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SMPL-Based 3D Pedestrian Pose Prediction

Anil Kunchala1, Mélanie Bouroche2, Lorraine D’Arcy3 and Bianca Schoen-Phelan4

1,3,4 Technological University Dublin, Ireland
2 Trinity College Dublin, Ireland

Abstract— Modeling human motion is a long-standing prob-
lem in computer vision. The rapid development of deep learning
technologies for computer vision problems resulted in increased
attention in the area of pose prediction due to its vital role
in a multitude of applications, for example, behavior analysis,
autonomous vehicles, and visual surveillance. In 3D pedestrian
pose prediction, joint-rotation-based pose representation is
extensively used due to the unconstrained degree of freedom
for each joint and its ability to regress the 3D statistical
wireframe. However, all the existing joint-rotation-based pose
prediction approaches ignore the centrality of the distinct
pose parameter components and are consequently prone to
suffer from error accumulation along the kinematic chain,
which results in unnatural human poses. In joint-rotation-
based pose prediction, Skinned Multi-Person Linear (SMPL)
parameters are widely used to represent pedestrian pose. In
this work, a novel SMPL-based pose prediction network is
proposed to address the centrality of each SMPL component by
distributing the network weights among them. Furthermore, to
constrain the network to generate only plausible human poses,
an adversarial training approach is employed. The effective-
ness of the proposed network is evaluated using the PedX
and BEHAVE datasets. The proposed approach significantly
outperforms state-of-the-art methods with improved prediction
accuracy and generates plausible human pose predictions.

I. INTRODUCTION

Pedestrians are inherently capable of predicting changes
in the surrounding environment, along with the movement
of other pedestrians, and alter their path accordingly. For
example, while walking, pedestrians naturally adjust their
path according to the surrounding pedestrians and vehicle
positions. These predictions are crucial to shape day-to-day
interactions and make social life attainable [1]. Recently,
there is a growing interest in pedestrian analysis for au-
tonomous vehicle navigation systems [2], [3], [4] and urban
design [5], [6]. Providing the ability to predict and under-
stand pedestrian behaviour is paramount to create seamless
integration of machines with pedestrians. Behavior analysis
is often carried on a sequence of human poses representing
a specific activity. Pose estimation (localizing the human
body joints) and prediction (forecasting future poses using
observed past poses) are primary steps in behavior analysis.
For example, frame-to-frame pose estimation is required to
calculate the walking speed of a pedestrian.

Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works

Human pose can be represented using absolute joint lo-
cations or relative joint rotations, with each representation
having its benefits and trade-offs [7]. Joint location repre-
sentation describes the human body as a collection of 2D
or 3D joint locations and expresses body features using
connections between joints and locations. Absolute joint
location representation is widely used for pose estimation
and prediction [1], [8], [9], [10], [11], [12], [13], [14], [15].
However, absolute joint locations do not constrain the full
degree of freedom of each joint and are often paired with
prediction errors such as bone stretching [7].

The relative-rotations-based approach describes poses as a
collection of 3D joint rotations where each rotation is relative
to its parent in a kinematic tree. Furthermore, 3D joint
rotations are also used to regress the statistical 3D wireframe
to represent the human pose. The generative Skinned Multi-
Person Linear (SMPL) model [16] is used widely in joint
rotation-based pose representation [17], [18], [19], [20], [21],
[2], [22], [12]. SMPL models the human body as a 3D
mesh using pose, shape, and translation parameters. The
shape parameters represent individual variations of human
body proportions, pose parameters are used to define 3D
body shape articulation using 3D relative rotation joint angles
including global rotation, and translation parameters are used
to indicate global translation of 3D mesh.

Fig. 1: Unnatural poses generated by joint-rotation-based
approaches. The ground truth wireframes are represented in
red and the predicted 3D wireframes are represented in blue.

Recently, a few joint rotation-based approaches have been978-1-6654-3176-7/21/$31.00 ©2021 European Union



proposed for pose prediction [2], [7] and activity recognition
[22]. Most of these approaches consider all joints as single
vector input to the model. Using single vector input with
average error enforces the model to distribute equal weights
for all joints thereby ignoring the various impact of important
joints (like the global rotation joint) on the body pose. The
equal weight distribution of joints may generate large errors
in important joints which severely impact the final pose in
qualitative results as shown in Fig 1.

