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Abstract: Trust and credibility in machine learning models are bolstered by the ability of a model
to explain its decisions. While explainability of deep learning models is a well-known challenge, a
further challenge is clarity of the explanation itself for relevant stakeholders of the model. Layer-wise
Relevance Propagation (LRP), an established explainability technique developed for deep models in
computer vision, provides intuitive human-readable heat maps of input images. We present the novel
application of LRP with tabular datasets containing mixed data (categorical and numerical) using
a deep neural network (1D-CNN), for Credit Card Fraud detection and Telecom Customer Churn
prediction use cases. We show how LRP is more effective than traditional explainability concepts of
Local Interpretable Model-agnostic Explanations (LIME) and Shapley Additive Explanations (SHAP)
for explainability. This effectiveness is both local to a sample level and holistic over the whole testing
set. We also discuss the significant computational time advantage of LRP (1–2 s) over LIME (22 s)
and SHAP (108 s) on the same laptop, and thus its potential for real time application scenarios. In
addition, our validation of LRP has highlighted features for enhancing model performance, thus
opening up a new area of research of using XAI as an approach for feature subset selection.

Keywords: explainability; 1D-CNN; structured data; layer-wise relevance propagation; deep learning;
transparency; SHAP; LIME

1. Introduction

Explainable Artificial Intelligence (XAI) is about opening the “black box” decision
making of Machine Learning (ML) algorithms so that decisions are transparent and under-
standable. This ability to explain decision models is important to data scientists, end-users,
company personnel, regulatory authorities, or indeed any stakeholder who has a valid
remit to ask questions about the decision making of such systems. As a research area, XAI
incorporates a suite of ML techniques that enables human users to understand, appro-
priately trust, and effectively manage the emerging generation of artificially intelligent
partners [1]. Interest in XAI research has been growing along with the capabilities and
applications of modern AI systems. As AI makes its way to our daily lives, it becomes
increasingly crucial for us to know how underlying opaque AI algorithms work. XAI
has the potential to make AI models more trustworthy, compliant, performant, robust,
and easier to develop. That can in turn widen the adoption of AI solutions and deliver
greater business value.

A key development in the complexity of AI systems was the introduction of AlexNet
deep model [2], a Convolutional Neural Network (CNN) that utilises two Graphical Pro-
cessing Units (GPUs) for the first time, enabling the training of a model on a very large
training dataset whilst achieving state-of-the-art results. With 10 hidden layers in the
network, AlexNet was a major leap in Deep Learning (DL), a branch of ML that produces
complex multi-layer models that present particular challenges for explainability. Since
AlexNet’s unveiling in 2012, other factors have boosted the rapid development of DL:
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Availability of big data, cloud computing growth, powerful embedded chips, reduction
in the cost of systems with high computational power and memory, and the achievement
of a higher performance of DL models over traditional approaches. In some application
areas, these models achieve as good as human level performance, such as in object recog-
nition [3,4], object detection [5,6], object tracking [7]) or games (e.g., beating AlphaGo
champion [8]), stock price predictions [9], time series forecasting [10,11], and health [12].

In an early work in 2010, researchers in [13] focused on explaining individual decisions
taken by classifiers. From 2012, there has been a year on year improvement in the accuracy
of deep learning models, accompanied by greater complexity. Researchers are actively
investigating the real-life implications associated with the deployment of these types of
models. In addition to ethical concerns, such as privacy or robot autonomy, there are other
issues at the heart of ML that are critical to handle. For example, potentially biased decisions
due to bias in the training data and the model; a system wrongly predicting/classifying
an object with high confidence; lack of understanding of how a decision is taken or what
input features were important in this decision; and downstream legal complications, such
as the lack of adherence to the “right to explanation” under EU General Data Protection
Regulation (GDPR) rule [14]. For example, a customer whose loan application has been
rejected has the right to know why their application was rejected.

Some models are used to make decisions that have life threatening implications, such
as the interpretation of potential cancer scans in healthcare. Currently, a doctor is needed
as an intermediate user of the system to take the final decision. Other AI scenarios aim
to remove the intermediate user. For example, the use of fully autonomous cars would
cede full control to the associated AI-based driving system. DL models are at the heart of
these types of complex systems. Examples such as these emphasise the critical nature of
explaining, understanding, and therefore controlling the decisions of DL models.

Explainability means different things, depending upon the user (audience/stakeholder)
of the explanation and the particular concerns they wish to address via an explanation.
For example, an end user (customer) may question the individual decision a model has
taken about them. A regulatory authority may query whether the model is unbiased with
respect to gender, ethnicity, and equality. An intermediate user, such as the doctor with the
diagnostic scan decision, will want to know what features of the input have resulted in a
particular decision.

Scope: In this paper, we have four main contributions. Firstly, we report recent
research work for explaining AI models. We note that there are several comprehensive
survey articles on XAI, such as: Tjoa, E., & Guan, C [15] discuss explainability in health
data, Selvaraju et al. [16] & Margret et al. [17] cover image data for object detection and
recognition, and [18] discuss financial data/text data. In addition, detailed surveys on XAI
as a field are emerging, such as the detailed and comprehensive survey about explainability,
interpretability, and understandability covered in [19]. Secondly, we apply an explainability
technique i.e., Layer-wise Relevance Propagation (LRP) for the explanation of a DL model
trained over structured/tabular/mixed (in this paper structured, tabular, or mixed is used
interchangeably) data as input, in this case a 1-dimensional DL model. Various research
works use DL for time series data which is a special case of structured data, where time is a
main feature. In our work, we focus on structured data that adheres to a predefined data
model in a tabular format but without time features—i.e., non-time series structured data.
To the best of our knowledge, this is the first time that LRP has been applied to a model
with structured data input. LRP typically uses image as input, providing intuitive visual
explanations on the input image.

In our work, we train a one dimensional CNN (1D-CNN) model and apply LRP in
order to highlight influential features of the input structure data. This approach enables
us to answer questions for our selected use case datasets such as: Which factors are
causing customers to churn? Why did this specific customer leave? What aspects of this
transaction deem it to be classified as fraudulent? There are several other explainability
techniques typically used for image-based models e.g., DeepLIFT [20], LEMNA [21], and
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Grad-CAM [16]. However, although there are several other perturbation approaches
e.g., MAPLE [22], LORE [23], and L2X [24] in this work we compare it with two commonly-
used XAI techniques in the field: LIME and SHAP. Finally, we validate the correctness of
the LRP explanations (important features) by our approach. This is done by taking the
most influential subset of features and using them as input for training classifiers in order
to see their performance i.e., to determine whether the new models are achieving equal
or better performance on the subset of influence features highlighted in the explanation
(testing set) compared to the models trained over the whole set of features.

