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A Wikipedia Powered State-based Approach to Automatic Search
Query Enhancement

Kyle Goslin1

Institute of Technology Blanchardstown

Markus Hofmann2

Institute of Technology Blanchardstown

Abstract

This paper describes the development and testing of a novel Automatic Search Query Enhance-
ment (ASQE) algorithm, the Wikipedia N Sub-state Algorithm (WNSSA), which utilises Wikipedia
as the sole data source for prior knowledge. This algorithm is built upon the concept of iterative
states and sub-states, harnessing the power of Wikipedia’s data set and link information to identify
and utilise reoccurring terms to aid term selection and weighting during enhancement. This algo-
rithm is designed to prevent query drift by making callbacks to the user’s original search intent by
persisting the original query between internal states with additional selected enhancement terms.
The developed algorithm has shown to improve both short and long queries by providing a better
understanding of the query and available data. The proposed algorithm was compared against five
existing ASQE algorithms that utilise Wikipedia as the sole data source, showing an average Mean
Average Precision (MAP) improvement of 0.273 over the tested existing ASQE algorithms.

Keywords: Automatic Search Query Enhancement, Query Drift, Information Retrieval, Wikipedia

1. Introduction

The process searching for content on the web is typically done by entering search terms into
a text field on the front-end of a search engine. This process however, can be seen as a one-size-
fits-all approach, generalising the user’s requirements, needs, background knowledge with search
engines and overall search ability. Automatic Search Query Enhancement (ASQE) algorithms aim
to enhance user submitted queries but often require additional information that can be used as a
source of candidate expansion terms and as a method to gauge the importance of available terms.
Recent ASQE algorithms (Bruce et al. 2012; ALMasri et al. 2013; Boston et al. 2014; Zhao et al.
2014; Zingla et al. 2016) have shown the use of dynamic data sources, such as Wikipedia3, which
offers high quality and ever changing articles with common fields and structure, can be beneficial to
the ASQE process. Many ASQE approaches however, become so focused on the term identification
process, they do not consider the true relevance the terms have to the user’s query as a whole. It

1Corresponding author: E-mail kyle@cct.ie; Department of Informatics and Engineering, Blanchardstown Road
North, Dublin 15, Ireland, Ireland

2Department of Informatics and Engineering, Blanchardstown Road North, Dublin 15, Ireland
3https://www.wikipedia.org
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can often be the case that too many enhancement terms are added or that the terms that have
been selected are of questionable relevance or conceptually distant causing query drift (Shtok et al.,
2012).

The objective of this research is to utilise all available data from the Wikipedia data set and
term relevance metrics for each data source to automatically enhance search queries to improve the
precision of search results. The theory behind this research is that a state based approach provides a
number of chances for reoccurring terms be identified, and when an alternative method for selection
of available candidate terms is used, it will allow optimal candidate terms to surface. In addition to
this, during the process of gathering of related data for a given query, if calls are made back to the
original query to provide constant relevance persistence of the user’s original intent with selected
candidate terms, the collection of enhancement terms will be more relevant to the user.

To do this, a novel state and sub-state based approach to ASQE was developed with a stem
query and a Term Window based selection process of candidate terms. The proposed algorithm,
the Wikipedia N Sub-state Algorithm (WNSSA) is described and tested using 50 of the TREC-9
& 50 TREC 2014 Web Topics4 on the ClueWeb12 full data set5. In addition to this, five existing
ASQE algorithms that utilise different aspects of the Wikipedia data set were implemented and
analysed. Relevance calculations for each algorithm are performed using the Average Precision@10
results from each of the enhanced sample topics and the overall Mean Average Precision@10 for each
tested algorithm.

The main contributions defined in this paper include: 1) A novel state based approach to the pro-
cess of gathering and identifying candidate enhancement terms for ASQE; 2) Stem query generation
and utilisation between states during the Information Retrieval (IR) process for ASQE, consisting of
the user’s original query and identified relevant enhancement terms from the current internal states
to prevent query drift; 3) Term Window based selection of enhancement terms for ASQE; and 4)
A comprehensive cross-analysis of five existing ASQE algorithms that utilise Wikipedia as the sole
data source for candidate enhancement terms against the proposed algorithm. This paper begins
in Section 2 reviewing the area of ASQE and query drift, with a focus on algorithm that utilise
Wikipedia as the data source for expansion terms. Section 3 provides an overview of the methodol-
ogy followed and Section 4 outlining the ASQE algorithms tested and the data sets utilised during
the testing and analysis process. The core focus of this paper is the developed ASQE algorithm,
the WNSSA, which is described in Section 5. To provide an understanding of the results, Section 6
discusses the results of the testing process of the five existing Wikipedia powered ASQE algorithms
and the proposed algorithm. Section 7 concludes this research outlining the key findings. As work
on the WNSSA is ongoing, Section 8 outlines the future work for this study.

2. Related Work

ASQE is the process of automatically enhancing a user search query, typically through the
addition, removal or correction (Vilares et al., 2016) of search terms to improve precision / recall
of a search query. Ongoing research (Zingla et al., 2016) has continued to show that Wikipedia is
useful as a source of prior knowledge to aid ASQE algorithms due to the quantity and wide domain
of topics available. Unlike utilising static document collections and thesauri6 which require expert
knowledge to maintain, Wikipedia has shown to be beneficial as a source of prior knowledge for

4http://trec.nist.gov/data/web topics.html
5http://lemurproject.org/clueweb12/
6https://wordnet.princeton.edu/
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domain specific query enhancement such as in the area of patent retrieval (Al-Shboul & Myaeng,
2014; Sharma et al., 2015).

As ASQE is built upon a number of different IR techniques, each component of the ASQE process
can be further enhanced by utilising Wikipedia; such as term weighting (Karisani et al., 2016),
linguistic understanding (Selvaretnam & Belkhatir, 2016), relevance calculation (Zhao & Callan,
2012), term disambiguation (Habibi et al., 2016; Yadav & Kumar, 2016) and similarity assessment
based up Wikipedia articles (Jiang et al., 2015). The additional data available in Wikipedia can
be beneficial to users, as during search, users with little knowledge about the area of search have
shown to perform worse due to their lack of prior knowledge when compared to domain experts
(Monchaux et al., 2015). He & Ounis (2009) identified two possible reasons for the failure of ASQE,
low query quality and topic drift. As search queries can be overly simple or complex, recent research
has moved towards understanding the structural and syntactic complexity of search queries (Roy
et al., 2016), which can further improve ASQE techniques. The context of a user during search plays
an important role as it often does not exist for the user at the beginning of a search session (Fourney
& Dumais, 2016).

