
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Articles

2021-12-01

KnowText: Auto-generated Knowledge Graphs for custom domain KnowText: Auto-generated Knowledge Graphs for custom domain

applications applications

Bojan Bozic
Technological University Dublin, bojan.bozic@tudublin.ie

Jayadeep Kumar Sasikumar
Technological University Dublin

Tamara Matthews
Technological University Dublin

Follow this and additional works at: https://arrow.tudublin.ie/creaart

 Part of the Computational Engineering Commons

Recommended Citation Recommended Citation
Bozic, B., Sasikumar, J. K., & Matthews, T. (2022). KnowText: Auto-generated Knowledge Graphs for
custom domain applications. Technological University Dublin. DOI: 10.21427/M5C6-6T23

This Article is brought to you for free and open access by
ARROW@TU Dublin. It has been accepted for inclusion in
Articles by an authorized administrator of ARROW@TU
Dublin. For more information, please contact
arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
gerard.connolly@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 4.0 License

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/creaart
https://arrow.tudublin.ie/creaart?utm_source=arrow.tudublin.ie%2Fcreaart%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=arrow.tudublin.ie%2Fcreaart%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

KnowText: Auto-generated Knowledge Graphs for custom domain applications

BOJAN BOŽIĆ, JAYADEEP KUMAR SASIKUMAR, and TAMARA MATTHEWS, Technological Uni-

versity Dublin, Ireland

While industrial Knowledge Graphs enable information extraction from massive data volumes creating the backbone of the Semantic
Web, the specialised, custom designed knowledge graphs focused on enterprise specific information are an emerging trend. We present
“KnowText”, an application that performs automatic generation of custom Knowledge Graphs from unstructured text and enables fast
information extraction based on graph visualisation and free text query methods designed for non-specialist users. An OWL ontology
automatically extracted from text is linked to the knowledge graph and used as a knowledge base. A basic ontological schema is
provided including 16 Classes and Data type Properties. The extracted facts and the OWL ontology can be downloaded and further
refined. KnowText is designed for applications in business (CRM, HR, banking). Custom KG can serve for locally managing existing
data, often stored as “sensitive” information or proprietary accounts, which are not on open web access. KnowText deploys a custom
KG from a collection of text documents and enable fast information extraction based on its graph based visualisation and text based
query methods.

CCS Concepts: • Information systems→WebOntology Language (OWL); Query languages for non-relational engines; •Human-
centered computing→ Graph drawings.

ACM Reference Format:
Bojan Božić, Jayadeep Kumar Sasikumar, and Tamara Matthews. 2021. KnowText: Auto-generated Knowledge Graphs for custom
domain applications. In The 23rd International Conference on Information Integration and Web Intelligence (iiWAS2021), November

29-December 1, 2021, Linz, Austria. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3487664.3487803

1 INTRODUCTION

Knowledge Graphs (KG) enable fast information extraction from unstructured text using the graph “metaphor” as
knowledge representation [19] – matching that of the human brain at both visual and logic level. Automatic generation
of Knowledge Graphs from unstructured text is a long standing goal in artificial intelligence research as KG can gather
facts from text, organize these according to a background ontology and then enable queries, much like the human
brain organizes facts into a logical structure. Knowledge Graphs [4], intended to leverage computer understanding
of semantics for the Semantic Web [1] can also enhance human perception of information from unsupervised text by
rendering the network of facts. By using the “graph” visualisation metaphor, KG present facts as syntactic “triples”
of 〈Subject, Predicate, Object〉 extracted from text and visualised as an acyclic graph, where the nodes are Subjects
or Objects and the edges are Predicates. An increase in “readability” of such information is achieved by linking the
extracted triples to Named Entities (NE) which are already classified in an automatically extracted ontology.

Knowledge Graphs [25] assign a graph representation to information organized into ontological structures. Enabling
easy access to a visual representation of the KG and to query its inner ontological structure creates a powerful tool for
knowledge discovery (by exploring entities, relationships between entities or new facts). This provides a competitive
edge to enterprises using large and complex data volumes for a variety of applications: recommendation engines, fraud

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the owner/author(s).
© 2021 Copyright held by the owner/author(s).
Manuscript submitted to ACM

1

HTTPS://ORCID.ORG/0000-0002-4420-1029
HTTPS://ORCID.ORG/0000-0002-0714-2074
HTTPS://ORCID.ORG/0000-0003-2463-9901
https://doi.org/10.1145/3487664.3487803

iiWAS2021, November 29-December 1, 2021, Linz, Austria Božić, et al.

detection, regulatory compliance or investigative journalism. The advantages are that users have quick access to the
network of facts across large collections of unstructured text and these are easy to “grasp” from the visual representation
of the graph (when applying relevant filters).

