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Abstract

An ensemble of high-resolution regional climate model simulation data is used to

examine the impacts of climate change on offshore and onshore wind energy genera-

tion in Ireland. Two Representative Concentration Pathway (RCP) scenarios (RCP 4.5

and 8.5) are analysed for the mid-term (2041–2060) and the long-term (2081–2100)

future. Wind energy is projected to decrease (≤2%) overall in future climate

scenarios. Changes are evident by mid-century and are more pronounced by late

21st century, particularly for RCP 8.5 offshore. Seasonally, wind energy is projected

to decrease by less than 6% in summer and to increase slightly in winter (up to 1.1%).

The distinct changes in different parts of the power curve, presented here for the

first time, show a reversed pattern of duration at certain levels of the power curve. In

summer, there is an increase of low-power and a decrease of high-power generation,

whereas during winter, there is a projected increase in the time spent at high power.

This could lead to diverse consequences for system operators depending on the

season. The impacts of climate change on the duration and frequency of long periods

(longer than 24 h) of low-/high-power wind energy events in Ireland are also

presented. The frequency of low-power events is projected to increase slightly, espe-

cially during summer. Onshore and offshore events are considered separately,

demonstrating the complementarity of developing both onshore and offshore wind

farms for future energy systems. Regional analysis highlights the benefit of

developing a geographically dispersed wind farm network incorporating different

local wind conditions.

K E YWORD S

climate change, high-power events, Ireland, low-power events, wind energy

1 | INTRODUCTION

In 2018, 32.5% of all electricity in Ireland was generated from renewable sources, the majority of which (27.6%) was attributed to wind energy.1

Global wind capacity has increased in recent years to 651 GW (2019) which is enough to provide an estimated 27.3% of global electricity genera-

tion by the end of 2019.2 Transitioning to energy supply that depends heavily on wind power in a changing climate requires an understanding of

how future projections of the relevant weather variables translate to wind energy generation. With an increasing global dependency on renewable

resources, it is important to understand the impacts of weather on the energy system and how this is projected to change in the future.
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Renewable energy is set to play an increasingly important role in reducing emissions, however with their dependency on weather, they are

intermittent by nature. This poses a problem in maintaining a reliable and stable energy supply into the future.

Multi-model ensembles are a valuable approach to study climate change as they give a probabilistic view of climate projections. There are

multiple sources of uncertainty associated with future climate projections, and an ensemble of regional climate models (RCMs) driven by global

climate models (GCMs) can address part of this uncertainty. The Intergovernmental Panel on Climate Change (IPCC) outlines a range of possible

Representative Concentration Pathway (RCP 2.6, RCP 4.5, RCP 6.0, RCP 8.5) scenarios, to account for uncertainties in future projections of the

atmospheric composition, which affects the radiation balance of Earth, thereby taking further uncertainties into account.3–5

Climate projections indicate a relatively uniform southward shift in wind power potential with global warming, with decreases in the Northern

Hemisphere mid-latitudes.6 Climate projections generally illustrate a decrease in wind speed throughout most of Europe,6–8 although there are

local variations and results depend on the ensemble of climate models studied. There is uncertainty in the consequences for storms over Ireland

with some studies suggesting an increase in storm intensity9–12 while for the changes in the number of storms, results show either increases,10,11

no clear trend as they depend on the model used9 or a decrease.12 Therefore, the impacts of climate change can have varying effects on the

potential future wind power generation. Cyclone tracks of extreme storms are projected to extend further south over Ireland by the mid-century

