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Significantly reducing the processing times of high speed photometry 
data sets using a distributed computing model 

 
Paul Doyle*a, Fred Mtenzia, Niall Smithb , Adrian Collinsb, Brendan O’Sheaa 

aDublin Institute of Technology, Kevin Street, Dublin 8, Ireland; bCork Institute of Technology, 
Bishopstown, Cork, Ireland 

ABSTRACT   

The scientific community is in the midst of a data analysis crisis. The increasing capacity of scientific CCD 
instrumentation and their falling costs is contributing to an explosive generation of raw photometric data. This data must 
go through a process of cleaning and reduction before it can be used for high precision photometric analysis. Many 
existing data processing pipelines either assume a relatively small dataset or are batch processed by a High Performance 
Computing centre. A radical overhaul of these processing pipelines is required to allow reduction and cleaning rates to 
process terabyte sized datasets at near capture rates using an elastic processing architecture. The ability to access 
computing resources and to allow them to grow and shrink as demand fluctuates is essential, as is exploiting the parallel 
nature of the datasets. A distributed data processing pipeline is required. It should incorporate lossless data compression, 
allow for data segmentation and support processing of data segments in parallel. Academic institutes can collaborate and 
provide an elastic computing model without the requirement for large centralized high performance computing data 
centers. This paper demonstrates how a base 10 order of magnitude improvement in overall processing time has been 
achieved using the “ACN pipeline”, a distributed pipeline spanning multiple academic institutes.  
 
Keywords: High-Speed Photometry, Distributed Computing, Cloud Computing 
 

1. INTRODUCTION  
The generation of large volumes of scientific data presents an epic challenge to many scientific disciplines [1]. Large-
scale data generation requires us to review how we replicate, transfer and process data. The problem of expanding 
datasets exists for observatories and institutes big and small due to the availability of affordable high performance CCD 
(charge coupled device) and CMOS (complementary metal oxide semiconductor) image capture devices. Standard CCD 
image reduction must be performed using bias and flat field frame to calibrate each of the data frames, followed by basic 
photometric analysis involving image centering, estimation of the sky background and magnitude intensity estimations 
for point sources.  As the number of data frames increases, the amount of work to be performed also increases, having a 
direct correlation to the processing time when using a sequential processing pipeline. For data reduction processing 
pipelines to expand at the same rate as data generation we must re-evaluate existing processing techniques. In this paper 
we propose a distributed processing pipeline that exploits the parallel nature of the data to be processed which we will 
refer to as the ACN pipeline. The ACN pipeline performs data reduction and basic photometry on CCD data images. In 
this solution all data is compressed and uploaded to the Amazon Simple Storage Service (S3) facility. Once uploaded a 
central queue is constructed and a set of Astronomical Computing Nodes (ACNs) query the queue for work and 
download a copy of an image file from S3 for processing.  

Using the ACN pipeline we have demonstrated the following: 

1. Identified opportunities to clean and reduce CCD images in parallel such that the processing time for all files is 
a function of the processing time for a single file rather than the number of files to be processed.   

2. Dynamically incorporated additional computing resources to a running, distributed pipeline to reduce overall 
processing time. 
 

In Section 2 we review the background to this research identifying existing techniques and their performance. Section 3 
proposes a distributed approach, which is expanded into an experimental design to validate our approach in Section 4. 
Results and Analysis follow in Sections 5 and 6, followed by our conclusion where we consider future work.  



 
 

 
 

2. BACKGROUND 
2.1 High Speed Photometry 

The increase in affordable high resolution imaging devices such as CCD or CMOS has meant that almost all 
observatories and research groups have the capability to capture significant amounts of data in reasonably short 
timescales. The point of reference for this paper has been the Blackrock Castle Observatory (BCO), Ireland, which is 
engaged in high-speed photometry research [2]. The result of this process is the generation of large volumes of raw data 
images that must be calibrated and prepared for analysis. The standard process of data reduction and cleaning required 
for these images [3] is the focus of the ACN pipeline (pixel calibration using flat field and bias frames followed by 
image centering, sky background estimation and estimation of point source intensity for each object of interest).  