The fast increase in unstructured text data volume leads to information overload on market participants. Such data
can be web-generated (as web articles, blogs, surveys, chats, customer support or correspondence) and represents an
invaluable pool of information - providing business leads, in-depth knowledge on customers, on markets, companies, or
technologies. From these unstructured texts users need to find the relevant Facts, the Entities and the Links between
Entities and their evolution.

The purpose of the KnowText is to respond the above demand performing automated extraction a Knowledge Graph
from text (a collection of text documents) and enable users to query the graph and its background ontology. KnowText
enables visualization of Named Entities and their relations, provides fast access to cumulative data references for each
entity, inference based on local relations, in-depth understanding of facts extracted. The KnowText application described
here serves as a proof-of concept, proving the capabilities of the proposed approach to provide fast and easy to use
solutions for text data management in business applications (ie customer support, HR, banking, journalism).

2 RELATEDWORK

Knowledge Graphs (KG) organize raw information by capturing relationships (edges) between entities (nodes) being
structured across two layers: a Knowledge Base (KB) – which stores the domain’s data as Entities and Relationships
using a domain ontology schema) – and a Reasoning Engine, which supports: data integration from multiple sources;
data query from the graph and data inference [4].

Knowledge Bases are usually built as relational schema using expert knowledge from existing ontologies [5], or
by ontology extraction from semi-structured ([8, 23]) or unstructured text [7, 13]. Automatic ontology learning from
unstructured text involves extracting concepts, entity linking and ontology population, using methods based on NLP,
information retrieval, machine learning and data mining [11, 12] or dedicated platforms (OntoLearn [24], Text2Onto
[2], OntoText [18]).

Some of the most known “industrial” KG as Google Knowledge Graph, YAGO [8] and ConceptNet [22] have mapped
billions of entities and relations from web-based ontologies like Wikipedia, WordNet, Wikidata, Freebase or Facebook
[20]. The KB data models for such industrial KGs are structured and strongly typed. Existing open-access knowledge
graphs have been built by either: (i) a group of experts (WordNet), (ii) collaboratively by volunteers (Freebase, Wikidata),
(iii) auto-populated using semi-structured resources as Wikipedia info-boxes and regular expressions (YAGO and
DBpedia), or (iv) by facts extraction from unstructured resources using Natural Language Processing and Machine
Learning (i.e. NELL [17] and KnowledgeVault [19]).

Such large-scale KG do not allow for easy customization. Also, to query domain specific information from large silos
of data can be complex, time consuming and requires expertise.

To enable customization, various frameworks for KG generation have been proposed (SemTK [3], WhyIs [16])
usually based on triple stores and data mapping to external resources. KG frameworks enable customization providing
pre-designed KB and reasoners as graph data bases or triple stores with external data mapping which require the use
of specific query languages. To replace ontologies, reasoner systems are designed as graph data bases (Grakn.AI and
Neo4j [26]). The majority of such platforms use SPARQL or platform specific query languages. Nevertheless, such KG
frameworks also require user expertise for set-up in a specific domain and for query and their use can be time and
computationally expensive – as very large KGs become difficult to query.

2

KnowText: Auto-generated Knowledge Graphs for custom domain applications iiWAS2021, November 29-December 1, 2021, Linz, Austria

Fig. 1. Steps and Methods used for dynamic extraction of triples and ontology in automated KG generation.

There has been a long term interest in automated KG extraction from unstructured text [14] and a need to provide a
pre-defined interactivity in KG, enable easy customization for use-case and domain and easy query methods based on
Natural Language or Visualizations, which are approached in KnowText.

3 THE KNOWTEXT SYSTEM

We present KnowText, an easy-to-use web application dedicated to business applications (as banking, HR, CRM,
customer support) that performs automated Knowledge Graphs extraction from a collection of unstructured texts, and
enables users to visualize and query the KG and its background ontology.

The aim of KnowText is to enable non-expert users to generate a specialised KG based on a specific collection of
documents and to enable queries by free text and KG visualization filtering – while accessing facts from data stored in a
local ontology.