In this paper, this challenge is addressed by introducing
the SMPL-based Recurrent Neural Network trained in an
adversarial fashion. In contrast to previous models [2], [7],
the novel SMPL-based architecture is proposed to address
different components in the SMPL parameters and distribute
the network weights among them to address the centrality
of each component within a final pose. Adversarial training
[23] is used to discriminate against unnatural poses while
allowing natural ones. The novel approach presented in this
paper is similar to the recurrent pose prediction networks
[2], [10], and adversarial networks [23], [14]. However, this
work go beyond existing technique in multiple ways:

• To our knowledge, this is the first paper to incorporate
adversarial training in SMPL pose prediction. We de-
signed a multi-layer perception generative adversarial
network to penalize the network for unnatural poses
while allowing natural ones.

• The SMPL-based architecture is proposed to address the
centrality of global rotation and translation parameters
with respect to the pose parameters.

We present experimental results on the proposed network
using 1) PedX [24], an in the wild image dataset collected
in urban intersections, 2) BEHAVE [25], a large scale
image dataset with different scenario’s of people acting out
various interactions, and 3) HYBRID, which consists of
a combination of both PEDX and BEHAVE datasets. We
also compare the effects of both adversarial network and
SMPL aware architecture on the proposed model and show
that the proposed model outperforms state-of-the-art baseline
methods.

The remaining paper is organized as follows: Section II
explores related work in pose prediction, generative adver-
sarial networks, and 3D wireframe representation of the
human body. Section III describes the proposed SMPL-
based architecture and adversarial SMPL-based recurrent
neural network, including implementation details. Section
IV describes baseline methods, datasets, and the experi-
mental setup. Section V presents the evaluation metrics,
qualitative and quantitative results. Finally, section VI con-
cludes the proposed work and delineates the potential future
work. The source code for this work is made available at
https://github.com/anilkunchalaece/ADV-SA-LSTM

II. RELATED WORK

This section reviews the existing literature in 3D wire-
frame representation of human body, pose prediction, and
generative adversarial networks.

A. 3D Wireframe Representations of the Human Body

Skinned Linear Person Model (SMPL)[16] is a generative
model that represents the 3D wireframe mesh of the human
body as a function of shape, pose and translation parameters.
SMPL pose parameters consist of following components:
1) The relative rotation of 23 SMPL joints in the axis
angle representation, 2) Three root orientation parameters in
the axis angle representation, 3) The Translation parameters
consist of global translation in x, y and z axes, and 4) The
Shape parameters consist of the first 10 principal component
analysis shape space parameters. The SMPL model is widely
used in pose and shape estimation networks [17], [18], [19],
[20], [21]. In [18], [17], [26], 2D key points extracted from
image features are used to regress a 3D wireframe mesh from
a single image. In addition, a discriminator network is used to
determine whether the generated pose and shape parameters
are natural. [20] proposed an improved model from [18],
by including a pose prior to generate pose, hand pose and
facial expressions from a single image. In contrast to image
based models, Video Inference for Human Body Pose and
Shape Estimation (VIBE) [19] proposed a temporal network
architecture to generate 3D motion from monocular video.
VIBE utilizes a convolution neural network pre-trained on
a single image [17], followed by a temporal encoder and
a motion discriminator to capture the sequential nature of
motion. Due to the scarcity of 3D wireframe datasets for
pedestrians in real world scenarios, this work utilizes VIBE
to generate SMPL 3D wireframes using readily available
image datasets[24], [25].

B. Pose Prediction

Pose prediction exploits the sequential nature of pose data
across frames. A large number of approaches use Recurrent
Neural Networks (RNN) as they can model temporal depen-
dencies [10], [12], [13], [27], [2], [14], [28]. For example,
a stacked LSTM[2], [10] and encoder-recurrent-decoder[10]
architectures are proposed for 2D joint-location based pre-
diction and joint-rotation based pose predictions[27], [22].
In addition to the temporal features, spatial features are also
modelled using structured prediction layer[12] and bidirec-
tional RNNs[28]. To further improve the model to generate
naturally plausible future joint locations, an adversarial net-
works [13], [14] are also introduced in recurrent encoder-
decoder architectures. More recently, [2] proposed the Bio-
LSTM architecture with bio-mechanical constraints-based
loss functions. This architecture adapts and extends 3LR-
LSTM [10] to predict SMPL pose and translation parame-
ters instead of joint locations. The Bio-LSTM architecture
considers all SMPL parameters as a single vector input
to the model. The single vector input forces the model
to adjust its weights based on the average error over all
components. This approach, however, ignores the centrality
of the different components, which leads to higher error
rates in qualitative results. To address this, we propose a
novel SMPL-based architecture to utilize the centrality of
each SMPL component. In contrast to Bio-LSTM [2], the
proposed architecture consists of a dedicated independent

https://github.com/anilkunchalaece/ADV-SA-LSTM


LSTM layer for each SMPL component to model spatial and
temporal dependencies of individual SMPL components.

C. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [29] contain
both a generator network to generate images, and a dis-
criminator network to distinguish between generated and
ground truth images. Both of these networks are trained in
an adversarial fashion. The GANs are traditionally used for
generative tasks Recently, recurrent GANs have been trained
in an adversarial manner to improve the quality of pose and
shape estimation networks [19], [17], [30] and pose joint-
location based pose prediction models[14], [13]. By adapting
adversarial training introduced in pose estimation[19], an
adversarial SMPL-based network is proposed to constrain
network from generating unnatural poses thereby improving
the overall network performance.

III. PROPOSED SYSTEM

The goal of the proposed system is to predict the 3D
SMPL pose parameters in the future frame for a given
past ‘n‘ poses. The input and output of the model are
the SMPL parameters representing the 3D pedestrian pose
in each frame. For a given dataset, pre-processing utilizes
VIBE to extract SMPL pose parameters. Fig 2 depicts the
architecture of proposed model. For a given past ‘n‘ SMPL
pose parameters, each SMPL component is fed to a dedicated
LSTM layer in the SMPL-based pose predictor network.
During the training, each LSTM layer will optimize its
weights based on the temporal dependencies of the respective
components. The outputs of these LSTM layers will be
applied to the fully connected layer(FC) to capture the spatial
dependencies between SMPL components. The SMPL-based
architecture is used to model spatial and temporal relations
for the given pose parameters. However, the generator may
still produce unnatural poses while reducing the average
error. To constrain the network to generate naturally plausible
poses and to further optimize the generator weights, a
discriminator network is proposed. The output of the SMPL-
based pose predictor plus its ground truth act as inputs to
the discriminator network. The discriminator will penalize
the generator network for unnatural poses thereby further
optimizing its weights to enforce the network to generate
naturally plausible poses.

This section first introduces the pre-processing followed
by the proposed SMPL-based recurrent neural network and
adversarial SMPL-based RNN. Finally, the implementation
details are presented, specifying detailing all hyperparame-
ters used in the implementation.

A. Pre-Processing

During the pre-processing step, the pedestrians in input
video frames are converted to a gender-neutral SMPL 3D
meshes as illustrated in Fig 3. The SMPL model is defined
as M (θ, β) ∈ R6890×3 where θ ∈ R3×K is relative rotation
of K = 23 joints in axis angle representations and β ∈ R10

is shape’s space parameters. The function M (θ, β) generates

a triangulated mesh with 6,890 vertices. This is achieved by
shaping template vertices conditioned on pose θ and shape β
via forward kinematics. When the desired pose is achieved,
surface deforming is performed using linear blend skinning.

The pre-processing step utilizes the human body and the
shape estimation network (VIBE) [19] to generate a 3D mesh
for a given set of frames. The majority of real world appli-
cations process a sequence of images, rather than a single
image. In contrast to existing single image processing models
[31], [21], VIBE proposes a temporal neural network to
process a sequence of frames. The temporal network allows
continuity of movement in consecutive frames and forces the
model to generate naturally-feasible pose sequences ignoring
invalid poses. In addition to the temporal network, VIBE
employs an adversarial training approach to predict the
SMPL body model parameters from an input video. In VIBE,
a weak prospective camera is utilized to estimate the global
rotation δ ∈ R3 and camera parameters γ = [τ, s]. Where
τ ∈ R2 represents translation and s ∈ R2 represents the scale
in the original image space.

For given frames {Ft}Tt=0 with N people, VIBE outputs∑N
i=1[(P

i
1, P

i
2, ..P

i
t ), β

i] where P = [δ, θ, γ] is a vector of
the global rotation, joints rotation, and translation parameters
at time step t for the ith person. The average shape for the
ith person is given by βi, and we assumes that a person’s
shape does not change across frames.

