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a b s t r a c t

Private groundwater sources in the Republic of Ireland provide drinking water to an estimated 750,000
people or 16% of the national population. Consumers of untreated groundwater are at increased risk of
infection from pathogenic microorganisms. However, given the volume of private wells in operation,
remediation or even quantification of public risk is both costly and time consuming. In this study, a
hierarchical logistic regression model was developed to ‘predict’ contamination with E. coli based on the
results of groundwater quality analyses of private wells (n¼ 132) during the period of September 2011 to
November 2012. Assessment of potential microbial contamination risk factors were categorised into
three groups: Intrinsic (environmental factors), Specific (local features) and Infrastructural (groundwater
source characteristics) which included a total of 15 variables. Overall, 51.4% of wells tested positive for
E. coli during the study period with univariate analysis indicating that 11 of the 15 assessed risk factors,
including local bedrock type, local subsoil type, septic tank reliance, 5 day antecedent precipitation and
temperature, along with well type and depth, were all significantly associated with E. coli presence
(p < 0.05). Hierarchical logistic regression was used to develop a private well susceptibility model with
the final model containing 8 of the 11 associated variables. The model was shown to be highly efficient;
correctly classifying the presence of E. coli in 94.2% of cases, and the absence of E. coli in 84.7% of cases.
Model validation was performed using an external data set (n¼ 32) and it was shown that the model has
promising accuracy with 90% of positive E. coli cases correctly predicted. The developed model represents
a risk assessment and management tool that may be used to develop effective water-quality manage-
ment strategies to minimize public health risks both in Ireland and abroad.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

It is estimated that private groundwater sources in the Republic
of Ireland provide domestic drinking water to approximately
750,000 people or 16% of the population, with many thousands
more served on a non-domestic, intermittent basis (CSO, 2012a).
Similarly, private wells supply 4.1 million Canadians (11.7%) and 45
million Americans (14.1%), with private wells constituting the

largest proportion of water wells in both countries (Hynds et al.,
2014b, Murphy et al., 2016). A further 200e500 million Euro-
peans are reliant on groundwater for their domestic supply (Job,
2010). Private groundwater supplies in Ireland typically comprise
two source types, namely, small private supplies (SPS) serving in-
dividual households, and private group water schemes (PrGWS),
which typically supply <50 persons and/or <10 m3d-1. Both supply
types are exempt from the European Commission Drinking Water
Directive (DWD) 98/83/EC (EU 1998) and hence water treatment is
entirely voluntary, and if employed, the sole responsibility of the
owner/caretaker. Hynds et al. (2013), report that 64% of interviewed
private well owners (n¼ 245) in the Republic of Ireland did not
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utilise an appropriate domestic water treatment system.
Rural Ireland is home to approximately 38% (1.76 million) of the

national population, and is characterized by a heavily dispersed yet
locally dense settlement pattern (Scott and Murray, 2009), with
most settlements comprised of individual private or “one-off”
dwellings situated outside urban administrative zones (Duffy,
2000, CSO, 2012b). The spatial distribution of private ground-
water supplies thus exhibits a marked Urban:Rural divide
accredited to the reduction in piped infrastructure, in concurrence
with decreased population density (�Ohaiseadha et al., 2017).
Moreover, SPS reliance in rural Ireland is increasing; during the
period 2006e2011, SPS use rose from 74.3% to 76.1%, likely due to
accelerated private property development prior to the global
recession (CSO, 2012b). Subsequently, due to the combined effects
of high private groundwater source reliance, the rural ubiquity of
private domestic wastewater treatment systems and pastoral
agriculture, a temperature maritime climate, and diverse bedrock
and quaternary geology, Irelandmay be considered to represent the
“perfect storm” with respect to groundwater susceptibility to
contamination.

The association between groundwater contamination and
waterborne disease has long been acknowledged, with Dr John
Snow (1813e1858) establishing the source of a significant cholera
outbreak in the London district of Soho during the summer of 1854,
as being from a faecally contaminated public well (Donaldson,
2002). More recently, Murphy et al. (2017) have presented clear
epidemiological evidence of the transmission of disease through
groundwater contamination on a global scale. A review of water-
borne outbreaks of enteric infection in the Nordic region over a 15-
year period (1998e2012) by Guzman-Herrador et al. (2015) reports
that 76% (n¼ 124) of outbreaks with a confirmed source were
associated with groundwater. Overall, Guzman-Herrador et al.
(2015) found that a majority of outbreaks were associated with
single household (i.e. private) water supplies, while 35% of
outbreak clusters were confined to a single household. Moreover,
where factors contributing to the waterborne outbreak had been
confirmed, 96% of outbreaks associated with private groundwater
supplies were deemed to have occurred due to source (well)
contamination. Similarly, Pitk€anen et al. (2015) note that the
presence of Aeromonas and Giardia among a cohort of 20 vulnerable
small (<500 consumers) groundwater supplies in Finland, high-
lights the significant potential adverse health effects of pathogen
ingress to groundwater sources. In the United States (Wallender
et al., 2014), have found that 30.3% of 818 drinking water out-
breaks reported to the US Centre for Disease Control (CDC) between
1971 and 2008 were attributable to untreated groundwater
sources.