The Knowledge graph consists of a knowledge base (an OWL ontology) that correlates to and includes in its schema
the Facts extracted from the text collection as 〈Subject, Predicate, Object〉.

The triples are represented as a graph and linked to an automatically extracted OWL Ontology featuring 16 Classes
(15 Named Entities and a domain vocabulary) within a basic schema. As the ontology and KG are designed for use in
business applications domains as customer support, HR, banking, journalism, the given (pre-defined) Classes based on
NER extraction cover the required Classes of interest.

The two processes of triples extraction and ontology generation are performed in parallel using a succession of NLP
techniques. Both the extracted triples and the OWL ontology files can be downloaded and further explored.

3.1 Methods

While dynamic extraction of triples and ontology from unstructured text are still domains of active research, a number
of powerful platforms and methods were available and used for the development of KnowText. The main methods used
here for dynamic extraction of triples from unstructured text and the generation of the ontology are shown in Figure 1.
The extraction of triples from unstructured text is performed in several steps:

3

iiWAS2021, November 29-December 1, 2021, Linz, Austria Božić, et al.

Table 1. The set of rules for filtering Triples

Filter Description
max_word_count S, P and O should be made up of max 3 words.
min_char_count S, P and O should be made up of min 2 characters.
days_of_week Triples should not contain days of the week.
nn_subject S should be a noun.
pronouns Triples should not contain pronouns.
duplicate_subject_words S should not contain duplicate words.
duplicate_object_words O should not contain duplicate words.
suppositions Triples should not contain suppositions.
special_chars Triples should not contain special characters.
subject_verbs S should not contain verb phrases.
object_verbs O should not contain verb phrases.
subset_phrases_subject When 2 triples exist with similar S, longer S is chosen.
subset_phrases_predicate When 2 triples exist with similar P, longer S is chosen.
subset_phrases_object When 2 triples exist with similar O, longer S is chosen.
same_subject_object S and O should not be the same.

• Using NLP platforms (Spacy [10] or NLTK) to perform POS tagging;
• Perform co-reference resolution using Spacy’s neuralcoref library [9] which identifies the named entities
(persons, locations, organizations) when these appear referenced indirectly in the text using pronouns;

• Perform dependency parsing to annotate words in the text with their syntactic role using python platforms (here
we used Stanford coreNLP’s, StanfordOpenIE library [21] although SpaCy’s library for dependency parsing
has also been considered.

• Extract (S, P, O) triples as Subject (the subject in a phrase), Predicate (the predicate defining the action in a
phrase) and Object (the entity to which the action is applied). There are many platforms with dedicated libraries
performing automatic triple extraction from text among which: Spacy, Stanford coreNLP, StanfordOpenIE, the
latter being preferred here for the rich triples’ constructs and the large number of outputs. Various conditions
based on heuristic rules for the POS type of each (S, P, O) in triples had been made in order to remove the least
relevant triples and improve the validity of extracted facts. Several examples of the heuristic rules used for
filtering triples are shown below (a complete list is shown in Table 1):
– the word(s) in Subject can only be of type Noun (NN, NNP, NNs, NNPs, etc);
– the word(s) in Predicate can only be of type Verb;
– the maximum number of words in any of the (S, P, O) in triples is three;

These filters are effective, showing a significant decrease in the number of triples and increasing their accuracy
(example in Figure 2, using the "US-Economic-News" dataset1, Kaggle).

For the dynamic generation of the ontology, the owlready2 library has been used [15]. This library enables creating
dynamically Classes and DataProperties as well as as well as populating these with entities and properties and finally
assigning property values to generate an OWL ontology. As shown in Figure 1, the steps in generating the ontology
involve:

• Identification of use case, then careful and selective choice of a collection of texts which is representative for the
use case. This collection of texts will create the base of the ontology;

1https://www.kaggle.com/heeraldedhia/us-economic-news-articles/version/1

4

https://www.kaggle.com/heeraldedhia/us-economic-news-articles/version/1

KnowText: Auto-generated Knowledge Graphs for custom domain applications iiWAS2021, November 29-December 1, 2021, Linz, Austria

Fig. 2. Evolution of number of Triples after applying each filtering rule. Examples use three samples containing 500 documents from
the "US-Economic-News" dataset, Kaggle.