The paper is organised as follows: Section 2 gives an overview of related work.
Section 3 explains the proposed approach that includes the datasets used, pre-processing
performed, models trained, and finally model explanation details. Then, Section 4 discusses
the results achieved with the proposed approach, highlighting important features, as well
as, results with the subset of features. Finally, Section 5 gives some future directions and
main conclusions of our paper.

2. Related Work

Whilst explaining AI systems is not a new research topic, it is still in its early stages.
Several survey articles have been published for the domain, including [17,19,25–28].
Of these, ref. [19] is the most recent and complete, summarising all others into one. This
survey of XAI includes details about the concepts, taxonomies, and research work up to
December 2019 along with opportunities and challenges for new or future researchers in
the field of XAI. Arrieta et al. [19] divide the taxonomy of explainable scenarios into two
main categories: (1) Transparent ML models that are self-explanatory or answers all or
some of the previous questions (e.g., Linear/Logistic regression, Decision trees, K-NN,
rule-based learning, and general additive models) and (2) post-hoc models, where a new
method is proposed to explain the model for explanation of a decision of a shallow or deep
model. The post-hoc category is further divided into model-agnostic, which can be applied
to all models to extract specific information about the decision and model-specific, which
are specific to the model in use e.g., for SVM, or DL models such as CNN.

In contrasts to Arrieta’s transparent model view, Mittelstadt et al. [29] give credence to
the black box concept by highlighting an alternative point of view about the explanation of
AI systems and whether AI scientists can gain more through considering broader concepts.
In this work, they focus on ‘what-if questions’, and highlight that decisions of a black box
system must be justified and open to discussion and questioning. In [30], emphasis is
put on bringing transparency and trust in AI systems by taking care of issues such as the
‘Clever Hans’ problem [31] and providing some level of explanation for decisions being
made. The authors categorise explanations based on the content (e.g., explaining learned
representations, individual predictions, model behaviour, and representative examples)
and their methods (e.g., explaining with surrogates, local perturbations, propagation-based
approaches, and meta-explanations).

Explainability of DLs for structured data is limited. In the majority of cases, traditional
ML techniques such as random forest, XGboost, SVM, logistic regression, etc. are used
with explainability techniques LIME [32], SHAP [33], or more recently MANE [34] that
is being used with CNN. These methods for explaining predictions from ML algorithms
have become well established in the past few years. It is important to highlight that the
majority of the XAI methods, which use DL networks such as CNN, show heatmaps [31]
or saliency visualisations [35] for images input to the network. These techniques are also
applied to other types of input data apart from images, including text [36] and time series
data [10]. However, some of the techniques in these XAI are not general in the sense that
they cannot be applied to different ML algorithms and/or input types or both. Hence, here
we will discuss briefly the explainability of approaches used for DL models in three main
categories of input data i.e., images, text, and time series data. We explain these application
of explainability for various DL model inputs to frame our work—but we note the lack of
application of such techniques for DL models using tabular (non-time series) data.
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XAI in Images: A well-explored area of research in XAI is proposing models (mainly
using CNN [31,37,38]) that can interpret and classify an input image. When such models
are explained, they benefit from the intuitive visual nature of the input. The portion of
the image that influenced the model decision can be highlighted, which is relatively easily
understood by different types of recipients e.g., end-user (customer) or data scientists.
For example, researchers found Clever Hans [31] type issues in datasets, which are highly
interpretable for this issue [31].

M. D. Zeiler and R. Fergus [37–39] contributed approaches to understanding mid- and
high-level features that a network learns as well as visualising the kernels and feature maps
by proposing a deconvenet model to reconstruct strong and soft activations to highlight
influences on the given prediction. In [40], a local loss function was utilised with each
convolution layer to learn specific features related to object components. These features
result in more interpretable feature maps that support explainability. Google’s Model
Cards tool [17] helps to provide insight on trained image models, providing bench-marked
evaluation information in a variety of conditions. The tool helps to answer concerns in
explainability, such as the avoidance of bias. Such model cards can be used/considered for
every model before deployment.

Ramprasaath et al. [16] proposed a post-hoc method (proposing a new method to
explain an existing model for explanation of its decision) that can be applied to several types
of CNN models to visualise and explain the decision it provides. The model, termed Grad-
CAM, uses a gradient weighted class activation mapping approach in which the gradient
targets a class (e.g., cat) and visualises the activations that help in predicting the correct
class. A pixel-level visualisation has been proposed in the form of a heatmap that shows
where the model is focusing on an output map, and thus influenced the model decision.

Recently, Lapuschkin et al. [31] explained the decisions of nonlinear ML model systems
for Computer Vision (CV) and arcade games. They used LRP [41] and Spectral Relevance
Analysis (SpRAy) technique and compared both with Fisher Vector-based results to detect
and highlight the Clever Hans issue in a famous dataset (PASCAL VOC). The proposed
SpRAy uses spectral clustering on the heatmaps generated by LRP to identify typical and
atypical behaviour in a semi-automated manner. This is done by learning some specific
behaviours (anomalies) in the decisions of a system over a large dataset, unlike the LRP
approach which manually analyses every output. These models helps in identifying serious
issues in what a model learns e.g., a wrong area/patch of an image to correctly classify the
category.

XAI in Time Series data: The analysis and forecasting of Time Series (TS) information,
like any other area that can benefit from AI, needs to incorporate mechanisms that offer
transparency and explainability of its results. However, in DL, the use of these mechanisms
for a time series is not an easy task due to the temporal dependence of the data. For instance,
surrogate solutions like LIME [32] or SHAP [33] do not consider a time ordering of the
inputs so their use on TS presents clear limitations.