Of particular significance within the Irish context is the preva-
lence of verotoxigenic E. coli (VTEC) infectionwhich has been linked
to private water supplies (Hynds et al., 2014a, O'Dwyer et al., 2014,
�Ohaiseadha et al., 2017). Ireland has had the highest crude inci-
dence rates (CIR) of VTEC in Europe, increasing from 3.9/100,000 in
2007 to 15.3/100,000 in 2013 (HPSC, 2015). O’haiseadha et al.
(2017) report that during the period 2008e2013, private well us-
age was significantly associated (OR 6$896, p< 0$001) with the
incidence of confirmed primary VTEC O157 infection, while Hynds
et al. (2014a) predict an endemic VTEC CIR of 28.3/100,000 private
well users per annum; as much as 5e6 times that of the national
population. Furthermore, recent work by O'Dwyer et al. (2017) re-
ports that 21.4% of E. coli isolates recovered from a cohort of private
wells in the mid-west of Ireland exhibited resistance to �1 human
antibiotic, with 100% of isolates presenting resistance to �1 veter-
inary antibiotic. Accordingly, there is little doubt that the human
health risks posed to private groundwater consumers in the Re-
public of Ireland are potentially significant, and likely increasing.

However, due to the dispersed, decentralised nature of these
sources in Ireland and abroad, in addition to their abundance,
appropriate monitoring, maintenance, and remediation is both
complex and financially prohibitive.

Groundwater microbial quality may be affected by myriad
environmental and source-specific risk factors, including well
design, location and maintenance, septic system location and
maintenance, local hydrogeological setting, and significant climatic
events (e.g. flooding, snowmelt, etc.) (Hynds et al., 2012; Wallender
et al., 2014; Atherholt et al., 2017; Andrade et al., 2018). Moreover,
groundwater pathogens may derive from multiple human or ani-
mal faecal sources such as adjacent septic systems, livestock graz-
ing, manure spreading and/or farmyards (Kozuskanich et al., 2014;
Wallender et al., 2014). Recent work has shown that up to 70% of
source contamination occurs via “localized” pathways, as opposed
to “generalized” aquifer contamination (Hynds et al., 2012, 2014a,
b), with groundwater contamination risk (susceptibility) typically
increasing in areas characterized by high hazard (i.e. faecal source)
densities in concurrence with inappropriate setback distances/
gradients, with this relationship mediated by local hydrogeological
characteristics e.g. hydraulic conductivity, aquifer productivity, etc.
(Bremer and Harter, 2012; Hynds et al., 2014a, b). A relatively recent
study of monitoring wells in eastern Ontario detected the presence
of both human and animal pharmaceuticals in groundwater, sug-
gesting that feacal indicator bacteria (FIB) were from both human
and animal sources (Kozuskanich et al., 2014).While well siting and
construction regulations exist in an effort to prevent drinking water
contamination, waterborne AGI outbreaks may still occur where
infrastructure predates regulation, or when assessments do not
properly account for the geological vulnerability of the well area
(Bremer and Harter, 2012). Similarly, Atherholt et al. (2017) have
shown FIB detection rates are significantly reliant on recent cli-
matic conditions, and particularly local 10-day cumulative ante-
cedent precipitation, in addition to groundwater physical
chemistry.

Consequently, there is a need for identifying areas of concern
with respect to effective custodianship and development of focused
environmental health policy. Accordingly, the current study sought
to identify and quantify the associated environmental and social
factors affecting the susceptibility of private water wells to
contamination. The spatial and temporal distribution of ground-
water E. coli presence in themid-western region of Ireland has been
examined via a mixed methods approach which comprised a 13-
month field sampling programme, a formalised source owner sur-
vey, and geostatistical analysis. Collated risk factor variables have
been characterised as increasing the Intrinsic (environmental fac-
tors), Specific (local (sampling area) features) or Infrastructural
(groundwater source and domestic wastewater treatment system
characteristics) susceptibility to contaminant ingress, and subse-
quently employed to develop a predictive hierarchical logistic
model of private source contamination. It is considered that the
employed approach and subsequent findings are internationally
transferable, and may be used by water resource managers, private
well owners/users, and local/national governments to support
evidence-based risk management and develop quantitative source
protection strategies.

2. Materials and methods

2.1. Study area

The study region is situated in the mid-west of Ireland, extends
8248 km2 (11% of total area of the Republic of Ireland), and com-
prises three administrative counties (Limerick, Clare and North
Tipperary) (Fig. 1). Regional climate is described as temperate
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maritime, similar to that of the rest of the country, however, both
annual precipitation (30-year Annual Mean 977.6mm) and relative
humidity (30-year Annual Mean 71.9%) are higher than the national
average due to the coastal Atlantic location, in addition to lower
mean annual temperatures (10.7 �C) (Met Eireann, 2016). The re-
gion is characterised by high private groundwater reliance; as per
the 2011 National Census, the area had a total population of
361,028, of which 54.7% are categorically rural (n¼ 197, 408), with
23,014 private groundwater sources in operation, most of which
(98.4%, n¼ 22.651) are in categorically rural areas (CSO, 2012b).

As previously described by O'Dwyer et al. (2017), the study area
bedrock geology is dominated by bedded and un-bedded Dinantian
limestones and Devonian sandstones, with some volcanic and shale
deposits. This diversity is mirrored by regional Quaternary geology;
(limestone, sandstone, and shale) tills dominate in Limerick (South)
and North Tipperary (East), with much of Co Clare (West) charac-
terised by thin (subcrop) or absent (outcrop) overburden.

2.2. Groundwater sampling and analysis

As previously set out by O'Dwyer et al. (2014), study participants

were identified and recruited by dissemination of a study overview
and recruitment notice on a popular Irish bulletin board website
(www.boards.ie) and via the Irish Farmers Association (IFA). Over-
all, 132 study participants took part in this research.

Sampling was undertaken in three phases during the 13-month
period September 2011 to November 2012 (Table 1), with specific
attempts made to sample each source after a period of significant
rainfall on at least one occasion where possible. Sampling was
carried out in accordance with Standard Methods for the Exami-
nation of Water and Wastewater methods (APHA , 2005) from all
three counties in the research area as follows: Limerick (n¼ 66/
132), Clare (n¼ 29/132) and North Tipperary (n¼ 37/132), the
geographical distribution of which are shown in Fig. 1.

