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A B S T R A C T

High intensity ultrasonication (US) alone or in combination with chemical immersion treatments of lactic acid
(3% LA), sodium decanoate (3% SD) and trisodium phosphate (10% TSP) were investigated to reduce popula-
tions of Campylobacter jejuni and spoilage organisms in raw chicken. Different experimental conditions were used
including a range of temperatures (4 °C, 25 °C and 54 °C) and exposure times (1, 2 and 3 min). All combination
treatments significantly reduced C. jejuni compared to their individual treatments while only the combination
US + SD significantly reduced Total Viable Count (TVC). Multiple linear regression predicted bacterial reduc-
tions resulting from changing treatment, temperature and time or each group of microorganisms. Increasing
temperature from 4 °C to 54 °C would enhance C. jejuni, TVC and Total Enterobacteriaceae Count (TEC) re-
ductions by 0.73, 1.02 and 1.37 log10 cfu/g respectively. Increasing time from 1 to 3 min enhanced bacterial
dependent of C. jejuni and TEC by 0.49 and 0.31 log10 cfu/g respectively.

Industrial relevance.
This study demonstrates the potential application of high intensity ultrasomication alone or in combination

with chemical treatments to reduce bacterial contamination of chicken carcasses. Different tempretures and
times were investigated to optimize the most effective treatments conditions in chicken abattoirs.

1. Introduction

Campylobacter jejuni is the most frequently reported bacterial gas-
trointestinal foodborne pathogen in the EU since 2005. The number of
confirmed case of human campylobacteriosis in Europe has been esti-
mated as 229,213 with an infection rate of 65.5 per 100,000 for 2015
(European Food Safety Authority (EFSA), 2015). The Health Protection
Surveillance Center (HPSC) in Ireland reports that the numbers of no-
tified campylobacteriosis cases has increased over the last 5 years in
Ireland, with a total of 2451 cases were recorded (equivalent to a crude
incidence rate of 53.4 per 100,000) in 2015 (HPSC, 2016). In addition,
it has been indicated that the economic costs associated with campy-
lobacteriosis to the public health systems and to lost productivity is
€2.4 billion annually (European Food Safety Authority, 2014). Poultry
meat is considered one of the main sources of C. jejuni worldwide and
the prevalence of this pathogen is frequently high in raw poultry meat
within the EU (EFSA, 2013; Food Safety Authority of Ireland, 2011;
Whyte et al., 2004). Quantitative microbiological risk assessments have

indicated that even partial reduction in C. jejuni numbers on chicken
carcasses (> 1 log10 per carcass) can significantly reduce the infection
rate in humans (Lindqvist & Lindblad, 2008). Several quantitative risk
assessments of Campylobacter in chicken indicated that the most effec-
tive intervention measures were those aimed at reducing the Campy-
lobacter concentrations, rather than reducing the prevalence of con-
taminated carcasses (Nauta et al., 2009). Control of Campylobacter
requires enhanced practices at all stages of the broiler production chain
to limit exposure risks to consumers. Improved biosecurity may be the
most efficient strategy to minimize the risk of colonization of this mi-
croorganism in the intestinal tract of birds (Smith et al., 2016). How-
ever, such preventative measures at farm level may increase costs, need
to be consistently applied at all stages of production and have not al-
ways resulted in reduced Campylobacter levels in flocks (Food Safety
Authority of Ireland, 2002; Patriarchi et al., 2009; Rosenquist et al.,
2009). Effective interventions during slaughtering and processing stage
are desirable, economically feasible and can be applied to high risk
batches of birds in order to decrease contamination and to reduce the
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risk of human exposure to contaminated chicken meat (Bolder, 1997;
Del Río, Panizo-Morán, Prieto, Alonso-Calleja, & Capita, 2007; Loretz,
Stephan, & Zweifel, 2010; Mani-López, García, & López-Malo, 2012).

Organic acids and trisodium phosphate (8–12%) are both categor-
ized as ‘generally recognized as safe’ (GRAS) for use in food production
(Demirci & Ngadi, 2012; USDA-FSIS, 1996). These chemicals have been
used in the USA and Canada for many years as sprays or in immersion
systems to reduce bacterial contamination and improve shelf life
(Capita, Alonso-Calleja, Garcia-Fernandez, & Moreno, 2002; USDA-
FSIS, 1996). In contrast, the European regulations have supported the
application of strict hygiene precautions along the production process
rather than using chemical interventions.