In [42], authors propose a visualisation tool that works with CNN and allows different
views and abstraction levels for a problem of prediction over Multivariate TS defined as
a classification problem. The solution proposes the use of saliency maps to uncover the
hidden nature of DL models applied to TS. This visualisation strategy helps to identify
what parts of the input are responsible for a particular prediction. The idea is to compute
the influence of the inputs on the inter-mediated layers of the neural network in two steps:
Input influence and filter influence. The former is the influence of the input in the output
of a particular filter and the latter is the influence of the filter on the final output based
on the activation patterns. The method considers the use of a clustering stage of filters
and optimisation of the input influence, everything with the goal of discovering the main
sources of variations and to find similarities between patterns. However, due to clustering
to combine the maps, it is time consuming and might not be as fast as other techniques
such as LRP, which work on the pre-computed gradients.
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ML tools are widely used in financial institutions. Due to regulatory reasons and ease of
explainability, interpretability, and transparency many institutions use traditional approaches
such as decision trees, random forest, regression, and Generalized Additive Model (GAM),
at a cost of lower performance. However, there are examples of DL models that have been
applied in financial applications e.g., for forecasting prices, stock, risk assessment, and
insurance. Taking specific model examples, GAMs are relatively easy and transparent to
understand and are used for risk assessments in financial applications [43–45]. The authors
in [46] use traditional XGboost and Logistic Regression (LR), with LR principally used for
comparison purposes. After training the model, the Shapley values [33] from the testing
set of the companies are calculated. The testing set contains explanatory variables values.
They also use a post-processing phase correlation matrix to interpret the predictive output
from a good ML model that provides both accuracy and explainability.

Liu et al. [9] proposed a DL model to predict stock prices. In the first step of this work,
a specific model was used to reduce the noise and make the data clean for LSTM. This
system showed good results for predicting stock prices through price rate of change. In [47],
a decision support system from financial disclosures is proposed. It uses a deep LSTM
model to predict whether the stock is going up or down. The authors have also focused
on answering whether the DL model can give good results on short-term price movement
compared to the traditional approach of the bag of words with logistic regression, SVM,
etc. The results show that DL based systems, as well as transfer learning and word-
embeddings, improve performance compared to naive models. Whilst the performance of
these models is not very high, the approach gives a baseline for future research to using
DL in financial data.

In [48], an AI-based stock market prediction model for financial trade called CLEAR-
Trade is proposed, which is based on CLEAR (Class Enhanced Attentive Response). It
identifies the regions with high importance/activations and their impact on the decision as
well as the categories that are highly related to the important activations. The objective is to
visualise the decisions for better interpretability. The results on using S&P 500 Stock Index
data show that the model can give helpful information about the decision made which
can help a company while adopting AI-based systems for addressing requirements from
regulatory authorities. Their model uses a CNN architecture with a convolution layer, leaky
ReLu, and Global average pooling layer, followed by the SoftMax layer to classify into two
categories i.e., the market going up or down. The visualisation shows that in the correct
cases, the model weighs the past 4 days of data heavily, whereas in the incorrect cases, it
considers data from previous weeks as important. Secondly, in the correct decisions, it
considers open, high, and low values for making a decision. Whereas in the incorrect cases,
the model considers trade volumes but it is not a strong indicator of correctly predicting
the model future. Thirdly, it can/may show that in the correct cases, the probability or
output values are high compared to when the model incorrectly predicts.

XAI in Text data: DL has shown good performance over text data for application
areas such as text classification, text generation, natural language processing for chat-bots,
etc. Similar to vision, financial, and time-series data, several works have been done on
text data to explain what and how the text is classified or sentence is generated [36,49].
A bi-LSTM is used to classify each sentence in five classes of sentiment. LRP is used to
visualise the important word in the sentence. The LRP relevance values are being examined
qualitatively and quantitatively. It showed better results than a gradient-based approach.

Summary: XAI is a highly active area of research in the machine learning domain,
with a variety of general and model/data specific approaches in the field and continuing
to emerge. We have discussed the most relevant explainability approaches related to deep
learning models processing images, time-series/financial data, and text input. We note
the lack of deep learning XAI approaches applied to structured tabular data. Structured,
tabular data is very common in organisations, tending to be an earlier focus for the adoption
of machine learning models than unstructured data such as images or text. Explainability
of structured data models has been largely limited to those based on traditional machine
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learning models (with algorithms such as random forest, XGBoost, etc.) using model
agnostic techniques such as LIME and SHAP. Organisations want to utilise such data for
training a DL network, provided such DL models can be explained.

We focus principally on LRP, an established XAI technique for DL models that is
typically used for images but can be utilised with modifications for other forms of inputs,
providing intuitive visual explanations in the form of heatmaps. It has a number of distinct
advantages: It provides intuitive visual explanation highlighting relevant input, produces
results quickly, and has not been tried with 1D CNN over structured data. By visually
highlighting high influence parts of the input, it should in theory highlight the important
features (input) that contribute most to a model decision e.g., customer churn, credit card
fraud detection, and loan or insurance rejection. 1D CNN is never or rarely (not in our
knowledge to date) used for structured data but we suggest that it can be, with the sliding
kernel approach, learning a combination of features in the table that as a group contribute
to model decisions.

Our motivation for using the traditionally image focused approach of 1D-CNN for tab-
ular data was as follows: Firstly, structured data has a large overlap with image input. It is
essentially a matrix of numbers, just as an image is a matrix of pixel values numbers. Pixel
values have a fixed range, and this can be achieved in structure data using normalisation.
In the case of structured data as input to a 1D-CNN, the positions and combinations of num-
bers has relevance and are in a fixed set of positions (features). Furthermore, although we
do not know whether certain features have correlation or dependencies with each other,
CNN will learn that patterns/dependencies/uniqueness that drive to particular classifi-
cations, individually, or in combination to other features by identifying the occurrence of
feature values. Secondly, in traditional machine learning, features are typically selected
manually in the feature extraction stage or by using techniques like LBP [50], SIFT [51], etc.,
and than in some cases a features subset selection technique is used to improve the model
results. This can be a lengthy iterative process e.g., manual subset selection of features or
by using a wrapper feature selection method, with iterative model training to seek out
redundant low contribution features. By using 1D-CNN with LRP for explanation, the in-
fluential features are highlighted as a by-product of the initial model creation exercise. Our
focus is on using and enhancing existing XAI techniques for structured data. In addition to
use a 1D-CNN model over structured data with LRP for model explanation, we wish to
compare the correctness of LRP against leading explainability methods SHAP and LIME in
terms of their similarity in selecting important features and time complexity. In the next
section, we will discuss the proposed approach.

3. Proposed Approach

Our proposed approach architecture consists of two phases, as shown in Figure 1.
Each of these is applied in turn to each of two datasets. The first phase consists of pre-
processing and training a 1D-CNN. The proposed 1D-CNN is trained over structured data.
Once the network has been trained, the trained model is used in the second phase where
XAI techniques are used to visualise the important features.

Figure 1. Overall architecture of the proposed approach.