ALMasri et al. (2013) proposed a Wikipedia based semantic query enrichment algorithm, whereby
semantically related terms are extracted from Wikipedia and then used as Pseudo Relevance Feed-
back (PRF). This process is achieved through the following steps: Collect all articles S(q) which
are entitled by the user’s query q. Each article a ∈ S(q) has the probability P (a | q) of being used

in the enrichment process. The probability is defined as P (a | t) = |O(a)|∑
ai∈S(t)|O(ai)| , where O(a) is

the set of articles that a points to. The expansion set ES of selected n number of articles for user
query q are defined as ES(q, n) =

⋃
a∈S(q) f(a, dn× P (a | q)e). The collection of terms for query q

are built from a union of article titles in the enrichment set. A weight is attached to each between
0 and 1, whereby 1 is most important and 0 is least important. The weight for each of the terms is
defined as weight(t, qe) = α× SIM(aq, at), whereby α is a tuning parameter between 0 and 1. The
similarity calculation between two articles, a1 and a2, is defined in Equation 1, where I(a) is the set
of articles that points to a.

SIM(a1, a2) =
| I(a1) ∩ I(a2) | + | O(a1) ∩O(a2) |
| I(a1) ∪O(a1) | + | I(a2) ∪O(a2) |

(1)

Boston et al. (2014) proposed a tool titled Wikimantic which exploits Wikipedia articles and
their inter-article reference relations which has shown to be effective for short queries. They define
an AtomicConcept as a simple form of a concept. Each article is considered a series of terms which
was generated by an AtomicConcept. The prior probability of P (A) generating terms, where A is
an individual article is defined as P (A) = number of incoming links

number of links in Wikipedia . As most of the articles in
Wikipedia are linking to other articles, the authors define the probability of article A generating

term t is defined as P (t | A) = count(t,A)
number of words in A .

Due to the limitation that not all articles will have a variety of different terms to check their
probability with, the Microsoft n-gram corpus7 containing 100,000 unique terms is used. Building
upon an AtomicConcept, a new variant is defined as a MixtureConcept which is a collection of
different AtomicConcepts. A MixtureConcept is defined as M = {(wi, Ai) | i = 1...n}, where wi is
the weight of the concept and A is an individual article concept. In this Equation, i is the current
AtomicConcept being viewed inside of M and wi is the weight of Ai in MixtureConcept M . The
probability of a MixtureConcept, P (M) generating terms is defined as P (M) =

∑n
i=1 wi∗P (Ai). The

probability of generating term t for mixture concept M is defined as P (t |M) =
∑n

i=1 wi ∗P (t | Ai).

7http://research.microsoft.com/apps/pubs/default.aspx?id=130762
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After an AtomicConcept set has been generated, a weight wi is applied. S is the number of terms in
the Concept. This is shown in Equation 2 and the probability of P (A) generating term t is shown
in Equation 3.

wi = P (Ai | S) =

|S|∏
j=1

P (Ai | tj) (2)

P (Ai | tj) =
P (tj | Ai) ∗ P (Ai)

P (tj)
(3)

Given query Q, a set of MixtureConcepts are created and then Equation 4 is used for generating
possible expansion terms where P (t | Ai) is the likelihood of generating term t from the Atomic-
Concept Ai and wi is the weight of the AtomicConcept Ai in MixturenConcept M for user submitted
query Q described as M(Q). N is the number of documents in the collection and df(t) is the number
of documents that contain t. lnN+1

df(t) is the described as the IDF weighting for the given term t.

ExpWeight(t |M(Q)) =
∑

Ai∈M(Q)

P (t | Ai)× wi × ln
N + 1

df(t)
(4)

Xu et al. (2009) outlined a query dependant PRF approach based on Wikipedia. They first
began with an approach to categorise user queries into three categories, entity queries, ambiguous
queries, and broader queries. They also proposed a number of different approaches for enhancement
including a Relevance Model based approach, Field Evidence approach utilising the fields identified
in a Wikipedia page and an Entity Page based approach. Their results show that the Entity Page
based approach was the most successful and is discussed below. Instead of focusing on the top
ranked documents as shown above, this approach focuses on utilising the Entity Page, e.g., the page
which corresponds directly to the topic that the user is searching as an initial source of additional
terms for PRF. The procedure followed during this study is defined as: 1) Identify an entity page
for the user submitted query Q, 2) All terms on the entity page are ranked using TF-IDF, and 3)
Top k terms are extracted, where the score for a term t on an Entity Page is defined using TF-IDF,
where tf is the TF on an entity page and idf is computed as log(N/DF ), and n is the number of
documents in the Wikipedia collection and DF is the number of documents that contain term t
defined as score(t) = TF − IDF .

Bruce et al. (2012) described query expansion powered by Wikipedia hyperlinks. This approach
begins by first breaking a query into query aspects. Poorly represented areas of the query are then
enhanced with additional terms. This process contains six steps outlined as: 1) The user’s initial
query is recieved, 2) aspects of the query are identified, 3) Wikipedia articles are selected, 4) aspect
vocabulary is constructed, 5) finding under represented aspects, and 6) query expansion. For aspect
identification, Link Probability Weighting is used. This is done by counting the number of documents
where the term is already a hyperlink divided by the number of documents where the term appeared.
Aspects are selected from the highest value through to the lowest. An aspect is ignored if it is a
subset of an already selected aspect. No aspects with weighting of 0 should be added, unless they
contain terms that are yet to be covered by selected aspects. Aspect Identification is complete when
each term of the query has been covered by an aspect. A collection of articles is created with a
connection to the aspects defined. Each of the aspects are disambiguated individually using Link
Probability measure. A cut-off threshold is then utilised, and all articles that have a confidence
greater than half of the maximum measure are added. Aspects are disambiguated into pairs using
the Wikipedia Link Based measure, described in Equation 5. The similarity between two articles is
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defined, where A and B are the set of articles that link to a and b and W is the entire Wikipedia
collection.

sr(a, b) =
log(max(| A |, | B |))− log(| A ∩B |)
log(|W |)− log(min(| A |, | B |))

(5)

Aspect vocabulary construction aims to build a weighted vocabulary for each aspect using the
article set created previously. All terms appearing in the selected articles are vocabulary candidates
weighted by their relation to their corresponding aspects. Each candidate term is added along
with the Wikipedia Link Based Measure score. Finally, under represented aspects are identified.
This step selects the best expansion term by counting term frequencies of all terms in the first 10
documents of an initial Bing search. The first 50 highest weighted terms are normalized. Scores are
then calculated by multiplying term weights in the aspect vocabulary by their frequency weighting
in the query vocabulary. From this the lowest score is determined to be the least represented. The
aspects vocabulary is assigned as the final output for query expansion.

