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ABSTRACT

In precision agriculture, having knowledge of pastureland
forage biomass and moisture content prior to an ensiling pro-
cess enables pastoralists to enhance silage production.While
traditional trait measurement estimation methods relied on
hand-crafted vegetation indices, manual measurements, or
even destructive methods, remote sensing technology cou-
pled with state-of-the-art deep learning algorithms can enable
estimation using a broader spectrum of data, but generally re-
quire large volumes of labelled data, which is lacking in this
domain. This work investigates the performance of a range
of deep learning algorithms on a small dataset for biomass
and moisture estimation that was collected with a compact
remote sensing system designed to work in real time. Our
results showed that applying transfer learning to Inception
ResNet improved minimum mean average percentage error
from 45.58% on a basic CNN, to 28.07% on biomass, and
from 29.33% to 8.03% on moisture content. From scratch
models and models optimised for mobile remote sensing ap-
plications (MobileNet) failed to produce the same level of
improvement.

Index Terms— grassland biomass, Inception ResNet,
MobileNet, proximal sensing, transfer learning.
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1. INTRODUCTION

Remote sensing has long had applications to agriculture.
However in recent years the potential for agricultural appli-
cations of remote sensing have grown many fold thanks to
advances in miniaturisation and computational power. Such
advances allow applications to challenges like the real time
monitoring of vegetation traits during a treatment or cutting
phase. In our case we consider this with application to silage
production where farm machinery and the farmer can ben-
efit from knowing the moisture and biomass levels of grass
during a cutting process just prior to ensiling.

Taking dry matter as an example, the dry matter yield
can be estimated approximately by an experienced farmer, or
calculated using contact sensors such as rising plate meters
or sensors such as spectrometers that can be used to calcu-
late vegetation indices. Red and near-infrared bands are used
by the well-known Normalized Difference Vegetation Index
(NDVI), but there are a huge number of vegetation indices
[1]. Vegetation indices are adequate but based on limited data,
so require extensive calibration in relation to crop phenology,
site, date and sensors. Satellite and aerial sensors are cali-
brated and can be used to provide summary biomass infor-
mation over a wide area, with coarse granularity. Although
satellite coverage is becoming more frequent, it is not on-
demand. Vegetation indices can also be used by proximal
hand-held sensors that often need to make contact with the
substance to be assessed. Such sensors are useful in that they
can be deployed when necessary, but are typically only useful
in providing spot estimations.

Sensors, mounted on farming equipment, can provide a
wider range of more fine-grained data, specifically targeting
the farm site and can be used during day-to-day farming ac-
tivities. We view these sensor systems as remote in the sense
that unlike many vegetation index based instruments, almost
direct contact with the target for analysis is not required.
Advances in technology and edge computing allow multi-
spectral and multi-modal sensing devices to be deployed
to farm machinery, but challenges around the accuracy and
applicability of results remain. Without large volumes of
training data and robust modelling approaches, re-calibration
of devices may be required if devices are used across multi-
ple sites and this is far from trivial [2]. To provide a reusable
method of estimation that is appropriate for small farms over



a wide area, more research is required [3].
Machine learning and specifically deep learning give us

the potential to learn complex models for the estimation of
traits such as biomass and moisture content, but these have
been traditionally seen as being dependent on having a wide
range of labelled data available. In an ideal scenario, a very
large dataset of pasture samples, made up of labelled data
from inexpensive sensors from diverse sites is needed. How-
ever, the collection and labelling of such samples is time-
consuming, costly and dependent on weather conditions, ac-
cess to harvest sites and labelling equipment. The authors
are not aware of such a dataset being available publicly at
the time of writing. Transfer learning based around large la-
belled datasets, such as ImageNet [4], enable the development
of deep learning algorithms for classification and estimation
[5, 6].

This paper is part of the investigation into the following
hypothesis: can a dataset consisting of full RGB and near in-
frared (NIR) images, along with plant height, date, location,
and labels such as biomass and moisture content be collected
with inexpensive sensors to develop a model to estimate tar-
gets with minimal calibration. In the absence of a very large
dataset, we investigate how successful a deep learning model
can be, using a limited dataset but through taking advantage of
transfer learning where appropriate within the input pipeline.