B. SMPL-based Recurrent Neural Network

SMPL pose parameters for a person at time step ‘t‘ can
be described as a vector of a global rotation angle(pδt ), 23
joints rotation angles(pθt ), and translation parameters(pγt

) as
shown in (1)

pt = [pδt , pθt , pγt
] (1)

Traditional 2LR-LSTM [2] considers pt as a single vector
input for a given model. The output of the 2LR-LSTM is
given by:

p̂t+1 = 2LR (Pt;W2lr) (2)

where W2lr denotes the weight matrix for the 2LR-
LSTM. For a given input Pt, 2LR-LSTM distribute the
network weights equally among all the SMPL compo-
nents. The proposed SMPL-based Recurrent Neural Network
architecture(SA-LSTM) extends 2LR-LSTM using a dedi-
cated LSTM layer for each SMPL component.

For ‘n‘ given past SMPL pose parameters,

P = [pt, pt−1, .., pt−n] (3)

the individual SMPL components for global rotation(Pδ),
joints rotations(Pθ), and translation parameters(Pγ) are given
by:

Pϑ =
[
pϑt

, pϑt−1
, .., pϑt−n

]
∀ ϑ ∈ (δ, θ, γ) (4)

In SA-LSTM, each SMPL component(δ, θ, γ) is used as an
input to the dedicated independent LSTM layer(lδ, lθ, lγ).
The output of each LSTM layer is given by :

plϑ = lϑ (Pϑ;Wϑ) ∀ ϑ ∈ (δ, θ, γ) (5)
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Fig. 2: Proposed Adversarial SMPL-based Recurrent Neural Network Architecture. Each SMPL component vector is applied
to dedicated LSTM layers of SMPL-based pose predictor. The SMPL-based pose predictor network is used as a generator
in adversarial training. For the given past ‘n‘ poses (represented in green), Pose predictor network will generate a future
pose (blue). The predicted future pose and ground truth mesh (red) are used as inputs to the discriminator network
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Fig. 3: An illustration of data pre-processing. Images are
processed using VIBE [19], a state-of-the art pose and shape
estimation network to extract SMPL parameters for each
pedestrian.

where plϑ,Wϑ denotes outputs and weights of LSTM
layer lϑ ∀ ϑ ∈ (δ, θ, γ). These dedicated LSTM layers
allow the network to learn the temporal dependencies of
each SMPL component independently. The output of all
these layers will be concatenated and applied as input to the
fully connected layer to capture the spatio-temporal relation
between SMPL components as shown in Fig. 2. The output
of the SA-LSTM is given by:

p̂t+1 = FC ((plδ + plθ + plγ) ;Wfc) (6)

Wfc denotes the weight matrix of fully connected layer(FC).
In SA-LSTM network, the network weights are distributed i.e
WSA = [Wδ,Wθ,Wγ ,Wfc] for each component to capture
the spatial and temporal dependencies between SMPL com-
ponents. The SA-LSTM is trained using the Mean Absolute
Error (MAE) loss function given by:

LSA =| Pt+1 − P̂t+1 | (7)

C. Adversarial SMPL-based RNN

The SA-LSTM architecture with MAE loss encourages
the network to predict the future 3D pose (P̂t+1) based on
the temporal dependencies of the past ‘n‘ poses. Naturally
implausible poses, however, may still minimize the network
loss. To constrain the network to generate naturally plausible
poses, an adversarial SMPL-based RNN (ADV-SA-LSTM)
is proposed. The ADV-SA-LSTM consists of a generator(G)
and a discriminator(D) networks trained in an adversarial
manner. The discriminator network is used to penalize the
unnatural poses while allowing the natural poses and SA-
LSTM is used as a generator as shown in Fig. 2.

1) Generator: In a traditional GAN framework, the gener-
ator network is used to capture data distribution and generate
samples to fool the discriminator network. In proposed ADV-
SA-LSTM, the goal of the generative network is to learn
temporal mapping from past ‘n‘ poses and predict the future
pose. In contrast to traditional GAN’s, the pose prediction
network SA-LSTM is used as a generator network. As
training progresses, a generator capable to generate more
accurate poses, which are used to fool the discriminator
network. The adversarial loss of the generator Ladv is given
by:

LAdv = Eρ∼P̂t+1
[(D(ρ)− 1)

2
] (8)

where P̂t+1 is the manifold of generated SMPL parameters.
The adversarial loss from the discriminator (LAdv) is com-
bined with the SA-LSTM loss (LSA) to train the generator.
The generator total loss is given by:

LG = ξsaLSA + ξgLAdv (9)

where ξsa and ξg are the hyper-parameters to control the
weights of the SA-LSTM and adversarial losses respec-
tively. The LSA loss penalizes the network according to the



predicted and ground truth poses, whereas the LAdv loss
constrains network to output plausible poses.