(2041–2060).7

Around Ireland and the United Kingdom, wind power potential is projected to decrease by approximately 0%–10% by the end of the century

under RCP 4.5 and 8.5 scenarios. These reductions are seasonally dependent with larger changes in summer than in winter.6,13 Inter-annual

variability, whether natural variability due to internal climate modes or due to the impacts of anthropogenic climate change, poses a risk to the

wind energy industry and associated future projects in which wind farm resources and operations may change. In addition, there are little or no

significant changes in the intra-annual and inter-annual variability of future wind energy in the UK–Ireland region.13,14 On the contrary, Reyers

et al15 predict that wind energy output over the United Kingdom and Ireland will have no statistically significant changes on average in the long

term under the RCP 8.5 scenario, but that there will be stronger intra-annual variability of future wind energy output. There is a seasonality to the

impacts of climate change for Irish wind energy generation, with an increase during winter months of approximately 4%–10% and a decrease of

approximately 4%–14% during summer months in the mid-term (2021–2060).16,17 However, the climate change signal is of similar magnitude to

climate variability. Offshore wind energy is developing, with more potential to harness larger amounts of wind power than most onshore wind

farms. There is little change expected in the region around Ireland in offshore wind power generation for the 21st century.18

Along with the general changes in power generation, long periods of low-power generation have an impact on the smooth running of the

power system, as back-up energy supplies may be needed to meet demand. Historical low-wind power events in Germany are found to occur

most in summer.19 The spatial pattern of wind energy generation during the most extreme low-wind power event differs from the average

distribution of capacity factor throughout the country. This suggests that low-wind events can be very pronounced in regions with good average

wind resources. In Ireland, even a single event with a return period of 10 years in an area with a favourable wind regime can reduce the annual

energy yield of a wind farm by 5%.20 The temporal and spatial heterogeneity of renewable resources essentially determines the balance of energy

systems and more homogeneous wind conditions over Europe result in simultaneous power generation shortages.21 An increase in wind speed

correlations between all locations in a country imply more homogeneous wind conditions, suggesting that more backup energy will be required

during future low-wind power events. To ensure resilience in supply, Leahy and McKeogh22 show that there are advantages to increasing the

installed capacity in areas even with existing high levels of installed capacity. In order to reduce wind power variability and the likelihood of wind

droughts, introducing more installed capacity to lower installed capacity regions can reduce ramps and low wind power production.

Weber et al23 suggest that only changes in the temporal aspects such as the duration of low-wind periods or the seasonal wind variability can

lead to changes in backup energy and storage needs. There is an increased likelihood for long periods of low-wind generation (defined as the time

series when wind power generation is continuously below average) and also an increase in the seasonal wind variability under RCP 8.5 by the end

of the century (2070–2100). Low-wind power events are also projected to increase in duration by the end of the century. The winter-summer

ratio is projected to increase for most of Central and North-Western Europe leading to the high probability of long periods of low-wind power

generation. Wind energy system operators require knowledge of the inter-annual variability of wind energy generation throughout the lifetime of

wind farms. The impacts of inter-annual variability can determine the risk associated with a potential wind farm project.24,25 However, caution

must be taken when assessing the inter-annual variability for future wind projects as it can be overestimated compared to observations.26

This study outlines how the effects of a changing climate on wind energy generation can be quantified at high-resolution, in the mid-term

(2041–2060) and long-term (2081–2100) future. This is demonstrated by making use of high-resolution RCM simulation data for Ireland. The

expected growth in installed capacity and advancements in turbine technology are foreseen to have a greater impact on wind energy generation

than climate change impacts. However, this study aims to understand the isolated effects of weather and climate on future energy systems with-

out introducing other dimensions of uncertainty. Section 2 presents the climate models used in this study which are used as input data for the

wind energy capacity model described in Section 3. The focus here is on future projections of onshore and offshore wind energy in Ireland and

the overall wind energy results are presented in Section 4. In Section 5, the ensemble of high-resolution RCMs is used to study the frequency

and duration of long periods of consistently high- or low-power wind energy conditions which haven't been examined in Ireland before. Finally,

conclusions are discussed in Section 6.
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2 | DATA

2.1 | RCM simulations

RCM simulation data were obtained from the Irish Centre for High End Computing (ICHEC) and EURO-CORDEX.27 For a description of the

ICHEC RCM experiments please refer to Nolan and Flanagan.28 Two RCMs, the Consortium for Small-scale Modelling–Climate Limited-area

Modelling (COSMO-CLM) and the Rossby Centre regional atmospheric model (RCA4), are used to downscale five GCM datasets, see Table 1 for

details. Missing data are described in Appendix A. These model simulation data are obtained for the island of Ireland and the surrounding sea, at