2.2 Expanding Data  

The rate of data acquisition that can now be accomplished, with modest facilities, is a very real obstacle to overcome in 
any data pipeline. As we can see in Figure 1, as the camera resolution moves from a 512x512 resolution to 1 megapixel 
we can acquire approximately 1 terabyte per day. Work is already underway at BCO to use a 5 megapixel CMOS 
camera, which in 8 hours could capture 20-25 terabytes of data. 

 
Figure 1. Data capture rates in Gigabytes from 1 to 8 hours for two resolution sizes. Devices are continuing to increase their 
resolution and still provide high image capture rates per second [4].    

2.3 Inelastic and Elastic processing models   

Most data reduction tools and algorithms used by software packages such as IRAF [5] and the Common Pipeline Library 
(CPL) [6] are basically sequential in nature, which process files interactively or in a batch sequence relying on high 
performance hardware devices to ensure that the data reduction process is kept within a reasonable timeframe. Work has 
been done to enhance the performance of the CPL library by adding multi-threaded support [7] to utilize multi-core 
hardware, but this approach is still single system focused and does not allow dynamic expansion of computing nodes. 
We can describe this as an inelastic processing model.  

If we consider the data capture rate from a 1 megapixel camera from Figure 1, a single CCD device would require an 
end-to-end reduction pipeline that could process image files approximately 4MB in size every 0.1 seconds to match the 
acquisition rate. What an end-to-end pipeline means is that the cost of data transfer to computing devices is included in 
the overall performance metric for the pipeline. If we have an elastic processing model we can add additional computing 
resources to a running pipeline, increasing the overall image-processing rate. All systems that rely on single fast devices 
to process data are inelastic by nature. Using a proprietary MATLAB based reduction pipeline designed to batch process 
CCD images, BCO experienced processing rates in the order of 1 image per second, with a capture rate of 0.1 per 
second. The inelastic nature of this and similar sequential processing models means that additional hardware resources 
are not easily incorporated into the pipeline. While resources may be sufficient for existing processing rates, there are 
very real data processing limitations when planning upgrades to higher resolution/fast integration CMOS technology. 
These limitations provide a compelling case for the redesign of data reduction pipelines which are elastic and that can 



 
 

 
 

reduce processing times when more hardware is available. To accomplish this we must ensure that we understand the 
parallel nature of the dataset itself.  

2.4 Blackrock Castle Observatory Dataset   

A 26-gigabyte dataset from BCO consisting of 36,820 images stored in data cubes of 10 data images per file, with data 
frame integration times of .08 seconds per image was used in our experiments. The images are stored in an 
uncompressed FITS (Flexible Image Transport System) file format approximately 7MB is size. The resolution of the 
camera used was 512x512 pixels with the image borders cropped by about 20 pixels around each image resulting in 
approximately 8.8 Billion pixels to be processed by the ACN Pipeline. This dataset has already been processed [8] and it 
is for this reason that it is a good reference point for this paper. The data requires two primary operations to be performed 
prior to analysis. First each pixel needs to be calibrated taking into account the flat field and the bias master images and 
secondly using these cleaned pixels a series of magnitude values need to be calculated for each of the reference points 
within each of the images. Both of these operations are well known and robust and easily validated against an existing 
pipeline.  

3. OUR APPROACH 
A principle requirement for the ACN pipeline was the ability to dynamically incorporate additional hardware to assist in 
the reduction of overall image processing time. This elastic capability insulates the pipeline from the limitations of a 
single high-performance system approach, which will eventually fail to meet the demands for data processing when 
faced with ever expanding data capture rates [9]. To accomplish this there was a need to identify opportunities in 
processing images concurrently. The starting point was to consider the existing sequential processing approaches such as 
those already mentioned in section 2.3. Typically images go through a series of jobs such as calibration followed by 
magnitude estimations for point sources, which we can generically describe as follows.  

