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An LCL-Filter Design With Optimum Total
Inductance and Capacitance

Sampath Jayalath

Abstract—LCL-filter is among the best performing filters for
grid-connected voltage source inverters. Designing of the filter pa-
rameters (grid-side and inverter-side inductors and capacitor),
takes an iterative approach due to the coherence between the
parameters and design requirements such as IEEE-519 Std for
harmonic current limitations, reactive power compensation limit,
and maximum allowable voltage drop across the filter to limit
the switching losses. Most of the proposed LCL-filter optimiza-
tion strategies emphasize on reducing the total inductance and
losses of the filter while meeting the design requirements. There
is less emphasis given on the capacitor selection and optimizing
its value. Therefore, this paper proposes a method to compute the
optimum capacitance requirement of the LCL-filter based on reac-
tive power compensation of the filter rather than calculating it as
a percentage of base capacitance of the filter as found in the litera-
ture. The proposed design methodology compared to the previously
proposed designs is capable of reducing filter capacitance by 50 %
while meeting the harmonic limitation demanded by IEEE-519 Std
and also considers the impact of the total inductance on reactive
power compensation. Based on the proposed methodology an LCL-
filter with minimum total inductance and capacitance is realized.
Functionality of the proposed LCL-filter is verified and validated
through simulations and experimental results.

Index Terms—Grid-connected inverter, harmonics, IEEE-519,
LCL-filter, power quality.

1. INTRODUCTION

ODERN day power electronic systems face the chal-

lenge of meeting the volume restrictions demanded by
end-users and strict power regulation standards set by bodies
such as the IEEE. Among such systems, a passive filter in grid-
connected voltage source inverter (VSI) demands small filter
size and the harmonic limitations set by IEEE-519 standard.
Ideally, the main function of these filters is to attenuate the
high-frequency switching components produced during pulse
width modulated (PWM) switching to inject harmonic-free cur-
rent into the grid. Initially, L-filters were used to attenuate these
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harmonics, but recently higher order filters such as an LCL-
filter is used as it offers substantial advantages over an ordinary
L-filter [1]-[3]. The primary advantages are reduction in the total
inductance requirement, which contributes to improve in out-
put dynamics of the inverter, economical filter design, reduced
losses in the filter [2], [4], and higher attenuation of harmonics
after the resonance frequency at a rate of 60 dB/decade com-
pared to 20 dB/decade with an L-filter [2]. Contrary to advan-
tages, LCL-filter possesses a resonance frequency that distorts
the grid-injected currents. Therefore, this resonance frequency
needs to be mitigated successfully using either passive or active
resonance damping methods [5]-[10].

The nature of LCL-filter is such that there can be numerous
parameter combinations for a given inverter application. How-
ever, following benchmark variations define the range of each
parameter in an LCLfilter:

1) range of capacitance in an LCLfilter;

2) based on power factor decrease or based on reactive power

compensation limit;

3) range of total inductance in an LCL-filter;

4) based on the limit of grid-side (L) and inverter-side (L;)

inductance (u = Ly/L;);

5) based on IEEE-519 standard for harmonic limitations;

6) based on reactive power compensation;

7) based on the dc bus availability or voltage drop across

filter.

As aresult, most of the filter designs proposed in the literature
take an iterative approach and more often these designs are cus-
tomized for different operating regions [8], [9] and applications
[1]-[4], [12]-[14]. Recently, the filter designers have considered
the variation of external parameters such as grid impedance to re-
alize a more robust LCL-filter [9] and also designing LCL-filters
with LCL resonance frequencies beyond the Nyquist frequency
[11]. Given all these different LCL-filter design methodologies,
one can identify that common design objective is on reducing
the total inductance in an LCL-filter in order to reduce the vol-
ume of the filter while ensuring minimum losses in the filter.
There is hardly any research in optimizing the value of the ca-
pacitance and it is generally estimated as a percentage of the
base capacitance of the LCL-filter [15]-[17]. Furthermore, the
impact of total inductance on the reactive power compensation
limits is rarely studied. Therefore, in this paper, an approximate
mathematical equation is derived to define the reactive power
compensation limit of the grid-connected VSI taking into ac-
count the effects of both inductive and capacitive elements in
an LCLfilter. The value of capacitor calculated based on the
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Fig. 1.  Grid-connected three-phase VSI with Y-connected LCL-filter.

proposed design procedure is much less than the method based
on the percentage of the base capacitance found in the liter-
ature [15]-[17]. The reduction of the capacitor was realized
by considering the impact of the total inductance on reactive
power compensation, which most of the proposed designs in
the past failed to identify. The proposed design is also capable
of realizing the required attenuation demanded by IEEE-519
with a minimum total inductance and it can also be extended
for designing filters for high-power inverters. Furthermore, re-
sulting inductance is minimum when compared to conventional
methods, which helps to reduce the overall size of the filter.

The rest of the paper is organized as follows: The basic
system description of an LCL-filter with the limits of capac-
itance, reactive power, and total inductance are presented in
Section II. The proposed optimum LCL-filter design is pre-
sented in Section III. Simulations and experimental results are
presented in Section IV to validate the efficacy of the proposed
optimum LCL-filter design.