Our main focus is on using 1D-CNN with LRP. However, we also showed the features
selected by Shapley Additive explanation (SHAP) and Local Interpretable Model-agnostic
Explanations (LIME) for comparative purposes.
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3.1. First Phase

The following subsection will discuss in detail the datasets used, and the associated
model training.

3.1.1. Datasets

Our aim was to create two sample models that reflect common customer-related
business problems, and thus interesting explanation scenarios. We selected two scenarios:
(1) The prediction of customer churn in the telecoms section and (2) the identification
of fraudulent credit card transactions. To support these scenarios, we used two public
structured datasets from the Kaggle website: The Telecom Customer Churn Prediction
Dataset (TCCPD) and the Credit Card Fraud Detection Dataset (CCFDD). The telecom
churn dataset, TCCPD, is a medium-sized dataset with meaningful feature names which
can be used to give an in-depth explanation of what and why a feature is selected. In the
CCFDD, the features are anonymous. It is a large and highly imbalanced dataset which
make it more challenging for evaluating the performance of the proposed 1D-CNN. For all
models, the datasets are divided in 80% for training and 20% for validation of the network.
The results shown are based on 5-fold cross validation, using the training split. All data
splits are stratified.

Telecom Customer Churn Prediction Dataset (TCCPD)

Companies want to be able to predict if a customer is at risk of leaving. Retaining an
existing customer is better than getting a new customer. There are two types of customer
churn—voluntary and involuntary churn. Voluntary churn is of most interest for the
company as it is the individual customer’s decision to switch to another company or
service provider. Understanding the factors/features that are associated with the customer
leaving is important. Each record in the data [52] has initially 19 features, which when
converted from categorical values to non-categorical, becomes 28 features associated
with the customer, to be used for training a customer churn prediction model. These
features have meaningful feature names, allowing us to interpret explanations with domain
level judgement.

Credit Card Fraud Detection Dataset (CCFDD)

Financial companies dealing with credit cards have a vested interest in detecting
fraudulent transactions. This highly imbalanced dataset has transactions carried out
by European cardholders during September 2013. As shown in Table 1, the dataset is
highlighted as imbalanced. Each record contains 30 features out of which 28 are converted
by Principal Component Analysis (PCA) and then labelled as V1, V2. . .V28. The remaining
two features (time and amount) are in their original form. Each record is labelled as either
0 (normal (−ive)) or 1 (fraudulent (+ive)). Further details about this dataset are available at
the Kaggle competition [53].

Table 1. Details of the two datasets. Sample, positive, negative, original features, and new features
are represented by Sam, +ive, −ive, O-F, and N-F, respectively.

Name # of Samples # +ive Sam # −ive Sam %+ive vs. %−ive O-F N-F

TCCPD 7043 1869 5174 26.58 vs. 73.42% 19 28

CCFDD 285,299 492 284,807 0.172 vs. 99.83% 30 30

3.1.2. Pre-Processing

Our approach uses structured data. For ML/DL, data must be numeric in order to
use it as input to the 1D-CNN network. The two used datasets are heavily imbalanced.
Normalisation plays a key role in the training phase of a DL network. The following are the
pre-processing steps we adopted in this work to handle the previously mentioned issues:
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(1) Convert categorical data to numerical data: Where categorical features have more
than two values, we create an individual feature for each categorical value, with Yes
(1) or No (0) values. The features that were numerical are normalised between 0 and 1
by zero mean and unit variance technique. In TCCPD, there are four features with
categorical data. When converted, this results in nine additional features bringing
our total dataset features to be 28 (Table 1).

(2) We then apply the SMOTE [54] technique to up-sample the minority class (both
datasets) in order to balance the data. SMOTE generates synthetic nearest neighbours
for training instances in the minority class in the training set only.

(3) Where numeric features ranges are wider than two-choice binary values e.g., monthly
charges, the features are normalised feature-wise in the range of 0 to 1.

3.1.3. Training 1D-CNN

A key innovation in this work is using CNN with structured data and then explaining
that deep model. We have selected to use a 1D-CNN for our model. In traditional ML,
the process of selecting which features to use for a model is done using various manual
steps and domain knowledge (feature engineering). Unlike traditional ML, DL learns
important features as part of the training process. We use a 1D-CNN that can slide the
kernel across the whole structure to learn important features.

Proposed Network Structure

Figure 2 shows the baseline proposed 1D-CNN network structure. This network is a
deep seven-layer network that contains three convolution layers (with 25, 50, and 100 ker-
nels, respectively). The first convolution layer is followed by an activation layer. After the
third convolution layer, two fully-connected layers, the first having 2200 and the second
having 2 neurons are added. Finally, a SoftMax layer is added at the end. We used ReLU as
an activation function.

Figure 2. Structure for the proposed baseline 1D-CNN network.

The kernels in each layer are selected based on the concept of gradual increase or
decrease rather than random as being suggested in [55]. The size of the kernel is the
same for all i.e., 1× 3. Regarding the depth (number of layers), we have used just three,
because of the data size limitation. To determine our optimal network set-up, we first tested
the network with several different variations of the network structure, with the proposed
model selected based on the metrics of accuracy, precision, and F1-score. We used several
hyper-parameters for fine tuning the model. We used a base lr of 0.00001, batch size of
300 (unless specified differently with respective model), for a maximum iteration of 15,000.
Table 2 shows the various models that resulted from changing the base model shown in
Figure 2. We will be using these variations of the base model to achieve the best model
that will be used further for XAI experiments in this paper. In the Model Name column,
our proposed name is in the form M-1D-CNN-n-f*. M is a short for model, n represents
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numbering of 1, 2, . . ., 5 to show that these are unique models (models are slightly different
in hyper-parameters). Whereas, ‘f’ represents the number of features used as input i.e., 28
and 16.

Table 2. Proposed networks structure. Here convolution, fully connected, and output layers are
represented by C, F, and O. The number shows the number of kernels/neurons in that layer.