3.1 Sequential Pipelines 

Most photometry reduction pipelines follow the same basic principle of an IRAF reduction process of sequential 
processing of files through various functions. In the ACN pipeline we consider all steps that must also be performed 
including the movement of data to the processing machines and the uploading of results files to an appropriate location. 
We can summarize the key steps within a sequential pipeline for a single file and represent it in Equation (1) where 𝑠 is 
the number of stars to process in an image, 𝑖 is the number of images in a file, and 𝑓  is the number of files to process. 

1. Copy a raw FITS file to the pipeline’s processing system (𝛼 = 𝑡𝑖𝑚𝑒  𝑡𝑜  𝑐𝑜𝑝𝑦) 
2. Open a FITS file (𝑘   = 𝑡𝑖𝑚𝑒  𝑡𝑜  𝑝𝑖𝑥𝑒𝑙  𝑐𝑙𝑒𝑎𝑛  𝑜𝑛𝑒  𝑖𝑚𝑎𝑔𝑒) 
3. Clean each pixel using the Master Bias & Flat   (𝛽   = 𝑡𝑖𝑚𝑒  𝑡𝑜  𝑝𝑖𝑥𝑒𝑙  𝑐𝑙𝑒𝑎𝑛  𝑜𝑛𝑒  𝑖𝑚𝑎𝑔𝑒) 
4. Generate a cleaned version of the FITS file  (𝜈 = 𝑡𝑖𝑚𝑒  𝑡𝑜  𝑠𝑎𝑣𝑒  𝑎  𝑓𝑖𝑙𝑒) 
5. Open cleaned FITS file and estimate the magnitude for each star 𝛿 = 𝑡𝑖𝑚𝑒  𝑡𝑜  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒  𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒𝑠  𝑝𝑒𝑟  𝑠𝑡𝑎𝑟  
6. Generate a set of results files containing the magnitudes (𝜈 = 𝑡𝑖𝑚𝑒  𝑡𝑜  𝑠𝑎𝑣𝑒  𝑎  𝑓𝑖𝑙𝑒) 

 
We should note that this process contains a high rate of file I/O and is a function of the number of files to process. It is 
also a case that a two-pass process requires a doubling of the data storage and a double read and write for every file 
processed.  

     𝛿 ∗ 𝑠 +   𝛽   ∗   𝑖     +      𝛼 +   2𝜅 +   2𝜈         ∗     𝑓 = 𝑇!"!#$                                                                                              1  

It is this sequential process where 𝑇!"!#$ is a function of the number of files that is reconsidered in our proposed 
approach. The requirement is to take advantage of all possible concurrent-processing opportunities and exploit them.  

3.2 Distributed Processing and Opportunities for concurrent processing 

All aspects of the reduction pipeline must be considered when dealing with large volumes of data when seeking 
processing optimizations. We first considered how to use an existing pipeline tool such as IRAF, which has batch 
processing capabilities, and to run multiple instances in parallel however the setup and configurations for simple batch 
processes was considered to be excessive for the simple processing required on our data set.  A more lightweight tool 
was instead developed in C using the CFITSIO [10] library to perform data reduction and photometry within the ACN 
pipeline. This new utility acn-aphot takes in a FITS file for processing and optionally calibrates the pixels prior to 



 
 

 
 

magnitude estimation if bias and flat frames are provided. This tool was designed to run on a Linux platform and is the 
primary astronomical processing component of the ACN pipeline.  

In a review of the raw FITS files we observe that each pixel within each image follows the standard calibration process 
using their corresponding bias and flat field values from the master bias and master flat field frames [3]. 

!"#  !"#$%  !"#$%  –  !"#$  !"#$%  !"#$%  
!"#$%&'()*  !"#$  !"#$%  !"#$%  !"!"#

                                                                                                                                       2      

This calculation can be run for each pixel in isolation from all other pixels once there is a master bias and master flat file 
available. This means all pixels could be calibrated in parallel, although file I/O costs would make this an expensive 
operation.  

