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A B S T R A C T

Objective: The development of a middleware information model to facilitate better interoperability between
Personal and Electronic Health Record systems in order to allow exchange of Patient Generated Health Data and
Observations of Daily Leaving between patients and providers in order to encourage patient self-management.

Materials and methods: An information model based on HL7 standards for interoperability has been extended
to support PGHD and ODL data types. The new information models uses HL7 CDA to represent data, is in-
stantiated as a Protégé ontology and uses a set of mapping rules to transfer data between Personal and Electronic
Health Record systems.

Results: The information model was evaluated by executing a set of use case scenarios containing data ex-
ported from three consumer health apps, transformed to CDA according to developed mapping rules and vali-
dated against a CDA schema. This allowed various challenges to emerge as well as revealed gaps in current
standards in use and the information model has been refined accordingly.

Discussion and conclusion: Our proposed middleware solution offers a number of advantages. When mod-
ifications are made to either a Personal or Health Electronic Health Record system or any integrated consumer
app, they can be incorporated by altering only the instantiation of the information model. Our proposition uses
current standards in use such as CDA. The solution is applicable to any EHR system with HL7 CDA support.

1. Introduction

As healthcare technologies evolve, the management of health data is
no longer only clinician-governed but also patient-controlled [1]. En-
gagement of the public with consumer health IT has been augmented by
recent technological advances such as the use of mobile devices and the
development of numerous health apps [2]. Until recently, Electronic
Health Records (EHRs) were seen as the main vehicle to drive health-
care systems forward, however many researchers are now highlighting
the vital role to be played by patients in controlling their own health
information and self-managing their diseases [3,4]. These recent de-
velopments place the Personal Health Record (PHR) at the center of
healthcare [5]. PHRs are health records that can be drawn from mul-
tiple sources and that are managed, shared, and controlled by the in-
dividual where these sources increasingly include consumer health
applications and devices. Initiatives in this space are far reaching, for
example, the Medicare and Medicaid EHR Incentive Programs in the US

provide financial incentives for the "meaningful use" of health tech-
nology, which includes engaging and empowering patients and their
families through the use and management of their health data in a PHR
[6].

PHR adoption has historically been slow [7]. The main reasons
highlighted by the literature are related to privacy and confidentiality,
health literacy and integration and interoperability [8]. Other ex-
planations include lack of consumer involvement in PHR design and
development [9]; PHRs that provide access to clinical data from EHR
which is not useful for patients [10]; and scant focus on individual
tailoring, personalization and behavioral feedback which are important
aspects of personal health management [11]. However as the scope of
PHRs increases to include consumer health applications and devices,
adoption rates are increasing rapidly, yet scant support exists for ex-
changing personal health data from the range of PHRs with EHRs.

There are two prevailing models of PHR systems. The first are
“untethered” standalone systems which are entirely under the control
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of the patient who must enter their own information or arrange for it to
be transferred from another system. This group includes consumer
health applications and devices. The second are “tethered” systems,
often referred to as patient portals, which are sponsored by an orga-
nization and where the record is automatically populated with in-
stitutional clinical data such as hospital visits or prescription drugs
dispensed without the patient needing to enter information. The vast
majority of existing and emerging PHR systems are untethered; there-
fore the success of these systems is determined by a person’s willingness
to maintain their PHR information or on their Health Care Provider’s
(HCP) willingness to share and transfer data to an EHR. The tethered
model places less burdens on the patient, however few are designed to
allow patients to upload their own information and so are not compa-
tible with consumer applications and devices and the adaption of these
systems to allow sharing of institutional and personal data usually
presents costly and time-consuming challenges for HCPs [12–14].
Moreover, a recent systematic review [14], reported significant issues
in the use of 47 out of 60 tethered PHRs reviewed, including inter-
operability issues, a lack of support for user needs, and in particular, a
lack of functionality to allow users to define what data to integrate was
identified as a major barrier.

In previous work, we proposed an information model to enable
better interoperability between PHR and EHR systems, where concepts,
relationships, rules and constraints were derived by analyzing widely
used PHR features and functionality [15]. The information model was
inspired by the HL7 Reference Information Model (RIM) [reference] of
the health care information domain and is designed as a middle layer
between PHR and EHR systems. It composed an ontology that modelled
concepts and relationships, and a set of mapping rules that outlined
rules and constraints that must be followed when integrating data from
a PHR data with an EHR and vice versa. Data can be exchanged be-
tween systems using common standards such as XML and the Clinical
Document Architecture (CDA) [16].