• Extraction of Named Entities (i.e.: Persons, Politics, Organizations, Geographic Locations, etc.) using the NER
package from SpaCy (the complete list of types of NE extracted are presented in Table 2 along with their original
definitions);

• An ad-hoc, domain vocabulary is dynamically extracted from the collection of texts as words that occur as
Subject in one of the triples but do not occur in the NE categories. Various conditions on the type and structure
of such words can be added in order to select the most meaningful domain-vocabulary words. Although such
words are dynamically extracted and expert domain-knowledge is not applied for this task, the majority of words
extracted into the domain-vocabulary category appear relevant for the domain when the initial collection of
texts is relevant and selectively chosen to belong to a specific domain.

• The extracted NE and domain vocabulary categories are defined as classes in the ontology defining the ontology
schema;

• The ontology schema is dynamically populated with instances from extracted triples.

Nevertheless, when the Subject is a proper Noun (as somebody’s name) the various constructs involving "Mr.", "Mrs.",
or person’s function ("Senator", "President") are not always captured in the same construct as the NE extracted by spaCy.
This can lead to the same person being seen under various representations (i.e.: Mr. Obama, "President Obama", "Barack

5

iiWAS2021, November 29-December 1, 2021, Linz, Austria Božić, et al.

Table 2. Description of Named Entity types as defined by SpaCy

Named Entity Type Description
PERSON People, including fictional.
NORP Nationalities or religious or political groups.
FAC Buildings, airports, highways, bridges, etc.
ORG Companies, agencies, institutions, etc.
GPE Countries, cities, states.
LOC Non-GPE locations, mountain ranges, bodies of water.
PRODUCT Objects, vehicles, foods, etc. (Not services.)
EVENT Named hurricanes, battles, wars, sports events, etc.
WORK_OF_ART Titles of books, songs, etc.
LAW Named documents made into laws.
LANGUAGE Any named language.
DATE Absolute or relative dates or periods.
QUANTITY Measurements, as of weight or distance.
ORDINAL “first”, “second”, etc.
CARDINAL Numerals that do not fall under another type.

Obama"). These various constructs can later be collated by the user under the same name in the visualisation of the
graph and the changes will update the instances in the ontology.

3.2 Workflow and Functionality

A schematic of the workflow in the KnowText demonstrator is shown in Figure ??. Extracted triples are linked to
elements of the ontology (classes, relations, attributes) and used to populate the ontology. The workflow includes the
following steps:

• The file upload is followed by the extraction of triples and dynamic generation of the ontology processes which
take place in the background.

• The Knowledge Graph is visualised as an interactive directed graph which allows to observe entities (Subjects
and Objects) as nodes and relationships (Predicates) as edges.

• Drop-down lists of entities and relationships in alphabetical order enable users to select a specific entity or
relationship to visualize its close neighbours in the graph. This enables visual exploration of the entities and
relationships inside triples as well as observing various details otherwise "hidden" inside text.

• Entities can also be queried by clicking on the specific node - which will open a dialog box with data stored
inside the ontology.

• The generated ontology is a RDF/XML (OWL compatible) file and can also be downloaded for further development
outside the demonstrator.

3.3 The User Interface

A preview of the user interface is shown in Figure 3. To support non-expert users, the interface is user-friendly and
minimal. The dashboard contains several tabs ("Upload data file", "Visualisation", "Help", "Logout"). Several drop down
lists can be used to see which is the data uploaded last (file name), a list of Subjects and a list of Relations as extracted
from text.

The graph is interactive and represents the triples into an acyclic graph where the nodes are Subjects or Objects
and the edges arrows indicates the Objects. The graph can be filtered choosing one Subject from the drop-down list of

6

KnowText: Auto-generated Knowledge Graphs for custom domain applications iiWAS2021, November 29-December 1, 2021, Linz, Austria

Fig. 3. KowText user interface showing main functionalities.

Subjects (which will draw the graph based on that Subject and its relations only) or by choosing one relation from the
drop-down relation list, which will re-draw the graph showing all the subjects connected by that connection only.

The dashboard of the demonstrator (Figure 3) includes elements that allow to query the ontology (a text-box with
data from the ontology will pop-up when requested by the user) as well as a text box for free text queries across the KG.

4 IMPLEMENTATION

The KnowText demonstrator performs automated Knowledge Graph extraction from unstructured text collections in
the field of banking, HR, economic news, customer reviews. It is a web application accessible through a web-link, built
using the Django 3.0 - Python 3.6 framework. This is a portable, flexible and scalable approach and it is also easy to use,
even by the non-expert users.