3-hourly temporal resolution. Wind speed at 10 m (near surface in EURO-CORDEX) (W10m) for historical (1981–2000) and two future periods

(2041–2060 and 2081–2100) under two climate scenarios (RCP 4.5 and RCP 8.5), are extrapolated to turbine hub-height using the wind profile

power law:

Whub ¼W10m
125
10

� �α

ð1Þ

where Whub is the wind speed at turbine hub-height of 125 m and α is the wind shear exponent and is commonly set to 1/7 for neutral stability

conditions. Although equation 1 does not account for temporal and spatial variations in surface roughness and atmospheric stability conditions,

which can affect the wind speed profile, it is widely used in wind energy analysis.6,29 The extrapolated hub-height wind speeds, Whub, are used as

input to the wind energy model, described in Section 3.

2.2 | Historic reanalysis data

The Met �Eireann Re-Analysis (M�ERA) dataset30 produced by the Irish meteorological service is used as a representation of the ‘observed’
historical climate, wind capacity model bias correction, and for RCM data validation. M�ERA is the highest-resolution regional reanalysis dataset

available for Ireland and provides a good representation of recent Irish climate.31 Further analysis of the skill of M�ERA relative to observations in

Ireland is examined in Gleeson et al30 and Whelan et al.32 M�ERA data, Whub, at hourly resolution and 2.5-km grid-spacing for the historic period,

1981–2000, are used. M�ERA winds are available at heights of 10 and 125 m, so no extrapolation is needed.

3 | WIND ENERGY CAPACITY MODEL

The wind energy capacity model involves converting wind speeds at hub-height to power output using manufacturers' power curves for single

turbines.33 Vestas-V110-2000 is chosen as a representative turbine. The wind energy model requires wind speed at hub-height (Whub) as an input,

TABLE 1 The climate model data used in this study

RCM GCM Horizontal grid spacing (km)

ICHEC CCLM CNRM-CM5 4

ICHEC CCLM EC-EARTH 4

ICHEC CCLM HadGEM2-ES 4

ICHEC CCLM MPI-ESM-LR 4

ICHEC CCLM MIROC5 4

EURO-CORDEX RCA4 CNRM-CM5 �12.5

EURO-CORDEX RCA4 EC-EARTH �12.5

EURO-CORDEX RCA4 HadGEM2-ES �12.5

EURO-CORDEX RCA4 MPI-ESM-LR �12.5

EURO-CORDEX RCA4 CM5A-MR �12.5

EURO-CORDEX RCA4 NorESM1-M �12.5

Note: The regional climate model (RCM): COSMO-CLM (CCLM) and RCA4, the corresponding downscaled global climate model (GCM), and the horizontal

grid spacing.
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which is then fed through the power curve to estimate capacity factors. To reduce any bias in the data and bring the capacity factors in line over

the historical period, a bias correction has been applied to the turbine power curves before the climate model Whub data are applied to them.

This bias correction is calculated by selecting the cut-in speed (Scut � in), the rated capacity speed (Srated), and the cut-out speed (Scut � out),

from the power curve. The percentile for these wind speeds is calculated for the M�ERA data (approximately 3%, 70% and 98%, respectively). The

bias-adjusted Scut � in, Srated and Scut � out are then calculated by finding the wind speed in the climate model data where the relevant percentile

occurs. Cubic splines are fitted to the original power curve and then applied to the bias-adjusted Scut � in, Srated and Scut � out values to produce the

bias-adjusted power curves. This is done separately for each onshore and offshore location and for each dataset. An example of the bias-adjusted

turbine power curves is shown in Figure 1, where the overestimation in offshore data compared to M�ERA is evident, along with the underestima-

tion onshore.

3.1 | Island of Ireland notional aggregate wind power

There is an all-island single electricity market in place for the island of Ireland. An island of Ireland notional aggregate onshore wind power is

calculated from a representative subset of Irish Wind Energy Association (IWEA) connected wind farms active as of the end of 2018. Eighteen of

the largest wind farms, at geographically dispersed locations, are selected (Figure 2). Each wind farm is assigned the same installed capacity. Wind

farm outputs are calculated from the nearest model grid-point and are summed together to calculate a notional island of Ireland projected

aggregate wind energy generation.