However, recently the European Commission has approved the use
of lactic acid for bacterial decontamination of beef carcasses (The
European Commission, 2013). The mechanism of action of organic
acids is thought to result in the permeation of the cell membrane,
lowering of intracellular pH, and disruption of important cellular pro-
cesses; while medium chain fatty acids such as capric acid may damage
the lipid bilayer causing cell contents to leak (Alexandre, Mathieu, &
Charpentier, 1996; Dibner & Buttin, 2002). Physical methods such as
ultrasonication are considered as emerging technologies with potential
applications in the food industry. Ultrasonication has been assessed as a
technology to aid in the tenderization of meat, speed up maturation and
mass transfer, decrease cooking energy, and increase the shelf life of
meat by reducing microbial populations without effecting the quality
and sensory characteristics of meat (Alarcon-Rojo, Janacua, Rodriguez,
Paniwnyk, & Mason, 2015; Awad, Moharram, Shaltout, Asker, &
Youssef, 2012). Ultrasound waves produce alternating compression and
decompression within liquids which leads to the formation of cavitation
bubbles, which generate very high local temperatures and pressures
when they grow and suddenly collapse (Cárcel, García-Pérez, Benedito,
& Mulet, 2012). The irregular collapse of a cavitation bubble leads to a
liquid jet accelerating through the center of the collapsing bubble
producing high energy shock waves - which can cause damage to the
cell wall of bacteria (Chandrapala, Oliver, Kentish, & Ashokkumar,
2012). Additionally, the effect of localized high temperatures can pro-
duce free radicals which may cause DNA injury, and microstreaming
which results in thinning of cell membranes leading to loss of cell
viability (Bermúdez-Aguirre, Mobbs, & Barbosa-Cánovas, 2011). The
cumulative effect of such localized high temperatures is an increase in
the general temperature of the liquid medium (Chen et al., 2012).
Susceptibility of microorganisms to ultrasound is dependent on a range
of factors. In general, endospores and viruses show increased resistance,
while Gram-negative bacteria are more susceptible than Gram-positive
bacteria. Cell morphology can also affect susceptibility with larger cells
typically being more sensitive than small cells and rod shaped bacteria
more susceptible than cocci (Torley & Bhandari, 2004). It has been
previously suggested that ultrasonication technology could be used in
broiler processing as the relatively small carcasses could be immersed in
dedicated ultrasonication tanks (Bolder, 1997). Furthermore, the ef-
fectiveness of ultrasonication could be enhanced by it combining with
heat (Chandrapala et al., 2012; Haughton et al., 2012), or with che-
mical treatments (Koolman, Whyte, Meade, Lyng, & Bolton, 2014). The
objective of the current study was to investigate the effectiveness of
ultrasonication treatments applied alone, or in combination with che-
mical immersion, to reduce Campylobacter and spoilage bacteria at
different times and temperatures.

2. Materials and methods

2.1. Preparation of bacterial suspensions and inoculation of samples

Suspensions of C. jejuni (1146 chicken isolate) were prepared by
inoculating 20 ml aliquots of Mueller-Hinton Broth (MHB) (Oxoid,UK,
CM0405) containing Campylobacter growth supplement with a single
colony of the isolate and incubated for 24 h at 42 °C under microaerobic

conditions. A total of ten of the 20 ml aliquots were then combined to
make up 200 ml volumes, and diluted with 300 ml of maximum re-
covery diluent (MRD), (OxoidCM0733) to give a 500 ml volume con-
taining a cell concentration of approximately 7 log10 cfu/ml. Chicken
thigh pieces were purchased from retail outlets and dipped in the
500 ml volumes of the C. jejuni suspension for 60 s then left for 30 min
to allow attachment to occur. Background levels of TVC and TEC were
determined in control samples and compared to those following treat-
ment in order to calculate bacterial reductions achieved for each
treatment. Levels of C. jejuni on chicken skin samples following in-
oculation were confirmed as 5.7 log10 cfu/g and reductions caused by
treatments were calculated based on the difference in counts between
control and treated samples.

