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An electron donor—acceptor dyad based on BODIPY (acceptor) and
anthracene (donor) plays either the role of sensitizer or emitter in
triplet—triplet annihilation photon up-conversion (TTA-UC). This
Janus-like behavior was achieved via altering the relative ordering
of charge-transfer and local excited state energies in the dyad
through the polarity of TTA-UC media.

Triplet-triplet annihilation up-conversion (TTA-UC)" has attracted
much attention during the past decade and found applications in
material science,” solar energy conversion,® solar fuels,* and bio-
imaging.” The TTA-UC process takes place in multi-chromophore
systems consisting of energetically optimized pairs of sensitizer and
emitter molecules. This unique process allows for the emission of
high-energy photons from lower-energy excitation photons with high
photoluminescence quantum yield (PLQY) at very low intensity and
extremely low spectral power density of the optical source used,
allowing for use of sunlight.® Generally, a TTA-UC system requires
two distinct molecular components: a sensitizer that is excited to
form the triplet state and transfer energy to the triplet state of a
second component: an emitter. The emitter is capable of forming an
emitting singlet state via bimolecular triplet-triplet annihilation with
energy higher than the one used to excite the sensitizer.

One of the major challenges in the design of TTA-UC systems is to
integrate the sensitizer and emitter functions into a single molecule
architecture, which would open up new potential applications.
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The Janus-faced chromophore: a donor—acceptor
dyad with dual performance in photon

#*° Michael Oldenburg,® Dmitry Busko,®
¢ Bryce S. Richards, {2 Mathias O. Senge, (©°

Attempts to realize such materials based on dimers,” core-shell
molecules,® dendrimers and oligomers® have been reported. How-
ever, a question of fundamental importance for photonic applica-
tions arises from these studies: can a molecule behave both as an
efficient emitter fluorophore and as a triplet excited state sensitizer?
It is well-known that intersystem crossing (ISC) in a chromophore
competes with emission from the singlet excited state. Efficient ISC
is a loss channel leading to a dramatic reduction in lifetime and
fluorescence quantum yield.'® While examples of the chromophores
simultaneously exhibiting fluorescence and phosphorescence
emission have been reported, the only known general approach
to control these functions of the dyes is based on thermally
activated delayed fluorescence.

We have recently demonstrated that photo-induced electron
transfer (PeT) in BODIPY donor-acceptor dyads allows to switch
between strong fluorescence emission and efficient ISC processes,
depending on the polarity of the solvent in which they are
dissolved." As shown in Fig. 1 for an exemplary BODIPY-anthracene
dyad (BAD), in a non-polar solvent the dyad behaves as a typical
fluorophore, possessing high fluorescence quantum yield (up to 0.9)
and negligible ISC. This can be explained via the relative ordering of
the excited states. In non-polar media a charge-transfer (S") state of
the dyad is significantly higher in energy than the local excited state
of the BODIPY (S$®P"); this makes the PeT process inefficient.

non-polar media

polar media

high k|sc
low k¢

Fig. 1 Photophysics of the BAD molecule in different media. In a non-
polar media the BAD demonstrates high fluorescence rate (k) and low ISC
rate (kisc) values. In a polar media — low fluorescence rate (k¢) and high ISC
rate (kisc) values.
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Alternatively, in polar solvents, a charge-transfer state of the
dyad is stabilized due to electrostatic interactions with the media,
resulting in its energy level being below that of S®™", thus driving the
PeT process. The populated charge transfer state can further recom-
bine into a local triplet state of either the donor or acceptor subunits
via spin-orbit charge transfer (SOCT) or a radical-pair intersystem
crossing (RP-ISC) mechanisms. The high yield of triplet states in
these processes and their long lifetimes allow for practical applica-
tions involving triplet state formation. For instance, singlet oxygen
quantum yield (@, = 0.67 in ethanol)'> of BAD is comparable or even
higher than for conventional triplet sensitizers (e.g. Rose Bengal and
methylene blue possess @, of 0.86 and 0.52, respectively), that allows
application of such dyads in photodynamic therapy.