Untreated samples were taken directly from a pre-sterilised
(70% ethanol) kitchen tap after a 2-minute flushing period, and
collected in sterile sampling bottles. Samples (100mL) were
collected in disposable 120mL sterile vessels. Samples were
immediately transferred to a cool box and transported to a labo-
ratory, with analysis undertaken within 4e6 hrs. All samples were
assayed for E. coli using a standard US Environmental Protection
Agency (EPA) approved commercial culture kit (Colilert, IDEXX

Fig. 1. Map of the study area and distribution of private wells analysed in the primary sampling regime (n¼ 132) and the validation sampling regime (n¼ 32) within the Republic of
Ireland.
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Laboratories Inc., Westbrook, ME, USA) and in accordance with
manufacturer's directions. Negative controls (sterile deionised
water) were used during all phases of laboratory analyses.

2.3. Intrinsic, specific, and infrastructural (ISI) vulnerability
assessment: categories and variables

To aid in the development of an evidence-based and hyrdro-
geologically logical predictive model for contamination of private
groundwater sources in the study region, three distinct categories
of vulnerability influencing variables were considered; Intrinsic,
Specific and Infrastructural, as follows:

� Intrinsic variables focused on specific hydrogeological condi-
tions that provide some measure of defence against external
contamination. Importantly, intrinsic variables are independent
of the nature of the specific contaminants and the contamina-
tion source. Intrinsic factors include the hydrological, geological
and hydrogeological characteristics of the area which have been
shown to impact groundwater vulnerability (Zwahlen, 2004;
Hynds et al., 2012; O'Dwyer et al., 2014).

� Specific variables were classified as potential sources of faecal
contamination as reported in literature. In particular, agricul-
tural practices, particularly livestock density, have been shown
to be a significant source of groundwater pollution (Richards
et al., 1996; Goss et al., 1998; Close et al., 2008). In addition,
sources of humanwastes found in groundwater include effluent
from on-site sanitation (septic) systems and community
wastewater treatment systems (Yates, 1985; Arnade, 1999;
Hynds et al., 2012, O'Dwyer et al., 2017).

� Infrastructural variables are an important inclusion in this
model and facilitate in the evaluation of the design, construction
and placement of private water wells which can guide best
practice. For this study, based on information provided by par-
ticipants and sample site assessment, infrastructural consider-
ations including well type, well age and well depth have been
considered, which have been shown to influence human
vulnerability to contaminated groundwater consumption
(Gonzales, 2008)

In total, 15 variables (Table 1) were considered for the devel-
opment of the predictive model. “Intrinsic” and “Specific” data were

primarily sourced from existing national databases (Table 1). The
geographical coordinates of each sampling point were acquired
using a global positioning system (GPS) (Garmin nüvi® 3790T) and
added to a Geographic Information System (ArcMap10). Where the
data were only available as a quantitative measure (e.g. meteoro-
logical data), all available synoptic stations (n¼ 65) were added to
the basemap, with a buffer created to link sampling sites with the
nearest synoptic station. For the current study, the aquifer systems
have first been defined as either bedrock or a sand/gravel aquifer.
Sand/gravel aquifers have been employed as the indicator variable,
and thus all odds ratios refer to this classification. Bedrock aquifers
were subsequently subdivided into ‘Fissured’ and ‘Karstic’ systems,
the aim being to predict groundwater vulnerability as a function of
local hydrogeological features. Subsoil permeability was ordinal-
ised (ranked and coded) for model inclusion, ranging from Low
permeability (#1) to ‘thin or absent (NA)’ (#4). Groundwater
recharge estimates were collated from the national Groundwater
Recharge Map (Williams et al., 2013), which is derived from exist-
ing hydrogeological and meteorological data layers, including
annual rainfall, annual estimated actual evapotranspiration (AE),
soil drainage, subsoil permeability, groundwater vulnerability, peat,
sand/gravel aquifer, and bedrock aquifer class. For meteorological
data, total five day antecedent rainfall (mm) and temperature (�C)
were calculated by geo-locating the sampling point to the nearest
synoptic station; five day totals were utilised to allow for
contamination ingress and bacterial growth while also allowing for
weather variability.

Data pertaining to “Specific” vulnerability themes (e.g. domestic
wastewater treatment type and human population density) were
extracted from the CSO Census of Ireland 2011 and Census of
Agriculture 2009 datasets. CSO Census data have been compiled
and spatially indexed using the Irish postal service's GeoDirectory
geographic information system (https://www.geodirectory.ie/) to
18,488 pre-defined Census enumeration areas (‘Small Areas’)
(mean land area: 3$8 km2), the smallest legally defined adminis-
trative areas in Ireland, and are the highest-resolution geographical
unit available for statistical compilation at the national (ROI) level,
in compliance with current data protection standards (50e200
domestic dwellings). Small Area statistics were joined to a small
area shapefile and the data layers were then intersected with the
sampling points to create a novel database of the relative data
pertaining to the point of sampling. Similarly, data from the Census

Table 1
Intrinsic Specific Infrastructural (ISI) Vulnerability Assessment: Description of the 15 variables considered and assessed for model inclusion.