Zhao et al. (2014) described a novel term semantic query model based on Wikipedia. This
approach is focused upon finding the semantic relatedness between terms using Wikipedia. The
semantic correlation of to terms is defined as TjWi = TFi ∗ log(N1+N2

n ), where i,j = 1,2 and TjWi

represents the weight of the ith common words in Tj word groups. The summary paragraph available
for all Wikipedia articles is used to compute the semantic relatedness of two terms shown in Equation
6, where a,b represents two terms that are used for semantic computing and Ti, T2 represent the
word group obtained by word segmentation on the summary paragraph, N1, N2 are the number of
words in word group T1, T2.

sima(a, b) =
MAX(N1, N2)

MIN(N1, N2)
+

n∑
i=1

Tiwi ∗ T2Wi (6)

Semantic link relatedness is computed using Equation 7, whereby a and b represent two terms
that are used for semantic computing, A is the number of inbound links for term a and B is the
number of inbound links for term b. W is defined as the number of individual articles in Wikipedia.

sim(a, b)in =
log(MAX(| A |, | B |))− log(| A ∩B |)

log(|W |)− log(min(| A |, | B |))
(7)

Zhao et al. (2016) described a method for Named Entity Disambiguation, which contains a
query expansion based upon the utilisation of Wikipedia terms based on co-occurrence mentions.
The authors describe that often, in the case of an article, a name is mentioned in complete form at
the start of an article. Two main strategies for identifying candidates are: 1) queries that contain
abbreviations, a match is made to terms which have similar capitalisation; 2) queries that contain
continuous strings where the first letter of the string is also a capital letter, a match can be made
to a candidate. The Wikipedia data utilised by this approach includes article titles, article content
and article redirections. In their method, an initial query is placed to collect the top-k documents
for a given query. Any candidate terms that are identified in the article collection become part
of the collection of enhancement terms and articles returned become part of the article collection.
The authors of this method identify that their query expansion approach is simplistic, and titled it
the feedback-query-expansion method, as it incorporates a feedback loop to find candidates during
retrieval. Due to the simplistic nature of this approach, it will be excluded from the testing described
in this paper.

Zingla et al. (2016) described the issue of short queries in microblog retrieval and implemented
ASQE using Wikipedia. The authors’ method of identify candidate expansion terms was done by, 1)
selecting unstructured full texts related to the original query utilising TF-IDF to select similar texts,
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2) texts are tagged using the TreeTagger, 3) extract nouns from text, and 4) generate association rules
using the CHARM algorithm. After a collection of candidate terms has been generated, additional
processing is performed to ensure the terms are related to the original query terms. This is done
through the use of their proposed semantic relatedness measure titled ESAC which combines Explicit
Semantic Analysis using Wikipedia and association rules’ confidence measures. This is described in
Equation 8 where Confmax(R, q, w) is the max of the confidence of any association rule from Rj

from rule collection R. ESA(q, w) is the score of relatedness between the query q and the candidate
term w and α is a tuning parameter between 0 and 1.

ESAC(q, w) =

{
(α× ESA(q, w) + (1− α)× Confmax(R, q, w)ifConfmax(R, q,W ) 6= 0;

ESA(q, w), otherwise.
(8)

After this process is completed, the most related terms are then added to the original search query.
Their research showed that the best results were achieved with rule mining and a term filtering
phase which used a Wikipedia-based ESAC to prevent similar terms being utilised in the enhanced
query.

3. Methodology

In this research, the testing and analysis procedure followed during the enhancement and ranking
of search topics for each existing algorithm, and the developed ASQE algorithm, proposed by this
paper, are defined as:

1. Select test topic, Q, from test query collection.

2. Pass Q to the current enhancement algorithm under analysis.

3. Gather 10 generated terms from the selected enhancement algorithm.

4. Merge original query Q and the new additional enhancement terms.

5. Pass the enhanced query to the ClueWeb12 full data set Batch Query Service to retrieve results.

6. Calculate the Average Precision @10 for the given enhanced query based on the results re-
turned.

The Average Precision @10 was calculated by first analysing the top ten results returned per
enhanced query from the ClueWeb128 full data set Batch Query Service9 running the Lemur IR
engine10. The topic description was then gleaned from the description field for each topic from the
given TREC-911 & TREC 201412 Web Topic collections. If the result returned was relevant, the
result was marked with 1, if the result was irrelevant it was marked as 0. For each test completed, 500
manual relevance assessments were performed. In addition to the Average Precision @10, the Mean
Average Precision for each test was also calculated providing an overall score for each algorithm
tested.

8http://www.lemurproject.org/clueweb12.php/
9http://boston.lti.cs.cmu.edu/Services/clueweb12 batch/

10https://www.lemurproject.org/
11http://trec.nist.gov/data/topics eng/topics.451-500.gz
12http://trec.nist.gov/data/web/2014/web2014.topics.txt
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4. Experimentation

In this research, three collections of tests were performed. In the first collection of tests, five
algorithms, each of which utilised components from Wikipedia article content, Wikipedia API, search
functionality, collection statistics or link analysis techniques using the Wikipedia, were analysed.
As no concrete algorithm existed for each algorithm, each was recreated using the Python 2.7
programming language based on the specification defined by the authors. As research in the area
of ASQE algorithms based on Wikipedia is limited, out of the six algorithms outlined in Section
2, the Algorithm by Zingla et al. (2016) was omitted as it was based on Rule Mining, which was
conceptually distant from the algorithm proposed in this paper. The five remaining algorithms were
chosen for analysis. These algorithms include: Algorithm 1 by ALMasri et al. (2013) utilised Search
API, Article Titles and Article Content; Algorithm 2 by Boston et al. (2014) utilised Inter-article
Link References and Article Content; Algorithm 3 by Xu et al. (2009) utilised Article Content,
Search API and Wikipedia Document Collection Size; Algorithm 4 by Bruce et al. (2012) utilising
Inter-article link references and Article Content; Algorithm 5 by Zhao et al. (2014) utilised Search
API, and Article Summary Text. Each of these algorithms were provided 50 of the TREC-9 Web
Topics for enhancement. After the enhancement was performed, the resulting enhanced query was
passed to the ClueWeb12 full data set Batch Query Service to retrieve documents for relevance
assessment.