For processing image data, the most popular family of
network types are the convolutional neural network (CNN),
which takes advantage of local features that are invariant
across a full image. These vary from shallow CNNs, which
usually use a small number of convolutional layers and are
typically well suited to small domains, through to highly so-
phisticated and very deep networks that apply multiple layers
of processing, along with tweaks such as skip layers, to en-
sure that training is successful even for very deep networks
[7]. The models chosen for this paper are a shallow CNN,
Inception Resnet V2 and MobileNet, as described in Section
3. The methodology used was to design and deploy a data
collection trolley and protocol, to collect data and use it to
iteratively experiment with deep learning models. This paper
is organized into sections, where Section 2 describes data col-
lection, Section 3 describes the experiments that took place
and Section 4 gives detailed results. The final section 5 gives
the conclusion and intended further work.

2. DATA

Our study commenced by building a dataset for biomass and
moisture estimation of grassland, prior to silage production.

An experimental platform was designed and deployed,
housing a network of sensors that could move across grass-
land. The sensor array included a four-channel JAI AD-130
GE 1 camera, mounted approximately 150cm above ground,

1https://www.jai.com/products/ad-130-ge

pointing downwards. This takes two simultaneous images, an
RGB image (964 x 1296 x 3) and a near infrared (NIR) image
(966 x 1296). These combined images made up VIS-NIR
data. A LiDAR-Lite v3HP 2 mounted beside the camera,
recorded canopy height. Canopy height readings were also
taken manually for validation purposes. To establish target
values for biomass and moisture content, a 10cm2 square
from the sensed area was harvested, weighed for biomass and
dried in a HPP260 Memmert 3 oven at 60 °C for 24 hours,
before being re-weighed to determine moisture content as a
percentage. This target value will henceforth be known as
dryness. Forty-three usable samples were collected across
three different sites. Data for each sample included RGB
and NIR images, LiDAR height, biomass and dryness la-
bels. Biomass values ranged from 5,144 to 60,391Kg/Ha,
with an average of 21,129.22Kg/Ha and a standard deviation
of 15,532.58Kg/Ha. Dryness values ranged from 14.3% to
43.6% with an average of 26.7% and a standard deviation
of 9.6%. Each image was checked to ensure all components
were present and then split into 48 patches of 156 x 156 pix-
els. To enable cross validation, the dataset was divided into
five sets, with all patches from a single sample assigned to the
same set. The sets were combined into five folds, each with a
training set (1156 patches) and a validation set (288 patches).

3. EXPERIMENTS

A number of analysis models were constructed to estimate
biomass and moisture content, varying the model, the data
input and the use of pre-trained weights. Specifically, we de-
signed a baseline shallow convolutional neural network ar-
chitecture, an Inception ResNet implementation and a Mo-
bileNet implementation, and where possible, compared both
pre-trained and trained-from-scratch variants of these models.

Our baseline CNN takes in LiDAR and VIS-NIR patch
data. The VIS-NIR data is fed through four convolutional
layers, each with a 3x3 kernel size with filters of 32, 32, 64
and 64 respectively. Max-pooling (2,2) is applied after the
second and fourth convolutional layer. For biomass training,
the output of the second pooling layer is flattened and subse-
quently concatenated with the scalar value from the LiDAR
sensor, before being fed through two fully connected layers.
No LiDAR information is used for dryness training. A num-
ber of variants on this baseline CNN network were investi-
gated, that varied on the basis of the data supplied. In addi-
tion to making full use of LiDAR and VIS-NIR data (BASIC
model), variants were also constructed and trained that omit-
ted LiDAR (VISNIR model) and used only RGB data (RGB
model). Each of these models was run for 1,000 epochs and
trained for targets biomass (B) and dryness (D) simultane-
ously.