Model Name LR BatchSize Iterations Network Structure

M-1D-CNN-1-28 0.00001 300 15,000 C25-C50-C100-F2200-O2

M-1D-CNN-2-28 0.00001 200 15,000 C25-C50-C100-F2200-F500-F10-O2

M-1D-CNN-3-16 0.00001 300 15,000 C25-C50-C100-F200-O2

M-1D-CNN-4-16 0.00001 300 15,000 C25-C50-C100-C200-F1600-F800-O2

M-1D-CNN-1-31 0.00001 300 15,000 C25-C50-C100-C200-F4400-O2

M-1D-CNN-2-31 0.0001 300 15,000 C25-C50-C100-C200-F4400-O2

M-1D-CNN-3-31 0.0001 200 15,000 C25-C50-C100-C200-F4400-O2

3.2. Second Phase
XAI Technique (LRP, SHAP, and LIME)

In the second phase, once the 1D-CNN is trained, we use that trained deep model
as our trial model for explainability. LRP uses the trained model to generate a heatmap
based on its relevance values. Our interest in the use of heatmaps is to find and determine
what set of features are the most relevant in the prediction of True Positives (1) and True
Negatives (0). Furthermore, our objective is to show the important features not only for
an individual sample (local analysis) but also for the whole testing set as an overall global
pattern learned by the classifier (global analysis).

We have also generated heatmaps from the trained model for comparison with both
SHAP and LIME. We use the default versions of LRP, SHAP, and LIME, without tuning of
parameters or use of variants, in order to get a baseline comparison of the three methods.
Figure 3 shows the structure of how in general LRP calculate relevance whereas Figure 4
shows the LRP heatmaps at instance and class level, with the colour scheme reflecting
feature importance based on (pre-normalised) LRP values. In the following sub-sections,
a brief description of how these techniques work is given.

Layer-wise Relevance Propagation (LRP): LRP is one of the main algorithms for the
explainability of networks that uses the back-propagation algorithm [41]. LRP explains a
classifier’s prediction specific to a given data point by attributing ‘Relevance Values’ (Ri) to
important components of the input by using the topology of the trained model itself. It is
efficiently utilised on images/videos and text where the output predicted value is used to
calculate the relevance value for the neurons in the lower layer. The higher the impact of a
neuron in the forward pass, the higher its relevance in the backward pass. This relevance
calculation follows through to the input where the highly relevant neurons/features are
or will have higher values compared to other neurons. As a result, when visualised,
the important input neurons can be clearly highlighted based on which final decision was
taken in the output layer. Figure 3 shows the flow of the relevance value calculation. LRP
is currently being widely used with CNNs, and to a lesser extent for LSTM in the XAI
domain. Improvements in LRP are an active area of research.
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Figure 3. Structure for the LRP [41].

Figure 4. Visualising LRP heatmaps for local (individual (TP (a) and TN (b))) and global (all TP
(c) and TN (d)) samples in the Telecom Churn testing set. Feature sequence of (a,c) is same to (b,d).

Local Interpretable Model-agnostic Explanations: LIME [32] is currently one of the
most well-known methods to explain any classification model from a local point of view.
This method is considered agnostic because it does not make any assumptions about how
the classifier works. It simply builds a surrogate simple model, intrinsically interpretable,
such as a linear regression model around each prediction between the input variables and
the corresponding outcome variables. The use of a simple model in a local way allows for
easier interpretation of the behaviour of the classification model in the vicinity of the in-
stance being predicted. LIME attempts to understand the classification model by perturbing
the input variables of a data sample and understanding how the predictions change.

In a simplified way, LIME works by first generating random perturbations (fake
observations) around the instance to be explained (original instance). Secondly, it calculates
a similarity distance between the perturbations and original instance (e.g., Euclidean
distance). Thirdly, it gets the predictions for the perturbations. Followed by picking a set of
perturbations with better similarity scores and calculate weights (distance scaled to [0, 1])



Appl. Sci. 2022, 12, 136 11 of 20

that represent the importance of these perturbations in respect to the original instance.
Once perturbations, predictions, and weights have been calculated, it builds a weighted
linear regression model, where the coefficients of this simple model will help to explain
how changes in the explanatory variables affect the classification outcome for the instance
that wishes to be explained. LIME focuses on training local surrogate models to explain
individual predictions. Hence, it can be applied to any DL model. However, in terms of
time complexity, it is simpler than SHAP, but yet requires sometime to train.

Shapley Additive Explanations (SHAP): SHAP is an approach based on game theory
to explain the output of any (but mainly traditional) ML models [33]. It uses Shapley
values from game theory to give a different perspective to interpret black box models by
connecting the optimal credit allocation with local explanations and their related extensions.
This technique works as follows: To get the importance of feature Xi, it first takes all subsets
of features S, other than Xi. It then computes the effect of the output predictions after
adding Xi to all the subsets previously extracted. Finally, it combines all the contributions
to compute the marginal contribution of the feature. To avoid recalculation of these subsets,
SHAP does not retrain the model with the feature in question left out. It just replaces it
with the average value of the feature and generates the predictions. The features which
are strongly influential to the model output from the input values are shown. Typically,
these influential features are shown in red and other less influential features in blue. This
provides a useful clear explanation for simpler models. It is currently (as of this document
date) limited to application to traditional ML models due to its time complexity. In this
work, we used kernel SHAP. Whilst a line of investigation could focus on other types of
SHAP in order to change the time complexity, we note that is well documented in general
that SHAP is a time-intensive technique.

3.3. Validating the Correctness of LRP’s Highlighted Subset of Features

We used three XAI techniques for an explanation of features. LRP uses a heatmap to
highlight the processed features that have most contributed to the model decision. To val-
idate that the set of features highlighted by XAI techniques (mainly LRP) are genuinely
influential on model decisions, we use the highlighted features, with the original dataset
labels, to train a simple classifier e.g., Logistic Regression, RF, SVM, and see whether the
1D-CNN and/or some simple classifier can generate better or equal results with the subset
of discriminative features highlighted by XAI techniques. Achieving comparative predic-
tion results will prove that the features highlighted by LRP represent the decision-driving
features in the dataset. Rather than manually selecting the highlighted features in the
heatmaps, we propose a method that takes account of LRP values for each instance in the
dataset, summing to a global ranking for each feature at a dataset level. Our approach
assumes that all classes are equal weight—i.e., that both labels TP and TN are of equal
importance when producing the final feature ranking. In this approach, we first ranked the
features and then did a subset selection of features using a threshold as explained below:
Let M be an nxm matrix composed by row vectors vi = 〈li

1, ..., li
m〉, i = {1, ..., n}. Each

vector vi represents the LRP values (li
j) of each one of the n records from the test set for

each feature j of the model, where j = {1, ...m}. For each feature j (column), the coefficient

of variation CVj =
sd(〈l1

j ,...,ln
j 〉

T)

mean(〈l1
j ,...,ln

j 〉T)
is calculated. Then the threshold is the mean (µj) of the

feature j with the smallest positive CV. The idea is to define a value that represents the
positive mean of the feature with the lowest dispersion. Initially, the selection was done by
visualising the boxplot chart by columns of the matrix of LRP values. We then set out the
method in the following steps to pave the way to automation:

1. Set a threshold value t to be used. This threshold represents a cut-off LRP value
above which a feature is determined to have contributed to an individual correct
test instance.