KnowText performs the following automated tasks: (i) extracts triples (Subject, Predicate, Object) from the text
collection; (ii) Generates automatically a basic OWL type ontology which can distinguish between 16 Classes (Named
entities and Vocabulary) which are populated with facts (data type properties) as extracted from the text collection;
(iii) dynamic ontology extraction from unstructured text generates a basic OWL type ontology which can distinguish
between 16 Classes (including Named Entity and Domain Vocabulary extraction); (iv) dynamic linking and population
of the ontology with Triples extracted from text. We describe next the set of design considerations (C1 - C4) and
approaches for KnowText.

7

iiWAS2021, November 29-December 1, 2021, Linz, Austria Božić, et al.

C1: Address the Domain Vocabulary extraction

An ad-hoc, domain vocabulary is dynamically extracted from the collection of texts as words that occur as Subject in one
of the triples but do not occur in the NE categories. Various conditions on the type and structure of such words can be
added in order to select the most meaningful domain-vocabulary words. Although such words are dynamically extracted
and expert domain-knowledge is not applied for this task, the majority of words extracted into the domain-vocabulary
category appear relevant for the domain when the initial collection of texts belongs to a specific domain.

C2: Dynamic generation of Ontology

The automated generation of the KG and its knowledge base (ontology) are obvious advantages since these do not
require prior data processing or prior ontology development. The generated ontology can be downloaded as an OWL
file and can further developed if necessary outside the application.

C3: Address the temporal evolution of the KG

KnowText uses a logical construct called a Collection, which facilitates the grouping together of related documents.
Different Collections can be created with one KG being built and maintained for each Collection. When the information
from new documents need to be added to the knowledge base, the user can take a decision on which Collection to add
the new documents to, and the respective KG (and ontology) are refreshed using the newly added documents. This
feature allows the KG to evolve organically over time, as the number of documents increase. Collections are initially
created by the administrator of the KnowText system.

C4: Enable user-friendly querying

User-friendly querying (no need for a specific query language) is provided by using the following methods:
(i) text based queries from user input (natural language typed-in text). Such queries enable query on entity or relation
(and its synonyms) present in the typed-in text (which does not have to follow grammar, but should contain the
desired words). The text input for search should be concise – as long phrases give a very focused result or may take in
uninteresting and un-related topics.

The output shows the KG filtered upon the words located in the input text (and synonyms), an example being shown
in Figure 4 showing a free text query (i.e."Ann said").

(ii) filtering the KG by entity(node) or by relationship (link) by selecting a word from the drop-down list of Subjects
or Predicates, the output being a filtered representation of the graph (nodes and links) containing the selected word
either as node or relationship (Figure 5).
(iii) from the ontology: display ontology records as Class and properties (attributes) of the entity (when querying a
node by selecting it from the drop-down list of Subjects).
(iv) Several interactive visualizations of KG can be used also for filtering the KG: (a) based on the number of nodes to be

8

KnowText: Auto-generated Knowledge Graphs for custom domain applications iiWAS2021, November 29-December 1, 2021, Linz, Austria

shown (using a slider provided); (b) based on the ontology Class for nodes (by choosing the colour from the Classes
colour legend).

Fig. 4. KnowText user interface showing a free text query (i.e."Ann said")

5 EVALUATION

Traditional Knowledge Graphs (generated through pre-defined ontology schema and manual assignment and definition
of relation types) can be characterized by evaluating a number of quality metrics (Syntactic validity, Semantic accuracy,
Consistency, Conciseness and Completeness) [6].

Dynamically built KG (as in KnowText) that use a small, restricted and domain specific data (unstructured text) can
answer some of the above requirements by default:

• The RDF/URI availability and inter-linking as well as accessibility are ensured by default through the dynamic
generation of the KG (and its underlining OWL ontology);

• Security is established by default since company documents are usually signed, verified and validated prior to
addition into the company’s database.

• Performance (in terms of throughput) has less relevance since it is intended mainly for one user at any one time.
The performance as latency can vary between 0.1 s to 5 s depending on the size of the dataset (20kB -200kB).

