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Abelian p-groups with minimal full inertia

Brendan Goldsmith and Luigi Salce

Abstract

The class of abelian p-groups satisfying the property that fully inert subgroups

are commensurable with fully invariant subgroups is investigated, as well as the class of

groups not satisfying this property; it is known that both the class of direct sums of cyclic

groups and that of torsion-complete groups are of the �rst type. It is proved that groups

with \small" endomorphism ring do not satisfy the property and concrete examples of

them are provided via Corner's realization theorems. Closure properties with respect

to direct sums of the two classes of groups are also studied. A topological condition

of the socle and a structural condition of the Jacobson radical of the endomorphism

ring of a p-group G, both of which are satis�ed by direct sums of cyclic groups and

by torsion-complete groups, are shown to be independent of the property of having

minimal full inertia. The new examples of fully inert subgroups which are proved not

to be commensurable with fully invariant subgroups, are shown not to be uniformly

fully inert.

2010 Mathematics Subject Classi�cation Primary: 20K10, 20K27, 20K30; Secondary:

20K25.

Key words: torsion-complete p-group, direct sum of cyclic p-groups, fully invariant sub-

group, fully inert subgroup, commensurable subgroups, minimal full inertia, endomorphism

ring, Pierce decomposition.

1 Introduction

All groups considered in this note are assumed to be abelian. For all unexplained notions we

refer to the recent monograph [10] by L�aszl�o Fuchs.

Given an endomorphism � of a group G, a subgroup H of G is �-inert if it has �nite index

in H + �(H), and it is fully inert if it is �-inert for every � 2 End(G). The family of fully

inert subgroups of the p-group G is denoted by I(G); this set will be referred to as the full

inertia set of G.

A subgroup commensurable with a fully inert subgroup is also fully inert, so, in particular,

a subgroup H commensurable with a fully invariant subgroup is fully inert. Following [5] and

[6], denote by Inv(G) the set of fully invariant subgroups of G and by Inv~(G) the set of

subgroups of G which are commensurable with fully invariant subgroups.

1



Then we have the chain of sublattices of the whole lattice L(G) of subgroups of G:

Inv(G) � Inv~(G) � I(G) � L(G):

In this paper we investigate when the inclusion Inv~(G) � I(G) is strict or is an equality

for G a reduced p-group. Thus it is useful to introduce the following

De�nition 1.1. A p-group G is said to have minimal full inertia if the full inertia set I(G)

is equal to Inv~(G).

Results in [13] and [12] indicate that on one hand the group G has minimal full inertia

if End(G) is \big", as in case of unbounded direct sums of cyclic p-groups or of unbounded

torsion-complete p-groups. On the other hand, the group G does not have minimal full inertia,

i.e., the strict inclusion Inv~(G) ( I(G) holds, when End(G) is as small as possible, that is,

if End(G) = Jp � 1G�Es(G), where Es(G) is the two-sided ideal of the small endomorphisms

of End(G).

There are two ways to look at End(G), both due to Pierce [15], from which we can argue

whether End(G) is \small" or \big". In fact, given a reduced unbounded p-group G, Pierce

proved that:

End(G) = A� Es(G) ; 	 : End(G)=H(G)!
Y

n

M�n(Fp): (�)

In the left equality in (�) A is a subring which is the completion in the p-adic topology of

a free Jp-module, containing Jp � 1G, the center of End(G). We shall call the decomposition

End(G) = A � Es(G) the \Pierce decomposition" of End(G). Thus End(G) is \as small as

possible" if in its Pierce decomposition the equality A = Jp � 1G holds.

On the right side in (�) we have a ring embedding 	 of the factor ring End(G)=H(G),

where H(G) is the Pierce radical of End(G) consisting of the endomorphisms that strictly

increase the heights of the elements of the socle G[p], M�n(Fp) is the ring of the �n � �n
matrices over the �eld with p elements Fp, and the �n's are the Ulm-Kaplansky invariants

of G. It is well known that Im(	) is a subdirect product of
Q

nM�n(Fp), and that 	 is

surjective if and only if G is torsion-complete (see [10, pp. 625-627]). Hence End(G) is \as

big as possible" exactly when G is torsion-complete.

A central role in this context is reserved to semi-standard groups. Recall that a p-group G

is said to be semi-standard if its Ulm-Kaplansky invariants of �nite index �n(G) are �nite, and

that G is semi-standard if and only if the two-sided ideal of the small endomorphisms Es(G) is

contained in the two-sided ideal E0(G) consisting of the endomorphisms � such that �(G[p])

is �nite (see [17, Proposition 4.1]). The hypothesis that the p-group G is semi-standard is

crucial in our main Theorem 2.4, and it is also assumed in one of the realization theorems by

Corner in [4] that, as we will see in Section 2, produce examples of groups which do not have

minimal full inertia. These theorems extend to a large extent the �rst construction due to

Pierce in [15] of a semi-standard p-group G such that End(G) = Jp � 1G�Es(G). This group

G furnished the main ingredient in the following theorem proved in [13, Theorem 4.2].
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Theorem 1.2. Let G be a separable p-group of cardinality 2@0, with semi-standard basic group

B, such that End(G) = Jp � 1G � Es(G). Then the socle B[p] of B is fully inert in G but it

is not commensurable with any fully invariant subgroup of G.