In this paper, we extend the information model by updating it to
facilitate newly identified needs of PHR such the integration of patient
generated health data (PGHD) and observations of daily living (ODL).
PGHD and ODLs are health-related data generated by patients and
gathered via consumer health apps, sensors and devices. They reflect
the extended use of PHRs to incorporate not only health-related data
but also other data pertaining to general wellbeing, diet and fitness
used by both healthy and unhealthy persons to monitor their health and
lifestyle. PGHD and ODLs are mainly defined by individuals and are
meaningful to them and/or their caregivers. They can be interpreted to
provide insights into someone’s health and wellbeing and to assist to
self-care and self-management including setting goals and changing
health behaviors [11]. Widely used PGHD include chronic diseases
measurements such as blood glucose levels [17], [18], whereas ODLs
include measurements such as activity and nutrition [11].

In this paper, we outline the development of the information model
extension to facilitate PGHD and ODL data exchange between PHR and
EHR. We describe the required changes to the information model, the
underlying ontology and to the mapping rules to facilitate the new data
types. We demonstrate how data from three mobile health apps is
captured and transformed to CDA format ready for insertion in an EHR
via the information model.

2. Background

A PHR has been defined by the Markle Foundation as “an electronic
application through which individuals can access, manage and share
their health information, and that of others for whom they are au-
thorized, in a private, secure and confidential environment” [19]. Si-
milarly Archer et al [20] define PHRs as “Internet-based tools that allow
people to access and coordinate their lifelong health information and
make appropriate parts of it available to those who need it”. It has been
noted that a universal definition has not yet been agreed to describe

PHRs [8].
Studies including [21–23] list basic PHR functionality as storage of

and access to personal information, past and current medications, vital
signs, orders and laboratory results and procedures. Sophisticated re-
quirements such as the capture of PGHD and ODLs from consumer
health devices are not reflected in such lists. Initiatives such as Mean-
ingful Use [6] have brought PHRs firmly into focus by emphasizing
patient engagement using patient portals and enabling patient in-
tegration with provider EHRs. A lack of efficient interoperability re-
mains one of the main barriers for PHR adoption [7,14,24]. Slow
adoption of standards such as the Continuity of Care Record (CCR) and
the Continuity of Care Document (CCD) has delayed the rollout of PHR
systems. The use of existing standards such as SNOMED CT can facil-
itate semantic interoperability however a uniform PHR standard that
supports the same communications, messaging, and content encoding
standards, in particular encoding lay representation of data, as other
health information systems has not yet been reached [25].

Further challenges to interoperable PHR are the fact that ideal in-
formation in a PHR is lifelong and cross institutional, and thus should
cover data from various HCPS as well as citizens own entries and
emerging data from apps, sensors and integrated devices [7,14]. A re-
lated issue is how to allow individuals to specify what own data they
wish to be shared with HCPs and associated systems. Further, citizens
are the primary managers of the data but may also want to share it with
other non-clinical stakeholders, for example family members [26]. As
such, authentication presents a problem for PHRs. Another compli-
cating factor is that increasingly dispersed care across HCPS and EHRs
is the general rule given the increasing frequency of co-morbid chronic
conditions [27]. This poses major challenges due to possible resultant
provider-to provider misunderstandings, information gaps, and identi-
fication of responsibility.

Recent reports and work have highlighted specific barriers to the
incorporation of PGHD and ODLs in PHRs. The Healthcare Information
and Management Systems Society (HIMSS) describe information over-
load, complications in trend analysis and meaningful presentation as
pertinent issues relating to PGHD and ODL data. They also point to
limitations in technology standards and technology reliability relating
to apps, sensors and devices from which PGHD and ODL data must be
transferred and exchanged with PHRs [28].

Project HealthDesign is a multi-year, multi-site project that supports
a wide range of patients, from children with chronic health conditions
to elders transitioning from hospital to home [29]. It allows capture of
medical data and ODLs and uses a third party PHR, namely Microsoft
HealthVault as a secure data repository. This allows access for patients
and clinicians as well as information exchange between both parties.
One of the main challenges faced during the project was the fact that
existing data models do not incorporate new essential data types such
as ODLs [30]. The researchers report that the cost of designing and
developing sophisticated interfaces to facilitate complex data types
soon outweighed the expected benefits [8].