We hypothesize that such a combination of photophysical
properties could allow BAD to function either as sensitizer or emitter
in TTA-UC. Such functionality could be realized via combining BAD
with a second component that possesses appropriate singlet and
triplet excited state energies, and an adjustment of the polarity of the
media to block/allow the PeT process. With this in mind, we studied
the behavior of two systems: (i) BAD combined with perylene in
dichloromethane (DCM, ¢ = 8.93); and (ii) BAD combined with
{5,10,15,20-tetrakis(4-fluorophenyl)tetrabenzoporphyrinato}-
palladium(u) (PATBTFP) in toluene (¢ = 2.38). In the first system,
BAD should act as the sensitizer, whereas in the second it should
act as the emitter. This dual performance of BAD is schematically
illustrated in Fig. 2 and has not been demonstrated for any other
dye so far.

The precise details explaining the physical basis for UC in the
proposed systems are discussed in the following. Fig. 3a shows the
absorption spectrum (Amax = 505 nm) of BAD dissolved in DCM
together with the emission profile of a laser diode used for
UC excitation. Fig. 3b displays the UC emission spectra of the
BAD-perylene pair dissolved in deoxygenated DCM with different
molar ratios of BAD and perylene. Upon excitation at 525 nm, the
solutions exhibit anti-Stokes blue emission of perylene centered at
445 nm. This result confirms that a triplet-triplet energy transfer
TTET from the T, state of BAD to the T state of perylene, followed by

PATBTFP
1

b)
A SO-ISC TTA
e _\_

PATBTFP
T

+
TTET BDP BDP
1

O Ar Q 638 nm

Ar = 4-fluorophenyl
Sensitizer g PITETFP s So

Fig. 2 Photophysical processes taking place in: (a) an UC system employing
BAD as a sensitizer and perylene (PER) as an emitter; (b) UC system based on
PdTBTFP as a sensitizer and BAD as an emitter.
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Fig. 3 (a) Normalized absorption spectrum of BAD in DCM and emission

profile of a laser diode (525 nm) used for UC excitation; (b) UC lumines-

cence of perylene under excitation with the 525 nm laser diode (power

density of 5 W cm™2) BAD—perylene mixtures of different molar ratios,

dissolved in deoxygenated DCM (cgap = 1 x 107> M).

annihilation of two perylene triplets (Fig. 2a), is taking place. Since
the triplet state of BAD was found to be non-emissive, we used
transient absorption spectroscopy measurements to quantify the
efficiency of TTET (¢rrer) in the BAD-perylene pair.

Transient absorption data for BAD and BAD-perylene mixtures
are presented in Fig. 4 (see Fig. S1, ESI} for details). The measured
triplet state lifetime of BAD in deoxygenated DCM was found to be
246 ps. Fig. 4 shows that in the presence of perylene the triplet state
lifetime of BAD is strongly decreased due to TTET from BAD to the
triplet state of perylene.

¢rrer was calculated from eqn (S1, ESIt). dyper values of 0.93
and 0.99, obtained for 1:1 and 1: 10 mixtures, respectively, indicate
that perylene is a very efficient quencher of the BAD triplet state.
The BAD triplet state decay could not be measured in the 1:100
mixture due to very fast deactivation of the T; state. This explains
the results of Fig. 3b, where a lower than expected increase in the
UC intensity was observed with increasing BAD: perylene ratios.
Indeed, even at a 1:10 ratio we observed very efficient TTET and,
therefore, saturation of the concentration of perylene triplet states.
Thus, any further increase of the perylene concentration has a
slightly negative impact; the UC intensity decreases due to
reabsorption of emitted photons.