Vulnerability Category Variable Data Source

Intrinsic Subsoil Permeability Geological Survey Ireland (GSI) Mapping
Aquifer Vulnerability GSI Mapping
Aquifer classification GSI Mapping
Karst Bedrock GSI Mapping
Estimated Recharge GSI Mapping
5 Day Rainfall (mm) Met Eireann
5 Day mean temp (�C) Met Eireann

Specific Land Cover Environmental Protection Agency Geoportal
# of Farms per Small Area CSOa

Livestock Numbersc CSOa

# of DWWTS per Small Area CSOb

Population Density CSOb

Infrastructural Well Type Questionnaire
Well Depth Questionnaire
Well Age Questionnaire

a Agricultural Census 2010 (CSO, 2010).
b National Census 2011.
c Both Cattle and Sheep; DWWTS, Domestic Waste Water Treatment Systems.
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of Agriculture, which was completed in 2009 for all agricultural
holdings in the State with a ‘farmed area’ >2$47 acres, were
accessed and used to geo-statistically aggregate and calculate cattle
and sheep numbers for each Census “Small Area”.

Infrastructural data (i.e. source type, depth, and age) were
collated via a participant questionnaire, which was completed with
all well owners during the first sampling phase. Source depth was
coded and entered for the Intrinsic Specific Infrastructural Logistic
regression (ISI-LR) model as a discretized ranking variable (1 ¼
<5m, 2¼ 5e20m, 3¼ 21e50m, 4¼ 51e100m). Well type was
treated as a dichotomous categorical variable, with hand-dug wells
employed as the indicator or reference variable for model devel-
opment. A full codebook for the dataset can be found in the
supplementary material.

2.4. Statistical analysis

Prior to analyses, all independent variables were evaluated for
normality via Q-Q plots and Shapiro-Wilkes tests. Numerous vari-
ables exhibited a non-normal distribution, thus non-parametric
analyses have been employed for all subsequent analyses. Univar-
iate analyses (risk factor assessment) have been undertaken using
Mann-Whitney U or Chi-square tests, as appropriate. Logistic
regression (LR) models were developed using E. coli presence/
absence (0/1) during the study period as the dependent or
modelled variable. Parameter entry to initial lumped regression
models was undertaken using a “forced entry” approach, with all
variables simultaneously analysed. Subsequently, upon develop-
ment of an efficient model, ISI-LR models were re-run using three
(i.e. Intrinsic, Specific, and Infrastructural) vulnerability-based hi-
erarchies (variable entry blocks). This approach permits hierarchi-
cal evaluation of each vulnerability category in terms of individual
significance within the finalised model, and explained variance
within the overall system (Well Cohort).

Hierarchy evaluation was undertaken using the associated Chi-
square statistic, with statistically significant increases between hi-
erarchy additions indicative of increasing model efficiency (pre-
dictive capacity). Backward elimination (p> 0.1) of variables that
contributed least to the model was employed for hierarchical
model development. The collinearity diagnostic test for tolerance
(<0.1) and the variance inflation factor (VIF) (>10) were used to
assess collinearity between independent variables prior to model
development. The Hosmer Lemeshow test was used to validate
model goodness-of-fit, with Nagelkerke's pseudo R2 used to esti-
mate effect size and explained system variance. IBM SPSS® 22 was
employed for all statistical analyses, with a confidence level of 95%
(a¼ 0.05) employed throughout by convention.

2.5. Model validation

To validate themodel, an external model validation protocol was
undertaken using the results of a groundwater analysis regime
(n¼ 32) which took place in County Cork, Ireland (Fig. 1) during the
months September 2013 to February 2014 and included Infra-
structural descriptions in line with the developed model (well
depth, age and type). Variables relative to the Intrinsic and Specific
categories were geospatially linked to the geographical coordinates
of each sampling location, as previously described. The external
model validation was undertaken by substituting the secondary
sampling data (validation data) into the developed ISI-LR equations
as model coefficients. A classification cut-off of 0.5 was used, with a
test model output of <0.5 recorded as a negative prediction and an
output of >0.5 recorded as a positive prediction. The observed and
predicted frequencies were then compared in order to provide an
estimate of model validity.

3. Results

3.1. Temporal groundwater sampling

Results of microbial groundwater sampling and analyses over
the 13-month sampling regime are presented in Table 2. As shown,
during the first sampling period, E. coli was detected in 59.8%
(n¼ 78) of supplies. During the second sampling period, the
prevalence of E. coli decreased, with 51.5% (n ¼ 68) of supplies
testing positive; a reduction of approximately 8% (n¼ 10). Between
sample periods 2 and 3, several (n¼ 30) cohort households which
had previously been informed of a positive E. coli sample had do-
mestic water treatment systems installed and were thus excluded
from further sampling. Accordingly, due to domestic intervention,
these households have been omitted from the cumulative
contamination percentage, reducing the total number of supplies to
102 and number of samples to 366. During the third sample period,
E. coli was detected in 31.8% (n¼ 42). Overall, 51.4% (n ¼ 188) of
private well samples taken over the 13-month sampling duration
tested positive for E. coli, while 70.45% (93/132) of sampled wells
tested positive on at least one occasion.

3.2. Risk factor (univariate) analysis of microbial contamination

Prior to logistic regression model development, all variables
within each vulnerability category underwent preliminary statis-
tical analysis to determine their level of univariate association with
the dependant variable (E. coli presence/absence), and thus pri-
oritise their inclusion and entry for modelling as a likely contami-
nation risk factor. This method of “purposeful variable selection”
via pre-analysis of independent variables was proposed by Hosmer
et al. (2013). The full descriptive statistics of the sampling results
across variable categories are detailed within the supplementary
material.

As shown (Table 3), all variables within the Intrinsic vulnera-
bility category were significantly associated (p< 0.05) with E. coli
presence, and were thus included in LR modelling. Highest levels of
univariate significance were exhibited by subsoil permeability
(p< 0.001), precipitation (p¼ 0.001), and the presence of karstified
bedrock (p¼ 0.001). Three categorically “Specific” vulnerability
variables were found to have significant associations with the
dependent variable, namely, the number of farms (p¼ 0.002), the
number of cattle (p¼ 0.001), and the number of DWWTSs
(p¼ 0.001) per Small Area. District. Accordingly, these variables
were prioritised for inclusion in LR model development. With
respect to infrastructural vulnerability, two of the three categorised
variables exhibited a significant association with E. coli presence;
well depth (p¼ 0.003) andwell type (p¼ 0.032) were thus included
for model development. Overall, eleven of the fifteen variables
analysed within the vulnerability categories (Intrinsic (6), Specific
(3), and Infrastructural (2)) were deemed statistically robust for
model development.