Offshore wind farm locations are selected from wind farm locations which have either approved or planned status. For comparison purposes,

wind farms at geographically dispersed locations were selected; two off the west coast of Ireland and two in the Irish Sea. A 7 � 7 grid-point

region (3 � 3 grid-points for the lower spatial resolution of EURO-CORDEX data) around each offshore wind farm location is selected and each

grid-point is assigned equal proportion of the installed capacity. Each region is used to represent the wind power at that wind farm location and

the total national offshore wind power is calculated from the sum of all grid-points in the four offshore regions, see Figure 2.

There are some parameters in this study which the results are sensitive to. These include the choice of turbine type, that is, the shape of the

power curve. A brief analysis of this sensitivity was performed here using different turbines for onshore and offshore wind farms and the main

results and conclusions remain consistent. Moemken et al8 also performed a sensitivity test on the choice of turbine and concluded the choice

had a negligible impact on the projected future changes.

4 | OVERALL WIND ENERGY RESULTS

In the historic period (1981–2000), M�ERA has an average wind capacity factor of 64% onshore and 66% offshore, with winter producing up to

25% more wind energy than summer. In general, wind energy is estimated to decrease slightly in future climate scenarios (Figure 3). Overall

reductions range from �0.4% to �1.2% onshore and �0.5% to �2% offshore. However, there is uncertainty among the different climate models.

Changes are described as robust changes when more than 66% of the ensemble member models (corresponding to seven out of 11 members)

agree in the direction of change following the IPCC definition.5,27 Results for the overall changes in wind energy are robust in all climate scenarios.

F IGURE 1 The original manufactures turbine power curve (black dashed) for (A) onshore and (B) offshore, along with the bias-adjusted
(method described in Section 3) power curves for each climate model dataset [Colour figure can be viewed at wileyonlinelibrary.com]
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F IGURE 2 The notional island of Ireland wind power set-up is represented by 18 onshore wind farm locations (blue circles) and four offshore
regions (grey boxes). Offshore regions consist of 7 � 7 grid-points for CCLM RCMs and 3 � 3 grid-points for the larger grid spacing of
RCA4 RCMs [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 The future changes in (A) onshore and (B) offshore wind energy compared to the historic baseline period (1981–2000) for (left)
the full year and (right) seasonally (DJF: winter, MAM: spring, JJA: summer, SON: autumn) during the late-century, 2081–2100, for RCP 4.5 (blue)
and RCP 8.5 (red). The bars are the multi-model ensemble mean and the dots represent individual climate models [Colour figure can be viewed at
wileyonlinelibrary.com]
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Wind energy is predicted to decrease in summer with larger decreases projected for offshore than onshore. Changes are evident by mid-century,

and are more pronounced by the end of the century. On the other hand, by the end of the century, wind energy during winter is projected to

increase slightly. Wind energy changes are robust for most seasons (except for SON onshore) at the end of the century.

An overlap score is used to measure the similarity between two distributions. It is defined as

Oscore ¼100�
Xn
1

minðZA,ZBÞ, ð2Þ

where n is the number of bins used to calculate the probability distribution function and ZA and ZB are the frequency of values in a given bin from

data A and B. 100% indicates perfect agreement (e.g., A and B agree) and 0% indicates no agreement (e.g., A and B have no values in common).

An Oscore of 93.89% onshore and 97.37% offshore between M�ERA and the multi-model ensemble (MME) shows there is good agreement histori-

cally between the climate models and the reanalysis data. Past and future climate data can also be compared with the Oscore to determine the mag-

nitude of climate change. The Oscore results, presented in Table 2, highlight the small magnitude of impact that climate change is projected to have

on overall wind energy in future scenarios. These results suggest that there will be a larger impact from climate change on offshore wind farms,

particularly by the end of the century for RCP 8.5. Seasonally, there is a larger Oscore during winter compared to summer suggesting climate

change will have a larger impact on summer wind energy generation, supporting the results of Figure 3.