II. LCL-FILTER DESIGN

Fig. 1 shows the general structure of the grid-connected
three-phase VSI with Y-connected LCL-filter, where L; and
L, are the inverter-side and grid-side inductors, respectively. R;
and R, are the resistances of the inverter and grid-side induc-
tors, respectively. C is the filter capacitor with series damping
resistance Ry.

Grid voltage is assumed to behave as an ideal voltage source
at medium and high frequencies, which is capable of sinking all
harmonics when deriving the LCL-filter transfer function that
is responsible for the closed-loop system bandwidth in grid-
connected operation of the inverter [13]. All the parasitic resis-
tors (Ry, R;, and R,) are neglected to represent the worst case
damping performance of the system [13]. For grid-side current
control [13], [18]

ig(s) 1
vi (s)  S3L;L,C+s(L; + L)

ey

where i, and v; are grid-side current and inverter-side voltage,
respectively. Resonance frequency ( fies) of the LCL-filter with
Y-connected capacitor is given by [13]

1 |Li+L,
= [zt T = 2
Jres 27\ L;L,C 2

Resonant peak at resonance frequency needs to be damped
either using active or passive damping to ensure proper operation
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Fig. 2. Bode plot of LCL-filter with and without damping.

of the grid-connected VSI. In this paper, passive damping is
used due to the ease of controller implementation. Addition of
R, modifies the transfer function in (1) to (3)

ig(s) sSR,C + 1 3)
Vi (s)  $3L;LyC + 52 (Li + Ly) RyC + 5 (Li + L)’
R, is given by [14]
Ry=— 4)
= 30)resc.

Bode plots of the transfer function in (1) without damping
and in (3) with damping are shown in Fig. 2.
Equation (2) can be modified to obtain (5) and (6)

1 (14 wp)?
472 2 w

res

L;C = ®)

where the total inductance, Ly = L; + Lgandratiopn = L, /L;.

Per unit derivation of filter passive components are considered
in the evaluation to generalize the design for wide range of
power levels and to make sure that the filter design procedure
complies with the ratings of the grid power system where most
impedances are expressed in per unit basis [13]. For a unity
system (5) becomes [9]

2 2
lTC=(J{b> (1 —;M) ©)

where /7 is the per unit total inductance, Iy = 27 fpL1/Z),
is per unit capacitance, ¢ = 2w f;,CZ,;,, the base impedance of
the system, Z;, = VIZJ/P;,, fb = f,, where f, is the grid op-
erating frequency, V;; is line to line rms grid voltage, P is
base power and P, = P,, where P, is the rated active power.
Equation (1) provides information about the attenuation of an
LCL-filter, whereas (6) shows the relationship between the fac-
tors that determine the passive components /7 and c. In (6),
product of Iyc is dependent on the ratio p and f.s and it is
always preferable to realize an LCL-filter with minimum pas-
sive component size [minimum product of /7 ¢ according to (6)]
while not compromising the attenuation requirements of (1)
according to IEEE-519 harmonic limitations [19] and reactive
power compensation limits. The sections below will analyze the
range of capacitance and total inductance in an LCL-filter.

Authorized licensed use limited to: Technological University Dublin. Downloaded on January 12,2022 at 10:58:46 UTC from IEEE Xplore. Restrictions apply.
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A. Range of Capacitance in an LCL-Filter

According to the previously proposed designs [2], [4], [14],
filter capacitance (C) is selected to limit the overrating of
the inverter or reduction in power factor of the inverter. Base
impedance of an LCL-filter is given by

Vaii
v="p (7
where Vg _; and P, are line to line grid voltage and rated power,
respectively. Base capacitance is given as

1

Cy = .
b a)ga

()

Filter capacitance is limited to a maximum of A% to limit the
decrease in power factor. Usually maximum value of A = 5% is
used for grid-connected inverters as reported in [14] and [15].
Filter capacitor becomes [14]

C=AiCp. €))

As per the literature, this defines the limit of capacitance
variation expected around a given resonance frequency and it is
always considered to be equal or less than the maximum defined

by (9)

0 < C < rC. (10)

However, this paper proposes a method to compute the opti-
mum capacitance of the LCL-filter by considering the optimum
reactive power compensation and total inductance limits of the
filter.

B. Limit on Reactive Power (q)

If the active power of the inverter is given by p and the reactive
power by ¢, the power factor (Ps) of the inverter output will be

real power
P = p _ p

/™ apparent power /P2 +q2

The inverter overrating is given by the apparent power of the
inverter and increase in apparent power will reduce the power
factor and overrate the inverter according to (11). For an inverter
operating at unity power factor, per unit maximum active power
will be one (p = 1). Minimum limit on the reactive power pro-
duction will determine the maximum power factor operation of
the inverter

(1)

1

Pf,max =T
A% 1+ qr%lin

It is recommended that the operating power factor should
be closer to unity in most grid-connected applications [2], [9].
Hence, filter is designed such that it does not exceed a specified
limit of reactive power chosen by the designer (gmin)-

12)

C. Range of Inductance in an LCL-Filter

The choice of total inductance is dependent on:

1) ratio between grid-side (L) and inverter-side (L;) induc-
tance (u = L, /L;);

2) reactive power compensation limit;
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3) harmonic attenuation limits specified in IEEE-519 stan-

dard;

4) voltage drop across the filter.