Thus Pierce's construction provided the �rst example of a p-group which does not have

minimal full inertia. In Section 2 of this paper we extend Theorem 1.2 to semi-standard

separable p-groups G with endomorphism rings bigger than Jp �1G�Es(G), but still \small".

We will see that, in a technical sense, \small" means that the Jp-algebra A in the Pierce

decomposition is the completion of a free Jp-module of at most countable rank. Thus Theorem

2.4, the main result of Section 2, shows that groups with \small" endomorphism rings do not

have minimal full inertia. As recalled above, concrete examples of these groups are obtained

via realization theorems by Corner in [4].

In Section 3 we consider direct sums of groups that have minimal full inertia, and of groups

which do not have minimal full inertia; a nice consequence of the techniques developed here,

is that one can easily derive a simple proof of the main theorem in [13]: direct sums of cyclic

groups have minimal full inertia. We show in Example 3.6 that the class of groups that have

minimal full inertia is not closed under taking �nite direct sums and that groups which do not

have minimal full inertia may have \big" endomorphism ring. We provide also in Proposition

3.9 examples of groups which do not have minimal full inertia obtained via �nite direct sums

of groups of the same type.

In Section 4 we consider two conditions studied by Sands [18] which are satis�ed, inter

alia, by direct sums of cyclic groups and by torsion-complete groups. The �rst condition

relates to Cauchy sequences of the socle of a p-group G, and the second concerns a structural

condition on the Jacobson radical of End(G). We show that these conditions are also satis�ed

by certain groups which do not have minimal full inertia. Thus these conditions are shown

to be independent on the property of having minimal full inertia.

In Section 5 we prove that the new examples, furnished in the preceding sections, of

fully inert subgroups which fail to be commensurable with fully invariant subgroups are not

uniformly fully inert, thus giving further evidence of the likely truth of Conjecture 1.6 in [6],

which states that every uniformly fully inert subgroup of an arbitrary group is commensurable

with a fully invariant subgroup.

2 Groups with small endomorphism ring do not have

minimal full inertia

We start generalizing Theorem 1.2 just noting that its proof can be extended almost verbatim

to prove the following

Theorem 2.1. Let G be a reduced separable semi-standard p-group such that End(G) =

Jp � 1 � Es(G). Then, given any pure subgroup H of cardinality @0 of G, its socles H[pk]

(k � 1) belong to I(G) n Inv~(G).
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The hypothesis that End(G)=Es(G) �= Jp implies that G is not isomorphic to a direct

sum of cyclic groups, hence G must be uncountable (see next Lemma 2.3). An immediate

consequence of Theorem 2.1 is the following

Corollary 2.2. In the hypotheses of the preceding theorem every subgroup commensurable

with a pk-socle (k � 1) of a pure subgroup of cardinality @0 belongs to I(G) n Inv~(G).

The next theorem provides many fully inert subgroups not commensurable with fully

invariant subgroups for a wider class of separable p-groups, thus extending to a large extent

Theorem 2.1. First we need the following lemma whose proof utilises an argument from [1,

Proposition 2.2].

Lemma 2.3. Let G be an unbounded separable semi-standard p-group with Pierce decompo-

sition of its endomorphism ring End(G) = A � Es(G). If A is the completion in the p-adic

topology of a free Jp-module F of countable rank, then G is uncountable.

Proof. Assume, by way of contradiction, that G is countable. Then, by [10, Theorem 5.3, p.

96], G is a direct sum of cyclic groups, say G = �i2NCi.

Let � : End(G)! Hom(G[p];G) be the restriction map sending � 2 End(G) into � � G[p].

We claim that �(End(G)) has cardinality at least 2@0 . In fact, every element of Hom(G[p];G)

can be thought of as an in�nite vector of the form � = (�1; �2; � � � ) where the �i correspond

to homomorphisms from Ci[p] into G. If we choose the �i to be either the zero map or the

identity map, we can clearly produce 2@0 homomorphisms in Hom(G[p];G).

Furthermore, since the zero map and the identity map from Ci[p] ! G both extend

trivially to maps from Ci ! G, the vector � clearly extends to a map  : G ! G which

satis�es �() = �. This proves that j�(End(G)j � 2@0 .

However, the image of A under the map � is countable, since �(pA) = 0 and A=pA �=

F=pF �= (Jp=pJp)
(@0). Additionally, as G is semi-standard, every small endomorphism van-

ishes on a co�nite subgroup pnG[p] of G[p], for some n. Since there are only countably

many values of n, the image �(Es(G)) is countable. Thus �(A� Es(G)) is also countable {

contradiction. We conclude that G must be uncountable.