2. Select all instances (with their LRP vectors) that were correctly classified as True
Positive (TP).
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3. Apply the threshold t to the relevance values of each feature j of a record in the
true positives and true negatives, converting the feature value to 1 if at or above the
threshold, else 0. This is {li

j} ≥ t⇒ 1 and {li
j} < t⇒ 0.

4. Sum the rows which have had features converted with 0 or 1, resulting in one vector
r of dimension m, where m is the number of features.
r = 〈∑n

i=1 li
1... ∑n

i=1 li
j... ∑n

i=1 li
m〉

5. Sort this vector based on the summed values for the features, to produce a numeric
ranking of features

6. Repeat Steps 2–5 for the True Negative (TN) records
7. Select a total of 16 features (top 8 from TP vector and top 8 from TN vector). In case

of an odd number, more are selected from TP (one less from TN features).

This is the approach that we have adopted for the thresholding and selection of the
features. However, more sophisticated techniques, such as allowance for class weighting
or merging of LRP values across classes prior to ranking, can be adopted for selecting the
features. The relevance values are all in the range of 0 and 1 (note, the relevance values
are all in 0 and 1, whereas the heatmaps in Figures 4 and 5 shows between −1 and 1,
this is only for better visualisation purposes. Otherwise the values are all in 0 and 1).
Therefore, the threshold must be with in the range of 0 and 1 e.g., 0.4, 0.5. Considering
a threshold greater than 0.6 will give the most discriminative features for predicting the
TPs but may lose some supporting features that will help in differentiating them from TNs.
On the other hand, selecting a threshold smaller than 0.5 may result in too many features
as a subset, which might again increase the ambiguity and may affect the decision and
result in higher FNs or FPs. The number ‘16’ in the last step is not constant, rather it can
be tuned considering the number of features in the dataset in question. A dataset with
100 features versus 50 features might have a different subset of discriminative features
that will result in optimal performance. We also note that there is a lack of strongly
negative LRP feature patterns on the global heatmaps. This is the nature of these datasets,
and the resultant models. With different datasets/scenarios, where there is an occurrence
of strongly negative LRP feature patterns, the threshold can be adjusted to ensure the
important contribution of these features. Here by negative we mean the features that have
negative impact/influence on the decisions or the features that are the cause of a wrong
result. Next, phase optimisation will examine this further. Eventually we will show ranked
example of the TP case for both datasets in Section 4. A point to highlight is that we choose
downstream classification as we are looking for evidence that we have a good feature set,
not an empirical feature selection comparison. A wider exercise of comparison to other
feature selection methods can be done later.

4. Results

Every DL network needs to be tuned before one arrives at an optimal model. We
trained a similar 1D-CNN network on both datasets. However, some changes were needed
in the hyper-parameters (added in following section) to get optimal results. This is mainly
because of the size and imbalance nature of the data distribution of the classes. Furthermore,
we worked upon several models for achieving the best results and compared the results
internally (trained by ourselves) for a 1D-CNN model versus several ML classifiers (e.g.,
Logistic Regression, Random Forest). This is because the dataset was mainly used in a
competition on Kaggle and very few papers have used the data.

The following subsections will:

(a) Show that 1D-CNN can work on structured data and its performance for both the
datasets will be shown in the form of accuracy, precision, recall, specificity, and
F1-measure,

(b) Discuss the visualised features in a heatmap that play a key role in a decision and
assessing the results qualitatively (only on telecom churn dataset because the features
of CCFDD are anonymous),
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(c) Compare the highlighted features from the heatmaps of LRP, SHAP, and LIME,
(d) Validate that the selected subset of features are really important and can show good

results when used as input to a simple classifier (done over TCCPD because we know
the domain knowledge and the features names),

(e) Finally, compare the performance with other techniques.

4.1. Performance of 1D-CNN on Structured Data

The previous highest accuracy on the TCCPD was 82.94% [56], achieved with an
XGboost classifier having min-max scaler for pre-processing of the 28 features. This
result is reported without using cross validation. Looking at Table 3, our models gained
results less than that mentioned in the above point. However, with M-1D-CNN-1-28∗, we
achieved 82.64% accuracy and a decent precision of 71.11%. Our highest accuracy with
traditional ML classifiers is 79.93% with precision of 66.16% using logistic regression on
all the 28 features. Random forest is the classifier which gave 71.72% of precision with
77.73% accuracy. Table 4 shows the results we achieved with the proposed model on the
credit-card fraud dataset. Our model (M-1D-CNN-1-31∗) achieved best results in terms of
accuracy. This data is highly imbalanced, and due to its complexity, the precision is slightly
low in comparison to [57]. However, its overall accuracy is less than ours by a margin.
Our model also shows better results compared to others reported in [58,59]. These two
models (M-1D-CNN-1-28∗ and M-1D-CNN-1-31∗) are used along with LRP to visualise the
features of TCCPD and CCFDD datasets, respectively.

Although 1D-CNN for structured data shows a good classification result, however a
possible limitation where 1D-CNN may struggle will be the lack of translation invariant in
the the situation where different features have similar value ranges and repeats/overlaps
in the same order in various positions. A potential solution will be adding positional
information in the form of unique delimiters that will make sure that features with the
same value will not be mixed up with one another as the associated feature map will
include the unique ID in some way considering that even if the features are shuffled the
unique features will also be moved with respective real features.

4.2. Visualising Local and Global Heatmaps of Features Using LRP

The main objective of XAI in this work is to see how or why a deep network gave
a specific decision (TP, TN, FP, or FN). Figure 4a shows a heatmap generated by LRP for
local interpretation of a single record that resulted in TP. The heatmap clearly shows that
because of features such as the customer being a senior citizen (SeniorCitizen), monthly
contract (contract_M_to_M), Fiber optic internet (IS_Fiber_Optic), high monthly charges
(MonthlyCharges), and no phone service (PhoneService) it is predicted that this customer
is going to churn. Based on our research in the domain/general business domain, it is
known and/or learned that a customer is more likely to churn if the contract is monthly,
having no phone service, and with high monthly charges. To retain the customer, it is
suggested that the company reduces some charges by reducing some features but offers a
yearly or biyearly contract so as to retain the customer for a longer term. Hence, although it
is not being tested/validated by us, it is still known and understandable by the companies
(e.g., VirginMedia Ireland Mobile and Internet [60] as they offer lower charges but longer
contracts as well as introducing fibre connections rather than old technology.