Importance of determining the correct ratio between L, and
L; are extensively investigated in the literature [9]. It can be
concluded from those analyses that selecting u = 1 will re-
sult in the minimum inductance and capacitance contributing
to minimum voltage drop, moderate switching losses, improved
dynamic response, minimum reactive power produced, mini-
mum stored energy in an LCL-filter, reasonable attenuation of
switching harmonics, economical filter and a robust LCL-filter
against the variation of grid impedance [9].

Initially, this paper will show how setting a limit on reactive
power compensation will define the limits on capacitance and
inductance of an LCL-filter. Inclusion of capacitor in an LCL-
filter will alter the control system depending on the position of
voltage and current sensing. In other words, inverter needs to
compensate the reactive power produced by the filter to oper-
ate with unity power factor at the point of common coupling
(PCC) [2]. In the literature, many designs consider the amount
of reactive power compensated as a percentage of base capaci-
tance as discussed above in Section II-A [2], [14]-[17]. In this
paper, a mathematical equation is derived based on the control
structure to determine the inductance limit for a given reactive
power compensation limit and then to compute the capacitance
of the filter by taking into account the inductive effect on re-
active power compensation. Since most of the inverters operate
by sensing grid-side voltage and controlling grid-side current,
here derivation of reactive power is based on it. A similar ap-
proach can be used for other control scenarios as well [2]. Output
power of the inverter (p) expressed in per unit with active power
injected by the converter is 1 p.u. and is given by

p~1—jllr—c]. 13)

The proof of (13) is summarized in the Appendix. Where /1
and c are per unit total inductance and capacitance. The per unit
reactive power (g) of the inverter can be deduced from (13) as

g~ [lr —c]. (14)

In order to avoid the increase in the rating of the inverter,
given by (11) or drop in power factor, given by (12) due to
reactive power, the reactive component of the filter should be
theoretically zero. But this is practically impossible as it will
result in higher values of inductances, which will take away
the primary advantage offered by low inductance of LCL-filters
when compared with L-filters. This issue is addressed in this
paper, by selecting the parameter “c” as small as possible and
parameter “/” as high as possible to preserve the minimum
limitation on reactive power compensated without overrating the
inverter too much. This design methodology will determine the
first limit on inductance based on reactive power compensated
and also the optimum capacitance. Minimum limitation on ¢ can
be set by selecting minimum c(cpin) and maximum 7 (I7max1)
to ensure desired reactive power compensation. Equation (14)
can be modified to

(15)

Gmin ~ [I7max1 — Cmin] -

Authorized licensed use limited to: Technological University Dublin. Downloaded on January 12,2022 at 10:58:46 UTC from IEEE Xplore. Restrictions apply.
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TABLE I
CURRENT HARMONIC LIMITS ACCORDING TO IEEE-519 [19]

Limits as a percentage of rated current amplitude

I /I 3<h=<1111<h<1717<h=<2323<h=<3535<h=<50TDD
<20* 4.0 2.0 1.5 0.6 0.3 5.0

Substituting (15) in (6) results in

2 2
1+
(leaxl - Qmin) leaxl = (J{_b> - - (16)
Equation (16) simplifies to
2 2
(I+pw
l%maxl — GmindTmax1 — kz(]{%) T =0 (17)

where k (= fiw/fres) 1S the ratio between switching frequency
and resonance frequency.

Equation (17) takes the form of a first-order quadratic equa-
tion. Solving for /7.« Will result in two values for total max-
imum inductance, where the negative value can be ignored as
the resulting value is very small and inductance is a positive
parameter. Positive I7ax1 defines the first limitation on the to-
tal filter inductance requirement. The value of /7,x1 may not
necessarily satisfy the harmonic attenuations criterion defined
in IEEE-519 standard. Therefore, the role of total inductance in
harmonic attenuation needs to be further evaluated.

The second limitation criterion on total inductance require-
ment is based on the IEEE-519 standard for harmonic limita-
tion [19]. The attenuation of high-frequency switching com-
ponents by the LCLfilter can be evaluated by considering the
inverter as a harmonic generator while the grid as a short cir-
cuit at high and medium frequencies [2]. The ratio of grid-
side current to the inverter-side voltage at switching frequency
s =h = jogw = j2n fsw deduced through (1) can be given as

iy () _ !
. p 2\
V; (h) LT (]27Tfsw) (1 - (%) )