Theorem 2.4. Let G be a separable semi-standard p-group such that, in the Pierce decom-

position End(G) = A� Es(G), A is the completion in the p-adic topology of a Jp-subalgebra

F which is a free Jp-module of at most countable rank. If H is a countable in�nite subgroup

of G, then the higher socles HF [pk] (k � 1) of the subgroup HF =
P

�2F �(H) are fully inert

in G but not commensurable with any fully invariant subgroup of G.

Proof. We give the proof when the rank of F equals @0. If the rank is �nite, the proof is

simpler and it is left to the reader.

First note that HF is F -invariant, because F is closed under multiplication. Let F =

�n2NJp�n. Clearly
P

n2N �n(H) � HF . Conversely let � 2 F . Then � =
P

1�i�n �i�i for

suitable n 2 N and �i 2 Jp. It follows that �(H) �
P

1�i�n �i(H), so HF =
P

1�i�n �i(H).

This equality implies that HF is countable, since each subgroup �i(H) is countable, being an
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image of H; consequently, also HF [pk] is countable for each k � 1. As G is uncountable by

Lemma 2.3, HF [pk] cannot be commensurable with a non-zero fully invariant subgroup of G,

since these subgroups are also uncountable, as proved in [13, Theorem 4.2].

To prove that HF [pk] is fully inert, we must show that, given any endomorphism � 2

End(G), (HF [pk] + �(HF [pk]))=HF [pk] is �nite. Let � = � + �, with � 2 A and � 2 Es(G).

As A is the completion of F , for each n 2 N there exists a �n 2 F such that �� �n 2 p
nA.

Then we have �(HF [pk]) = (� � �k)(H
F [pk]) + �k(H

F [pk]). But (� � �k)(H
A[pk]) = 0

because � � �k 2 pkA, and �k(H
F [pk]) � HF [pk], because HF [pk] is F -invariant. Therefore

it is enough to prove that �(HF [pk])) is �nite.

Since HF is countable, a classical result by Szele (see [10, Theorem 1.5, p. 151]) ensures

that there exists a countable pure subgroup of G, C say, with HF � C. Now C is countable

and separable and hence it is a direct sum of cyclic groups; we write C =
L
i�1

Ci where each

Ci is a direct sum of cyclic groups of order pi (possibly zero). Thus each Ci is a bounded pure

subgroup of C and hence is a direct summand of G. Since, by hypothesis, G is semi-standard,

each Ci is of �nite rank.

Now HF [pk] � C[pk] = (C1� � � � �Ck)� pCk+1� p2Ck+2� � � � and since � is small, there

exists a positive integer N such that �(pNG[pk]) = 0. Hence �(pNCN+k�p
N+1CN+k+1�� � � ) =

0. Thus �(HF [pk]) � �(C1 � � � � � Ck � pCk+1 � � � � � pN�1CN+k�1) and this latter term is

�nite since it is a homomorphic image of a �nite direct sum of �nite groups.

In the next remark and in the following we deal with the algebraic entropy of endomor-

phisms of p-groups. For an illustration of the notion of algebraic entropy and its properties

we refer to [8] and to our survey paper [11].

Remark 2.5. If a Jp-algebra A is a free Jp-module of �nite rank, then it is integral over Jp.

This implies (see [8, Proposition 2.4]) that every endomorphism � of a semi-standard p-group

G such that End(G) = A�Es(G) has algebraic entropy ent(�) equal to 0. In fact, ent(�) = 0

is equivalent to the fact the � is pointwise integral over G. Looking at Theorem 2.4, one

could conjecture that the strict inclusion Inv~(G) ( I(G) is related to the property of G of

having the total entropy ent(G) = 0 (i.e., ent(�) = 0 for all � 2 End(G)). The following

discussion will show that this conjecture is wrong - see Proposition 2.8 below.

At this point, a natural question arises. Can we �nd separable semi-standard p-groups G

satisfying the hypotheses of Theorem 2.4?

The answer comes from the realization theorems proved by Corner in his outstanding

paper on endomorphism rings of separable p-groups. One of these theorems ([4, Theorem

4.1]) is the following.

Theorem 2.6. (Corner). Let A be a Jp-algebra which is the completion of a free Jp-module

of countable rank. If A satis�es the following condition:

(*) there exists a descending sequence of right ideals A � A1 � A2 � � � � � An � � � �

such that Ai=Ai+1 is a free Jp-module of �nite rank for each i and pA = \i(pA+ Ai)
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then there exists a separable semi-standard p-group G such that End(G) = A� Es(G).

In [8, Example 5.12] a Jp-algebra A integral over Jp was constructed using the Nagata

idealization satisfying the hypothesis of Corner's Theorem 2.6. The p-group G obtained via

Theorem 2.6 such that End(G) = A � Es(G) had total entropy ent(G) = 0, because of the

integrality of A over Jp.