Figure 4b shows the local analysis of a record which will not churn. The heatmap
shows the features for a customer who will not churn, and is not a senior citizen, has online
security, a contract of one year without fiber optic, with several other features but fewer
monthly charges. Figure 4c shows a clear pattern for all the correctly classified TP samples
in the testing set, highlighting the important features that play a key role in the model
decision towards being marked as TP. The same applies in the case for TNs as shown in
Figure 4d.

This ability to understand model decisions at a class level has a tangible business
use case. In our TCCPD business domain example, understanding TP and TN can help a
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company/data scientist in increasing the revenue by retaining the customers—supporting
the well-known maxim that in business, it is easier to keep a customer than to find a new
one. On the other hand, understanding and recognising the key features for the local
and global analysis of FP and FN samples may help data scientists to avoid or reduce the
discrepancy in the data results in miss-classifications by the model. Our demonstrator [61]
also highlights heatmaps for FP/FNs and the features that play key roles in generating
incorrect predictions. This is helpful for understanding useful information about the data
and enhancing the trained model information e.g., to avoid redundant or ambiguous
features that impact the performance of the deep learning models. Figure 5 shows the
heatmaps for local (individual) and global (all) TP and TN samples in a CCFDD testing set.

Table 3. Comparison of ours (with *) vs. other models on TCCDD. Accuracy, precision, specificity,
and cross-validation are represented by Acc, Preci, Speci, and Cross-V, respectively.

Model Name Train/Test Acc Preci Recall Speci F1-Score Cross-V

M-1D-CNN-1-28 * 80/20 0.8264 0.7011 0.6189 0.9028 0.657 Yes

M-1D-CNN-2-28 * 80/20 0.8041 0.6727 0.5497 0.8985 0.5978 Yes

Logistic Regression-28 * 80/20 0.7993 0.6616 0.5221 0.9015 0.583 Yes

Decision Tree-28 * 80/20 0.7864 0.6875 0.3794 0.9363 0.4881 Yes

Random Forest-28 * 80/20 0.7773 0.7172 0.2842 0.9588 0.4066 Yes

SVM Linear-28 * 80/20 0.7973 0.656 0.5209 0.8991 0.5802 Yes

SVM RBF-28 * 80/20 0.7785 0.6358 0.4159 0.9122 0.5023 Yes

XG Boost-28 * 80/20 0.7649 0.5727 0.4956 0.8641 0.5311 Yes

Results in Literature – – – – – – –

Logistic Regression [62] 75/25 0.8003 0.6796 0.5367 – 0.5998 No

Random Forest [62] 75/25 0.7975 0.6694 0.4796 – 0.569 No

SVM RBF [62] 75/25 0.7622 0.5837 0.5122 – 0.5457 No

Logistic Regression [56] 70/30 0.8075 – – – – No

Random Forest [56] 80/20 0.8088 – – – No

SVM 80/20 0.8201 – – – – No

ADA Boost [56] 80/20 0.8153 – – – – No

XG Boost-28 [56] 80/20 0.8294 – – – – No

Logistic Regression [63] 80/20 0.8005 – – – – No

Reduced Features Results – – – – – – –

M-1D-CNN-4-16 * 80/20 0.8462 0.7339 0.6718 0.9104 0.7014 Yes

M-1D-CNN-5-16 * 80/20 0.8554 0.7399 0.713 0.908 0.726 Yes

Logistic Regression-16 * 80/20 0.7996 0.6633 0.52 0.9026 0.5823 Yes

Decision Tree-16 * 80/20 0.7871 0.6911 0.3788 0.9374 0.4886 Yes

Random Forest-16 * 80/20 0.7807 0.7058 0.3139 0.9521 0.4337 Yes

SVM-16 * 80/20 0.7986 0.6571 0.5278 0.8984 0.5849 Yes

XG Boost-16 * 80/20 0.7618 0.5645 0.5035 0.8569 0.532 Yes
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Table 4. Comparison of our 1D-CNN (with *) performance on CCFDD against published results.

Model Name Train/Test Acc Prec Recall Spec F1-Score Cross-V

M-1D-CNN-1-31 * 80/20 0.9991 0.6732 0.9520 0.9992 0.7866 Yes

M-1D-CNN-2-31 * 80/20 0.9989 0.6507 0.8779 0.9992 0.7446 Yes

M-1D-CNN-3-31 * 80/20 0.9987 0.6079 0.8553 0.9990 0.7037 Yes

Logistic Regression-31 * 80/20 0.9229 0.0201 0.9044 0.9230 0.0393 Yes

Decision Tree-31 * 80/20 0.9651 0.0442 0.8762 0.9652 0.0840 Yes

Random Forest-31 * 80/20 0.9946 0.2232 0.8579 0.9948 0.3533 Yes

Gaussian NB-31 * 80/20 0.9748 0.0550 0.8474 0.9751 0.1033 Yes

Logistic Regression [57] 80/20 0.81 0.76 0.9 – 0.82 No

Isolation Forest [59] 70/30 0.997 – – – 0.63 No

Local Outlier Forest [59] 70/30 0.996 – – – 0.51 No

SVM [59] 70/30 0.7009 – – – 0.41 No

Figure 5. Visualising LRP heatmaps for local (individual) and global (all) TP and TN samples in the
CCFDD testing set. Feature sequence of (a,c) is similar to (b,d).

