter i.e., mean. This true parameter signifies that
the mean of the true population of samples size ‘n’ is 1. Table I
shows the confidence intervals of two samples size namely 100
and 1000 for 5 cases with 95% confidence level.

The absolute error from Table I shows that sampling size
of 100 is a good estimation for 95% confidence level for the
corresponding confidence intervals at a tenth of the computation
time as compared with sampling size of 1000.
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