Table 2
E. coli presence during 13-month temporal sampling regime.

Sample Period E. coli

N %

One (Oct-Dec 2011) a 78 59.8
Two (Mar-Jun 2012) a 68 51.5
Three (Jul-Nov 2012) b 42 41.5
Total c 188 51.4

a 132 samples.
b 102 samples.
c 366 samples.
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3.3. Intrinsic, Specific and Infrastructural Logistic Regression (ISI-
LR) model development

Following univariate analysis, 11 variables were initially
included in the ISI-LR model prior to the application of backwards
elimination, whereby variables which contributed least to the
model (P> 0.1) were removed (n¼ 3). In total, 8 of the 11 variables
were deemed statistically satisfactory for inclusion in the final
model (Table 4). Overall, model predictive sensitivity was high,
with E. coli presence correctly classified in 94.2% of samples, while
E. coli absence was correctly classified in 84.7% of samples. The
Hosmer and Lemeshow test for goodness of fit produced an insig-
nificant p-value (p¼ 0.620); thus, as the p-value was (significantly)
greater than alpha (0.05), the null hypothesis that the observed and
expected event rates (E. coli present/absent) are matched within
subgroups of the sample population is accepted. The final Nagel-
kerke coefficient of determination (cumulative R2) was 0.81, thus
the model input variables explain 81% of system variability.
Accordingly, the developed ISI-LR model was well calibrated and
considered an effective predictive tool for forecasting E. coli pres-
ence in private groundwater sources. (Multi)Collinearity di-
agnostics including Tolerance (1 e R2) and calculation of the
Variance Inflation Factor (1/Tolerance) were undertaken for all
variables after model development. Results show that no individual
variable was associated with a Tolerance <0.4 or Variance Inflation

Factor>2.5, thus indicating that (multi)collinearity was not an issue
within the final ISI-LR model.

A hierarchical approach was taken for model development to
specify a prioritised order of variable entry based on risk factor
analysis, in addition to permitting testing the effects of specific
predictor groups, independent of the influence of others (Section
2.3). The first predictor hierarchy employed for model development
was the ‘Intrinsic’ vulnerability block, which comprised soil
permeability, aquifer classification, presence of karstified bedrocks
and precipitation; both temperature and recharge were eliminated
as they did not contribute significantly. As shown (Table 4), this
predictor hierarchy was significant within the model (c2¼ 45.910,
p ¼ 0.001), with intrinsic variables alone capable of correctly clas-
sifying (E. coli presence/absence) 77.6% of contaminated samples.
Within the “Intrinsic” hierarchy, ordinal (ranked) subsoil perme-
ability played a significant role (p¼ 0.016) in dependent variable
prediction, with the calculated Exp(b) (odds ratio) indicating that
with each ranked increase in subsoil permeability e.g. low to
moderate, moderate to high etc., the probability of E. coli presence
increased by a factor of 3.252 (95% C.I 1.250e8.463). Similarly,
aquifer classification contributed significantly to the model
(p¼ 0.044), with a negative (<1) odds ratio found (OR 0.231, 95% C.I
0.101e0.707), indicating that wells situated in sand/gravel aquifers
were substantially less likely to be contaminated. As might be ex-
pected, the presence of karstified bedrocks variable contributed
significantly to the model (p¼ 0.042), exhibiting an odds ratio of
2.801 (95% C.I 0.030e3.451), thus indicating that bedrock aquifers
comprising karstic features are significantly more vulnerable to
contamination. Precipitation was also a significant predictor vari-
able (p¼ 0.030); for each 1mm increase in 5-day antecedent pre-
cipitation, the probability of E. coli presence increased by a factor of
1.247 (95% C.I 1.022e1.522). The second “Specific” predictor hier-
archy contained geo-derived livestock (cattle) numbers and
DWWTS numbers. Addition of this second model block was found
to increase overall model effect size and model efficiency
(87.9%; þ10.3%), with the model remaining significant (c2¼ 81.557,
p< 0.001). Total number of cattle per Census “Small Area” was
associated with an odds ratio of 1.01 (95% C.I 1.00e1.20). The sec-
ond potential contaminant sourcewithin the final ISI-LRmodel was
DWWTS number per Census “Small Area” (p¼ 0.006), with an
associated odds ratio of 1.029 (95% C.I 1.008e1.050).

The final developed ISI-LR model (Table 4), inclusive of all var-
iable blocks remained statistically significant (p¼ 0.003), and was
associated with correct classification of E. coli presence/absence in
90.7% of samples (i.e. final predictor block increased classification
by 2.8%). Just two variables associated with the infrastructural hi-
erarchy remained within the final model, namely, well type
(p¼ 0.047) and well depth (p¼ 0.021), both of which contributed

Table 3
Univariate risk factor analysis of independent (input) vulnerability variables
(n¼ 15).