The impact of climate change on the overall wind energy production can be highly sensitive to where along the turbine rating curve the

change occurs. This is an important consideration for system operators, as a decrease in the lower portion of the distribution may require alterna-

tive sources of energy to meet demand whereas an increase in the upper portion of the distribution leads to increased filling of storage reserves

and potential curtailment. Figure 4 shows changes in the amount of time spent at different levels of power generation, from less than 10% rated

on the turbine power curve, to more than 90% rated on the turbine power curve. It highlights the uncertainty among the climate models, although

this ensemble is robust at almost all sections of the distribution (except the 10%–30% section in DJF and the 50%–70% section in JJA). There is a

reversed pattern in the change of the distribution of wind energy in winter and summer, which supports the overall seasonal changes of

a decrease in wind energy during summer compared to an increase in winter. This draws attention to the potential need for additional back-up

energy supply during summer in future climate scenarios. Similar results are seen for offshore wind energy.

TABLE 2 The Oscore results (%) for multi-model ensemble (MME) changes in wind energy from the historic reference period, 1981–2000

RCP 4.5 RCP 8.5

Onshore Offshore Onshore Offshore

2041–2060 99.17 99.02 98.84 98.23

2081–2100 98.73 98.50 98.37 96.64

F IGURE 4 The changes (%) in time spent on sections of the power curve for onshore wind power distribution at the end of the century
(2081–2100) under RCP 8.5 compared to the historic baseline period (1981-2000) for winter (DJF) and summer (JJA). The grey bars are the
multi-model ensemble (MME) mean and the coloured bars represent climate models, in each section of the turbine power curve: [0, 10), [10, 30),
[30, 50), [50, 70), [70, 90) and [90, 100] [Colour figure can be viewed at wileyonlinelibrary.com]
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5 | DURATION OF EXTREME EVENTS

In this section, continuous low- or high-power events are defined as consecutive periods of time in which the capacity factor remains below/

above a certain threshold. Here the focus is on events longer than 1 day, as these are important to the wind energy industry when considering

storage requirements. In the historic period, low-power events are less common than high-power events in both onshore and offshore wind

energy (Figure 5). Low-power events generally have a slightly longer duration onshore than offshore, except at the 20% threshold. Low-power

events occur more frequently offshore than onshore at the 5% and 10% thresholds. High-power events are more similar for onshore and offshore

locations, with slightly more time spent during onshore high-power events in total.

5.1 | Climate projections for low-power events

In this section, we define low-power events as consecutive hours with capacity factor consistently below a threshold of 10% (including 0% power

generation). Short events of up to about 2 days in length are relatively frequent, while long events are much rarer. Figure 6 shows the spread

among the ensemble of climate models for onshore low-power events. The median of the ensemble results suggests that low-power events will

persist for less than three days and also remain relatively constant throughout the climate periods. However, when the climate models are

examined separately a better representation of potential extreme durations is given, which may be several days longer, as seen in Figure 6. The

95th percentile of onshore event duration also remains constant, at 63–66 hours, throughout the climate periods. The most extreme 5% of

events, however, do change for future climate scenarios. Figure 6 suggests that the single longest event may increase to more than 8 days by the

end of the century. It also highlights how much of an outlier the single longest event is, as there is a noticeable gap between the longest event

and the next longest event. For example, for RCP 4.5, there is more than a 3-day difference between the longest and second longest event at the

end of the century. Results show that RCA4 RCM ensemble members generally have longer periods of consecutive low power. The four longest

low-power events in each climate period belong to RCA4 RCM ensemble members while the top three shortest low-power events consistently

belong to the CCLM RCM group.