• Scalability can be described in terms of time required to generate the KG and is affected by data size, since triples,
the ontology and the KG visualization are generated dynamically. Typical generation times are about 5 s/kB. The

9

iiWAS2021, November 29-December 1, 2021, Linz, Austria Božić, et al.

Fig. 5. KnowText user interface showing a query based on a NE (NORP).

maximum data size per batch is here set at 200kB due to memory limitations imposed by the spaCy algorithm
for NE extraction. Nevertheless, many batches can be uploaded to the same Collection, which will dynamically
update with the new data both the ontology and the KG. There is no limitation in total data size.

As regarding the “intrinsic dimensions” [6], KnowText can be further improved for:

• Syntactic validity: so far KnowText is not designed for explicit definition of the allowed values for a certain data
type or to verify syntax or spelling;

• Semantic accuracy rules were not yet implemented although rules for dependencies between the values of two
or more different properties can be described in the definition of the ontology. Such rules can be numerous and
quite domain specific, and they can be added as ”on-demand” parameters.

The "Consistency" properties are described in Table 3 where each property is discussed in terms of relevance and/or
implementation in the system and the "Result" column indicates conformity or not to property indicated. At the moment
only one third of requirements are satisfied and up two thirds can be achieved with further development, while another
third is not applicable to our case. The "Conciseness" – refers to the uniqueness of Properties and Classes and they
are ensured by the dynamic generation and entity linking of the OWL ontology. The "Completeness" (referring to the
degree of representation of all Classes in schema and Properties) is not applicable here as completeness cannot be
ensured by a limited amount of information contained in a given (small) dataset.

6 DISCUSSION AND SUMMARY

KnowText enables users to visualise a graph representation of facts extracted as triples. Unlike industrial KG based on
large web-based ontologies (i.e. dbpedia, wikipedia, etc.) KnowText restricts the information pool to the representative
data uploaded by the user, allowing for high specificity – within a company domain of interest (based on banking, CRM,

10

KnowText: Auto-generated Knowledge Graphs for custom domain applications iiWAS2021, November 29-December 1, 2021, Linz, Austria

Table 3. Consistency metrics discussed for KnowText according to metrics types defined in [6].

Metrics type Result Discussion

1: detection of use of NE
as members of disjoint classes Yes

Ratio of:
of all NE in disjoint classes
by # all words is equal to 1.
as we create the Domain Vocabulary.

2: detection of misplaced classes or
properties Yes

By default, in (S,P,O) triples all S are
classified into Classes. Missclassifcation
of S or O can occur while extracting triples
due to unclear syntax. These will be visible
in the visualisation interface.

3: detection of misuse of
owl:DatatypeProperty
or owl:ObjectProperty
through the ontology maintainer

Yes

Only owl:DatatypeProperty are
implemented so far.
The owl:ObjectProperty can be
implemented by domain experts, using
existing backend code or Protégé.
The Reasoner in the OWL ontology
will show the error.

4: detection of use of members of
owl:DeprecatedClass
or owl:DeprecatedProperty
by specifying manual mappings from
deprecated terms to compatible terms.

NA

The ontology is not mapped manually.

The S, P when updated by the user
are updated across the ontology
avoiding further contradictions

5: detection of bogus
owl:InverseFunctionalProperty values
by checking the uniqueness and
validity of the inverse-functional values

No Not implemented

6: detection of the re-definition by third
parties of external classes/properties
(ontology hijacking)

N.A.
Not applicable as Classes cannot
be re-defined. Number and type of
Classes is fixed for the user.

7: detection of negative dependencies
or correlation among properties
using association rules

No Such properties have not
been defined.

8: detection of inconsistencies in
spatial data through semantic
and geometric constraints

Yes,
partially

Spatial data referring to geographic NE
is extracted automatically.
Other constraints were not implemented.

9: the attribution of a resource’s property
to be of a certain type
detected by use of SPARQL
queries as a constraint.

N.A
Properties are not described
through limitations,
SPARQL is not used.

10: detection of inconsistent values by
the generation of a particular set
of schema axioms for all properties
in a dataset and the manual
verification of these axioms

No Not implemented

11

iiWAS2021, November 29-December 1, 2021, Linz, Austria Božić, et al.

HR, investigative journalism). Here the specificity refers to evaluating only the entities and relations present in the
existing company documentation.

At the end of computation, two files are generated: one containing extracted facts (triples) and another containing
the OWL ontology extracted from text, which can be downloaded.