In a review of the magnitude generation, it was noted that the pixels used for each calculation are approximately 80x80 
pixels in dimensions. These are the minimum amount of pixels to be considered as a logical group, approximately 6,400 
pixels in total for each point source. Within this region basic photometry is performed, i.e. centering using the WPHOT 
algorithm [11], calculation of the sky background and estimation of the point source using the following standard 
equation [3] where 𝐼 is an estimate of the collected source intensity, and 𝐶 is a constant used to place the source 
magnitude on a standard magnitude scale. 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =   −2.5    𝑙𝑜𝑔!"   𝐼 +   𝐶                                                                                                                                              (3) 
  

If we combined these two observations such that the cleaning of pixels was only done on a pixel used in the calculation 
of the magnitude, we can achieve a number of improvements. 

1. The number of pixels to be cleaned is drastically reduced but is related to the number of objects of interest in each 
data image. Assuming five stars of interest in a 512x512 image with a clip region of 80x80 for each star we can 
clean 77% less pixels (1.17 billion pixels instead of 8.8 billion) using Equation 2, without affecting the final 
magnitude calculation.  

2. Producing magnitude estimations directly from raw FITS image files eliminates the need for intermediate cleaned 
files, halving the storage requirements of the pipeline.  

3. A single read and write operation is required per file, halving the file I/O processing.  
4. We can run multiple programs concurrently working on separate raw files without affecting the overall process.  

 
If we now have the ability to process each file completely independently and at the same time, we can modify equation 
(1) such that it reflects an overall processing time that is inversely proportional to the number of ACN computing nodes 
𝑁  used in the pipeline as we have shown in Equation 4.  

     𝛿 ∗ 𝑠 +   𝛽8   ∗   𝑖     +      𝛼 +   𝜅 +   𝜈 ∗ 𝑓

𝑁
=   𝑇!"!#$                                                                                                              4  

To coordinate multiple running instances of the acn-aphot we require a central point of communication and coordination 
to ensure each instance is processing its own file with limited or minimum duplication occurring. A simple queue system 
that is public to all concurrent instances which allows each instance to uniquely lock a file for processing is required. The 
raw image data must also be available on a storage device for running instances to access. This storage must provide 
sufficient performance to service high volumes of concurrent file requests. 

 

4. EXPERIMENTAL DESIGN 
Given the objective of building a processing framework capable of elastic allocation of computing resources to a running 
pipeline and the objective of processing raw CCD images an order of magnitude faster than the capture rates we 
designed a system that is robust and within our resource limitations. A key aspect of the design was to allow any type of 
hardware that could run a compiled instance of the acn-aphot to contribute to the processing of FITS images while the 
system is running. This allowed the use of older computing devices in our pipeline, which on their own, were considered 
too slow to contribute to a sequential pipeline given their limited CPU and memory configurations.  



 
 

 
 

4.1 The ACN pipeline 

All measurements within the ACN pipeline incorporate all aspects of the processing pipeline. While it may be appealing 
to measure the processing time alone, ignoring the orchestration required in preparing the data for processing, this would 
provide an incomplete view of pipeline’s true performance. If it takes hours to prepare a system for analysis, including 
transferring, formatting or compressing the data and only seconds to process the data it would be misleading to represent 
the processing as the cost of the pipeline. We do however require an initial assumption for our starting point, which is 
that the dataset is available over NFS (Network File System) on an IBM eServer 326 (7 year old server, 4GB Ram, 
Opteron 2.8 GHz CPU) running FreenNAS 8. The cost of the pipeline will include any time moving or processing this 
data through to the generation of our results files. Another assumption is that we have already created available 
astronomical computing nodes (ACNs). 

We will use the BCO 36Gbyte dataset referenced in section 2.4 consisting of 3682, 7MByte files, which had a capture 
time of approximately 1 hour. This requires that the ACN pipeline performance must be ≤ 0.01 seconds per image to 
reach our goal of an order of magnitude faster cleaning time compared to capture time.  In other words the ACN pipeline 
has 6 minutes to process the dataset of 26Gbytes, which was captured in 1 hour.  

The ACN pipeline can be summarized as follows  (Figure 2.) 