An event is assigned to the season in which at least 50% of the event occurs. Long duration low-power events are most frequent in summer

(35%) followed by autumn (29%), which is consistent throughout all climate scenarios. This suggests that substantial extreme events can occur

throughout the year, and not just during summer months. In Ireland, weather-driven electricity demand is larger in winter due to space heating,

F IGURE 5 The number of (left) low-power events greater than 24 h with consecutive hours below the threshold capacity factor of 5%, 10%,
20% and 30%; and (right) high-power events above 70%, 80%, 90% and 95% capacity factor for (A) onshore and (B) offshore wind power for the
historic baseline period (1981–2000) in M�ERA. The numbers indicate the individual longest consecutive number of hours at each threshold. The
sum total number of hours in each situation is included in the legend [Colour figure can be viewed at wileyonlinelibrary.com]
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whereas currently there is little air-conditioning in summer. Therefore, a low-power event in summer may not require the equivalent back-up

energy as a winter event to sufficiently meet demand. The single longest event in the MME occurs during autumn in the historical period and

changes to summer by the end of the century.

The impact of climate change on low-wind power onshore events is shown in Figure 7, where the average of the ensemble results shows an

increase in the number of events in future scenarios compared to the historic period for the full year and for all seasons except winter. The

increase in low-power events is largely due to the decrease in low wind speeds. Analysis of the low-power events finds that in the historic period

there are no events due to wind speeds above cut-out speed. In 2041–2060 (both RCPs) and 2081–2100 (RCP 4.5) there are two climate models

in each time period which have one low-power event each with wind speeds above cut-out speed, while in 2081–2100 (RCP 8.5) there is only

one ensemble member with a single low-power event above cut-out speed. None of these events occur during summer. Therefore, this implies

that the increase in low-power events is a result of the decrease in wind speed especially around the cut-in speeds. This supports the results of

F IGURE 6 The number of onshore low-power events (<10% capacity factor) for each climate period and RCP scenario. The green shaded
area represents the spread between the maximum and minimum of the multi-model ensemble (MME) of climate models. The blue line represents
the median of the ensemble results at each point on the x-axis and in the historic period M�ERA (black line) is included for comparison purposes.
The numbers represent the duration of the individual longest event for any model (green), the median (blue) and M�ERA (black) [Colour figure can
be viewed at wileyonlinelibrary.com]

F IGURE 7 The changes in onshore low-power events (<10% capacity factor for at least 24 consecutive hours) in future scenarios for
2081–2100, RCP 4.5 (blue) and RCP 8.5 (red) relative to the historic period (1981–2000). The y-axes show the change in number of events and
the x-axes show the change in maximum event duration (number of consecutive hours). The results are shown for the full year and for winter
(DJF) and summer (JJA). The large dots represent the average results of multi-model ensemble while the small dots are the results for individual
climate models [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 4 in which there is an increase in the time spent at lower sections of the wind power distribution and a decrease in the wind speed at upper

sections of the wind distribution in summer. Overall, by the end of the century the MME longest event is projected to remain relatively similar in

duration, although when examined seasonally, the longest summer event is projected to increase slightly. There is a larger variability between the

individual climate model members during summer than winter, as supported by the robustness of the ensemble for all but the changes in max

duration during JJA in RCP 4.5. RCA4 RCM ensemble members have a larger contribution to the increase in JJA low-power events where the

number of events is on average almost three times larger than for CCLM RCM ensemble members.

For offshore extreme low-wind power there are on average 76 low-power events lasting more than 24 h, of which the majority occur during

summer (53%), with less than 6.2% of events occurring during winter. The single-longest extreme event occurs during autumn for the historic

period (1981–2000) and 2041–2060 under RCP 4.5. However, there are numerous events during summer which are longer than the second

longest event in autumn, particularly in the historic period. The single most extreme offshore event for each climate period occurs in the same

season as those onshore. However, the single longest onshore event is not the same event as the longest offshore event, except in the historic

period. This suggests that establishing a larger offshore fleet of wind farms in the future may compensate for long low-wind power onshore

events and vice-versa.

The climate models project an increased frequency of low-power events offshore in future climate scenarios for all seasons. The majority of

additional events occur during JJA, particularly under RCP 8.5 (Figure 8). There is more uncertainty regarding the change in the frequency

of events during summer than in the other seasons, although the ensemble results are robust for all except DJF.

5.2 | Climate projections for high-power events

High-power or near-rated-power events are defined as the consecutive period in which each hour is above a threshold of 90% capacity factor.