Variable Name Variable Coefficient Significance (p)c

Subsoil Permeability 19.95a <0.001**

5 Day Rainfall (mm) 3.193b 0.001**

5 Day mean temp (�C) 2.139b 0.032*

Aquifer classification 4.181a 0.041*

Karst Bedrock 10.835a 0.001**

Estimated Recharge 1.987b 0.047*

Land cover 0.029a 0.866
# Cattle per Small Area 3.134b 0.002**

# Sheep per Small Area �0.496b 0.620
# of Farms per Small Area 3.182b 0.001**

# DWWTS per Small Area 3.48b 0.001**

Population Density �0.808b 0.419
Well Type 4.589a 0.032*

Well Depth 14.278a 0.003**

Well Age 2.607a 0.272

a Pearson's Chi Square.
b Mann Whitney U, * p < 0.05, ** p < 0.01; DWWTS, Domestic Waste Water

Treatment Systems.
c Variables with a P value< 0.05 were deemed suitable for inclusion in the hier-

archical logistic model.

Table 4
Final ISI- LR model of source contamination vulnerability.

B Sig. (p) Exp(B) 95% C.I. for Exp(B)

Lower Upper

Intrinsic Subsoil Permeabilitya 1.179 0.016 3.252 1.250 8.463
Aquifer classb �1.465 0.044 0.231 0.101 0.707
Karstb 1.030 0.042 2.801 0.030 3.451
5 Day Rainfall (mm) 0.221 0.030 1.247 1.022 1.522

Specific # Cattle per Small Area 0.001 0.047 1.010 1.000 1.200
# DWWTS per Small Area 0.028 0.006 1.029 1.008 1.050

Infrastructural Well Deptha �1.026 0.021 0.358 0.150 0.859
Well Typeb 2.174 0.047 8.797 6.856 30.433
Constant �9.804 0.027 0.000

ISI-IR, Intrinsic, Specific and Infrastructural Logistic Regression; B, coefficient of predictor variables; Exp(B), Odds Ratio; C.I, Confidence Interval.
a Categorical variable (binary).
b Categorical variable (ordinal); DWWTS, Domestic Waste Water Treatments Systems.
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significantly to the ISI-LR model. Well depth was associated with an
odds ratio of 0.358 (95% C.I 0.150e0.859). Accordingly, this in-
dicates that as well depth increases between discretized categories,
the likelihood of contamination decreases by a factor of 0.358.
Results indicate that samples from hand-dug wells were over 8
times more likely to have E. coli present (OR 8.797, 95% C.I
6.856e30.433).

3.4. External validation of the ISI-LR model

In total, 32 external private water well samples were used to
validate the ISI-LR model. As outlined in Fig. 2, the ISI-LR model
predicted that 12 of the samples would test negative for E. coli
while 14 negative samples were observed; an accuracy of 85.7%.
Conversely, the ISI-LR predicted 20 positive E. coli samples while 18
were observed; a 90% accuracy rate, which is comparable with the
90.7% of samples correctly classifiedwithin the final stage of the ISI-
LR model. The model exhibited a higher level of accuracy with re-
gard to the prediction of E. coli presence than absence and thus, is
conservative in its estimation. However, it is important to note that
the accuracy of the ISI-LR when applied to this validation dataset
should not be overestimated as the dataset is limited due to a small
sampling size and due to sampling being confined to the winter
months when rainfall is higher than average in Ireland.

4. Discussion

The current study utilised a hierarchical approach in order to
predict the likelihood of E. coli presence relative to distinct variable
categories, namely intrinsic, specific, and infrastructural with the
aim of improving current knowledge of contamination mecha-
nisms while aiding well protection and maintenance.

As shown (Table 2), 51.4% of groundwater samples were positive
for the presence of E. coli over the duration of the study period, well
water contamination ranged from 41.5% to 59.8% over three sam-
pling periods, and 70.5% were contaminated at least once over the
13-month period. This is in line with the most recently available

findings from the EPA groundwater monitoring network; during
2012, positive counts were detected at 104 (51%) of 205 monitoring
locations (Bradley et al., 2015). Conversely, two previous studies of
Irish groundwater quality have reported lower levels of contami-
nation; Hynds et al. (2014a, b) found thermotolerant coliforms
(TTC) present in 28.9% of 262 private wells from 5 study areas,
while Bacci and Chapman (2011) report a contamination rate of 24%
among 75 private wells in the south of the country (Co Cork).
Notably, neither of these studies included regions characterised by
karstified bedrock, which are significantly more vulnerable to
contaminant ingress. This is also demonstrably higher than do-
mestic well contamination rates reported internationally, for
example, 33% of domestic wells analysed from 1993 to 2004 as part
of a large-scale study in the United States tested positive for total
coliforms (Embrey and Runkle, 2006). The higher levels reported in
this study is testament to the variability within groundwater sys-
tems in Ireland and highlights the need for more routine sampling
and monitoring. The developed ISI-LR model indicates that subsoil
permeability plays a significant role (p¼ 0.016) in predicting E. coli
presence; each categorical increase in subsoil category (e.g. low to
moderate, moderate to high etc.) was shown to concur with a
significantly increased (OR 3.252) probability of E. coli contamina-
tion. This finding supports the overarching concept of groundwater
vulnerability classification currently employed in the Republic of
Ireland; low groundwater vulnerability is assigned to areas with
relatively thick (>10m) layers of low-permeability subsoils,
recharge rates are typically low, leading to increased attenuation of
contaminants through subsoil horizons. Conversely, high/extreme
vulnerability is typified by shallow layers of high-permeability
subsoils, and subsequently, limited attenuation capacities (Daly
and Warren, 1998; Fealy and Green, 2009). Previous work by
Hynds et al. (2012) has shown that subsoil permeability and thus,
by extension, groundwater vulnerability category, is a useful indi-
cator of aquifer susceptibility to contamination; however its suit-
ability with regard to well contamination is less clear, particularly
in geologically homogenous regions. Accordingly, findings from the
current study suggest that generalised (i.e. non-preferential aquifer

Fig. 2. ISI-LR Model Validation Classification (validation dataset) (n¼ 32).
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recharge) contaminant mechanisms are likely responsible for a
proportion of groundwater contamination in the study area.