The second collection of tests focused on the Wikipedia N Sub-state Algorithm (WNSSA) which
is proposed in this paper. To provide a relevant baseline, the same test topics and data set as those
in the first collection of tests were utilised during these tests.

The third collection of tests contained 30 individual tests in which the proposed algorithm was
tested with variable tuning parameters to identify the most useful to aid enhancement. For each of
the 30 tests, 50 of the TREC 2014 Web Topics were utilised and tested on the ClueWeb12 full data
set using the Batch Query Service. For this research, the TREC-9 & TREC 2014 Web Topics were
chosen as they contain length variation, spelling issues, domain diversity and lexical variations. In
the TREC-9 test topics, the average query length is 3.44 tokens long and standard deviation of 2.67
, and the TREC 2014 Web Topics contain an average length of 3.3 tokens and a standard deviation
of 1.38. To query the ClueWeb12 full data set, the ClueWeb12 Batch Query Service was utilised
which uses the query-likelihood model with Dirichlet smoothing. This service allows 50 queries to
be passed and returned in one of two formats, trec eval or Indri default format. For this research
the Indri default format was utilised. The index utilised by the Batch Query Service was created
using the IndriBuildIndex, the data was processed with the default stoplist13, and stemmed using
the Krovetz Stemmer 14.

Both topic collections contain sub-topics which describe each topic. During these three collection
of tests, 18,000 individual manual relevance assessments were performed to ensure the sub-topics
outlined could be seen in the result collection. For each enhancement algorithm analysed, 10 en-
hancement terms were added. This was based upon research by Ogilvie et al. (2009) which outlined
that 10 or less provided the optimal enhancement. As this research is not focused on optimisation
of this parameter, 10 enhancement terms was chosen for each tested algorithm.

13http://boston.lti.cs.cmu.edu/Services/clueweb12 batch/stoplist.dft
14http://boston.lti.cs.cmu.edu/Services/clueweb12 batch/FAQ.html
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5. Wikipedia N Sub-state Algorithm

In this section, an outline of the architecture of the WNSSA is described. The WNSSA is designed
to 1) select and weight candidate enhancement terms relevant to the user’s original search query
and, 2) prevent query drift through the use of a dynamically generated stem query which is persisted
between internal states. To achieve this, the WNSSA contains two main loops, the States loop and
the Sub-states loop. For each given A state, B number of internal sub-states may run. Algorithm 1
provides a pseudocode example of these loops. At the beginning of this process, a reference cache is
first created, described in Section 5.1. When currentState >= A, the final enhancement terms are
generated.

generateCache();
while currentState < A do

while substateCounter less than B do
substateCounter = substateCounter + 1;

end
currentState = currentState + 1;

end
outputEnhancedQuery();

Algorithm 1: WNSSA State and Sub-state Loops

Figure 1 outlines the query and term transition between 5 individual states, each of which have
2 sub-states. The initial query for enhancement in the form of a root query is passed into the first
State. During this process, additional terms are generated for the query. The top terms from the
current state are then passed across to the next state in line. A key element of this process is to
persist the original query across to minimise query drift for generated enhancement terms.

Figure 1: WNSSA State Overview Outlining Five States

The WNSSA is broken into two core steps, Cache Generation process described in Section 5.1
and the Begin Process described in Section 5.2.

5.1. Inital Cache Generation

Before the algorithm begins, an initial cache must be generated to store information based on
the user’s original query Q. This cache provides a base of knowledge which can be looked-up as a
reference during all sub-states. When generating a cache, query drift is minimised by retaining the
user’s original search intent. Given a user submitted query Q, Algorithm 2 describes each of the steps
which are performed during the cache generation process. At the beginning of this process, simple
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processing is performed to remove basic stop words and common Wikipedia function terms from the
query Q. By doing this, function words that commonly appear in Wikipedia will be removed from
the generation process, preventing undue weighting being attached to these terms.

The Cache Generation Process begins by taking the query Q and checking the length. If the
length of the query is equal to 1, 2 or 3 tokens long, a connection is made to the Wikipedia article
page corresponding to the sequence of terms, including an underscore between each of the terms.
The 3 token length was chosen as the threshold as during this research, as well as during analysis
of both TREC-9 & TREC 2014 Web Topics, 20% of topics <= 3 tokens had a direct match to a
Wikipedia article where, queries > 3 tokens has a 1% direct match. The best performing is single
token queries with a 100% match, however single term queries can be ambiguous and context of the
search terms would be lost. If no match between the user query and available articles are found, the
failedToFind flag is set. If the length of the query is greater than 3 tokens or if the failedToFind flag
is set, then the query is broken down into N-grams of length 2. For each of the N-grams created,
the article content gathering process is continued. If after this process, no connections to Wikipedia
articles can be made, a flag titled startSingleTok is set to 1. This flag then tells the algorithm to
break the original query Q into individual tokens, and make a connection to the articles in Wikipedia
based on each single token in the query Q.

The createFilterCache is responsible for making the connection to the Wikipedia article identified.
When a connection is made, the Wikipedia navigation boxes and reference sections are removed from
the Article. The main content of the identified article is contained in the mw-body-content HTML
div tag, which is then selected. Each of the terms in this section are then tokenized into individual
single word tokens. If the token is not contained in the Python NLTK English stop word list15, it
is added into the local filterCache for future reference. The term frequencies for each token in the
article are calculated and stored. To further the understanding of the data that has been returned
during the search process, the GetRootQueryBacklinks function is called. For each of the tokens in
the user submitted query Q, each of the backlinks for each term are retrieved from the Wikipedia
Backlink API and stored for use by the data utilisation modules (described in Section 5.3). After
this initial cache has been generated, a call is made to the BeginProcess function.

5.2. BeginProcess Function

After the initial cache generation process, the BeginProcess function is then called. This function
is the core of the WNSSA which is responsible for running the defined number of states and sub-
states. Algorithm 3 provides a pseudocode outline of this function. While inside one of the defined
states in the system, B number of sub-states are run. For each of the individual states which are
run, the variable substateCounter is used to track the number of sub-states which have run, up to
B. The higher the variable B is, the more terms will be added into the sub-state allowing for a
wider collection of terms to be utilised during the enhancement term selection process. This can
often cause an issue if set too high, as terms of a broader domain may be included.