1. Compress Data files on the NFS Share 
2. Upload all data to an Amazon S3 bucket 
3. Generate a public queue accessible to all ACN nodes 
4. Prepare all ACN nodes by downloading required software to process image files  
5. Activate all ACN processing machines 

a. Lock an available file on the queue  
b. Download the file to local storage 
c. Clean and calculate magnitude values using acn-aphot 
d. Upload results file and performance statistics 
e. Look for another file from the queue 

 
Figure 2. The ACN Distributed pipeline using the Amazon S3 storage to store compressed FITS images that are made available for 
download by the ACN nodes running the acn-aphot utility.  

 
4.2 Data Compression 

The FITS format can be compressed using the fpack utility, a standard utility available within the CFITSIO library. 
Using the default parameters we can compress the entire 26GByte dataset down to 4.7GBytes without affecting the 
resulting magnitude calculation [12]. To accomplish this a multi-core Dell 410 PowerEdge Server with 64GBytes of 
RAM was used, as the compression speed is a core piece of the sequential part of this pipeline. This is the only purpose 



 
 

 
 

specific system used as we are looking to use where possible older systems which are easily obtained. Compression was 
seen as an essential step as it helped address slower transfer rates across networks.  

4.3 S3 Data Storage  

A high performance data storage system is essential to this design, as all nodes must have fast access to raw data files. 
Initially a local FreeNAS file system was used but the lack of data replication caused bottlenecks in processing file 
requests from a large number of ACN nodes, so Amazon’s S3 was used instead. The Linux utility s3cmd was used to 
create storage ‘buckets’ on S3. Each file is downloadable using the wget Linux utility making it accessible to all ACN 
nodes. The S3 storage also provides automatic data replication and allows for a larger number of concurrent file requests 
and while it has a significant delay in reading a single file, that delay is not cumulative and remains constant over 
multiple concurrent file requests.  

4.4  Building a queue  

The process by which the ACN nodes determine what file is available for processing is based on NFS file locking. Each 
ACN will traverse the full queue as a directory listing looking at all filenames. When it finds a file that does not have a 
tag of “LOCKED” it will attempt to rename the file and if it succeeds it will download the file from S3, process it and 
upload the results file to an NFS share or an S3 storage location.  

4.5 Building a multi-institute network  

The design demonstrates the use of computing devices of varying capabilities located in multiple institutes allowing the 
addition of systems to a running pipeline in an elastic manner. To demonstrate this, a private layer 2, point-to-point 
network, was constructed with the assistance of HEAnet, (Ireland’s National Educational & Research Network) between 
three academic institutes in Ireland: Dublin Institute of Technology (DIT), Cork Institute of Technology (CIT) and the 
Institute of Technology Tallaght (ITTD) as shown in Figure 3. A private IP network was constructed and 8 IBM eServer 
326 machines were added to the network from each location, each one operating as an ACN node. FreeNAS storage 
devices were added to provide a central queue along with common utilities used by ACN nodes. Additional ACN nodes 
were added to the network including 30 VMware instances running across 4 x4150 Sun servers running VMWare ESXi, 
a Dell 410 PowerEdge server and a Mac Server. The network was available through an IP gateway system with all nodes 
able to access the Internet through routing gateways. 

 
Figure 3. ACN Pipeline Multi-Institute network for distributed processing showing various ACN nodes running in each location. The 
network is a private layer 2, point-to-point network, provided by HEAnet.  

4.6 ACN nodes  

The acn-aphot utility, which runs at the heart of each ACN node, is a C program compiled for multiple Linux systems 
including the MacOSX. Its primary function is to generate a valid magnitude estimate for stars in an image, ensuring that 
the pixels used in the calculation are correctly calibrated. The ACN node is a system which when started; downloads the 
acn-aphot, Master Bias and Master Flat images along with other various utilities; goes to the queue for work; downloads 
the file it locked from an S3 bucket; processes the file and uploads the result. The running C program has a memory 



 
 

 
 

footprint of only 1.2Mbytes and consumes typically less than 100% of a 1Ghz CPU. An ACN node can be directly 
started remotely or can watch for a valid queue to be available and then start working. If a device is added 
asynchronously to an active queue it simply looks for the next available item on the queue and joins the cleaning process 
contributing to the overall cleaning rate. 
  