2.2. Chemical and ultrasonication treatments

Each experiment was repeated in triplicate on three separate occa-
sions at three different temperatures (4, 25 and 54 °C). For each of the
temperatures, chicken thighs were immersed for 3 different exposure
times (1, 2 or 3 min) in 3% lactic acid (LA) (Sigma Aldrich, USA,
W261114), sodium decanoate (SD) (Sigma-Aldrich, USA, C4151) and
10% trisodium phosphate (TSP) (Sigma-Aldrich, USA, 222,003) alone,
or in combination with ultrasonication. The ultrasonication bath used
in the study was a Quirumed 534 C200 (Quirumed S.L.,Valencia, Spain)
with a frequency of 40 kHz, ultrasound power of 120 W, temperature
range: 20–80 and a 5 l capacity. A thermocouple (Traceable VWR, USA)
was used to monitor temperatures in each experiment. A temperature of
4 °C was maintained by immersing cooler packs in the US bath.
Treatment temperatures (25 and 54 °C) were controlled by an in-built
heating element and thermostat within the US bath. A volume of 1.5 L
of each solution was used in the bath for all treatments. In addition,
immersion treatments in water with and without sonication were also
carried out. Following treatment, samples were immersed in 1.5 L dis-
tilled water for 15 s to rinse off any residual chemical. After washing
three 5 g pieces of skin were aseptically removed from each thigh for
analysis. Untreated control samples were microbiologically analyzed
directly without any chemical or washing treatment step. Washed
control (WC) samples were immersed in distilled water only then rinsed
in another 1.5 L distilled water prior to microbiological analysis.

2.3. Microbiological analysis

Samples were stomached (Colworth Stomacher 400, UK) for 30 s in
45 ml MRD, and serially diluted (1:10) in MRD before being plated in
duplicate onto tazobactam modified Charcoal Cefoperazone
Deoxycholate Agar (TmCCDA) (Smith et al., 2015) (Oxoid, UK,
CM0739) containing a selective supplement (Oxoid, UK, SR0155E) and
incubated microaerobically at 42 °C for 48 h - in order to enumerate C.
jejuni. Samples were also plated in duplicate for total viable counts on
Plate Count Agar (PCA) (Oxoid, UK, CM0325) at 30 °C for 48 h and for
total Enterobacteriaceae counts (TEC) on Violet Red Bile Glucose Agar
(VRBGA) (Oxoid, UK, CM1082) at 37 °C for 24 h.

2.4. Statistical analysis

Microbial counts were converted to log10 cfu/g. A multiple liner
regression model was then run to predict the significant effect of
treatment, temperature and time on bacterial reductions between var-
ious treatment groups. To compare significant differences between
treatments a 1-way ANOVA was used followed by Tukey multiple
comparison tests. Significance was determined at the P < 0.05 level.
Data was analyzed using IBM SPSS software (IBM SPSS statistics 24
Software, Armonk, New York, United States, www.IBM.com).
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3. Results

3.1. Summary of observed differences in microbial reductions

The results of the current study showed a significant difference
(P < 0.05) between the wash control samples and all other treatments
to reduce C jejuni with the exception of US treatments at 4 °C (Fig. 1).
The greatest levels of bacterial reductions were consistently observed
following SD + US treatments across all temperature time combina-
tions. Fig. 2 shows the reduction in TVC after the same treatments; no
significant differences (P > 0.05) were observed between wash control
and US only at 25 °C and 54 °C, while the difference was significant
(P < 0.05) at 4 °C. Fig. 3 shows a significant difference (P < 0.05)
between wash control and US at 4 °C and 54 °C while no significant
difference was observed at 25 °C for TEC (P > 0.05). In general, the
greatest reduction in TEC were observed following treatment with
LA + US.

3.2. Comparison between individual and combination treatments

Combination treatments of chemicals and ultrasound consistently
resulted in significantly greater reductions of C. jejuni when compared
to each individual treatment (P < 0.05) (Table 1). In contrast, the
multiple comparison of TVC reductions showed that the combination of
US + SD resulted in significantly greater (P < 0.05) reductions than
treatment with SD alone (Table 2). No significant difference
(P > 0.05) was observed between other individual and combination

treatments although all combination treatments produced significantly
greater reductions than WC and US alone. Finally, combination treat-
ments of ultrasound and chemicals did not result in significantly
(P > 0.05) greater reductions in TEC compared to individual treat-
ments (Table 3).

3.3. Multiple linear regression models

Multiple linear regression models were constructed to predict the
reductions in C. jejuni, TVC and TEC with temperature, time and
treatment as predictor variables. Temperature and treatment were
significant predictors of bacterial reduction in all three models (Tables
4, 5 and 6). Time was a significant predictor of bacterial reduction in
the models for C. jejuni and TEC. Table 4 shows unstandardized coef-
ficient beta and t values which represent changes in C. jejuni reductions
associated with each independent variable (temperature, time and
treatment). The model predicted that an increase in temperature from
4 °C to 54 °C would result in an increased reduction in C. jejuni counts of
(3 ∗ 0.243) equal to 0.73 log10 cfu/g. Table 5 shows the same values for
TVC reductions associated with each of the independent variables
(temperature, time and treatment). An increase in temperature from
4 °C to 54 °C would result in a reduction in TVC of 1.02 log10 cfu/g.
Table 6 shows the statistically significant (P < 0.0001) unstandardized
coefficient beta and t values associated with TEC reductions for each of

Table 1
Mean differences in C. jejuni reductions (log10 cfu/g) between wash control, individual
and combination treatments.