For each of these sub-states, a term from the previous state is utilised. The downloadSearchRe-
sultsForTerm begins by taking the stem query (original query, Q plus term under analysis T ) and
querying the Wikipedia Search API to return records which contain the user’s original query with
the current term under analysis. The result collection is then tokenized and a term frequency is
calculated. If the term is not a stop word in the NLTK English stop word list and is not a Wikipedia
function word, the remaining highest weighted term is selected. The getWeightForTerm is then
passed the current term. If the result is greater than 1, the term was in the original cache created

15http://www.nltk.org/

9



removeStopwords(Q);
removeCustomStopwords(Q);
fullQueryLength(len(Q));
failedToFind = 0;
startSingleTok = 0;
if len(Q) less or equal to 3 then

failedToFind = createFilterCache(Q);
getRootQueryBacklinks(Q);

end
if len(Q) greater than 3 OR failedtoFind == 1 then

der = ngram(Q, 2);
for d in der do

startSingleTok = createFilterCache(d);
getRootQueryBacklinks(d);

end
end
if startSingleTok == 1 then

der = ngram(Q, 1);
for d in der do

createFilterCache(d);
getRootQueryBacklinks(d);

end
end

Algorithm 2: Cache Generation Process

and is suitable to enter into the enhancement process. This approach prevents query drift from
occurring.

while currentState < A do
while substateCounter less than B do

downloadSearchResultsForTerm(term);
compareWeight = getWeightForTerm();
if compareWeight greater than 0 then

mod1 getTFForPage(term);
mod2 calculateRecall(term);
mod3 IntersectionOfQueryToTerms(term) ;
mod4 backlinkIntersection(term) ;
mod5 termIntersection(term) ;
mod6 resultpage link sim(term) ;
substateCounter = substateCounter + 1;

end
end
currentState = currentState +1 ;
qr = calculateNextQuery();
if currentState < maxStates+1 then

beginProcess(qr)
end

end
Algorithm 3: BeginProcess function

As the selected term is deemed relevant, each of the six data utilisation modules, described
in Section 5.3, are called for that term. These modules are responsible for a complete IR process,
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gathering information from Wikipedia, and weighting the data collected in accordance to the method
defined by each application specific module. These modules are designed so that each utilise a
different aspect of the available Wikipedia data set. At the end of the each state, after all the
defined B number of sub-states have run and generated their own weightings for each term found,
the calculateNextQuery function is called. This is an important element of the WNSSA algorithm,
which takes in the original user query Q and the collection of the highest weighted terms from the
current state. Both the original query and these terms together are passed as a complete query to
the next state in the form of a stem query. This function is further expanded in Section 5.4.

5.3. Data Utilisation Modules

The WNSSA consists of six different data utilisation modules to gather and weight information
gleaned from Wikipedia and the Wikipedia API. These modules include: Module 1 - Term Frequency
which is focused on generating term frequency statistics for a given term T with the original query
Q. A call is made to the Wikipedia Search API and the returned page is parsed and for each term, a
check is made to ensure that the term has not already been used and is not a stop word or function
word. For each term found the term frequency is calculated and a new record is then stored into
the local database. Module 2 - Wikipedia Recall was developed to utilise Recall statistics available
from Wikipedia. Given a term T and the original user query Q together a query is performed on
the Wikipedia database to gather the number of results for term T . This score provides a useful
indication as the number of articles where the term has been seen in context with the user’s original
submitted query. For all terms which are passed to Module 3 - Backlink Analysis, a backlink analysis
is performed using the Wikipedia backlink API. Given a term T , an exhaustive list of all articles in
Wikipedia which are pointing to the article that represents term T in Wikipedia. All links which
are gathered are stored in a local database for use by Module 4. Given the collection of backlinks
which were generated during the initial cache generation process, a second collection of backlinks
for each of the terms are then generated using Module 4 - Backlink Intersection. A final score is
then created by gathering a list of all backlinks for the user query Q and the term currently under
analysis T . The score is calculated based on the intersection of all backlinks shown in Equation
9. In this Equation, the final score for a given term T , is calculated by identifying the number of
backlinks for query Q that intersect with the backlinks for term T . Results of this module are then
stored in the local database.

scoreQT = (backlinks(Q) ∩ backlinks(T ))) (9)

To gauge how important a single term can cause a negative impact on a set of search results,
Module 5 - Intersection of Result Terms was developed. Two sets of queries are performed, the first
collects a set of results based upon the user’s original query Q and the second is focused upon the
original query with the addition of the term currently being processed. Original query Q and the
appended term T are shown in Equation 10.

scoreQT = wikiResults(terms(Q)) ∩ wikiResults(terms(Q+ T )) (10)

The scoring weight is given by the intersection of both sets. The higher the value returned
indicates that many of the terms found from the user query Q are similar to those of the query
Q with the appended term T . A max number of search results is set to 100 to prevent additional
unwanted skew when all search results are not relevant. To assess the similarity of the links in the
results which have been returned, Module 6 - Link Similarity collects the Wikipedia Article links
for the user query Q and the results for query Q and the appended term T . Similar to Module 5,

11



an intersection of links is then performed giving a final score. This is shown in Equation 11 where
Q is the original query and Q+ T is the original query plus the term currently under consideration.

scoreQT = wikiResults(links(Q)) ∩ wikiResults(links(Q+ T )) (11)

After each of the six modules have run for the current sub-state and all sub-states have run
for the current state, the stem query for the next stem query must be generated. This stem query
consists of the original query Q in addition to the top terms identified in the current state. The
process of identifying the top terms from the current state is done by assessing the weights of all
terms generated by each individual module during the current state. As this selection process is the
most important step in the WNSSA, it is described in detail in Section 5.4.

5.4. Selecting Stem Query Terms

During the transition between states, a stem query is passed. The stem query generation process
begins by select the top terms from each of the data utilisation modules for a given state. Algorithm
4 outlines the process of first looping through each of the modules in the mod collection. For each
individual module, the getStateTerms function is called, the following parameters are passed: a
reference to the current module being processed; the currentState reference; a limit as to how many
terms to return; and a final order parameter, which in this case, is set to DESC. In this algorithm,
the limit was set to 2, as if each module returned only a single term, the the probability error is
increased if erroneous data is included as a top term for a single module, rendering the weighting
for that module useless. If limit > 2, too many terms are added into the term selection process.