Another powerful theorem in Corner's paper ([4, Theorem 2.1]) is the following

Theorem 2.7. (Corner) Let �B be a torsion-complete p-group with an unbounded basic sub-

group B of cardinality � 2@0, and let � be a separable closed subring of End( �B) that leaves

B invariant and satis�es the condition

( C ) if � 2 � and �(pn �B[p]) = 0 for some n, then � 2 p�.

Then there exits a family G� (� 2 �) of 22
@0 pure subgroups of �B containing B such that

(a) for each � 2 �, End(G�) = �� Es(G�);

(b) for distinct �; � 2 �, every homomorphism G� ! G� is small.

Using this theorem, in [8, Theorem 4.4] it was proved that there exist 22
@0 non-isomorphic

groups G with standard basic subgroup B = �n2NZ(pn) and contained in the torsion-

completion �B of B, such that End(G) = A � Es(G), where A is isomorphic to the p-adic

completion of the polynomial ring Jp[X]. Furthermore, if ! denotes the endomorphism of G

corresponding to the indeterminate X, then ent(!) =1. This depends on the fact that ! is

not only non-algebraic over Jp, but it fails also to be pointwise integral over G.

To sum up, we can answer the above question as follows.

Using Corner's realization theorems we can construct separable semi-standard p-groups

G satisfying the hypotheses of our Theorem 2.4, with the Jp-algebra A either integral over

Jp, or neither integral over Jp nor pointwise integral over G. All these groups do not have

minimal full inertia. This shows that the proper inclusion Inv~(G) ( I(G) is independent

on the vanishing of the total entropy of G. In conclusion, we have seen that

Proposition 2.8. There exists separable semi-standard p-groups G which do not have mini-

mal full inertia such that ent(G) = 0 and also such that ent(G) =1.

3 Minimal full inertia for direct sums of p-groups

In this section we investigate direct sums of groups which have minimal full inertia and of

groups which do not have minimal full inertia.

We are interested in identifying fully inert subgroups up to commensurability. The fol-

lowing lemma was proved in [2, Lemma 7] using an idea in [13, Lemma 3.3].

Lemma 3.1. (Chekhlov) Let G = �i2IGi be a direct sum of arbitrary groups, �i : G ! Gi

the canonical projections, and H a fully inert subgroup. Then H is commensurable with

�i2I�i(H).
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Thus from now on, when dealing with fully inert subgroups H of a direct sum of cyclic

groups �i2IGi, we will assume that H = �i2IHi, with Hi � Gi for all i. This situation is

expressed by saying that H is a box-like subgroup of G in [7], where this terminology was

introduced and this notion was used for direct sum of divisible groups; it was used also more

recently in [6], [12] and [3].

The following result concerning box-like subgroups was proved in [2] and [3] and is based

on results in [2] and [12]. For the convenience of the reader we present a proof of part (b);

this is a very slight modi�cation of that given in [3, Lemma 2.2].

Lemma 3.2. (Chekhlov, Chekhlov-Danchev-Goldsmith) Let G = �i2IGi be a direct sum of

arbitrary groups, �i : G! Gi the canonical projections, and H = �i2IHi a box-like subgroup.

If H is fully inert in G, then the following conditions hold:

(a) Hi is fully inert in Gi for all i and is fully invariant in Gi for almost all i;

(b) if I is in�nite, there exists a �nite subset I0 of I such that �i2InI0Hi is fully invariant

in �i2InI0Gi.

Proof. Proof of part (b): By point (a), there exists a co�nite subset I1 of I such that Hi is

fully invariant in Gi for all i 2 I1. We will prove that there exists a co�nite set of indices I0
contained in I1 such that the whole direct sum

L
i2I0

Hi is fully invariant in
L

i2I0
Gi.

Consider the set

S = fj 2 I1 j there exist i 2 I1 and �ij : Gi ! Gj such that �ij(Hi) � Hjg:

If the set S is in�nite, for each j 2 S choose an index i 2 I1 and a map �ij : Gi ! Gj such

that �ij(Hi) � Hj and de�ne the endomorphism  of
L

i2I Gi by setting  � Gi = �ij for

each one of these chosen maps �ij, and extend trivially on the remaining direct summands

of G. By the de�nition of S, for each j 2 S and the corresponding map �ij there exist

an element xj 2 Gj such that xj 2 �ij(Hi) n Hj. Now the quotient group ( (H) + H)=H

contains the cosets xj + H for each one of these indices j. We claim that these cosets

are all distinct; in fact, if xj + H = xt + H for some j 6= t, then xj � xt 2 H, so that

�j(xj � xt) = xj 2 �j(H) = Hj, absurd. Therefore the quotient ( (H) + H)=H is in�nite,

and this contradicts the full inertia of H. We derive that the set S is �nite. Removing this

�nite set from I1, we obtain a co�nite subset I0 of I such that for all j 2 I0 and for all i 2 I1
-and a fortiori for all i 2 I0- it happens that �(Hi) � Hj for all maps � : Gi ! Gj. Since

End(
L

i2I Gi) �=
Q

iHom(Gi;
L

j2IGj) �
Q

i;jHom(Gi;Gj), it follows that
L

i2I0
Hi is fully

invariant in
L

i2I0
Gi.