Treatments LA + US SD + US TSP + US0

WC 1.13⁎ 1.82⁎ 1.09⁎

US 0.77⁎ 1.46⁎ 0.72⁎

LA 0.26⁎ NA NA
SD NA 0.38⁎ NA
TSP NA NA 0.30⁎

NA = not applicable.
⁎ Indicate the significant (P < 0.05) difference between treatments.

Table 2
Mean differences in TVC reductions (log10 cfu/g) between wash control, individual and
combination treatments.

Treatments LA + US SD + US TSP + US

WC 0.60⁎ 0.68⁎ 0.48⁎

US 0.49⁎ 0.58⁎ 0.37⁎

LA 0.26 NA NA
SD NA 0.27⁎ NA
TSP NA NA 0.18

NA = not applicable.
⁎ Indicate the significant (P < 0.05) difference between treatments.

Table 3
Mean differences in TEC reductions (log10 cfu/g) between wash control, individual and
combination treatments.

Treatments LA + US SD + US TSP + US

WC 0.99⁎ 0.76⁎ 0.60⁎

US 0.82⁎ 0.59⁎ 0.43⁎

LA 0.22 NA NA
SD NA 0.24 NA
TSP NA NA 0.19

NA = not applicable.
⁎ Indicate the significant (P < 0.05) difference between treatments.

Table 4
Significant predictors of reductions in C. jejuni counts identified by multiple linear re-
gression modelling.

Independent variable Unstandardized coefficients t Sig.

B Std. error

Temperature 0.243 0.025 9.684 < 0.0001
Time 0.162 0.025 6.458 < 0.0001
Treatment 0.162 0.010 16.574 < 0.0001

F (3.645) = 1312,402, (P < 0.001), R2 = 0.859.
a. Dependent variable: reduction.
b. Linear regression through the Origin.

Table 5
Significant predictors of reductions in TVC counts identified by multiple linear regression
modelling.

Independent variable Unstandardized coefficients t Sig.

B Std. error

Temperature 0.341 0.020 17.385 < 0.0001
Time 0.033 0.020 1.666 0.09
Treatment 0.052 0.008 6.760 < 0.0001

F (3.645) = 1477,95, (P < 0.001), R2 = 0.873.
a. Dependent variable: reduction.
b. Linear regression through the Origin.

Table 6
Significant predictors of reductions in TEC counts identified by multiple linear regression
modelling.

Independent variable Unstandardized coefficients t Sig.

B Std. error

Temperature 0.455 0.008 21.506 < 0.0001
Time 0.104 0.001 4.908 < 0.0001
Treatment 0.057 0.020 6.944 < 0.0001

F (3.645) = 1477,95, (P < 0.001), R2 = 0.873.
a. Dependent variable: reduction.
b. Linear regression through the Origin.
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the independent variables. The model predicted that a change in tem-
perature from 4 °C to 54 °C would increase the bacterial reduction by
1.37 log10 cfu/g while extending treatment time from 1 to 3 min would
result in reduction of TEC by (3 ∗ 0.104) or 0.31 log10 cfu/g.

4. Discussion

The current study investigated the effect of chemicals applied alone
or in combination with ultrasonication to reduce microbial populations
on raw chicken using various time and temperature combinations.
Ultrasonication is a promising alternative technology to replace tradi-
tional treatments which have been used to reduce bacterial con-
tamination, with the limited impact on food quality (Alarcon-Rojo
et al., 2015). Many studies have been published to date have assessed
the ability of various chemicals to reduce microbial populations on raw
chicken meat (Alonso-Hernando, Alonso-Calleja, & Capita, 2013;
Capita, Alonso-calleja, Sierra, Moreno, & Garcõâa-ferna, 2000; Chaine,
Arnaud, Kondjoyan, Collignan, & Sarter, 2013; Nagel, Bauermeister,
Bratcher, Singh, & McKee, 2013).The effectiveness of such treatments
can depend on parameter such as, the chemical and concentration ap-
plied and the duration of treatment (Loretz et al., 2010). Potential ne-
gative effects on sensory properties of chicken meat after chemical
treatments have been reported (Bilgili, Conner, Pinion, & Tamblyn,
1998). The current study aimed to investigate the efficacy of combi-
nation treatments with a number of chemicals and ultrasound on bac-
terial decontamination of raw chicken.