Overall, there is a projected decrease in the number of near-rated-power events in future scenarios compared to the historic period, consistent

with the projected decrease in overall wind energy generation. However, there is a small increase in the number of high-power events during

winter by the end of the century. The majority of onshore events (34.5% of events) occur during winter in all climate periods, whereas 30% of

offshore events occur in both autumn and winter (Figure 9). There is less uncertainty in the impact of climate change on the frequency of events

during summer. There is no consistency in which season the longest event will occur, although for both onshore and offshore it never occurs

during summer. Under RCP 4.5 the individual longest onshore event is projected to decrease by 1 day (down to 150 h) while under RCP 8.5, an

increase of 1 day is projected (up to 198 h) by the end of the century. Offshore events show an increase in duration of more than 2 days for RCP

8.5 while RCP 4.5 has a maximum change of 33 h.

5.3 | Regional analysis

Back-up energy and energy storage requirements in future wind energy systems are determined by the temporal and spatial heterogeneity of

wind energy throughout the energy system network. Western offshore locations are windier than eastern offshore locations, due to the prevailing

F IGURE 8 The changes in offshore low-power events (<10% capacity factor for at least 24 consecutive hours) in future scenarios for
2081–2100, RCP 4.5 (blue) and RCP 8.5 (red) relative to the historic period (1981–2000). The y-axes show the change in number of events and
the x-axes show the change in maximum event duration (number of consecutive hours). The results are shown for the full year and for winter
(DJF) and summer (JJA). The large dots represent the average results of multi-model ensemble while the small dots are the results for individual
climate models [Colour figure can be viewed at wileyonlinelibrary.com]
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south-westerly wind in Ireland,34 and therefore have a higher average capacity factor (of approximately +7%) throughout all seasons, as seen in

Figure 10. This is also consistent with western offshore locations spending less time at low-power. There is a high correlation, approximately

0.79, between the two east-coast wind farms, and similarly for the two west-coast wind farms, 0.70. This correlation remains constant during the

future mid-century and late-century. The average capacity factor difference between the east-coast and west-coast wind farms also remains

relatively constant, at approximately 3.5% throughout all climate periods. This suggests that there is, in general, a uniform change in wind energy

production for offshore wind farms.

West-coast offshore wind energy often has shorter low-power events than the east-coast, Figure 11. There is no consistency among the

ensemble members as to which model produces the longest low-power event in either location. The longest event on the east-coast is not

the same event as the longest event on the west coast, except in the historic period and at the end of the century under RCP 8.5. This suggests

that geographically dispersed wind farms could help to alleviate the pressure on national power supply during low-wind scenarios. Similarly for

onshore wind energy, consideration should be given to the spatial dispersion of wind farms. At the end of the century, low-power events are

projected to get up to 12 h longer for midland wind farms which are already situated in a low-power region (region M in Figure 10), compared to

the higher wind regime regions further north and south in the country (regions N and S in Figure 10), which have +8% larger average capacity

factor compared to the midland region. A well-positioned, dispersed wind farm network which can take advantage of the different weather

conditions may alleviate simultaneous wind power generation shortages.

F IGURE 9 The number of offshore near-rated-power events (>90% capacity factor for at least 24 consecutive hours) in each climate period
and RCP scenario, from the multi-model ensemble, seasonally (DJF: winter, MAM: spring, JJA: summer, SON: autumn). The box extends from the
25th to the 75th percentile values with the yellow line at the median and the whiskers extend from the 5th to the 95th percentile [Colour figure

can be viewed at wileyonlinelibrary.com]

F IGURE 10 Average wind energy capacity factor for each wind farm calculated by M�ERA in the historic period (1981–2000). Onshore wind
farms are grouped into regions, three regions are: north (N), midlands (M) and south (S) [Colour figure can be viewed at wileyonlinelibrary.com]

10 DODDY CLARKE ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


6 | CONCLUSIONS

A multi-model ensemble of high-resolution climate models is used to address uncertainty in projections of future wind energy for Ireland. There is

large variability between the climate models as all models do not project the same signal of change in future climate scenarios, although overall

results are robust. This highlights the importance of using an ensemble of multiple climate models. In general, there is more consistency between

the climate models during summer.