Equation (18) is modified to obtain the minimum per unit
total inductance as follows [13]:

|Ui (pu) (h)’
P ligeu (W] [1 = 2|
where [, is the per unit total minimum inductance and
p = (fsw/fp) and k is the ratio fiy/ fres Ui(pu)(h) = vi(h)/vg
(where v, = grid operating voltage), iy pu)(h) = i,(h)/i, (Where
i, = rated grid current). According to IEEE-519 standard listed
in Table I, the inverter should not inject harmonic currents (i,)
above 50th harmonic (2500 Hz) that exceed 0.3% of the total
demanded current at PCC or rated grid-injected current. In other
words, inverter switching at a higher frequency than this par-
ticular frequency requires attenuation of switching components
to be less than 0.3% (i, (h)/i; ~ 0.003). Voltage switching rip-
ple component (v; (h)) of the inverter can be evaluated from the
Fourier analysis of the inverter voltage or software simulations

(18)

19)

lein =

TABLE II

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 33, NO. 8, AUGUST 2018

PARAMETERS FOR EVALUATION OF THE LCL-FILTER DESIGN

Parameter Value
Rated power (P;) 3 kW
Grid voltage RMS (V; ) 5V
DC-link voltage (Vqc) 250V
Grid frequency () 50 Hz
Switching frequency ( fiw) 10 kHz
Sampling frequency (f) 20 kHz
Base impedance (Zj) 5.6250 @
Resonance frequency ( fres) 2.272 kHz
Minimum reactive power ¢min 0.05
Ratio u(L;/Lg) 1
Ratio k 4.40
Inductance, I7 / Lt 0.0756/1.3539 mH
Grid-side/inverter-side inductance ~ 0.67 mH/0.67 mH
Capacitance, ¢/ C 0.0256/14.5 uF
Uj(pu) 0.8333
ig(pu) 0.003
Ry 1.7Q
af 18.856
Kppu 0.584
K1 pu 250
I7max (0.1 p.u.) or Lymax 1.790 mH
Copper wire size (diameter) 1.80 mm
Number of turns 56
Core geometry 00K130LE026
o [— IEEES 19U |
0.45! — Quin=0.05 (Irowans)
~ 04 — Ir=0.1 (Irmaz)
-E 038
E 0.3
1:2 0.25;
E 02 Optimum Operating Point
0.15;
01
[ nsk
% 3 4 ] ] 7 ] ] 10

Ratio k

Fig. 3. Variation of total inductance requirement versus ratio k for a given
w(pn=1).

depending on the modulation strategy used [1], [12] or using
simple approximation Vg, /4 [13]. It is important to notice that
the /7min Will decrease with increase of & or with the drop of
resonance frequency (k = fqw/fres) according to (19). There-
fore, I7min defines a minimum limit on total inductance based
on IEEE-519 harmonic standards; the other limits depend on the
reactive power compensation at the PCC as shown above and
the dc bus availability as shown below.

The variation of the I7nin and I7max; against the variation of
k for the system parameters listed in Table II is shown in Fig. 3,
assuming the minimum reactive power compensated (¢min =
0.05) by the filter remains constant and p = 1 is considered.
Total inductance (/1) should depend on either I7min OF I7max1,
whichever is highest depending on the resonance frequency
(ratio k)

I7 = max {I7min, {Tmax1} - (20

It can be concluded from Fig. 3 that when = 1 the variation
of [ 7max1 18 more dominant than /7, as the k increase (resonance

Authorized licensed use limited to: Technological University Dublin. Downloaded on January 12,2022 at 10:58:46 UTC from IEEE Xplore. Restrictions apply.
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Fig. 4. Vector representation of voltage drop in an inverter system.

frequency decrease). However, it is important to understand,
what determines the maximum amount of inductance allowed
in a filter connected to an inverter irrespective of the type of
the filter utilized or without considering the above-mentioned
limitations. It is guided by the dc bus availability in the inverter
system.

Maximum limit of L7 (I7max2), irrespective of the filter type
will be based on the ac voltage drop across the total inductance
during the inverter operation and anticipated switching losses.
Fig. 4 shows the vector representation of voltage drop in an in-
verter system, where I, and V,, are grid-injected current and grid
voltage, respectively, whereas V is the voltage drop across the
total inductance of the filter and V; is the apparent voltage of the
inverter. It is always advisable to minimize Vy (~ 2nf,L11,)
by reducing Ly to minimize the dc bus requirement; because
for an ideal system, the dc bus should be at least equal to 2V«
(for bipolar PWM), where V, is the peak grid voltage. How-
ever, due to Vy, it should be large enough to compensate for
the voltage drop [2] to ensure the current controllability of the
inverter and to improve the robustness [2], [20]. For example,
an inverter with 0.2 p.u total inductance (I7) and the grid cur-
rent (/g) is in phase with the grid voltage (V,) and both are
1 p.u. The voltage drop (V) of V; = j2n fly 1, = 0.2 per unit
(p-u) is expected. This will result in 1.02-p.u. voltage across
the inverter (V;). Therefore, this requires an increase of the dc
bus value to maintain proper operation of the inverter. Since,
higher dc bus values give rise to higher switching losses and in
order to minimize switching losses, /7 is limited to 0.1 p.u. in
grid-connected VSI [4], [15]. But these requirements may vary
with STATCOM and inverters that operate with different power
factors. The variation of /7 of an LCL-filter of a grid-connected
inverter should be within the range when considering (20) and
dc bus limitation

max {I7min, ITmaxt} < I1 < lIrmax2. (21

According to above inequality, there will be large number
of solutions for /7 of an LCL-filter for a given p (= 1) and
@min limit as shown by the shaded area of Fig. 3. The selected
I will always comply with the IEEE-519 harmonic attenuation
limit and initially anticipated reactive power compensation limit.
Any increase in /7 within the shaded area will favorably reduce
the initially anticipated reactive power according to (14) and
improve the harmonic attenuation level.