From Lemma 3.1 and Lemma 3.2 it is possible to deduce a very simple proof of the main

theorem in [13], which states, in our terminology, that direct sums of cyclic p-groups have

minimal full inertia. The proof was very long and elaborate, split into the bounded and the

unbounded cases, with many intermediate results of independent interest. Even allowing for

the fact that detailed proofs of these lemmas require careful arguments, the total e�ort to

prove the theorem in this way is much lower than that required in [13] and as such, this

7



represents a substantial improvement on the original solution. We illustrate this by including

the proof as a corollary to Lemma 3.2.

Corollary 3.3. If G is a direct sum of cyclic p-groups, then G has minimal full inertia.

Proof. Suppose that G =
L

i2I Ci where each Ci is a cyclic p-group, and let H be an arbitrary

fully inert subgroup of G, As observed above, we may assume that H =
L

i2I Hi is a box-like

subgroup of G. Then it follows from Lemma 3.2 that there is a �nite subset I0 of I such that

M =
L

i2InI0
Hi is fully invariant in G0 =

L
i2InI0

Ci; setting F0 =
L

i2I0
Ci, we have that

H � F �M where F =
L

i2I0
Hi is a subgroup of the �nite group F0. Now it is well known

{ see for example [13, Lemma 1.5] { that there is a subgroup F1 of F0 such that F1 �M is

fully invariant in G. Since F1 is also �nite we have H � F �M � F1 �M and the latter is

fully invariant in G. Since H was an arbitrary fully inert subgroup of G, G has minimal full

inertia.

We consider now direct sums of a �xed group G which has minimal full inertia, under

the additional hypothesis that G is fully transitive; recall that a separable p-group is fully

transitive. We start with the case of a �nite direct sum.

Lemma 3.4. Let X = G1 �G2 � � � � �Gn, where Gi = G for all i, and G is an unbounded

fully transitive p-group which has minimal full inertia. Then X also has minimal full inertia.

Proof. Let H be a fully inert subgroup of X. Then H is commensurable with H1�H2�� � ��

Hn, where Hi = H \ Gi, which is still fully inert. Then Proposition 3.1 and the fact that

G is fully transitive ensure that each Hi is commensurable with G(ui) (i = 1; 2; � � � ; n), for

suitable increasing sequences of ordinals or symbols1. So H is commensurable with G(u1)�

G(u2)�� � ��G(un) and this subgroup is still fully inert. Therefore, again by Proposition 3.1,

for every homomorphism � : Gi ! Gj, with i 6= j, the quotient (�(G(ui)) +G(uj))=G(uj) is

�nite. In particular, if � = 1G, we have that

(G(ui) +G(uj))=G(uj) = G(ui \ uj)=G(uj):

Clearly this implies that each subgroup G(ui) is commensurable with G(u1 \ u2 \ � � � \ un).

In conclusion, setting w = u1 \ u2 \ � � � \ un, we have that H is commensurable with

G(w)�G(w)� � � � �G(w) = X(w), therefore X has minimal full inertia.

We extend now Lemma 3.4 to in�nite direct sums of a group with minimal full inertia.

Theorem 3.5. Let X = �i2IGi, where each Gi is isomorphic to a �xed unbounded fully

transitive p-group which has minimal full inertia. Then X has minimal full inertia.

Proof. Let H be a fully inert subgroup of X and let �i : X ! Gi be the canonical projections.

From Lemma 3.2 we get that H is commensurable with �i2I�i(H), with �i(H) fully inert in

Gi for all i 2 I; furthermore, there exists a �nite subset I0 of I such that X = C � A where
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C = �i2I0Gi and A = �i2InI0Gi and �i2InI0Hi is actually fully invariant in A. Note that C

has minimal full inertia, by Lemma 3.4, and �i2I0Hi is fully inert in C.

Since A is fully transitive, �i2InI0Hi can be expressed in the form A(v) for some suitable

U -sequence v. Lemma 3.4 ensures that �i2I0Hi is commensurable with a fully invariant

subgroup of C of the form C(u) for a U -sequence u. Hence we have that H is commensurable

with C(u)�A(v), thus C(u)�A(v) is fully inert inX, and these summands are fully invariant

in C;A, respectively.

We are now in a position to apply Lemma 3.2. For any homomorphism  : C ! A the

quotient ((C(u)) + A(v))=A(v) is �nite. In particular, choosing  to be an isomorphism

from C onto a direct summand Z of A, say A = Z � Y , we have that (C(u)) = Z(u). A

simple argument shows that Z(v) is commensurable with Z(u \ v).

Similarly, for any homomorphism � : A ! C, we have (�(A(v) + C(u))=C(u) is �nite.