While treatment type was a significant predictor of bacterial re-
duction in all three models constructed, comparisons between each
chemical and its corresponding combination with US demonstrated
significant differences for individual microbial groups and treatments.
All combination treatments resulted in significant reductions in C. jejuni
numbers compared to individual treatments; in contrast, no such dif-
ferences were observed for TEC and only a single combination treat-
ment lead to significant reductions in TVC. The susceptibility of mi-
croorganisms to US could be dependent on many factors such as size,
shape and type of microorganism (Heinz, Alvarez, Angersbach, & Knorr,
2001). which may account for the observations of the current study. For
example larger cells have been reported to be naturally more suscep-
tible to US due to increased area exposed. Gram-positive bacteria may
be more resistant to the effects of US due to the protective action of the
thicker cell wall. This may explain the inconsistent reductions observed
in TVC, which is comprised of mixed bacterial populations, following
combination treatments (Drakopoulou, Terzakis, Fountoulakis,
Mantzavinos, & Manios, 2009; Koolman et al., 2014). The variability
between microorganisms in their reductions to these combinations may
not only be related to their susceptibility to US, C. jejuni was also fre-
quently reported to be more susceptible to SD than other Gram-negative
bacteria (Hermans et al., 2010; Hilmarsson, Thormar, Thráinsson,
Gunnarsson, & Dadadóttir, 2006). The lipopolysaccharide layer in the
cell membrane provides protection for Gram-negative bacteria against
the antibacterial activity of fatty acids however, differences in the
structure of this layer between species can lead to differences in sus-
ceptibility, with C. jejuni exhibiting the highest degree of susceptibility
(Hinton, 2011). Due to its variable morphological characteristics C.
jejuni is also known to have coccoid forms in aerobic conditions with
weaker attachment ability than the spiral form on chicken skin (Jang
et al., 2007). Therefore, it is possible that the effect of TSP was greater
on weakly attached bacteria, may be because of the detergent effect of
TSP on bacterial attachment (Cabedo, Sofos, & Smith, 1996; Chen et al.,
2012; Dinçer & Baysal, 2004).

Recently there has been increased interest in the combination of US
technology with heat (thermosonication) or pressure (manosonication)
or both (thermomanosonication) (Alarcon-Rojo et al., 2015). Such
combinations may enhance bacterial reductions while reducing both
the duration and severity of thermal treatment, thus minimizing
changes to organoleptic properties and may result in significant energy

savings (Chemat, E-Huma, & Khan, 2011). Results of our study agree
with other researchers, that higher temperatures may increase the ef-
fectiveness of ultrasonication and chemical treatments to decrease C.
jejuni counts and spoilage bacteria compared to ambient temperature
(Alonso-Hernando, Guevara-Franco, Alonso-Calleja, & Capita, 2013;
Haughton et al., 2012). Increasing the temperature during the appli-
cation of such treatments may lead to a weakened cell wall and leave
the cell membrane less protected and more susceptible to the other
treatments (Álvarez, Mañas, Sala, Condón, & Man, 2003). Effective
decontamination by ultrasound alone often requires prolonged treat-
ment times (Haughton et al., 2012). Extended exposure to high in-
tensity ultrasonication can result in increased temperatures and con-
sequently may affect product quality and alter sensory and nutritional
characteristics (Lado & Yousef, 2002; Piyasena, Mohareb, & McKellar,
2003). Therefore, combining mild heat and ultrasonication could ef-
fectively reduce the requirement for longer treatment times and asso-
ciated damage to raw chicken products (Morild, Christiansen, Sørensen,
Nonboe, & Aabo, 2011).

Results of our study demonstrate that time was a significant pre-
dictor of reductions in C. jejuni and TEC. The effect of time on the re-
duction of spoilage bacteria was not consistent, likely due to the
variability of these microorganisms and differences in their suscept-
ibility to heat and the relatively short treatment times used in this
study. Finally, additional work would be required to assess the effect of
combining US with chemical treatments on sensory attributes in raw
chicken.

5. Conclusion

Combinations of US and certain chemical treatments are promising
decontamination technologies when applied with mild heat resulting in
significant reductions of C. jejuni and spoilage bacteria on chicken skin.
Our study also demonstrates the significant influence of temperature
and time on microbial reductions when these combinations are applied.
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