5. RESULTS 
The BCO MATLAB based pipeline processed the dataset used in our experiments in approximately 10 hours at a rate of 
1 image processed per second. However rather than use the BCO pipeline as a processing benchmark we focus on the 
capture rate of 10 images per second and use this as our starting point requiring a processing rate of 100 images per 
second to achieve an order of magnitude faster processing time over capture time. We review each of the steps in the 
ACN pipeline to optimize the overall processing time for the 26GByte dataset.  

5.1  Compressing FITS files 

The first step in our process was to perform a compression of the dataset to reduce the amount of time copying data files 
to ACN nodes. The compression used was the CFITSIO fpack utility, which was run in standard mode. To determine the 
optimal performance of the Dell 410 server, FITS lossless compression was run using two different methods. The first 
ran the file in sequential mode where a file-list was given to a single instance of the utility. The second approach started 
thousands of processes at staggered intervals where each process was running concurrently utilizing large portions of the 
available memory on the server. This approach was only valid for a server with large quantities of memory and multiple 
CPU cores. The only option for running this on an older server was in sequential mode. The compression time reading 
and writing files on the NFS server mount point are shown in Figure 4. The parallel performance of the Dell 410 was 
instrumental in the pipeline providing a compression time considerably faster than the sequential method. It was 
interesting to note that the older IBM systems provided comparable compression times to the Dell when run in sequential 
mode. The resulting size change was significant with the dataset being reduced to 4.6GBytes from 25.6GBytes.  

 
Figure 4. The compression time for the full dataset running in multiple modes using a single core IBM eServer 326 and a Dell 410 
PowerEdge multi-core system. 

5.2 Uploading files to S3 

Figure 5 shows the transfer times of all multiple datasets to an S3 storage bucket. The private network was connected via 
a Gigabit switch to the DIT network, which has an external institute-wide Internet connection of 1 Gigabits. 
Approximately 20% of the bandwidth was used in this transfer although the use decreased to approximately 8% as the 
number of files was increased. The nature of the network is that it is variable, however the experiments were run late at 
night when the Institute’s network was lightly loaded.   The clipped and compressed data files were files where the FITS 
files were clipped into the smallest possible region around the star so we did not need to transport any pixels we did not 
intend to clean. The time saved in data transfer however was negligible. The upload of compressed versus uncompressed 
was reasonably linear with an 80% saving in transfer time.  

 



 
 

 
 

 
Figure 5. Transfer times for data from the local NFS storage within the private network to an S3 storage bucket 

5.3 ACN node performance  

Each ACN node performs at minimum, a queue lookup, a file download, a file clean and a file upload. In a sequential 
system the steps for calibration, using Equation 2, are usually performed first requiring a full read and write of all of the 
data, duplicating the amount of storage required. This is followed by a magnitude estimation of each point source using 
Equation 3. We can refer to this as a 2-pass system where files are processed twice. Where both of these operations are 
carried out during a single read of the files we refer to this as a 1-pass system. To determine the performance of the acn-
aphot utility it was run in a 2-pass and 1-pass mode and the results were compared to the BCO system. While the BCO 
system performs slightly more processing on each file (approximately 20% overhead) we can use it for general 
comparison purposes. In Figure 6 we can see that the acn-aphot utility running in 2-pass mode on the IBM eServer 326 
significantly outperformed the MATLAB system. Much of the enhancement in processing over MATLAB may be 
attributed to the C language itself and to variations in some of the processing steps performed so this is not a reliable 
point of comparison. Of more interest is the reduction in processing time due to the use of the 1-pass method where we 
clean pixels as we calculate magnitude values resulting in a 40% improvement. Another interesting observation is that 
the cost of using an S3 storage bucket over a local NFS share was only about a 6% increase in overall processing time. 
 

 
Figure 6. Time to clean data using a 1 and 2 pass method including processing times reading from local NFS or S3 storage. 