Overall, there is a projected decrease in wind energy (�0.4% to �2%), which supports the results of previous studies. There is a seasonality

associated with the impacts due to climate change on wind energy resulting in a more pronounced decrease during summer, with projections

predicted to decrease by less than 6%, compared to a slight increase during winter (up to 1.1%). Increases in winter and a more pronounced

decrease in summer lead to larger intra-annual variability which could result in higher irregularity in wind energy production within a year. Distinct

seasonal changes in different parts of the power curve are presented here for the first time, in particular, the reversed pattern in wind energy

generation during summer and winter (Figure 4). This highlights the vulnerability of energy systems in winter when increased time at rated power

may lead to curtailment and the increased time at low-power during summer which may lead to energy shortfall.

Along with the general changes in power generation, long periods of low- or high-power generation have an impact on the smooth running of

the power system. This paper examines, for the first time, high- and low-power events for offshore wind farms along with the regional analysis

of these events in Ireland. Low-power events are projected to increase in frequency (on average from +16 events onshore to +65 events

offshore by the end of the century) together with slight increases in event duration (on average +9 h), particularly during summer. Results signify

the essential planning of future wind farms in a diverse range of wind condition regimes to best capture the regional compatibility. The Irish

offshore wind energy network is currently relatively small. However, results here suggest that developing the future offshore wind energy

generation could allow the national energy system to maintain more consistent wind energy. Low-power offshore events are projected to have a

more pronounced increase in duration during summer suggesting that a balance of onshore and offshore installed power will be needed to

maintain energy system operations.

Extreme events are a necessary consideration for system operators as vulnerable energy systems may be exposed to energy shortfall and

alternative sources of energy are required to meet demand, usually at a high cost, during low-power events. The projected decrease in wind speed

is reflected by the increase in substantial low-power events and the decrease in rated-power events. These results are consistent with previous

studies,8,21 resulting in more back-up and storage required to stabilise the supply from wind-driven energy systems. This paper also presents novel

F IGURE 11 The number of offshore low-power events (<10% capacity factor) for each climate period and RCP scenario for (top) west-coast
and (bottom) east-coast wind farms. The shaded area represents the spread between the maximum and minimum of the multi-model ensemble
(MME) of climate models. The thick lines represent the median of the ensemble results at each point on the x-axis and in the historic period

M�ERA (black line) is included for comparison purposes. The numbers represent the duration of the individual longest event [Colour figure can be
viewed at wileyonlinelibrary.com]
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results regarding the projected changes for low- and high-power events. It is primarily the longest 5% of events which are projected to experience

a change in duration in future climates. Most notably this results in a slight increase in event duration during summer.

The overall results of a reduction in wind energy generation indicate that a continuously developing renewable energy system is necessary to

maintain a stable and secure method of meeting society's demand for electricity. Studies like this are essential in order to influence the planning

of future energy systems to operate in the most efficient manner.
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APPENDIX A: MISSING CLIMATE MODEL DATA

There are missing hours/days at the end of the century in the GCM data which have passed down to the RCM data. These are substituted with

the same time in the previous day if there is less than one day missing, if there is more than one day missing, the equivalent day and hour from

the previous year is used to fill the missing times (see Table A1 for the list of missing data). As the climate period as a whole is being examined

here, this should have minimal effects on the overall outcome.

TABLE A1 The dates for the missing RCM data which have been filled in to make complete records

RCP 4.5 RCP 8.5

CCLM_HadGEM2-ES 2099-11-30 21:00 - 2100-12-30 21:00 (3121) 2099-12-30 09:00 - 2100-12-30 21:00 (2886)

CCLM_MIROC5 2100-12-31 09:00 - 2100-12-31 21:00 (5)

CCLM_MPI_ESM_LR 2100-12-31 15:00 - 2100-12-31 21:00 (3) 2100-12-31 15:00 - 2100-12-31 21:00 (3)

RCA4_HadGEM2-ES 2099-12-01 00:00 - 2100-12-30 21:00 (3120) 2100-01-01 00:00 - 2100-12-30 21:00 (2880)

Note: The number in brackets are the total number of missing 3-hourly files.
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