Now A = Z � Y and choosing � in such a way that �(Z) = C, we have A(v) = Z(v)� Y (v)

and �(Z(v)) = C(v). So we have that (C(v) + C(u))=C(u) = C(u \ v)=C(u) is �nite;

hence C(u) is commensurable with C(u\ v). But C(u\ v)=C(v) �= Z(u\ v)=Z(v) is �nite,

hence also C(v) is commensurable with C(u \ v). It now follows immediately that H is

commensurable with C(v)�A(v) = X(v). Thus X has minimal full inertia, as required.

Theorem 3.5 applies in particular when the groups Gi are isomorphic to a �xed unbounded

torsion-complete group.

The next example shows that the class of groups which have minimal full inertia is not

closed under taking �nite direct sums.

Example 3.6. Let G = B1 � �B2, where B1 is an unbounded direct sum of cyclic p-groups

and �B2 is an unbounded semi-standard torsion-complete group. We claim that G does not

have minimal full inertia.

In fact, the subgroup H = f0g � �B2[p] is fully inert, by Proposition 3.1; the only non-

obvious condition to be veri�ed is that, for every homomorphism � : �B2 ! B1, (� �B2[p] +

f0g)=f0g = � �B2[p] is �nite. But � is small by a well-known result of Megibben (see [10,

Exercise 14, p. 317]), hence �(pN �B2[p]) = 0 for a suitable N 2 N. As �B2 is semi-standard, it

follows that � �B2[p] is �nite, so H is fully inert. On the other hand, H is not commensurable

with a fully invariant subgroup of G; as G is fully transitive such a subgroup is of the form

G(u) for some sequence u. But G(u) = B1(u) � �B2(u), and B1(u) is never �nite, unless

B1(u) = 0, equivalently, u = (1;1; � � � ), in which case also �B2(u) = 0.

Some comments on Example 3.6 are in order. First, in place of B1 we could use any

unbounded separable p-group not containing an unbounded torsion-complete group. Fur-

thermore, if either B1 or �B2 is bounded, then G has minimal full inertia, since it becomes

either torsion-complete or a direct sum of cyclic groups. Example 3.6 is also interesting,

since it shows that also groups with \big" endomorphism ring may fail to have minimal full

inertia and that the property of being semi-standard is independent of the property of having
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minimal full inertia. Finally, Example 3.6 may be generalized by the following proposition,

which enables us to produce many p-groups which do not have minimal full inertia.

Proposition 3.7. Let G = A � C be a separable p-group which is the direct sum of two

unbounded groups A and C, such that A is semi-standard and every homomorphism from A

to C is small. Then G does not have minimal full inertia.

Proof. Let H = A[p] � f0g. Then the same argument used in Example 3.6 shows that H

is fully inert in G. Assume, by way of contradiction, that H is commensurable with a fully

invariant subgroup of G, say, G(u) = A(u) � C(u) for some U-sequence u = (u0; u1; � � � );

since G is separable u0 is a non-negative integer. Then C(u) must be commensurable with

f0g, that is, it must be �nite. However, as C is unbounded, this is impossible, so we get the

desired contradiction.

Lemma 3.2 make it possible to construct more examples of p-groups which fail to have

minimal full inertia using direct sums of these groups. Selecting �nitely many groups obtained

in the above mentioned Theorem 4.4 of [8], which uses Corner's Theorem [4, Theorem 2.1],

we get the following

Example 3.8. Let G1; G2; � � � ; Gn be non-isomorphic groups such that End(Gi) = A �

Es(Gi), where A is isomorphic to the p-adic completion of the polynomial ring Jp[X] and

every homomorphism Gi ! Gj is small for i 6= j. We claim that G = �1�i�nGi does not

have minimal full inertia.

In fact, choose arbitrary countable subgroups Hi in Gi for all i. Using the notation of

Theorem 2.4, set Ki = H
Jp[X]
i [p] for all i. We claim that the subgroup K = �1�i�nKi is fully

inert in G but not commensurable with any fully invariant subgroup, so that Inv~(G) ( I(G).

The fact that K is fully inert follows from Lemma 3.2, because all the subgroups Ki are fully

inert in Gi, by Theorem 2.4, and the fact that every homomorphism �ij : Gi ! Gj is small

for i 6= j implies that �ijKi is �nite; therefore (�ijKi+Kj)=Kj is �nite too. Finally, K is not

commensurable with a fully invariant subgroup of G because such a subgroup is uncountable

and K is countable.

Again using the results and the notation of Theorem 4.4 of [8], we can generalize the

preceding example to the following

Proposition 3.9. Let G� (� 2 �) be a family of 22
@0 separable groups with basic subgroup

B = �nZ(pn) such that End(G�) = A � Es(G�), where A is isomorphic to the p-adic com-

pletion of the polynomial ring Jp[X], and every homomorphism G� ! G� is small for � 6= � .

Then G = ��G� does not have minimal full inertia.