There are numerous directions for further improvement by adding Inverse and Functional DataProperties which
can enrich the strength of the ontology reasoner. The KnowText application presents a number of advantages for data
management and information extraction from unstructured text as it offers several interactive options to the user: node
based and edge (relationship) based searches through filtering of the graph, or node based searches into the ontology,
along with user-friendly, natural language text-based querying (no need for a specific query language). The dynamic
generation of the KG design for a custom and domain-specific document collection can prove useful for managing
information in medium size companies.
More information about the KnowText application can be found in the "Demonstrators" area at: https://www.ceadar.ie/
our-work/technology-demonstrators/.

REFERENCES
[1] T. Berners-Lee and O. Hendler, J. & Lassila. 2001. The semantic web. Scientific american 284, 5 (2001), 34–43.
[2] Philipp Cimiano and Johanna Völker. 2005. Text2Onto A framework for ontology learning and data-driven change discovery. Lecture Notes in

Computer Science 3513 (2005), 227–238. https://doi.org/10.1007/11428817_21
[3] Paul Cuddihy, Justin McHugh, Jenny Weisenberg Williams, Varish Mulwad, and Kareem Aggour. 2018. SemTK: A semantics toolkit for user-friendly

SPARQL generation and semantic data management. In CEUR Workshop Proceedings, Vol. 2180. 1–16.
[4] Lisa Ehrlinger and Wolfram Wöß. 2016. Towards a definition of knowledge graphs. CEUR Workshop Proceedings 1695 (2016).
[5] Michael Färber and Achim Rettinger. 2018. Which Knowledge Graph Is Best for Me? arXiv:1809.11099 http://arxiv.org/abs/1809.11099
[6] Junyang Gao, Xian Li, Yifan Ethan Xu, Bunyamin Sisman, Xin Luna Dong, and Jun Yang. 2019. Efficient knowledge graph accuracy evaluation. In

Proceedings of the VLDB Endowment, Vol. 12. 1679–1691. https://doi.org/10.14778/3342263.3342642 arXiv:1907.09657
[7] Toader Gherasim, Mounira Harzallah, Giuseppe Berio, and Pascale Kuntz. 2013. Methods and tools for automatic construction of ontologies

from textual resources: A framework for comparison and its application. Studies in Computational Intelligence 471 (2013), 177–201. https:
//doi.org/10.1007/978-3-642-35855-5_9

[8] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum. 2013. YAGO2: A spatially and temporally enhanced knowledge base
from Wikipedia. Artificial Intelligence 194 (2013), 28–61. https://doi.org/10.1016/j.artint.2012.06.001

[9] Matthew Honnibal. [n. d.]. SpaCy library. https://spacy.io/
[10] Matthew Honnibal. [n. d.]. Spacy ’neuralcoref’ library. downloadablefrom{https://spacy.io/universe/project/neuralcoref}
[11] Agnieszka Konys. [n. d.]. Knowledge repository of ontology learning tools from text. Procedia Computer Science ([n. d.]), 1614–1628. https:

//doi.org/10.1016/j.procs.2019.09.332
[12] Agnieszka Konys. [n. d.]. Knowledge Systematization for ontology learning methods. Procedia Computer Science ([n. d.]), 2194–2207. https:

//doi.org/10.1016/j.procS.2018.07.229
[13] Alfred Krzywicki, Wayne Wobcke, Michael Bain, John Calvo Martinez, and Paul Compton. 2016. Data mining for building knowledge bases:

Techniques, architectures and applications. Knowledge Engineering Review 31, 2 (2016), 97–123. https://doi.org/10.1017/S0269888916000047
[14] Kundan Kumar and Amitabh Mukherjee. 1237. Constructing knowledge graph from unstructured text. Siddhant Manocha 12375 (1237). http:

//home.iitk.ac.in/{~}kundan/report{_}365.pdf
[15] Jean Baptiste Lamy. 2017. Owlready: Ontology-oriented programming in Python with automatic classification and high level constructs for

biomedical ontologies. Artificial Intelligence in Medicine 80 (2017), 11–28. https://doi.org/10.1016/j.artmed.2017.07.002
[16] James P. McCusker, Sabbir M. Rashid, Nkechinyere Agu, Kristin P. Bennett, and Deborah L. McGuinness. 2018. The Whyis knowledge graph

framework in action. CEUR Workshop Proceedings 2180 (2018).
[17] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel., J. Krishnamurthy, N. Lao, K. Mazaitis, T.