2https://www.garmin.com
3https://www.memmert.com/products/

climate-chambers/constant-climate-chamber/HPP260/



While our shallow models provided a useful baseline, they
do not facilitate the true power of deep networks, so a number
of alternate training models were constructed, that build on
state-of-the-art deep neural network architectures. Inception
Resnet V2 [6] aims to overcome issues in scale invariance,
through the application of heterogeneous kernel architectures
and factorisation of large networks to produce predictors that
give accurate estimations. As more convolutional layers are
added to a network, the output becomes sparser and the abil-
ity to back-propagate error signals becomes more difficult, re-
sulting in diminishing performance. To overcome this issue,
residual networks reinforce learning by using residual layers,
or skip connections, where the output from an earlier layer
is added to the output of a later layer, reinforcing the input to
further layers [8]. Inception-ResNet v2 [6] includes these skip
connections. We used InceptionResNetV2 4, an implementa-
tion of this model that has been widely used across the image
processing community. Inception Resnet v2 was run on three-
channel data, from scratch (IR-RGB) and with weights pre-
trained on ImageNet (IR-RGB-PT) and also on four-channel
data (IR-VISNIR) from scratch. Both targets were trained for
independently.

One challenge with deploying models such as Incep-
tion ResNet in fields such as agricultural machinery, is that
they require significant computational resources. Given such
challenges, MobileNet V2 was designed for use on mobile
devices, specifically for embedded computer vision appli-
cations using RGB data. MobileNet uses a combination of
multiple depth-wise and point-wise convolution layers to
replace fewer, more resource-hungry convolutional layers.
MobileNet V2 introduced residual connections to reinforce
feature maps, and bottleneck layers to compress the data
[9]. We apply MobileNet V25 to assess the quality of low-
resource optimised networks for our purposes, separately
for both targets, from scratch (MobileNet model) and with
pre-trained weights from ImageNet (Mobile-PT model).

Due to the improvement in learning pattern observed
and corresponding slowness in training IncResNetV2 and
MobileNetV2 were run for 300 epochs. All models were
implemented on a Keras front-end to Tensorflow and trained
on Nvidia K40 GPUs. Due to the size of our dataset it was
not possible to partition out a holdout test dataset. However,
five-fold cross validation and averaging of results was applied
to all models, using the fold sets described in Section 2, al-
lowing us to generalise our results somewhat. To check the
accuracy of our model, we calculated a precision error PEt

for each target t, which was the average fractional difference
between each validation target value Vt and the average train-
ing value Tt. PEt =

1
n

∑n
i=1

|Tt−Vt|
Tt

where n is the number
of test cases. The average overall precision error was PEB

4https://www.tensorflow.org/api_docs/python/tf/
keras/applications/inception_resnet_v2

5https://www.tensorflow.org/api_docs/python/tf/
keras/applications/mobilenet
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BASIC Y Y Y N B 3.03% 45.48%
VISNIR Y Y N N B 0.12% 55.93%
RGB Y N N N B 0.07% 46.16%
BASIC Y Y Y N D 13.15% 29.33%
VISNIR Y Y N N D 5.21% 31.51%
RGB Y N N N D 6.56% 30.54%
IR-RGB Y N N N B 14.87% 28.35%
IR-VISNIR Y Y N N B 10.36% 31.44%
IR-RGB-PT Y N N Y B 4.65% 28.07%
IR-RGB Y N N N D 4.89% 9.42%
IR-VISNIR Y Y N N D 3.62% 8.03%
IR-RGB-PT Y N N Y D 2.80% 8.83%
MobileNet Y N N N B 10.13% 41.95%
Mobile-PT Y N N Y B 7.70% 38.05%
MobileNet Y N N N D 4.73% 12.35%
Mobile-PT Y N N Y D 3.39% 9.16%

Table 1. Cross-validated MAPE results for Biomass (B) and
Dryness (D)

= 56.6% for biomass and PED = 31% for dryness. Mean
Square Error was used as the loss function when training all
models.