Aquifer classification also contributed significantly to the model,
with a negative effect exhibited (i.e. OR <1) (p¼ 0.044); ISI-LR
modelling predicts that private wells situated within delineated
sand/gravel aquifers were approximately 80% less likely to have
E. coli present. This finding is of particular relevance in the Republic
of Ireland as the two most important and common subsoil types in
Ireland are glacial deposits (tills) and glaciofluvial sand and gravel
deposits (Hynds et al., 2014a), with the sand and gravel aquifers
which underlie approximately 2% of the country being the only
aquifers with intergranular permeability. Furthermore, the pres-
ence of karstified bedrocks, which are associated with a large
proportion of productive aquifers in Ireland (GSI, 2000), were also
found to aid classification of E. coli presence (p¼ 0.042). Within the
study area, the developed model predicts that wells located in
characteristically karstic areas were almost three times more likely
to have E. coli present (OR 2.801). This finding agrees with previous
work; i.e. previous groundwater monitoring in Ireland has shown
that groundwater monitoring locations in Karst limestone areas
show the greatest degree of microbiological pollution (Bradley
et al., 2015), thus reflecting the inherently vulnerable nature of
dynamic flow systems, in concurrence with the lack of attenuation
capacity associated with shallow soils or subsoils (Pronk et al.,
2009). This is particularly the case with regard to diffuse (non-
point) contamination in carboniferous limestone regions (Drew
et al., 1996; Wallender et al., 2014).

Several previous studies have found a significant relationship
between antecedent rainfall periods (mm) and the presence of
thermotolerant coliforms (TTC) or E. coli (Howard et al., 2003;
Hynds et al., 2012, 2014a; O'Dwyer et al., 2016); for example,
Howard et al. (2003) have reported that increased rainfall over the
48-hr period prior to sampling increased the likelihood of TTC and
faecal streptococci presence in shallow groundwater in Kampala,
Uganda, while O’Dwyer et al. (2016) report an association between
heavy rainfall events and outbreaks of VTEC in Ireland; a pathogen
statistically associated with private well ownership (O’haiseadha
et al., 2017). In both cases, the authors attribute the association
between short-term rainfall to rapid (preferential) recharge and
direct ingress at the wellhead due to overland flow, thus high-
lighting the role of meteorology in general, and rainfall in particular
as an important driver of groundwater contamination. In the cur-
rent study, 120hr (5d) precipitationwas found to make a significant
contribution to the model (p¼ 0.030), while, conversely, mean
temperature over the same period was not efficient as a predictor
variable (p¼ 0.678). Based on previous work by Hynds et al., (2012,
2014a) that reports this antecedent period as being significantly
associated with the presence of TTC, this association is indicative of
microbial bypass mechanisms, namely elevated overland flow (i.e.
direct wellhead ingress) and increased shallow groundwater infil-
tration (i.e. preferential subsurface flow paths), with preferential
subsurface flow paths the more likely mechanism. However, the
authors acknowledge that the inclusion of rainfall as a predictive
parameter may have limited applications. For example, the pre-
dictive capacity of antecedent rainfall is arguably localised; i.e.
more accurate during specific and targeted sampling regimes as
opposed to a broader assessment strategy at aquifer level. As a
result, the inclusion of rainfall within the model should be
considered on a case-to-case basis depending on the geographical
scope and data availability.

Estimated recharge (mm) was not found to significantly
contribute to the ISI-LR model (p > 0.05), albeit it was univariately
significant (p¼ 0.047 (Table 3)). It is considered that this may be
due to a number of data-related issues; firstly, the recharge data
employed in the current study was not calculated specifically, but

instead retrieved from the national recharge data file which esti-
mates recharge based upon historical effective precipitation. Sec-
ondly, where lower productivity aquifers underlie the land surface,
a recharge cap is applied for recharge estimation to simulate
rejected recharge, thus theoretically reflecting the limited ability of
these aquifers to accept and transmit recharging waters (Williams
et al., 2013). The application of 100mm and 200mm recharge
caps in Locally Important and Poorly Productive aquifers, respec-
tively, which comprise a significant proportion of the study area,
may be too general, and thus unrealistic. Finally, as estimated
recharge is inherently related to both precipitation and subsoil
characteristics, it is reasonable to suggest that the presence of these
variables in the ISI-LR model served to negate the predictive effect
of recharge.

Potential contaminant sources were investigated via the “Spe-
cific” model hierarchy, which comprised GIS-derived, spatially
distinct continuous measurements of cattle numbers, farm
numbers, and DWWTS numbers per Census “Small Area”. The total
number of cattle per Census “Small Area” associated with sampling
sites returned an odds ratio of 1.01 (p¼ 0.047); while this may
appear modest, the effect size of this variable is based upon indi-
vidual livestock units i.e. the addition of 1 livestock unit (cow) per
”Small Area” increased the probability of E. coli presence by
approximately 1%. The geo-derived variable “number of farms” did
not contribute significantly to the final model (p¼ 0.780). The agri-
food sector is characteristically diverse, ranging from tillage to
mixed horticulture to pasture, however, results from the current
study indicate that livestock farming, and specifically cattle hus-
bandry, is the primary agricultural driver of private groundwater
microbial contamination in Ireland. This is reflective of numerous
international studies (Schets et al.,2005; Close et al.,2008; Kabore
et al.,2010; Lenaker et al.,2017), for example, Schets et al. (2005)
sampled 144 private groundwater supplies in The Netherlands,
and found via molecular techniques (PFGE) that grazing cattle were
the likely cause of contamination by E. coli O157:H7. It is estimated
that 80% organic wastes generated in Ireland are derived from
agricultural activities (Daly, 2000), with a 40ha dairy or beef farm
producing waste volumes equivalent to that of a small town, with
little, if any, treatment undertaken.