Sujansky and Kunz [29] proposed a model based on DIRECT mes-
saging secure email standards [31,32], for collection of patient data
using personal health devices and the secure sharing of these data with
authorized providers’ EHRs. They reported that a significant drawback
of their approach is that data defined by individuals such as PGHDs do
not directly map to biomedical models of disease and illness and are
also are more likely to be sent in an unstructured way.

However the rise of smartphones, sensors and devices powered by
Internet of Things and mobile health apps to create and record PGHD
and ODLs have the potential to move healthcare in the direction of true
patient-centeredness [33,34]. PGHD and ODLs allow for effective self-
care and self-management via individual tailoring, personalized re-
porting and behavioral feedback [5]. For example, by combining de-
mographics, individual routines and behavioral habits available via
smart devices, personalized interventions or treatments can be designed
based on individual characteristics. These can be supplemented with
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behavioral feedback or advice from clinicians and be used to encourage
persons to adhere to healthy behaviors or to take up or continue with
interventions and treatments [11].

3. Methods

In previous work we developed an information model by analysing
and modelling common features and functionality of PHRs [15]. In this
work, we outline an extended information model that can incorporate
PGHD and ODLs to allow for self-care and self-management by re-
cording and monitoring such data and setting personal health goals,
and methods for the transfer of such new data from PHRs to EHRs.
Fig. 1 outlines the architecture of our information model and outlines
the workflow of exchanging data between PHRs and EHRs. The archi-
tecture is composed of four structural components. The first component
is the conceptual layer, namely the definition of each concept in the
PHR and how concepts are related. The second component is the se-
mantic layer which provides a formal representation of the entities
defined in the conceptual layer and allows data to be mapped to stan-
dardized vocabularies SNOMED and LOINC. The ontology instantiation
reflects the data and associated attributes a given application (e.g.
Fitbit) can hold. The ontology is referenced from both the conceptual
layer and the semantic layer to ensure the exported data are understood
correctly using a vocabulary such as SNOMED and transformed to the
appropriate format ready for import.

The third component is the syntactic layer which aims to ensure that
represented data will fully conform to pre-defined structure and syn-
tactic rules as outlined by standards such as HL7 CDA. Finally, the data
layer manipulates data exported from either a PHR or EHR and creates
a document that can be transferred between systems. The transforma-
tion rule engine implements the transformation rules to manipulate the
data and create the document for transfer and lies between the data, the

semantic and the syntactic layer. The specific PHRs outlined in Fig. 1
are three consumer health applications, Apple Health, Fitbit and My-
FitnessPal as represented by their app icons. Note that our proposition
assumes data is available for exchange with an EHR and does not in-
clude methods to export data from a PHR into our information model.
This is because the code required to pull data from a PHR is bespoke for
each app and device and would be best facilitated via a public API
associated with the specific application or device.

In the next sections we briefly describe our original information
model, we outline how we extend the information model to incorporate
PGHD and ODLs and present an evaluation of the extended information
model via case studies using personal health and wellness data trans-
ferred from three consumer health apps.

3.1. Original information model

We developed the original information model by analysing common
PHR data and functionality [15]. The information model consisted of
four fundamental classes, which were inspired by classes from the HL7
RIM standard:

• Role: an acknowledged and defined participant in one’s PHR, e.g. a
person in the Role of a patient or practitioner can participate in a
PHR encounter with a set of defined permission on the Role, for
example, a patient may be permitted to record health data in a PHR
whereas a practitioner may not be allowed to add data, rather they
can provide feedback on data recorded by the patient.

• Entity: each Role is played by an Entity, for example specific
(named) patients and practitioners in a PHR are Entities.

• Act: an Act is any event in a PHR, for example, the Act of recording
an allergy or monitoring blood pressure. An Entity participates in an
Act, for example a named patient can record an allergy in a PHR.

Fig. 1. Information model architecture outlining the workflow of exchanging data from a PHR with an EHR.
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• Element: an Element is any data corresponding to an Act, for ex-
ample, an allergy recorded in a PHR is an Element. Elements may
contain sub-elements, for example, allergy name and effective date.
Moreover, the class Element has two subclasses named Data and
Unit for recording fine grained Element data, for example an activity
tracker may record a user’s 10,000-day step goal as Data (10, 000)
and Unit (steps).

A UML representation of the original information model is shown in
Fig. 2 below.