LCLAfilter introduces resonance phenomena as discussed
above and for the proper operation of the inverter, resonance

6691

TABLE III
COMPARISON OF LCL FILTER PARAMETERS BASED ON
CONVENTIONAL METHOD [14] AND PROPOSED

Parameter Value [14] Proposed
Total inductance, Ly 2.2627 mH 1.3539 mH
Capacitance, C 28.29 uF 14.5 uF

Resonance frequency (fres)  4.132 kHz 2.272 kHz

frequency of designed LCL-filter should validate the condi-
tion 10 f; < fres < 0.5 fw to avoid resonance inside the control
bandwidth and for resonance to be visible to the digital controller
[4]. Furthermore, when considering the sampling frequency ( f;)
of the controller, the above relationship can be modified in terms
of ratio k(= fsw/ fres), for double update PWM ( f; = 2 fiw )k lies
in the range 1 < k < 9.5 [21]. The section below will briefly
discuss the notable LCL-filter design methodologies presented
in the literature to distinguish the advantages of the proposed
method.

D. Conventional LCL-Filter Designs

LCL-filter-design methods follow two main approaches as
presented in the literature. They are classified as designing in-
dividual passive components to realize the required attenuation
(hereafter referred as design type A) [4], [14], [15] or consid-
ering the operation of the LCL-filter as a single filtering unit
(here after referred as design type B) [8], [9], [13]. Design type
A determines the inverter-side inductor (L;) based on the maxi-
mum ripple in the inductor and the grid-side inductor to further
attenuate the ripple such that overall ripple is 2% of the output
current. Then the capacitor of the LCL-filter is selected to limit
the overrating of the inverter as discussed in Section II-A.

On the other hand, design type B considers LCL-filter as a
single filtering unit that determines the required total inductance
based on (19) to achieve the attenuation of switching compo-
nents demanded IEEE-519 standard. Capacitor is selected based
on an arbitrary resonance frequency selected to satisfy the condi-
tion 10 f, < fres < 0.5 fw orusing the same procedure as in the
design type A. Design type B uses ratio © = 1 and design A will
not have any of the advantages gained by having equal grid-side
and inverter-side inductors as the resulting inverter-side induc-
tor is bigger than the grid-side inductor [14]. However, both of
these design methodologies fail to identify the importance of
considering the impact of total inductance on the reactive power
compensation, which can be used favorably to reduce the capac-
itance of the LCL-filter and also maintain higher power factor
while reducing the total inductance simultaneously. Tables III
and IV presented under Sections III-B and IV will compare
these conventional design methods with proposed method to
highlight the uniqueness of the proposed design.

The section below will detail the step by step procedure in
realizing the optimum LCL-filter design.

III. OpTIMUM LCL-FILTER DESIGN

The parameter limitations derived above can be used to
realize an optimum LCL-filter with optimum capacitance.

Authorized licensed use limited to: Technological University Dublin. Downloaded on January 12,2022 at 10:58:46 UTC from IEEE Xplore. Restrictions apply.
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TABLE IV
LCL FILTER PARAMETERS BASED ON PROPOSED METHOD AND
CONVENTIONAL METHOD [13] FOR A 240-V GRID

Parameter Proposed  Conventional [13]
Total Inductance, Ly 4.565 mH 6.824 mH
Capacitance, C 4.30 uF 8 uF

THD % 0.63 0.51

Start with system
parameters (Table II)

-

Select damping, ratio x, g, and
IEEE-519 limits

¥

Plot /, vs ratio k

¥

Choose an /,

v

Determine ¢ (14)

10£5<fres<0.5fs

Check Results

LCL-filter design algorithm.

Fig. 5.

The step-by-step procedure is shown in Fig. 5 and presented
in Section III-A, while a design example is presented in
Section III-B.

A. Design Steps for the LCL-Filter With Optimum
Capacitance

1) Start with system parameters: The rated power P,, rated
grid voltage V,, dc-link voltage Vqc, rated grid frequency
f¢» and switching frequency fi.

2) Select the damping procedure to damp the resonant peak
of the LCL-filter (active or passive damping).

3) Set the ratio u = 1, considering the advantages men-
tioned above and also in [9], depending on the applica-
tion (LCLfilter is considered as a single filtering unit).
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4) Set the limit on the reactive power compensated by the
filter defined by (15) or (17).

5) Set the harmonic attenuations limits on (19) based on
IEEE-519 Std.

6) Plot the total inductance (/7) versus ratio k.

7) Select the desired I7.

8) Compute optimum capacitance ¢ based on (14).

9) Calculate the resonance frequency of the designed LCL-
filter and validate the condition 10 f, < fres < 0.5 fow.