The globalTermList is used to store how many times each of the terms was found for each of the
modules. If the term was present in all of the modules, the highest weight of 5 will be given to that
term. The storeTermCollection() function is then used to store the overall term collection gathered
and their associated weights.

globalTermList = list();
for mod in mod collection do

mod termCollection = getStateTerms(mod, currentState, limit=2, order=DESC);
for term in mod termCollection do

if term in globalTermList then
globalTermList[term] = globalTermList[term] + 1;

end
end

end
storeTermCollection(globalTermList);

Algorithm 4: Creating Window Of Terms

After all of the terms have been processed, Algorithm 5 outlines the process of querying the
database to gather a collection of results generated in the previous steps. These results are sorted
in descending order by weight. For each term, if they have not been used before during the en-
hancement process, the term is selected and appended to the new query. The counter variable
num terms for new query is used to provide a limit on the number of terms which can be appended
to a query for each iteration of the loop. The value for this variable is set to 1 for this research to
prevent the drift of the stem query between states.

Terms that are selected to be used as an element of the stem query are appended to the al-
readyUsed collection. This is used as a reference for future steps to ensure the same terms are not
used again in a stem query. At the end of this process, the original user query Q and the new term
string are returned together to become the stem query for the next state. To reinforce the use of
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newTerms = ”;
for term in globalTopTerms do

if term in FilterCache then
if term not in alreadyUsed then

if new term count < num terms for new query then
alreadyUsed.append(term);
alreadyUsed.append(term + ’s’);
newTerms += ’ ’ + term;
num terms count = num terms count + 1;
if num terms count == num terms for new query then

break;
end

end
end

end
end
return(fullQuery + ’ ’ + newTerms);

Algorithm 5: Building Next Query

1 as the value for num terms for new query, Figure 2 provides an outline of the Average Precision
@100 across 50 TREC 2014 Web Topics used as stem queries with enhancement terms generated by
the WNSSA using 10 states and 5 sub-states. At the beginning of this process, the original query
is the stem query along with additional enhancement terms in increments of 1. In this figure we
can see that the larger the num terms for new query, the worse the precision of the result collection
from the Wikipedia Search API becomes. In this test, results were considered relevant if each of the
terms provided could be seen in the result record. For this reason, and to ensure the collection of
records utilised by the WNSSA are relevant and will not run out of source data during processing,
the num terms for new query was limited to 1.

Figure 2: Average Precision @100 Decrease as num terms for new query is Increased

After each of the A states has been run, and each of the top terms have been generated, a call is
made to the outputEnhancedQuery() function to generate the final enhanced query. In this function,
a query is made to the database to collect a list of the overall top terms across all states by calling
the getOverallTopTerms() function and passing the states variable set to ALL. A limit of 10 is passed
here to only return 10 enhancement terms. The top terms from the process and the original user
query Q are merged and returned to the user. This process is shown in Algorithm 6.
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enhancementTerms = getOverallTopTerms(states=All, limit=10);
finalQ = Q + ’ ’ + enhancementTerms;
return finalQ;

Algorithm 6: outputEnhancedQuery Function

6. Algorithm Comparison Results

For each algorithm including the WNSSA, the Mean Average Precision (MAP) was calculated
using the Average Precision (AP) scores for each of the 50 TREC-9 Web Topics on the ClueWeb12
batch query service. Table 1 provides an outline of these results. The Diff describes the difference
from the MAP score achieved by the WNSSA, the WNSSA Improvement outlines this in percent.
The p-Value outlines the results of significance testing which was performed using paired T-tests
with two tails and an α of 0.05. The over all standard deviation for each algorithm was the calculated
on the AP, shown as STD. To provide an understanding of each algorithm for short and long queries
the STD, and MAP was calculated for 1 term topics (short), 2 term topics (short) and greater than
2 topics (long).

Table 1: Results from Tested Algorithms
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WNSSA 0.800 0.350 0.910 0.186 0.897 0.290 0.736 0.423

Algo 1 0.634 -0.165 26% 0.0058 0.415 0.739 0.340 0.536 0.463 0.617 0.438

Algo 2 0.364 -0.436 120% 9.31E-10 0.397 0.559 0.444 0.323 0.337 0.282 0.378

Algo 3 0.694 -0.105 15% 0.060 0.405 0.769 0.365 0.914 0.192 0.549 0.450

Algo 4 0.460 -0.339 74% 1.025E-05 0.467 0.597 0.449 0.464 0.460 0.401 0.479

Algo 5 0.480 -0.319 66% 6.082E-05 0.436 0.595 0.455 0.243 0.413 0.535 0.410

Average -0.273 60%

Algorithm 1 by ALMasri et al. (2013) scored 0.634 and had issue that arose from a number of
different function words being added into titles. And as no validation is performed, articles are often
added without consideration for their relevance. Algorithm 2 described by Boston et al. (2014),
scored the lowest at 0.364. Although the terms generated were relevant to the domain and more
precision was added into the process of selecting the importance of terms, no real understanding
is gained about the query that has been entered by the user. A high dependency was also placed
on the initial retrieval. The coverage of the terms can be seen as very broad as the number of
documents that are included may cover many different domains. Algorithm 3 described by Xu et al.
(2009) provided the best overall performance scoring 0.694, second to the WNSSA. The overall
success is likely due to its simplicity. Rather than utilising a traditional TF-IDF approach which
uses a document subset during the calculations, the entire Wikipedia collection is used. A useful
element of this approach is the focus placed upon using Entity Pages (single individual Articles).
This focus prevents completely irrelevant terms being utilised. Algorithm 4 described by Bruce et al.
(2012) was the second worst performing with 0.460. The intent of the query has no impact on the
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enhancement process. Many of the terms added may have a high score and appear to be highly
relevant to the domain but not to the user’s query. If the user was focused on gathering terms
relevant to a domain, this would be a useful approach. Many terms that have been generated are
very useful to a domain, however when multiple terms are added into the query, the diversity of the
results become overwhelming, impacting the overall term ranking. Algorithm 5 by Zhao et al. (2014)
scored 0.480 and was focused upon the heavy utilisation of inter-wiki links. A heavy dependence is
placed on these links. If irrelevant articles are found but have a high number of similar outbound
links then these terms will be given a high weighting which can impact the results. Unlike other
algorithms, there is a higher distribution of good and bad results for each of the queries.