4. RESULTS

Results of the application of these models to the biomass and
dryness prediction tasks are presented in terms of Mean Aver-
age Precision Error (MAPE), for both training and validation
data. This is a popular metric for regression problems, allow-
ing a comparison of model performance across different tar-
get variables by normalising for the scale of the target. MAPE
values shown are based on average minima per fold. Table
1 presents results from applying each variant of all models
to the prepared folds. The baseline CNN model variants are
the BASIC model, the VISNIR model and the RGB model.
The validation results show marginal differences between the
three architectures, with the VISNIR performing worst and
BASIC performing best. However, there is strong evidence
of overfitting, as training errors are very low, suggesting a
memorisation effect on the training data, rather than a gen-
eralised model. This is more prominent in the VISNIR and
RGB models than in BASIC, suggesting that the introduction
of the LiDAR data allowed some degree of stronger generali-
sation than was possible for the purely image-based process-
ing approach. These results represent a moderate improve-
ment on our baseline PEB , but only a marginal improvement
in baseline PED. The Inception ResNetV2 model variants



are IR-RGB, IR-VISNIR and IR-RGB-PT. The improvement
in performance over the set of shallow baseline CNN mod-
els is quite stark. After just 300 epochs, the biomass valida-
tion MAPE has improved by over 14% and dryness by over
20%. Performance was boosted further, by priming the model
with pre-trained weights. Whilst adding NIR data resulted
is a slight improvement in model performance for dryness,
it had no positive effect on results for biomass. The use of
pre-trained weights gave improvements for both dryness and
biomass over the baseline RGB model – though the improve-
ment for dryness results was not as large as with the applica-
tion of NIR data.

The MobileNet model variants are MobileNet and Mobile-
PT. As MobileNet is optimised for low-resourced devices, the
results seen for this model are not as strong as for the IncRes-
Net model. However, MobileNet does outperform the base-
line CNN for both biomass and dryness and its performance
improves again with the use of pre-trained weights.

5. CONCLUSION AND FURTHER WORK

Given the cost of data collection in farming domains, it is use-
ful to know whether typically data hungry methods such as
deep learning can still be beneficial in developing intelligent
remote sensing applications. Despite the very low volumes in
our dataset, our results demonstrate that a variety of models
do provide a clear improvement over baseline mean based es-
timators (PEt) and that very deep models outperform more
basic architectures or architectures that are optimised to low
resource devices. We observed that performance consistently
improved when using pre-trained ImageNet weights, despite
the fact that ImageNet images are generally at a different scale
than our data. This suggests the usefulness of applying pre-
trained models, in keeping with the assumptions of transfer
learning, where very generic features can be learned. When
NIR data was omitted there was also a decrease in perfor-
mance. Transfer learning in this domain is hampered by the
lack of readily available pre-packaged pre-trained models for
processing multi-channel data. It is interesting to consider the
performance of the MobileNet model with respect to both our
baseline CNN and the IncResNet model. Despite not match-
ing the performance of IncResNet, the MobileNet model pro-
vided an 18.5% absolute performance increase (32.7% rela-
tive improvement) over PEB and an increased performance
of 21.9% absolute (70.6% relative) over PED. Therefore, the
usefulness of such models should not be discounted.

Finally, in our basic CNN implementation we found the
addition of LiDAR information resulted in the best perform-
ing model, even though training MAPE values were higher
than in the RGB and VIS-NIR variants. We have not ex-
panded the analysis of LiDAR information to IncResNet and
MobileNet models at this point. However, it is very interest-
ing to note how additional information provided to our models
may have had a regularising effect on the training process.

The experiments shown in this paper are essentially a
starting point and leave a lot of questions unanswered. Firstly,
it would be worthwhile developing a model that combined
LiDAR with the deeper models. GPS data and collection date
could also be added, thereby broadening the opportunities for
learning. Secondly, although weights are not readily available
to implement transfer learning on VIS-NIR data, if RGB data
is put through Inception Resnet V2, NIR data could be put
through another model with weights for grey-scale images
and the results combined. Finally, it would be well worth
investigating how collection of a lot more data over diverse
and distributed sites would affect the estimation process.
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