Proof. Fix a � 2 � and take a countable subgroup H� in G� . Using the notation of Theorem

2.4, set K� = H
Jp[X]
� [p]. We claim that the subgroup K = ��2�K�, where K� = 0 for

all � 6= � , is fully inert in G but not commensurable with any fully invariant subgroup, so

that Inv~(G) ( I(G). The fact that K is fully inert follows from Lemma 3.2, since all
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the subgroups K� are trivially fully invariant in G�, except K� which is fully inert in G� ,

and since every homomorphism ��� : G� ! G� small implies that ���K� is �nite; therefore

(���K� +K�)=K� is �nite too. Furthermore, condition (c) of Lemma 3.2 is satis�ed trivially

for I0 = f�g. Finally, K is not commensurable with a non-zero fully invariant subgroup of

G, because such a subgroup is uncountable and K is countable.

4 Trying to enlarge the family of p-groups with minimal

full inertia

Up to now the only concrete examples of separable p-groups with minimal full inertia at

disposal are the direct sums of cyclic groups, the torsion-complete groups and the direct

sums of a �xed torsion-complete group. We would like to enlarge the family of groups with

minimal full inertia, even if we guess that a characterization of these groups via structural

properties of the groups themselves, or of their endomorphism ring, is hopeless.

To justify this idea, we consider properties of p-groups G and of their endomorphism ring

End(G) investigated by Arthur D. Sands in [18]. Sands calls su�ciently projective a separable

p-group G such that every countable subset is contained in a direct summand of G that is

a direct sum of cyclic groups. Clearly direct sums of cyclic groups are su�ciently projective

and a torsion-complete group is su�ciently projective exactly if it is bounded. Hill gave in

[14] an example of a su�ciently projective group which fails to be a direct sum of cyclics.

Sands notes in [18] that su�ciently projective groups and torsion-complete groups satisfy the

following technical condition:

(C) given any Cauchy sequence fgigi2N in G[p] which is not convergent in G, there exists

a direct sum of cyclic groups H and a homomorphism � : G ! H such that f�(gi)gi2N is

Cauchy but not convergent in H.

Warning: the preceding condition (C) introduced by Sands is not to be confused with

condition (C) in Corner's Theorem 2.7.

One of the main results in Sands's paper, [18, Theorem 5], is that, if a group G satis�es

condition (C), then the Jacobson radical J(End(G)) of End(G) equals H(G) \ C(G), where

H(G) is the Pierce radical mentioned in the Introduction, and C(G) the ideal of End(G)

consisting of those endomorphisms which send Cauchy sequences of the socle G[p] into con-

vergent sequences. In general the inclusion H(G) \ C(G) � J(End(G)) holds, and Dugas

gave in [9] an example of p-group for which the strict inclusion holds.

Thus we may consider this condition (C) for a p-group G and the condition J(End(G)) =

H(G) \ C(G) for its endomorphism ring, and we may ask whether groups satisfying these

conditions have minimal full inertia. The next result shows that having minimal full inertia

is independent of both these conditions.
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Proposition 4.1. There exist separable p-groups G satisfying Sands's condition (C), or such

that J(End(G)) = H(G)\C(G), which have minimal full inertia and also which do not have

minimal full inertia.

Proof. Concerning condition (C), on the one hand, we have seen in Example 3.6 that the

group G = B1 � �B2, where B1 is an unbounded direct sum of cyclic p-groups and �B2 is

an unbounded semi-standard torsion-complete group, does not have minimal full inertia. It

is quite obvious that this group G satis�es condition (C). On the other hand, both direct

sums of cyclic groups and torsion-complete groups satisfy condition (C) and have minimal

full inertia.

Concerning the condition J(End(G)) = H(G) \ C(G), on the one hand, the results

by Sands show that su�ciently projective groups, and in particular direct sums of cyclic

groups, and torsion-complete groups satisfy this equality; all these groups have minimal

full inertia. On the other hand, Sands noted in [18] that the Pierce group G such that

End(G) = Jp � 1G � Es(G) also has this property; this group G was the �rst example of group

which has not minimal full inertia.

We conclude this section with the following still unanswered question: do su�ciently

projective groups have minimal full inertia?

5 The uniform full inertia set

Before our present investigation, there was only one available example of fully inert subgroup

of a p-group not commensurable with a fully invariant subgroup, namely, the socle B[p] of

a basic subgroup B of the separable p-group G provided by Theorem 1.2, which uses the

Pierce's construction of G such that End(G) = Jp � 1G � Es(G) (see [13, Theorem 4.2]).

In [6, Proposition 6.2] it was proved that the socle B[p] is not uniformly fully inert, that

is, the cardinalities of the quotients (�B[p] + B[p])=B[p], ranging � in End(G), do not have

a uniform bound k 2 N.
This fact, together with many other exhibited examples for di�erent families of abelian

groups, tempted the authors of [6] to formulate the conjecture (already presented in [5]) that

every uniformly fully inert subgroup of a group G is commensurable with a fully invariant

subgroup. Following [6], we denote by Iu(G) the subset of I(G) consisting of the uniformly

fully inert subgroups, that is, of the subgroups H such that j(�H + H)=Hj � N for all

endomorphisms � and for a �xed positive integer N . In [6] it was proved that Inv~(G) �

Iu(G). We call Iu(G) the uniform full inertia set of G.