5.4 ACN Pipeline performance  

In Figure 7 the full pipeline processing times for the 26-gigabyte dataset is shown for a range of concurrently running 
ACN nodes. Significant reductions in processing time were achieved with a concurrency rate of 58 running nodes 
processing the entire dataset in 7 minutes 23 seconds. We can compare this to the processing time of the following 

a) Original MATLAB pipeline: 443 seconds versus 36,000 second giving a saving of 98.76% 
b) Initial acn-aphot program running in 2-pass mode: 443 seconds versus 5,520 seconds giving a saving of 91.51%  

Since our dataset was captured in 1 hour and was now processed in 443 seconds we can show a saving of 87.69% with a 
pipeline that can clean 83 images per second. The minimum processing time for this pipeline however is now the fixed 
sequential time of compression (109 seconds), uploading time to S3 (20 seconds) and the time to process one file 
(approximately 3 seconds), giving us 312 seconds, with a possible maximum cleaning rate of ≈118 image per second. 
This gives us a capture rate of 10 images a second with a potential cleaning rate of 118 images per second, but with an 
actual cleaning rate of 83 images per second, just short of 1 order of magnitude improvement.  



 
 

 
 

 
Figure 7. Cleaning times in a distributed system for varying numbers of concurrent ACN nodes showing a reduction in processing 
time for the dataset from over 1hr 27 minutes down to just over 7 minutes. 
 

6. ANALYSIS 
The overall aim of this paper was to design a system that could dynamically incorporate additional hardware to help 
reduce the cleaning time of images and to identify opportunities in processing data concurrently to achieve processing 
rates close to one order of magnitude faster than the capture rates for a single CCD device.  

The system as designed allows any processing device capable of running Linux kernel to contribute to the overall 
processing of a dataset. ACN nodes can join or leave during a processing run without impacting the overall process. The 
memory footprint is extremely low requiring less than 2MB of memory to be available to the acn-aphot utility.  ACN 
nodes require Internet access and run on an Ubuntu system but are easily compiled for any Unix platform. Porting to 
mobile devices will require a compilation of the CFITSIO or java equivalent and would require moving to an alternative 
queue mechanism.  

The distributed process has moved the emphasis away from the parallel cleaning of data files to the sequential portions 
of the pipeline. The data compression and uploading are now significant percentages in the overall cleaning time, 25% 
and 50% respectively. The system relies upon fast compression and uploading to S3 using a Dell 410 PowerEdge server 
but this is the only high performance system used. The contribution made to the pipeline by single core servers which 
otherwise may not have been seen as viable computing devices for image processing shows how effective the distributed 
approach can be in reusing older devices. There are a number of possible reasons for the extended tail of the graph in 
Figure 7. The design relies on a single NFS share for queuing which is a shared resource, some of the additional systems 
were virtual machines using shared network and CPU resources so were not providing a fully independent computing 
resource.  

The performance of the S3 data storage for uploading and downloading data was a significant improvement on attempts 
at building a replicating data store as it provided consistent download times to ACN nodes when retrieving data. 

 

7. CONCLUSION AND FUTURE WORK 
This paper has identified parallel elements within the raw image data and has shown that processing these in parallel can 
yield close to an order of magnitude faster processing times compared to capture rates for CCD devices with a resolution 
of 512x512. We have used Amazon’s S3 storage without introducing processing bottlenecks and have used FITS 
compression to reduce the amount of data transferred between systems. The small acn-aphot memory footprint enables 
older machines to contribute effectively to the process and offers the opportunity to review a processing model that could 
incorporate mobile applications into the pipeline. It is proposed that the NFS queue used must migrate to the Amazon 



 
 

 
 

Simple Queuing Service (SQS) or similar web service to remove the restriction of requiring ACN nodes to mount the 
NFS based queue. Further optimizations may also be possible by focusing on the clipping of stars to further reduce the 
size of images being moved across networks, but to overcome the file I/O bottlenecks associated with this we will 
require images to be stacked in cubes greater than 10, and possibly closer to 100. Further evaluation and comparison 
with other processing pipelines is also planned along with additional monitoring of network traffic to assist in identifying 
any bottlenecks in data transmission, which could be optimized. As image resolutions continue to increase more 
consideration will be given to image clipping and compressing for each object of interest prior to processing.  
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