¢ 1:1

¢ 1:10

¢ BAD
—1=16 Uus
—1=1.4 us
——1=246 Uus

Time, s

Fig. 4 Decays the BAD ground state bleach (measured at 505 nm) in
transient absorption experiment for pure BAD and BAD—perylene mixtures
upon excitation at 355 nm at a fluence of 0.5 mJ cm™2 per pulse.

This journal is © The Royal Society of Chemistry 2018
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Fig. 5 (a) Dependence of ¢1ra as function of Peyc. (b) Dependence /yc as
function of Peye. Caap = 1 x 107> mol L%, BAD : perylene ratio 1:100, Aeyc =
525 nm.

The efficiency of triplet-triplet annihilation (¢rra) was esti-
mated via global fitting of the UC decays measured for the fixed
BAD :perylene ratio at variable excitation power density. ¢rra
was calculated from eqn (S2 and S3) (ESIt) in line with previous
works."?

The global fitting of the data presented in Fig. S2 (ESIY) gives
the decay rate of the emitter triplet state kgy = 0.00067 ps™ .
This corresponds to the lifetime of the perylene triplet state
Therylene = 1/ken = 1.5 ms. The global fitting of the UC decays with
eqn (S2, ESIT) was also used for estimation of the initial fraction of
decay that occurs through the TTA (/) and calculation of ¢ypa with
eqn (S3, ESIT). Fig. 5a shows that ¢ypa grows slowly from 0.6 (at
310 mW cm™?) to 0.88 (at 70 W cm™?). This range approximately
corresponds to the UC threshold (Iy,) of 507 mW cm > estimated
from the intensity dependence presented in Fig. 5b by fitting with
eqn (S4, ESIT)."* It is commonly accepted that n = 2 (in eqn (S5,
ESIT)) at low excitation limit (Pey. < Ii,) and 7 =1 at high excitation
limit (Poe > Ip)."* In other words Iy, signifies what P is
required for relaxation of emitter triplet states mainly via
triplet-triplet annihilation.

The obtained value of I, is rather high for TTA-UC systems.
However, we can expect a significant lowering I, by changing the
experimental conditions. Iy, can be expressed with eqn (S6, ESIT).
Since Iy, is inversely proportional to the number of absorbed
photons, an increase in BAD concentration together with the
optimal excitation wavelength (505 nm) provides a straightforward
way to reduce the I;, down to tens of mW cm ™2

As discussed earlier, a change of the solvent polarity dramatically
alters the probability of the population of the BAD triplet state. In a
non-polar environment, BAD decays preferentially from the singlet
state, whereas in polar media it forms a charge-transfer state from
which the local triplet state T5™" can be produced. Thus, in low
polarity solvents we expect BAD to function as the UC emitter. To
prove this concept we investigated UC in a PATBTFP-BAD system
dissolved in toluene. Fig. 6a shows the absorption spectrum of
PATBTFP with absorption maxima at 440 and 630 nm. The UC

This journal is © The Royal Society of Chemistry 2018
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Fig. 6 (a) Normalized absorption spectra of PdTBTFP in toluene and
emission profile of a laser diode (638 nm) used for UC excitation; (b) UC
luminescence of BAD under excitation with the 638 nm laser diode (power
density of 9.5 W cm™2) at different PdTBTFP:BAD ratios dissolved in
deoxygenated toluene (Cpargree = 1 X 107° M).

emission of the PATBTFP-BAD pair dissolved in deoxygenated
toluene was studied upon excitation at 638 nm for different ratios
of PATBTFP and BAD. PATBTFP-BAD solutions exhibit UC emission
of BAD with a maximum at 529 nm, whereas the near-infrared
emission at 805 nm corresponds to phosphorescence of
PATBTFP. In order to gain more insight into TTET between
PATBTFP and BAD, we investigated decays of the PdTBTFP
phosphorescence. The decay of pure PATBTFP shows single
exponential behavior with a lifetime (tpgrprep) of 331 ps. In
contrast, mixtures of PATBTFP and BAD dissolved in toluene
show double exponential behavior with 7, < Tpargrre and 1, >
Tparsrre (Fig. S3, ESIT).