Table 2 provides an overview of the generated enhancement terms for each of the tested Algo-
rithms for TREC-9 Topics 4, 17, 31 and 32. In this table we can see that for Topic 4 parkinsons
disease, the WNSSA focused on each of the different aspects of the disease such as related founda-
tions, treatment and drugs. Algorithm 2, had only a single related term, neurology. Algorithm 3
included the initials pd, and different elements related to the disease. Algorithm 4, had similar results
to the WNSSA. Algorithm 5 however included terms such as tuberculosis and pathology, which are
not directly related. Topic 17: dachshund dachshunds “wiener dog”, the WNSSA included elements
related to the dogs, such as the sport of dachshund racing. Algorithm 2 produced poor results not
related to the topic. Algorithm 3, focused on different breeds which are available. Algorithm 3 again
focused upon different breeds, and algorithm 5 added in two terms which were irrelevant, “comedy”
and “deer”. Topic 31: What did Babe Ruth do in the 1920’s, has very narrow room for error as it
is specifically looking for one topic, Baseball. In the results, we can see that baseball was shown for
the WNSSA. Algorithm 2, included terms such as Curse of the Bambino, which is related to Babe
Ruth, and the name of baseball teams. However, no explicit reference to baseball was included. Al-
gorithm 2, performed poorly overall. Algorithm 3 focused again on the term Baseball and outlined
other teams and notable names in Baseball. Algorithm 4 did not produce any useful enhancements.
Algorithm 5 again outlined baseball, pitcher and outlined 1920’s related topics such as prohibition.
Topic 32, where can i find the growth rate for the pine tree? showed successful enhancements for the
WNSSA with terms such pines, roots, rapid, high. Algorithm 1 produced terms such as Christmas
tree, which can be deemed irrelevant, hurting precision. Algorithm 2 produced, terms such as nigra
and petals which can impact the precision. Algorithm 3, produced terms which are relevant to trees
such as pinus and cones, Algorithm 5 focused on the genus of trees, which although relevant can
hurt the intent of the query.

In the TREC-9 Web topic collections, examples of queries which performed poorly across all
implementations include Topic 2: do beavers live in salt water and Topic 24: how email benefits
business, this can be attributed do the question based nature of this query, a number of different
concepts are all represented inside the same query. This is in contrast to topics such as Topic 40
motorcycle safety helmets & Topic 26 Jennifer Aniston, which represent one single core topics.

From the testing of these five existing ASQE algorithms that utilise Wikipedia, the following
issues with Wikipedia powered ASQE across each algorithm can be seen: 1) The utilisation of
documents as sources of knowledge without proper understanding of the domain of the documents
that are being added. 2) No validation of candidate terms as being relevant or irrelevant is made. 3)
Content in documents which are not relative to the article, e.g., advertisements, long additional text
descriptions are often utilised. 4) Many of the algorithms allow function words or pages which are
relevant to Wikipedia to appear in enhancement terms. 5) An over dependence on the weights that
have been assigned to the terms without additional processing being performed. Although some
terms may be very high quality, a post processing stage would greatly improve the overall success of
the enhancements. 6) Many search queries are entered by users are in the form of a question. Many
of the terms that are added in a question format have an impact on the results which are returned,
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Table 2: Sample Generated Enhancement Terms for Each Tested Algorithm using TREC-9 Topics

Topic 4: parkinson’s disease
WNSSA parkinsons disease foundation treat target research treatment shown drugs peo-

ple symptoms disorders

Algo 1 Lewy body disease Parkinson disease 2 American Parkinson Disease Association

Algo 2 home high group including university samii neurology increase list association

Algo 3 pd symptoms levodopa pmid doi dopamine motor disorder lewy brain

Algo 4 dopamine parkinsonism cases therapy sleep studies medication disord although
system

Algo 5 neurology parkinsonism psychiatric idiopathic symptom pathology infectious
pain tuberculosis pathogenic

Topic 17: dachshund dachshunds ”wiener dog”
WNSSA dachshund wiener dog pet racing dogs named american america lives hot lm

dachshunds

Algo 1 Fatal dog attacks in the United States Capitalist pig-dog

Algo 2 result recognized making entering ramirez chase companion essays heed quirk

Algo 3 dapple kennel breed wire-haired miniature akc teckel piebald standard anglo-fran

Algo 4 wire-haired anglo-franxc long-haired smooth-haired california short-haired full-
size long-bodied double-dapple merriam-webster

Algo 5 kennel breed comedy deer scent

Topic 31: what did babe ruth do in the 1920’s?
WNSSA babe ruth 1920s yankees baseball home season park yankee became late gehrig

teams

Algo 1 Harmonica Incident Curse of the Bambino Charlie Gehringer The Yankees

Algo 2 yugoslav patrol soap bob miguel arkansas pioneer sabina pop prime

Algo 3 yankees creamer montville baseball sox wagenheim home runs reisler gehrig

Algo 4 economic publishes minister prime republic europe political fascist william crick-
eter

Algo 5 pitcher manhattan outelder boston baseball surage millennium prohibition
decade ratication

Topic 32: where can i find growth rates for the pine tree?
WNSSA growth rates pine tree high rapid caused old pines species vegetation short trunk

roots

Algo 1 Felled tree Taiga Silviculture Christmas tree Maine Everglades National Park

Algo 2 relatively protein spirally shell control internal herbaceous physiology nigra petals

Algo 3 pinus cones wood needles species seeds r sp pinyon acacia

Algo 4 population theory directly property landau cagr measure produced notation
economy

Algo 5 pinus subgenus fir foliage genus
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however, many of the algorithms ignore these terms. 7) Although in many cases, a reference to
the original submitted query is used as a stem for the identification of relevant content, no call
back is made in future steps to identify if the terms generated are links back to the original user’s
query. 8) Query drift appears in all algorithms, especially in longer queries, as query terms are often
expanded independently of the rest of the terms in the search query. 9) Shorter search queries often
lack context and are not treated with care allowing irrelevant expansion terms to be included.

6.1. WNSSA Time Efficiency

To provide an understand of the time efficiency of the WNSSA algorithm, Table 3 outlines the
time in seconds on a Amazon Web Services (AWS) T2.medium Instance16 for each run with variable
States and Sub-states. This AWS instance contains 2 vCPU and 4 GiB of Memory. Times were
calculated for each individual run using the Python time package, calculating the total run of each
script from start to completion. In these result, we can see a linear time increase as the number of
states and sub-states increase for each run. This can be attributed to the constant revisiting to the
Wikipedia API, which is computationally expensive. As this study focuses on the implementation
of the WNSSA algorithm, no further analysis into the time-efficiency optimisation of this algorithm
has been included in this study.