The Role and Entity classes from our information model are mapped
directly to the respective RIM classes. We extend the functionality of
the RIM Act class, in particular the way it interacts with the class Role.
Roles in PHR systems (e.g. patient, care giver) are more limited than in
EHR systems (e.g. access role, employee, licensed entity etc) and
Entities in PHR systems participate directly in Acts. HL7 RIM does not
have an Element class so the Element class from our information model
is replicated utilizing the Observation class from RIM where an ob-
servation often involves measurements or other methods of investiga-
tion. Further, in contrast with RIM, the attributes of each class and the
classes themselves are flexible so that the four classes can accommodate
all relevant information from PHR systems. For complete details of the
development of the information model using RIM classes please see our
previous published work in [16].

The information model uses the classes defined above and their
attributes to define how data is captured and subsequently how it is
manipulated by receiving systems. An example of using attributes to
define how data is manipulated is the property ‘hasEHRTransferable’
which is used to dictate whether an element should be transferred to an
EHR or not. Similarly attributes can have attached properties such as
‘hasSnomedCode’ or ‘hasLoincCode’ to facilitate semantic interoper-
ability by indicating data that has corresponding concept representa-
tion in a relevant biomedical terminology. This feature allows accom-
modation of synonymous data from multiple sources including
applications and devices. For example both Fitbit and Apple Watch
devices track sleep quality and duration, however their internal la-
beling of this data on the respective devices may be different. The in-
formation model allows Apple Watch and Fitbit data to be mapped to
standardized SNOMED concepts ‘Duration of sleep’ and ‘Quality of
sleep’. While our information model can accommodate any data from a
PHR, we acknowledge that standardized representation of such data is

limited to the vocabulary defined by SMONED and LOINC. To date,
attributes have been defined for use by Element objects to allow ma-
nipulation of data, however, they may be also used for other classes. For
instance, in a situation where a user may want to restrict data transfer
from specific devices, perhaps a device that they only use occasionally,
a similar attribute could be defined for the Entity class.

The information model is underpinned by an ontology created using
Protégé [35]. This ontology is used as a reference that outlines what
data can be captured and whether the data should be processed and
subsequently transferred between a PHR and an EHR [16]. In addition,
a set of transformation rules for manipulating data exported from PHRs
in order to transform it into a CDA document or XML file commonly
used by EHRs have been developed.

The main advantage of the information model is that it is flexible
enough to cover any kind of data used in a PHR context despite the
heterogeneous nature of existing PHRs. We strive to provide a stan-
dardized representation of heterogeneous data as far as possible by
allowing data to be described using equivalent SNOMED and LOINC
codes. The middle layer architecture between a PHR and an EHR en-
sures flexibility by not tying the solution to any specific PHR or EHR
system; when modifications are made to data or formats in a PHR or
EHR system, their transformations can be incorporated directly by al-
tering only the instantiation of the information model in the middle
layer. The RIM inspired architecture emphasizes the exchange of full
medical records rather than simple message exchange which allows for
greater volumes of data to be transferred. Moreover, by developing an
extensible information model based on the RIM class and attribute
structure we can facilitate emerging PHR and EHR needs for new data
types such as PGHD and ODLs.

3.2. Developing the extended information model

In order to extend the original information model to incorporate
PGHD and ODLs, three widely-used consumer apps have been selected
and analyzed in terms of the data they capture and their functionality.
Inclusion was based on simple criteria including their popularity and
the main functionality they provide is capture and storage of a wide
variety of PGHD and ODLs. The selected apps are:

1 Fitbit [36], a smart device emphasizing fitness and wellbeing
monitoring with an associated software app. The device

Fig. 2. Original information model.
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automatically records activity data such as number of steps taken,
and sleep times and the user may also self-report other activity and
lifestyle data. The user can track data and view longitudinal data via
an app on a smartphone or tablet. They can also set activity and
weight loss goals. Fitbit may be integrated with other devices such
as smart watches and scales as well as other third party apps.

2 Apple Health app [37], is available on iOS devices and helps to track
numerous parameters including activity, nutrition, sleep data, vital
signs and reproductive health data. It also supports integration with
smart watches and other devices and the ability to receive and push
data from and to numerous third party apps.