We assume that the short-lived component reflects the
lifetime decreasing due to triplet-triplet energy transfer,
whereas the long-lived component reflects back-energy transfer
from the BAD triplet state to the triplet state of PATBTFP due to
practically equal energy of triplet levels of two molecules. Thus,
we estimated initial TTET efficiency (without taking into
account the back energy transfer) in agreement with eqn (S7,
ESIT). Fig. 7a displays the dependence of ¢rrer as a function of
BAD concentration. With an increase of BAD concentration we
observed a rise of ¢rrer reaching 70-80% starting from the
ratio 1:20.

Using the aforementioned global fitting approach (Fig. S4,
ESIt) ¢rra was estimated. The global fitting with eqn (S2, ESIf)
leads to the value of kg = 0.00175 pus™ ' or the lifetime of the
BAD triplet state in toluene tEap = 1/kgy = 571 ps. This value
appears high, but is of the same order of magnitude as the
value estimated earlier in DCM via transient absorption mea-
surements. Fig. 7b displays the changes of ¢ra as a function of
the excitation power density. The value of ¢ s grows from 0.14
(at 28 mW cm ™ ?) to 0.78 (at 74 W cm ™ ?). This behavior roughly
corresponds to I, estimated from Fig. 7c and eqn (S4, ESIt) as
31 mW cm 2. Finally, we measured UC PLQY according to the
technique presented by de Mello et al.'> We found that PLQY of
the BAD-perylene pair (concentration 10> M and 10 ° M,

Chem. Commun., 2018, 54, 1607-1610 | 1609
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Fig. 7 (a) Dependence of ¢rrer as function of the PATBTFP: BAD ratio,
Ceap = 1 x 107> mol L™ . (b) Dependence of ¢rra as function of Peyc.
(c) Dependence lyc as function of Peyc. Caap = 1 x 107> mol L%, PATBTFP:
BAD ratio 1:100, Aexc = 638 nm.

respectively) is 1.2 £+ 0.2%. We explain the large difference to a
previously reported PLQY of ~10.1%,'® noting that, firstly, in
the previous work PLQY was estimated via the use of a reference
fluorescent molecule (not an absolute measurement as in this
work). Secondly, PLQY in the work of Wang and Zhao was
multiplied by a factor of 2 in order to set the maximum
quantum yield to unity. A further difference in our measure-
ments of PLQY is the significant fraction of emitted photons
reabsorption. For instance, Fig. S5 (ESIt) clearly indicates very
strong reabsorption for the sample characterized in the inte-
grating sphere.

The PLQY of PATBTFP-BAD pair (concentration 10 > M and
10 M, respectively) was found to be 1.6 £ 0.2%. This value is
also an underestimation due to reabsorption in the integrating
sphere. Another factor limiting UC efficiency in PATBTFP-BAD
is back energy transfer from the BAD triplet to the PATBTFP
triplet, as described earlier. This back transfer reduces ¢rrer
and, thus, the overall PLQY of the system.

To summarize, we report for the first time that a dye can play
either the role of sensitizer or emitter in TTA-UC depending on
polarity of the solvent. In non-polar toluene the BAD dyad acts
as the emitter; it emits green light with A, = 530 nm after

1610 | Chem. Commun., 2018, 54, 1607-1610
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excitation of PATBTFP at 638 nm. In polar DCM the BAD dyad
acts as the sensitizer. Excitation of the BAD dyad at 525 nm
results blue emission of perylene with A, = 445 nm. This
unique behavior is due to changing of charge-transfer and local
excited state relative energy ordering in the dyad by polarity of
the media. The aforementioned effect was also observed
employing other polar and non-polar solvents. The scope of
dyads capable of such behaviour is broad as other aromatic
electron donors can be combined with BODIPY, thereby allowing
absorption and emission profiles to be shifted. Studies of such
systems are on the way and will be reported in due course.
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