Table 3: WNSSA Time Efficiency in Seconds
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State 1 86 96 108 119 133 146 161 178 193 212

State 2 108 130 148 181 212 235 262 283 316 352

State 3 123 159 195 244 275 327 368 397 442 494

State 4 137 202 255 287 327 395 453 506 571 635

State 5 148 226 299 357 414 467 539 609 693 1,007

State 6 215 343 413 417 447 553 625 728 821 931

State 7 178 258 377 441 538 625 726 825 938 1,048

State 8 190 305 415 488 585 684 776 892 1,010 1,165

State 9 211 306 476 586 671 775 915 1,052 1,232 1,350

State 10 226 356 480 602 707 858 1,026 1,160 1,341 1,498

6.2. Optimal States and Sub-States Variables

To provide an insight into the performance of the WNSSA with different State and Sub-state
variations, 30 individual tests were performed using the TREC 2014 Web Topics on the ClueWeb12
full data set. Table 4 outlines the Test ID along with the associated state and sub-state parameters.
15,000 individual manual relevance assessments were performed during this testing, of which each
result was marked 1 for relevant and 0 for not relevant for each of the 50 queries of the top 10
returned results. For each test, the Mean Average Precision (MAP) scores for each test were then
calculated.

Table 5 provides an overview of the MAP score achieved by each test. Results are shown in
descending order of MAP scores by performance. In these results we can see that Tests T1, T4,

16https://aws.amazon.com/ec2/instance-types/
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Table 4: WNSSA State and Sub-state Test Parameters Variations
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T1 1 1 T6 10 2 T11 5 4 T16 1 6 T21 10 7 T26 5 9

T2 5 1 T7 1 3 T12 10 4 T17 5 6 T22 1 8 T27 10 9

T3 10 1 T8 5 3 T13 1 5 T18 10 6 T23 5 8 T28 1 10

T4 1 2 T9 10 3 T14 5 5 T19 1 7 T24 10 8 T29 5 10

T5 5 2 T10 1 4 T15 10 5 T20 5 7 T25 1 9 T30 10 10

T7, T24 and T11 achieved the highest MAP scores. For the top 10 performing results, the average
state value is 5.3 with a standard deviation of 3.68 and the average number of sub-states is 3.5 with
a standard deviation of 2.27. Across all 30 tests, the average MAP score is 0.732, with a Standard
Deviation of 0.055.

Table 5: WNSSA Variable State and Sub-state MAP Results

Test
ID

Result Test
ID

Result Test
ID

Result Test
ID

Result Test
ID

Result Test
ID

Result

T1 0.912 T6 0.763 T14 0.745 T16 0.726 T13 0.714 T26 0.684

T4 0.827 T20 0.757 T23 0.739 T22 0.724 T27 0.706 T19 0.683

T7 0.810 T5 0.755 T15 0.736 T2 0.722 T29 0.705 T30 0.674

T24 0.769 T8 0.752 T21 0.735 T18 0.721 T12 0.691 T25 0.653

T11 0.765 T9 0.747 T17 0.735 T10 0.71746 T3 0.689 T28 0.609

7. Conclusion

This paper outlined the algorithm and testing of the proposed ASQE algorithm, the Wikipedia
N Sub-state Algorithm (WNSSA). The proposed algorithm was tested against five existing ASQE
algorithms that utilise different aspects of the Wikipedia data set as the sole data source for en-
hancement. The WNSSA was designed to provide a unique state based approach to ASQE which
allows re-occurring terms across a number of states to be identified as the most suitable enhancement
terms. During the execution of the WNSSA, a defined number of states are run which in turn run
a set amount of internal sub-states. Throughout the process of running each sub-state, six data
utilisation modules are tasked with collecting data from Wikipedia and applying term weighting
metrics to each of the terms found.

Between the transition of different states inside the WNSSA, a stem query is created which takes
the user’s original query along with the top selected term from the current state to be passed onto
the next state. The top term for a given state is selected through the unique approach of a custom
Term Window which gathers all terms generated by each sub-state module and selects the term
which appears most frequently across all modules for that given state. This approach allowed only
the highest quality term to persist to the next state. The WNSSA utilises a custom cache which
is generated from the originally submitted query by n-gramming the query and making a discovery
of Wikipedia articles where the sub-query is found in the title. This approach allowed for a narrow
collection of content to be referenced throughout the life-cycle of the WNSSA referencing the user’s
original intent in content form. After the WNSSA was developed, 50 of the TREC-9 Web Topics
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were enhanced using the WNSSA and run on the ClueWeb12 data set. The WNSSA had an average
MAP improvement of 0.273 over existing algorithms, scoring an overall MAP of 0.800.

During this process, the WNSSA showed to outperform all of the five existing algorithms tested
during the benchmark analysis. The WNSSA has shown to perform well on both short and long
queries where the query represents one main concept. Unlike the tested benchmark algorithms, the
WNSSA had the highest number of complete successful identified results losing only when a rare
complete failure of expansion was performed. The cause of this can be attributed to the lack of
background and contextual information available to ASQE techniques alike. Results of testing the
WNSSA have shown that:

• By narrowing down the data available to the ASQE algorithm less skew can appear in the
enhancement term collection.

• Keeping a constant point of contact with the user’s original query as a stem can be beneficial
to the enhancement process as the intent is never lost.

• Blind use of any relevance weighting schemes should never be performed and alternative valida-
tion should always be included in the process to ensure no rogue terms enter the enhancement
process.

• A state based approach to enhancement provides a number of opportunities for enhancement
terms that have frequently been appearing to get into the final collection of enhancement
terms.

• A term window based approach to term selection avoids the need for raw multiplication of
generated relevance weighting schemes.

• Taking simple but effective methods of weighting terms can be further utilised by deriving
intersections and statistics from a wider data collection, in the form of Wikipedia.

• Generating a cache of content relevant to the user’s original query can help persist the intent
of the user’s query by utilising the cache as a filter for future expansion terms.

8. Future Work

As the WNSSA does not utilise user context, issues can arise when understanding areas of interest
for the user. Using additional contextual information such as queries gathered from the user’s browser
or search session can be invaluable for preventing wrongful expansion when difficulties arise. The
current implementation of the WNSSA has not been parallelised, doing so would greatly enhance
the overall time efficiency of the algorithm. In addition to this, the use of memory caching of data
stored in the local database would also enhance the algorithm performance.
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