Since this paper o�ers several new examples of fully inert subgroup of p-groups not com-

mensurable with fully invariant subgroups, our goal is to show that also these examples are not

uniformly fully inert, thus strengthening the conjecture in [6], namely, that Inv~(G) = Iu(G)

for all groups G. More precisely, we would like to prove that the fully inert subgroups exhib-

ited in Theorem 2.4, Proposition 3.7 and Proposition 3.9 are not uniformly fully inert. The

next three results provide these desired proofs.
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We prove the �rst result for the fully inert subgroup HF [p] of G, and we leave to the

reader to extend the result to higher socles HF [pk], for k > 1.

Proposition 5.1. The fully inert subgroup HF [p] of G of Theorem 2.4 is not uniformly fully

inert.

Proof. We must show that for every positive integer k there exists an endomorphism � 2

End(G) such that j(�K + K)=Kj � k, where K = HF [p]. We have seen in the proof of

Theorem 2.4 that K is contained in a countable pure subgroup C = �i2NCi, where each Ci

is a �nite direct sum of cyclic groups isomorphic to Z(pi). As K is in�nite, there exists a

positive integer n such that jK \ �1�i�nCij � k. Note that �1�i�nCi is a direct summand

of G. We shall �nd a embedding � : �1�i�nCi ! G such that Im(�) \ C = 0,. Extend

� to an endomorphism of G, still called �, which sends a complement of �1�i�nCi to 0.

In such a way we have that �K which contains �(K \ �1�i�nCi), has cardinality � k and

(�K +K)=K �= �K, because Im(�) \ C = 0 implies �K \K = 0; so our claim will follow.

In order to de�ne the map �, we make use of an idea used in the proof of [6, Lemma 6.1].

By a classical result by Kov�acs (see [10, Theorem 5.12]), the subgroup C is contained in a

basic subgroup B of G. Since G is uncountable, by Lemma 2.3, and B is countable since G

is semi-standard, we have that the divisible group G=B has uncountable rank, therefore it

contains a subgroup A=B isomorphic to C. But C, being a direct sum of cyclic groups, is

pure-projective, hence we have a direct decomposition A = B � C 0, with C 0 �= C; therefore

B \C 0 = 0 and consequently also C \C 0 = 0. Now the desired map � : �1�i�nCi ! G is the

restriction to �1�i�nCi of the isomorphism C �= C 0. Thus we are done.

The second result makes use of an idea used in the proof of [11, Lemma 3.2].

Proposition 5.2. The fully inert subgroup H = A[p]�f0g of G = A�C of Proposition 3.7

is not uniformly fully inert.

Proof. We must show that for every positive integer k there exists an endomorphism � 2

End(A� C) such that j(�A[p] + A[p])=A[p]j � k.

Let B = �i2Iheii be a basic subgroup of A and B0 = �j2Jhe
0
ji a basic subgroup of C.

Select a sequence of cyclic summands heini (n 2 N) of B and a sequence of cyclic summands

he0jni (n 2 N) of B
0 of strictly increasing order, such that the order of e0jn is greater than or

equal to the order of ein . Then de�ne a map � : B ! B0 by embedding each ein into e
0
jn
, and

sending to zero all the remaining generators ei.

Choose now an index N such that j(�1�n�Nheini)[p]j � k and de�ne the endomorphism

� of G = A � C in the following way: �C = 0, �(�1�n�Nheini) = �(�1�n�Nheini) and �

vanishes on a complement of �1�n�Nheini in A. It is clear that j(�A[p] + A[p])=A[p]j � k,

since (�A[p] + A[p])=A[p] �= �((�1�n�Nheini)[p]).

The proof of the last result makes use of arguments similar to those used in Propositions

5.1 and 5.2, taking care that the groups G� have the same basic subgroup B = �nZ(pn), and
that the subgroup K� is in�nite. We just sketch the proof and leave the details to the reader.
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Proposition 5.3. The fully inert subgroup K of G = ��2�G� of Proposition 3.9 is not

uniformly fully inert.

Proof. We must show that for every positive integer k there exists an endomorphism � 2

End(G) such that j(�(K) + K)=Kj � k. We use the notation of Proposition 3.9: so K is

the direct sum of a single subgroup K� and the zero subgroups of all the G� with � 2 � and

� 6= � . Now it follows from the proof of Proposition 5.1 that for any given positive integer

k, there is an endomorphism, �� say, of G� such that j(�� (K) + K� )=K� j � k. Extend ��
to an endomorphism � of G by setting � � G� = �� and setting � to be identically zero

on the complement
L

� 6=� G� of G� in G. It follows immediately that j(�(K) + K)=Kj =

j(�� (K� ) +K� )=K� j � k.

Question 7.5 in [6] asks whether the p-group G of Theorem 2.4 satis�es the equality

Inv~(G) = Iu(G). In the same way we may ask whether this equality holds also for the

groups considered in Proposition 3.7 and Proposition 3.9.
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