4.3. Qualitative Comparison of Heatmaps from LRP, SHAP, and LIME

One of the main ideas of our work was to show that LRP can perform well for
explainability of the deep model in various forms. SHAP and LIME are two other common
techniques used for explainability. Using LRP as the baseline explainability technique, we
demonstrate advantages of LRP because it highlights the same features as discriminative
as those of SHAP and LIME but in far less execution time.
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Table 5 and 6 show the features ranked in descending order for LRP, SHAP, and LIME
from the model trained on TCCPD and CCFDD, respectively. The ranking is done based
on the approach explained in Section 3.3. The value 28 shows that the feature is highly
discriminative and is considered important whereas 1 means having low importance in
the tables. The features are sorted in descending order of LRP ranking, whilst showing the
other rankings of LIME and SHAP with respect to the LRP ranking. As we have taken top
and bottom eight features from TP and TN each, therefore, if we consider the important
(top) features in the first row of Table 5, and similarly for corresponding SHAP and LIME,
we can see that the features ranked high (e.g., with 28, 27) in LRP are mostly ranked high
in SHAP and LIME as well (e.g., Contract_M_M, PhoneService, Tenure, IS_Fiber_Optic,
Monthly charges). Five out of eight features are common for all three. In addition, the time
taken by LRP running on CPU (MacBook Pro with Intel Core i5, 2.3 GHz 1 Processor with
2 Cores, and 16 GB RAM) is 1–2 s to generate a heatmap for a single record at test time
which is far lower than the time taken by LIME (22 s) and SHAP (108 s). This shows that
LRP is faster. We also show in the section that it selects a highly discriminative feature set,
that if used with a simple classifier, will generate a similar or better performance. This is
possible because the ambiguous or redundant features are removed which were confusing
the system. The SHAP and LIME code can be slightly optimised by either changing some
of its parameters (for example the size of the neighbourhood (we used default of 10, if we
increase it increases the time it takes), parameters for regularisation) however, it takes more
time compared to LRP.

Table 5. Ranked feature comparison for LRP, SHAP, and LIME over the Telecom Churn dataset.
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Table 6. Ranked feature comparison for LRP, SHAP, and LIME over the credit card dataset
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4.4. Validation of the Subset of LRP Highlighted Features Importance

It is important to verify that the features highlighted as important by LRP are genuinely
pivotal in driving the model decisions. Therefore, we use the subset of important features
highlighted by LRP as input to traditional ML techniques (e.g., logistic regression, random
forest) and proposed 1D-CNN. The last five rows in Table 3 show that using features
generated from LRP values did not yield good results with traditional ML classifiers.
However, we achieved good results with the deep 1D-CNN (M-1D-CNN-4-16* and M-
1D-CNN-5-16*) as shown in Table 3. The interesting point is that our 1D-CNN for LRP
surpassed the existing kernel [59] results both in terms of accuracy and precision while
trained on this subset of features. We achieved a highest accuracy of 85.54% with a precision
of 73.995% and a F1-score of 72.603%. Moreover, we achieved higher a F1-score of 73.23%
from the model with using LRP values as features using SMOTE for balancing the data
and with batch size 200 and a LR of 0.00001. A key point to note is that using features
derived from LRP values, all 1D-CNN models gave results close to 83%. In addition, it is to
clarify that the main cause of improvement is the proposed strategy which achieved a high
F1-score i.e., 72.603%. Whereas, using SMOTE gave an additional enhancement of 0.63% to
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get a higher F1-score i.e., 73.23%. SMOTE without the proposed strategy was not able to
achieve the achieved F1-score.

The used subset of features contain 16 features. These are selected from the LRP values
generated by the process as explained in Section 3.3. The good performance with this
subset of features proves that the highlighted features are important and can generate an
almost similar result through a simple classifier instead of a DL model. Hence, if needed
in a situation where memory and processing is an issue e.g., when deployed in IoT or on
edge device, a smaller simple classifier can be used rather than a deep neural network.

4.5. Comparison with State-of-the-Art

Table 3 shows comparison of the results achieved by the proposed model against oth-
ers. In addition, it also contain the results from a traditional ML trained by other researchers
in research articles and on the Kaggle competition webpage. The ‘*’ represents the models
(both traditional ML) we trained and tested ourselves with similar data. Many of the results
were not based on 5-fold cross validation. To get a fair results comparison, we retrained
same techniques using 5-fold cross validation. One point to highlight is that the published
state-of-the-art is only available for the actual original model classification performance
i.e., We have no state-of-the-art results for the correctness of features highlighted by LRP.

The results showed that our results from 1D-CNN (M-1D-CNN-1-28*) in the case
of using all 28 features is lower than XG-Boost [56] by 0.0003. However, for the same
XG Boost-28* when we trained and calculated a performance after 5-cross validation, it
showed 0.0615 fewer performance than our best model (M-1D-CNN-1-28*) with 28 features
as input.

In terms of precision, Random Forest-28* achieved the highest precision of 0.7172,
which is 0.0478 and 0.0161 higher than Random Forest results reported in [62] and our
M-1D-CNN-1-28* model, respectively. However, in terms of F1-score, our model showed
better result than that of Random Forest-28* and reported by [62] by 0.2514 and 0.088,
respectively.

The state-of-the-art results are achieved when we use our proposed model for selecting
a subset of features and then using those selected features as input to the same networks
(1D-CNN and traditional ML techniques) to train and test. Our model M-1D-CNN-5-16*
achieved a 0.8554 accuracy, 0.7399 precision, and 0.7260 F1-score, which are higher than all
other models at a good margin. This shows that XAI as an approach for subset selection of
discriminative features can give us almost equal or better results with both the proposed
1D-CNN model and traditional ML techniques. This can be used as a strategy of first using
DL, and then when we have the reduced feature set, using those with a simple classifier
which paves the way to investigating this approach for use on embedded or edge devices
where there are limitations on memory.

5. Conclusions

We provided the first application of 1D-CNN and LRP on structured data. In terms
of accuracy, precision, and F1-score performance, our deep network performs marginally
below the benchmark methodology reported in state-of-the-art on the same data by a
small fraction but achieved higher when we used cross-validation on the same model.
However, more importantly, we took the initiative for using 1D-CNN+LRP on structured
data. Using the approach of 1D-CNN+LRP for validating the subset of features highlighted
by LRP as important, the reduced feature set used to train a model can give state-of-the-art
performance. Hence, we initiated a new area of research for XAI as a tool for feature subset
selection. However, the comparison of downstream classification for the selected features
versus the full dataset indicates that LRP has selected informative features, as classification
results are maintained or improved but to further verify LRP’s potential for feature selection,
comparison with other feature selection techniques is required. The proposed approach
enhances performance in terms of accuracy, precision, F1-score, and computation time. It
also substantially reduced the number of features to be used in a deployed system where
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resources are limited e.g., an edge device. For future work, we plan to do further analysis
on exploring the possibility of whether a 1D-CNN can be made for structured data in a
translational invariant model. In addition, exploring the system with other datasets (e.g.,
UCI Benchmark Repository) and explainability techniques e.g., DeepLIFT, LORE, MAPLE,
L2X, as well as adopt cross validation approach for validating the selected features.
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