3 MyFitnessPal [38], is an app for monitoring nutrition; however,
other body parameters such as height, weight and exercise can also
be recorded. Nutrition data can be added to the app using an in-
tegrated food database, manually by the user or using barcode
scanning functionality. The primary purpose of the app is to en-
courage weight loss so the user may set a number of goals in that
regard. The MyFitnessPal app can be integrated with other devices
including as smart watches and third party apps.

3.3. Extending the information model classes

One of the main features of consumer apps is that unlike traditional
PHR which relied on manual data entry, they allow data to be recorded
using either wearable technology such as smart watches or other elec-
tronic devices including activity monitors, scales, blood pressure
monitors and alternative input methods such as barcode scanners. This
allows effortless data recording for the end user and provides a more
objective and reliable source since the accuracy of the data is only
dependent on the accuracy of the device. In addition, continuous data
can be recorded as soon as the wearable device is working and has
battery, which allows data to be captured for entire days and provides a
holistic view of a person’s health or wellness state. Therefore, in our
extended information model, the Role class needs to be extended to
include such new Entities. Roles must now include any authorized de-
vices and third party apps and corresponding Entities are specific
named devices or apps (e.g. Fitbit, Apple Watch or MyFitnessPal).

As previously stated, many consumer apps allow users to set up
goals and work towards achieving them. These goals can be auto gen-
erated from the app itself following a basic algorithm based on users’
activities and responses or added and amended manually by users. In
our extended information model the most suitable place to record such
goal data is the Element class. In order to maintain a differentiation
from Data and Unit elements a new sub-element named Goal it is
proposed. In terms of HL7 RIM, the Goal Element subclass is an
Observation subclass in the same manner as Data and Unit classes (see
[16] for a full description of the information model in terms of RIM
classes), but used to specifically store data about a user’s goals. The
extended Information Model can be seen in Fig. 3.

3.4. Extending the ontology

Updating the information model also requires updating the under-
lying ontology to reflect the new sub-element Goal. In addition, the
ontology from the original information model represented the view-
point of a single system (i.e. a single PHR). According to a recent study,
approximately 65% of people using health related apps are using more
than one app to track data and data from many apps is frequently
combined [39]. As such the need to combine data from multiple sources
emerges. As a result, the original ontology needed to be re-engineered
to reflect a user-specific instantiation rather than a single PHR view-
point, which can contain elements from more than one source system.
For example, sleep pattern data can be tracked using more than one
application (a Fitbit and an Apple Watch); however, the user might only
want to integrate data captured by one of them or to integrate only the
latest values regardless of the source application.

3.5. Updating the mapping rules for transforming PHR-EHR and EHR-PHR
data

In our previous work [16] a set of mapping rules were proposed to
facilitate smooth mapping of data extracted from a PHR and transform
them into an HL7 CDA document ready to be integrated to an EHR and
vice versa. In the extended information model, the transformation rules
have been amended to facilitate the user-specific ontology instantiation
rather than a single PHR viewpoint used in the original model. Pre-
viously, one of the rules checked to find the specific instantiation of the
ontology that matched the exported app since there was one in-
stantiation per app. In the extended information model there is one
instantiation for all apps (single viewpoint), so it is no longer necessary
to find the source app and choose the appropriate instantiation to check
what data are expected.

4. Evaluation of the extended information model

We have selected varied pieces of PGHD and ODL data from the
three consumer apps (Fitbit, Apple Health and My Fitness Pal) to de-
monstrate and evaluate our extended information model. Data has been
exported from Fitbit, the Apple Health and MyFitnessPal apps to our
information model in CSV or XML formats and transformed to HL7 CDA
using the set of mapping rules. The data is as follows:

1 Sleep data from Fitbit;
2 Reproductive health aspects including menstruation from Apple
Health;

3 Nutrition data from My Fitness Pal.

4.1. Representing PGHD and ODL data in the extended information model

Sleep data as recorded by a Fitbit device is represented in the ex-
tended information model as shown in Fig. 4. Note that the colour used
for each element, matches the colour used for each class from the in-
formation model (Fig. 3). The Role is that of Fitbit since that device
records the data. The Entity is the specific Fitbit device defined by the
user. This device participates in the Act of monitoring sleep. The main
Element ‘sleep pattern’ can be further broken down into further sub-
elements such as time, end time, number of awakenings etc. Those sub-
elements can be finally broken down to Data (total amount of sleep),
Unit (minutes) and Goal (sleep goal in minutes as defined by the user)
sub-elements. The circled numbers in Fig. 4 show how corresponding
data from the Fitbit application is represented in the information
model.