The number of DWWTSs per sampling Census “Small Area”
represented the second major potential pollution source within the
ISI-LR model (p¼ 0.006) (Table 4); this was found to be the most
significant individual predictor within the finalised model. As for
cattle, the “DWWTS/Small Area” variable was associated with a
high mean input value, thus resulting in a seemingly low odds ratio
(OR 1.029), however this is reflective of the nature of the input
values, as opposed to the magnitude of their effects i.e. each
additional DWWTS per Census “Small Area” increased the likeli-
hood of E. coli presence by 2.9%. At present, there are as many as
450,000 domestic systems annually discharging 80 million m3 of
effluent to the Irish subsurface (Daly, 2000; CSO, 2012b). Further, a
recently initiated National Inspection Programme has found that
DWWTSs are a primary source of faecal contaminants and are of
poor standard in Ireland with over half (53%) of inspected DWWTSs
failing first inspections (EPA, 2014).

Based upon findings from the “Specific” hierarchy, which
improvedmodel predictive efficiency by 10.3%, it may be concluded
that multiple delivery mechanisms are causative in terms of E. coli
contamination among the studied well cohort. This assertion
agrees with a recent study by O’Dwyer et al. (2017) in the same
study area; E. coli isolates (n¼ 42) from 125 untreated groundwater
wells were analysed for the presence of human and veterinary
antimicrobial resistance. Approximately one in five isolates (21.4%)
exhibited resistance to �1 human antibiotic, while all isolates
demonstrated resistance to�1 veterinary antibiotic. Thus, it may be
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concluded that groundwater E. coli in this region are derived from
both (point) human and (diffuse) animal sources, and likely gain
ingress towells both at the surface (wellhead) and in the subsurface
(i.e. the production zone of the well). Similar findings have been
reported by Lenekar et al., (2017) in the United States; analysis of
290 samples from eight rivers in the Great Lakes Basin showed that
human and bovine viruses were present in 16.9% and 14.8% of
runoff-event samples, and 13.9% and 12.9% of low-flow samples,
thus pointing to multi-modal pathogen delivery within
catchments.

Private well infrastructure (well type and depth) were deemed
significant within the ISI-LRmodel (Table 4). Hynds et al., (2014a, b)
have previously found that hand-dug well users in the Republic of
Ireland are substantially more likely to contract waterborne enteric
infections, a result which was borne out in the current study with
hand-dug wells almost nine times more likely (OR 8.797) to have
E. coli present (p¼ 0.047), primarily due to lower design and con-
struction specifications. Similarly, well depth was an important
predictor in terms of E. coli presence (p¼ 0.021); every ordinalised
(10m) increase in well depth concurred with a 35.8% decrease in
the likelihood of contamination. Several previous studies have
shown that well depth is representative of the required recharge
distance for colloidal transport (Richards et al., 1996; Goss
et al.,1998; Tabbot and Robson, 2006; Bahram et al., 2012). For
example, Gonzales (2008) found that 71% of sampled wells <60m
tested positive for bacterial contamination, while an equivalent
figure of <10% was encountered among wells >60m depth.

The ISI-LR model was externally validated and demonstrated
promising predictive capacity of 85.7% and 90% for E. coli absence
and presence, respectively. The model was shown to have a greater
predictive capacity for the presence of E. coli; overestimating the
occurrence of the faecal organism. While this is a Type I error, it is
also a conservative error, which, in the context of public health is
preferable to a false negative (Type II). Consequently, it is consid-
ered that the ISI-LRmodel can be used in hyrdrogeologically similar
regions in both Ireland and further afield as a management and risk
assessment too. While the relatively small sampling cohort pre-
sents a study limitation, the authors have sought to negate this by
undertaking multiple sampling phases at each well and developing
the presented model for temporal groundwater samples, as
opposed to individual supplies. However, we do consider that the
predictive capacity of the model, as corroborated through valida-
tion, may serve as evidence to suggest that a relatively small, yet
varied, sampling regime may be sufficient for groundwater risk
assessment at a local scale. Moreover, the sequential nature of the
model allows for improved usability, whereby individuals can
‘choose’which variables theywish to include on a hierarchical basis
(which will affect accuracy) and are thus, less confined by data
availability; offering a more simplistic approach which is not over-
parameterised and thus potentially useful for non-experts.

5. Conclusion

The ISI-LR model developed in the current study represents a
potentially useful and internationally transferable tool for pre-
dicting bacterial contamination of private domestic water wells in
geologically heterogeneous regions with high groundwater
contamination rates. The presented model was shown to be highly
efficient, with the presence of E. coli being correctly classified in
94.2% of cases, and the absence of E. coli being correctly classified in
84.7% of cases, thus improving on previous similar studies. A
further, external model validation step (n¼ 32) corroborates the
efficacy of themodel with a 90% predictability rate (20 predicted,18
observed) for the presence of E. coli from a sampling cohort outside
the study area.

When viewed through the lens of the characteristic agricultural,
infrastructural, and hydrogeological profile of rural Ireland and
other similar regions, findings serve to highlight the ubiquity and
magnitude of private groundwater source hazards (both point and
diffuse), in addition to the inherent complexities associated with
effective source protection and maintenance. With no prospect of
privatewell regulations imminent, there is an exigency for effective
communication initiatives, particularly as private source reliance is
expected to increase due to recent water charges, high urban rents,
and housing demands in urban centres far outstripping supply. In
conclusion, the developed model represents a comprehensive risk
assessment and management tool that may be used by local au-
thorities, water managers, and perhaps even well owners/users to
develop effective water-quality management strategies to mini-
mize pathogen exposure risks in Ireland and further afield.
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