10) Check the results by considering the nonidealities omit-

ted in modeling and experimental variations.

B. Design Example for Low-Power Inverter System (3 kW)

1) Inverter parameters considered for this design are listed
in Table II.

2) Passive damping is preferred due to ease of controller
implementation.

3) Ratio u = 1 is selected due to the advantages mentioned
above in Section II-C.

4) Reactive power compensated by the filter [in (15) or (17)]
is limited to, gmin = 0.05.

5) Harmonic limits on (19) are based on IEEE-519 [19] as
listed in Table I.

6) Plot the total inductance (/) versus ratio k for the system
parameters defined in Table II is shown in Fig. 3.

7) There are infinite total inductance values and resonance
frequencies that can satisfy the design requirements as
seen from Fig. 3. It is always preferable to minimize in-
ductance due to the volume constraints in modern power
electronic components. Therefore, minimum inductance
(Ir /L7 = 0.0756/1.3539 mH) is selected in this design
that corresponds to the optimum capacitance as pointed
out by Fig. 3.

8) Optimum value of capacitance that corresponds to min-
imum [7 is (¢/C = 0.0256/14.5 uF).

9) fies for the selected parameters is 2.272 kHz, which lies
in the middle of the range 0.5 kHz < f,s < 5 kHz.

10) Simulation and experimental results of the selected pa-

rameters will be shown in Section I'V.

Itis important to notice in the proposed method, parameter are
calculated for . = 1. It considers LCL-filter as a single filtering
unit and has the advantages mentioned under Section II-C for
u = 1. For low- and mid-power systems, variation of fi.s will
not have a huge impact due to higher switching frequency and it
is also evident from the proposed design by observing the range
of ratio k (=3.9 < k < 7.1) shown in Fig. 3. But for high power
level systems, it becomes a challenging issue as discussed in
Section III-D.

In the literature and as discussed in Section II-A, capacitance
of the filter is limited to 5% of the base capacitance. Capacitance
value calculated based on (7)—(9) for the design parameters
listed in Table II is 28.25 uF (Cp = 1/27 f,Z;, = 0.565 mF).
Therefore, the proposed design has effectively reduced the size
of the filter capacitor by 50%, as the capacitance of proposed
design is 14.5 uF. LCL-filter parameters calculated with a con-
ventional method [14] or design type A are listed in Table III for
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Fig. 6. Bode plots of different LCL-filter design listed in Table III.

comparison. Design type A also utilizes the conventional proce-
dure for calculating the capacitance. Furthermore, the total in-
ductance of the filter is 1.7 times larger than the proposed design.
Fig. 6 shows the bode plots of proposed design (1.3539 mH and
14.5 uF), total inductance (proposed design) with capacitance
designed using conventional method (1.3539 mH and 28.29 uF)
and filter design method presented in [14]. The attenuation of
frequency components up to the resonance frequency is higher
in the conventional design [14] while lower for the frequen-
cies above resonance frequency than the proposed design. Since
switching frequency components are found after resonance fre-
quency, the proposed design provides higher attenuation than
the conventional design [14]. Comparing the attenuation with
optimum capacitance versus without optimization (maintaining
same total inductance 1.3539 mH), the attenuation of high-
frequency components are higher for the nonoptimum capaci-
tance (green versus blue in Fig. 6). However, this will not affect
the performance of the LCL-filter as proposed design effectively
satisfies the attenuation requirements defined by IEEE-519.

It can be concluded that the proposed design identifies op-
timum operating point for the given set of design parameters
(k =4.40, when p =1 and gmin = 0.05) of the LCL-filter,
which results in minimum inductance and optimum capacitance.
Furthermore, a mean (average) value of k (position of resonance
frequency compared to switching frequency) is always preferred
as it results in an improved filter in terms of total harmonic
distortion (THD), passive damping losses, stored energy, and
passive component size as detailed in [1], [5], and [9]. It can
be noted that k = 4.40 lies in the average region facilitating the
above-mentioned characteristics. Section below will summarize
the impact of variation of & on the optimized capacitor.

C. Impact of Variation of u on the Optimized Capacitor Value

The variation of i on the optimized capacitor value can be an-
alyzed using (5), by keeping the total inductance and resonance
frequency of the LCL-filter constant as shown in Fig. 7. When
the = 0, total inductance of the LCL-filter is represented by
the inverter-side inductor (ratiojt = Lg/L;and Ly = Ly + L;).
Ratio u = 1 corresponds to the inverter-side inductance equal
to grid-side inductance, whereas ratio p increases from one to
infinity (theoretically), grid-side inductance dominates. How-
ever, i = 1 results in the minimum value of the capacitor and
as w varies from one, the required minimum capacitance of the
filter increases.
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Fig. 8.  Control structure for the grid-connected VSI.

D. Design Guidelines for High-Power Systems

The proposed design can also be extended to high-power
inverters given that the designer carefully chooses the following
parameters as they are a function of (19):

1) level of harmonic attenuation defined for high power level

inverters based on IEEE-519;

2) voltage switching ripple component of the inverter.