Mohamed, N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves, and J. Welling.
2015. Never-Ending Learning. Proceedings of the National Conference on Artificial Intelligence 3 (2015), 2302–2310. https://doi.org/10.1007/978-3-
642-83740-1_24

[18] Ontotext. 2017. GraphDB Free. (2017). https://ontotext.com/
[19] Heiko Paulheim. 2017. Knowledge graph refinement: A survey of approaches and evaluation methods. Semantic Web 8, 3 (2017), 489–508.

https://doi.org/10.3233/SW-160218

12

https://www.ceadar.ie/our-work/technology-demonstrators/
https://www.ceadar.ie/our-work/technology-demonstrators/
https://doi.org/10.1007/11428817_21
https://arxiv.org/abs/1809.11099
http://arxiv.org/abs/1809.11099
https://doi.org/10.14778/3342263.3342642
https://arxiv.org/abs/1907.09657
https://doi.org/10.1007/978-3-642-35855-5_9
https://doi.org/10.1007/978-3-642-35855-5_9
https://doi.org/10.1016/j.artint.2012.06.001
https://spacy.io/
downloadable from {https://spacy.io/universe/project/neuralcoref}
https://doi.org/10.1016/j.procs.2019.09.332
https://doi.org/10.1016/j.procs.2019.09.332
https://doi.org/10.1016/j.procS.2018.07.229
https://doi.org/10.1016/j.procS.2018.07.229
https://doi.org/10.1017/S0269888916000047
http://home.iitk.ac.in/{~}kundan/report{_}365.pdf
http://home.iitk.ac.in/{~}kundan/report{_}365.pdf
https://doi.org/10.1016/j.artmed.2017.07.002
https://doi.org/10.1007/978-3-642-83740-1_24
https://doi.org/10.1007/978-3-642-83740-1_24
https://ontotext.com/
https://doi.org/10.3233/SW-160218

KnowText: Auto-generated Knowledge Graphs for custom domain applications iiWAS2021, November 29-December 1, 2021, Linz, Austria

[20] Heiko Paulheim. 2018. Machine Learning with and for Semantic. Vol. 11078. 110–141 pages. https://doi.org/10.1007/978-3-030-00338-8
[21] Philippe Remy. [n. d.]. Stanford OpenIE library. https://pypi.org/project/stanford-openie/
[22] Robyn Speer, Joshua Chin, and Catherine Havasi. 2016. ConceptNet 5.5: An Open Multilingual Graph of General Knowledge. Singh 2002 (2016).

arXiv:1612.03975 http://arxiv.org/abs/1612.03975
[23] Fabian Suchanek and Gerhard Weikum. 2013. Knowledge harvesting from text and web sources. In Proceedings - International Conference on Data

Engineering. IEEE, 1250–1253. https://doi.org/10.1109/ICDE.2013.6544916
[24] Paola Velardi, Roberto Navigli, Alessandro Cucchiarelli, and Francesca Neri. 2005. Evaluation of OntoLearn, a methodology for automatic learning

of domain ontologies. Ontology Learning from Text: Methods, evaluation and applications 123 (2005), 92.
[25] Jihong Yan, Chengyu Wang, Wenliang Cheng, Ming Gao, and Aoying Zhou. 2018. A retrospective of knowledge graphs. Frontiers of Computer

Science 12, 1 (2018), 55–74. https://doi.org/10.1007/s11704-016-5228-9
[26] Zhanfang Zhao, Sung-Kook Han, and In-Mi So. 2018. Architecture of Knowledge Graph Construction Techniques. International Journal of Pure and

Applied Mathematics 118, 19 (2018), 1869–1883.

13

https://doi.org/10.1007/978-3-030-00338-8
https://pypi.org/project/stanford-openie/
https://arxiv.org/abs/1612.03975
http://arxiv.org/abs/1612.03975
https://doi.org/10.1109/ICDE.2013.6544916
https://doi.org/10.1007/s11704-016-5228-9

	KnowText: Auto-generated Knowledge Graphs for custom domain applications
	Recommended Citation

	Abstract
	1 Introduction
	2 Related Work
	3 The KnowText System
	3.1 Methods
	3.2 Workflow and Functionality
	3.3 The User Interface

	4 Implementation
	5 Evaluation
	6 Discussion and Summary
	References