Considering the Apple Health app, users can either upload their data
manually or the data can be automatically pulled through from other
compatible third party apps and stored within Apple Health. Fig. 5
outlines a scenario where data regarding menstruation is recorded on
another app (e.g. the Cycles app [40]), then transferred, and stored
within Apple Health app. In this case the third party app is the main
Role, Cycles is the specific Entity, monitoring is the performed Act and
menstrual period flow is the main Element which can be broken down
to more granular sub-elements such as menstruation, data, and start of
cycle. As before, the circled numbers show how corresponding data
from the Apple Health application is represented in the information
model.

In a similar manner, nutrition data stored in the MyFitnessPal app
can be represented as shown in Fig. 6. The app user is the main Role,
the Entity is the specific person using the app, monitoring nutrition data
is the performed Act and Element is broken down to contain a number
of relevant sub-elements. Fig. 6 also demonstrates how a Goal sub-
element can be used to set a target number of calories.
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4.2. Updating the ontology to facilitate PGHD and ODLs

The ontology in the extended information model is user specific in
order to achieve optimal data aggregation from multiple sources.
Therefore, for the purposes of the evaluation we assume that a single
user is using all three example apps in order to track data and hence we
will instantiate a single user specific ontology to include all data from
these apps. The instantiation can be expanded to cover any data used by
any app connected to our information model. Thus, if a new app is
added in the future and the patient is willing to integrate data from that
app, the instantiation must be lengthened to include all the necessary
data from the new app. Fig. 7 illustrates an example of the Element
sleep pattern and the connections with other sub-elements in the on-
tology. Fig. 7 also shows how the information model can reconcile
terminology from multiple source applications. The image shows how
Fitbit describes sleep pattern data (see object property assertions) and
how we map sleep data to a standardized vocabulary using LOINC code
28341-6 with description “Sleep And Rest Pattern Behavior” to store
sleep pattern data. Other applications may label sleep pattern differ-
ently. By specifying a ‘Same Individual as’ relation which is one where

two individuals are named differently, but refer to one and the same
instance, we can define which data are conceptually equivalent even if
they are derived from different applications (e.g. Fitbit’s ‘sleep pattern’
versus Apple Health’s ‘sleep analysis’). Thus, we attempt to facilitate
semantic interoperability between multiple source applications al-
though we recognize that we cannot predict all terms and data that will
be used by different manufacturers of devices and application and thus
this is not a complete solution.

4.3. Data transformation

Our proposition has been evaluated by executing three scenarios in
which sample data was exported from each application above (Fitbit,
MyFitnessPal and Apple Health) and transformed to a CDA document
according to the mapping rules outlined in [16]. The process is as fol-
lows:

The first step is to identify the participating Entities and Roles from
the exported data. For all scenarios the required information was
available within the instantiated ontology and was identified by parsing
the ontology instantiation OWL file. In the next step the rule aims to

Fig. 3. Extended information model to include goals.

Fig. 4. Sleep pattern from Fitbit represented according to the extended information model.
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identify the different high-level Elements that have been exported. In
the scenarios this corresponds to sleep pattern, menstrual period and
nutrition details. In the third step, the ontology instantiation recognises
which attributes for each of the Elements identified from the previous
step should be expected from each application and the values for those
attributes must be extracted from the exported data. Based on the pre-
asserted attributes for each element, the algorithm decides how to
proceed when processing each element, specifically whether the ele-
ments must be transferred to an EHR or not. Once the above has been
established, pre-defined XML templates are used to allow the extracted
data to be transferred to a CDA document. Finally, the last step is to
construct the header based on data extracted from the first step and
attach the header on top of the CDA document.

4.4. Challenges encountered when executing the scenarios

The first challenge faced was the increased scope of different Roles
and Entities comparing to our previous work [16] where Person and
Patient were used respectively. Considering the Fitbit scenario for
monitoring sleep pattern data, the Role of the device is recorded as
‘Patient Authorised Device’ and the Entity has been recorded as the
specific ‘Device’. The device type (Fitbit Alta) was recorded as an at-
tribute of the device Entity. This can be seen in Fig. 8 below.

The Fitbit has been assigned as a Patient Authorised Device role on
the basis that when this information is integrated into a health record,
clinicians must be able to differentiate between authorized or un-
authorized devices. Other potential Roles, for example a patient mea-
suring blood glucose levels using an unauthorised device (e.g. one

Fig. 5. Menstruation data imported to Apple Health via Cycles app represented according to the extended information model.