Factor 1 above is a function of maximum demand of load
current at PCC as listed in Table I for medium-power systems.
Therefore, designer needs to select appropriate attenuation level
defined in IEEE-519 as these limits vary with power levels
(Refer [19]). Voltage ripple depends on several factors for high-
power inverters:

1) number of voltage levels of the inverter output;

2) modulation schemes.

Most often, multilevel inverters are used in high-power appli-
cations to reduce switching stress and losses and different mod-
ulation schemes such as phase disposition PWM and selective
harmonic elimination PWM are used [25]. Therefore, designer
needs to estimate the ripple in simulations or mathematically
by considering the above-mentioned parameters. Design factor
(10fg < fres < 0.5 fsy) for a high-power system is challenging
due to lower switching frequencies. Therefore, if the resulting
Jres fails to satisfy this inequality, the optimum capacitance or
optimum total inductance calculated based on the proposed de-
sign or ratio i or combination of any of these parameters may
be altered in a way that the resonance frequency lies in the de-
sired region and the attenuation of the filter is within the limits
defined by IEEE-519. Bode plots can be effectively utilized to
estimate these changes and arrive at an optimized solution.

IV. SIMULATION AND EXPERIMENTAL VERIFICATION

Three-phase VSI with LCL-filter is simulated in MATLAB
Simulink environment where the proportional integral (PI) con-
troller is used to regulate the grid-injected current [18]. A basic
block diagram of the entire control system is shown in Fig. §,
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Fig. 9.
with parameters listed in Table II.

where G.(z) and G,(z) are the discrete transfer functions of
the PI controller given by (22) and LCLfilter given by (1). In
simulation, the controller is sampled at 20 kHz ( f;) to mimic
the operation inside a real-time digital signal processor, while
the rest of the inverter system is sampled at a higher rate (at least
100f;) to mimic a real-time system. The controller is tuned ac-
cording to the guidelines provided in [18] and [22]. The transfer
function of the PI controller (Gpi(z) = G.(z)) is given by

1
Gp(2) =K, + KiTy——. (22)

(z—1

The proportional and integral gain of the PI controller is given
by
L+ L
K, =, (L)
Vdc

10
K]ZKP a)_

where Vg is the dc-link voltage of the inverter and w, is the
crossover frequency. Crossover frequency is approximated to
be 0.3wes (wres = resonance frequency) to prevent the inter-
ferences between the LCL resonant component and the max-
imum harmonics of the current that needed to be controlled
as per [18]. Controllers are synchronized with the grid voltage
to achieve unity power factor operation with the use of a PLL.
Furthermore, the controller is implemented for the per unit mea-
surements of the grid-injected voltage and current. Therefore,
gains are modified using the attenuation factor (af) given by (25)
as per [18]

(23)

(24)

V2P,
af =
3V,

(25)

where P, and V, are the rated power and the rms value of the grid
voltage. Therefore, modified p.u. gains are K, ,, = af * K, and
K puw = af * K;. The calculated p.u. gains for the given system
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Fig. 10. THD plot of grid-injected current for LCL-filter (L7 = 1.3539 mH
and C = 28.25 uF).

parameters are also listed in Table II. These derived gains are
used in both simulations and experimental setup.

Fig. 9(a) and (b) shows the inverter-side and grid-side cur-
rents, respectively, while the corresponding THD plots are
shown in Fig. 9(c) and (d). Switching components on the
inverter-side current as seen from Fig. 9(c) are clearly above
0.3% limit demanded by the IEEE-519. The proposed filter is
capable of attenuating them below 0.2% as seen from Fig. 9(d).
Another set of simulations were carried out for an LCL-filter
with the capacitance of 28.25 nF, while keeping the same total
filter inductance (L7 = 1.3539 mH) and the THD plot of the
grid-injected current is shown in Fig. 10. There is a small de-
crease in the THD compared to the proposed design due to the
fact that resonance frequency has decreased to 1627.5 Hz (k =
6.14) compared to the proposed design’s 2272 Hz (k = 4.40).
As seen from the bode plot of Fig. 2, reduction in resonance
frequency will result in improved attenuation as the 60-dB at-
tenuation slope shifts toward the left of the bode plot. However,
the advantage gained is negligible in the context of harmonic
attenuation demanded by IEEE-519.

Proposed LCL-filter is designed and experimentally vali-
dated for a grid voltage of 75 V (other parameters are listed in
Table II) due to the safety limitations and limited dc bus voltage
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Fig. 11.  Grid-injected current and THD plot for LCL-filter as per [13] (L7 =
6.824 mH and C = 8 uF).
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Fig. 12.  Grid-injected current and THD plot for proposed LCL-filter (L7 =
4.565mH and C = 4.3 uF).

availability in the laboratory. Generally, most of the inverters are
connected to a 120 or 240 V (nominal voltage) grid. Therefore,
Table IV summarizes the LCL-filter parameters calculated using
the proposed design for a 240-V system parameters presented
in [13] and a comparison is provided with an another conven-
tional method [13] (similar to design type B discussed under
Section II-D). Figs. 11 and 12 show the simulations results for
the proposed and conventional method. Conventional method
has better attenuation of switching frequency components as
seen from the THD plot due to higher inductance compared
to proposed method. Nevertheless, for the both methods atten-
uation of switching components is less than 0.2%, which is
below the limit demanded by IEEE-519. However, the proposed
method is capable of achieving it with a small total inductance
and small capacitor.

The proposed filter design can be implemented for a single-
phase or a three-phase grid-connected VSI. However, proposed
design is verified by a 3-kW three-phase grid interface VSI hard-
ware prototype as shown in Fig. 13. Sinusoidal PWM is utilized
for switching power IGBTs of the three-phase inverter. Param-
eters used for the experimental prototype are listed in Table II.
Control algorithm for the grid-connected VSI is implemented
in the Texas Instruments TMS320F28335 DSP. Inverter-side
and grid-side inductors are implemented using KoolMu powder
material, KoolMu core “00K130LE026” is used for the imple-
mentation [23], which has a saturation flux density of 1 T [23].
E-core geometry is preferred due to the ease of winding over
other core geometries such as toroids. Inductors are designed
according to the guidelines provided by magnetic manufacturers
[23], [24].

Inverter-side and grid-side currents at rated operating condi-
tions are captured using Yokogawa DL850EV ScopeCoder as
shown in Fig. 14(a) and (b), respectively. Experimental results
are also consistent with simulations of the proposed filter and
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Fig. 14.  (a) Inverter-side (i;) and (b) grid-side current (i) waveforms.

the filter is capable of attenuating the high-frequency switching
components as seen from THD plots shown in Fig. 15(a) and
(b). However, the THD (3.9%) of the grid-injected current of
the implemented filter is bit higher than the results from sim-
ulations due the nonlinearities such as dead-time, calculation
delays, nonideal power devices, etc. However, the proposed fil-
ter is in agreement with the 5% THD limit imposed by IEEE-519
standard and most importantly, it has attenuated the switching
components completely. Active and reactive power of the in-
verter are measured using C.A 8334 Power & Quality Analyzer
to validate the reactive power compensation by the proposed
LCL-filter as shown in Fig. 16. Reactive power compensation at
different power injection level are listed in Table V. Results con-
firm that the reactive power of the proposed LCL-filter confined
to initial designed value.

V. ALTERNATIVE FILTER OPTIMIZATION PARAMETERS

The proposed LCL-filter design primarily focuses on design of
total inductance and capacitance for a two level three-phase grid-
connected VSI. However, other parameters such as damping,
component costs, switching ripple, and switching frequency can
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three-phase VSI.

also be considered for optimization. Impact of various passive
damping techniques are elaborated in [S] and [15] while active
damping can also be used to avoid damping losses at the expense
of control complexity. However, passive damping is preferred
with stiff grid operating conditions [21].

The proposed design considers the switching ripple of a two-
level inverter with sinusoidal PWM scheme in determining
the passive components according to (19). However, switch-
ing ripple vary with multilevel inverters as discussed under
Section III-D and different PWM schemes. As the number of
levels increase, switching ripple decreases and it could further
reduces the total inductance according to (19). Similarly, switch-
ing ripple is smaller with space vector PWM compared to sinu-
soidal PWM scheme. Switching frequency can also be used as a
variable factor according to (19). Higher switching frequencies
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TABLE V
POWER AT DIFFERENT PERCENTAGES OF RATED POWER INJECTED TO GRID IN
A SINGLE PHASE

% rated = (Active power injected)/(rated power of the inverter = 1 kW)
in a single phase

% rated 25% 50% 75% 100%
Active power 249.2 503.5 752.1 998
Reactive power 11.7 24.6 37.6 50.8
RA ratio* 0.047 0.048 0.049 0.051

* RA ratio = reactive power/ active power.

result in smaller total inductance at the expense of switching
losses. Therefore, an analysis-based switching frequencies and
losses can also be used to enhance the performance of the entire
system. Furthermore, cost of the passive components can also
be incorporated within the design optimization procedure but
will increase the complexity. Analysis based on different core
materials versus cost or volume for inductors can be used to
realize a cost effective LCL-filter [23].

VI. CONCLUSION

An optimum capacitance for an LCL-filter is derived by con-
sidering the impact of total inductance of the filter on reactive
power compensation limit. Initially, LCL-filter parameter lim-
its and their ranges that are critical for the proper operation of
a grid-connected three-phase inverter are analyzed to identify
relationship between parameters and design requirements that
can lay the foundation to a good LCL-filter design. Based on the
analysis, an optimum capacitance for an LCL-filter is designed
by deriving an approximate mathematical equation to define the
reactive power compensation. The proposed design is capable of
reducing the filter capacitance by 50% compared to the capac-
itor design that is based on the percentage of base capacitance
value and also has the minimum total inductance compared to
conventional design methods. The performance of the proposed
optimum LCL-filter design is both verified in simulations and
validated by experimental results

APPENDIX
L, Lg
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Impedance of the inverter (Zj,y) Therefore, (1) corresponds to the unity active power trans-
. . ferred and (I7 — ¢) corresponds to the reactive power trans-
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