Fig. 6. Nutrition data recorded via MyFitnessPal app represented according to the extended information model.
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belonging to someone else), can be recorded as a ‘Patient Unauthorised
Device’. This will allow to detect and interpret small fluctuations to
measurements due to different devices. In addition, it is possible to
assign any data related to a ‘Patient Unauthorised Device’ by attaching
a property ‘EHRTransferable’ with value=0, meaning that these values
will not be communicated to an EHR and only stored in the PHR.

In the Apple Health scenario menstrual period data was auto-
matically pulled through a compatible third-party app and not directly
recorded on the Apple Health application. To address this situation, an
Entity of ‘Application’ describing the third-party application with role
of ‘Patient Authorized Application’ were used.

An additional challenge was the heterogeneous nature and thus the
wider semantic interpretation of the exported PGHD and ODL data.
Different standardized vocabularies were used in order to overcome this
issue. For instance, the ‘sleep pattern’ Element was represented by the
LOINC code ‘28341-6′ and LOINC description ‘Sleep and Rest Pattern

Behaviour’ has been used. This can be seen in Fig. 9a below. However,
sub-elements of ‘sleep pattern’ such as ‘asleep time’ could not be re-
presented by LOINC codes and hence a SNOMED code of ‘248,220,008
‘has been used (Fig. 9b). The coding schema varied based on the data
item as no single schema supported all the exported data. For the
purpose of this study, an attempt to map all the exported data to at least
one terminology has been made, even if that means that the main high-
level element would be mapped to a different terminology from its sub-
elements. This challenge could not be overcome due to the limitations
coding schemas widely used have.

After the construction of the CDA document in XML format finished,
the final document was validated into two different online CDA vali-
dators [41,42], successfully.

Fig. 7. Sleep Pattern Element with property assertions.

Fig. 8. Device Entity and link to the Role 'Patient Authorized Device'.
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5. Discussion and conclusion

In this paper we have presented an extension to a previously de-
veloped information model [16] to allow for the exchange of personal
health data such as PGHD and ODLs from mobile health apps with an
EHR. The extended model also allows for the associated goals setting
capabilities that often accompany such data. To reflect the fact that
many consumer health apps and devices are used in conjunction with
other third party devices as and apps the ontology underpinning the
extended information model has been expanded to reflect a user-centric
point of view allowing the integration of data from multiple source
apps.

Our proposition was evaluated with data from three consumer ap-
plications. PGHD and ODL data has been captured and represented
using our extended information model and transformed and exported to
CDA format successfully.

In future work we intended to investigate how captured PHR data,
represented by our information model can be exported using the HL7
FHIR (Fast Healthcare Interoperability Resources) standard. FHIR is
optimized for mobile devices and apps and for simultaneously accessing
data from different healthcare systems. FHIR uses building blocks called
resources to describe data formats and elements and we intend to in-
vestigate how well PHR data including PGHD and ODL can be described
using resources.

We also intend to investigate which PGHD and ODLs are most useful
from a clinician’s perspective and how those data should be represented
in an EHR to provide a view of health status relevant to a clinician.
Finally, we are considering the development of disease specific in-
stantiation of our information model. For example, it would be inter-
esting to develop an app for a long-term disease (e.g. diabetes) that
requires regular monitoring of more than one parameter (e.g. nutrition,
exercise, medication, blood sugar levels and pregnancy specific

parameters) and sharing of selected data with a number of clinicians for
shared decision making.
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Summary points

• We have expanded a previously developed information model
to allow for the incorporation of more complex data such as

Fig. 9. a -Sleep and rest pattern behavior represented in CDA. b - Observation to express Asleep Time containing sub-elements for Data, Unit and Goal.
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observations of daily living and patient generated health
data from consumer mobile applications and the associated
goals setting capabilities that often accompany such data.

• We have adopted the use of Clinical Document Architecture
(CDA) as an already established and widely used standard.

• Our proposition was evaluated using a set of case studies. Data
from three different consumer applications has been ex-
ported and transformed to CDA. Subsequently, the data were
validated successfully.

• One of the main disadvantages of CDA is the limited number
of use cases it was initially designed to address and the fact
that it cannot fully support current data types such as ob-
servations of daily living and patient generated health data.
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