2) Discriminator: The discriminator network is used to
distinguish the real data from generated data and forces the
network to output valid data. The inputs for discriminator are
manifold of ground truth (pt+1) and predicted poses (p̂t+1).
From the inputs, the discriminator should learn whether the
generated pose corresponds to a manifold of the natural pose
or not. A multi-layer perception is used as discriminator with
the last layer outputting a value between 0 and 1, describing
the probability of the pose belong to the manifold of natural
plausible poses. The Adversarial loss of the discriminator is
given by:

LD = Eρ∼Pt+1 [(D(ρ)− 1)
2
] + Eρ∼P̂t+1

[(D(ρ))
2
] (10)

where P̂t+1 and Pt+1 are manifold of generated and ground
truth SMPL parameters respectively.

D. Implementation Details

For the given past ‘n‘ poses where each pose is repre-
sented with 76 SMPL parameters, and a batch size B, the
input shape of the network will be [B,n, 76]. The input
to the SA-LSTM (Generator) will be distributed across the
three SMPL component layers, with shape of (nδ, nθ and
nγ) as [B,n, 3],[B,n, 69] and [B,n, 4] respectively. Each
LSTM layer in lδ and lγ consists of 2 hidden units and
the lθ LSTM layers are defined with 8 hidden units (we
experimented with multiple combinations of hidden layers
and found out given combination generated better results).
The discriminator network architecture consists of a single
MLP layer with 250 neurons with tanh activation function.
The final layer predicts a single fake or real probability for
each sample using a sigmoid activation function.

IV. EVALUATION

In this section, baseline models will be presented first,
followed by a brief description of the datasets and finally
the experimental setup.

A. Baseline models

The proposed ADV-SA-LSTM network is compared with
several baseline methods derived from the start-of-the-art
2LR-LSTM [10], [2] architecture. The 2LR-LSTM is a two-
layer stacked LSTM recurrent neural network architecture
followed by a fully connected layer. In addition to pose
parameters, frame difference parameters [32] are also used
as the model inputs. For a given pose parameters P (see (3)),
the frame difference input vector is given by:

Pfd = [(pt−1 − pt) , (pt−2 − pt−1) , ..,(
pt−(n−1) − pt−n

)
]

(11)

For the frame difference vector Pfd, SMPL components
vectors defined as:

Pfdϑ
= [

(
pϑt−1 − pϑt

)
,
(
pϑt−2 − pϑt−1

)
, ..,(

pϑt−(n−1)
− pϑt−n

)
] ∀ ϑ ∈ (δ, θ, γ)

(12)

By combining the different model inputs and training
objective functions, the following baseline methods from
[10], [2] are derived to compare effectiveness of the proposed
model:

2LR-P-MSE: The 2LR-LSTM architecture with pose pa-
rameters as model inputs and MSE loss function as a training
objective.

2LR-FD-MSE: The 2LR-LSTM architecture with frame
difference parameters as model inputs and MSE loss function
as a training objective

2LR-P-MAE: The 2LR-LSTM architecture with pose pa-
rameters as model inputs and MAE loss function as a training
objective

2LR-FD-MAE: The 2LR-LSTM architecture with frame
difference parameters as model inputs and MAE loss func-
tion as a training objective

B. Datasets

For ease of comparison with state-of-the-art[2] and to
demonstrate model performance in both real and simulated
environment, we report results from the PedX[24] and
BEHAVE[25] datasets, as well as combination of the two.

PedX: The PedX dataset [24] is a collection of more
than 10K images from three road intersections with heavy
pedestrian traffic in Michigan, USA. Images are collected
using two stereo RGB camera pairs with six frames per
second (FPS). This dataset contains both original and gamma
rectified images of four cameras of the same scene. In this
work, a single camera (specified as grn43E3) data is pro-
cessed using VIBE [19] and the extracted SMPL parameters
are used as inputs to the model.

BEHAVE: The BEHAVE dataset [25] consists of more
than 76K images with multiple scenarios of people acting
out various interactions. The images are collected using
commercial tripod mounted camcorder at 25 FPS.

HYBRID: The HYBRID dataset is the combination of data
from the PEDX and BEHAVE datasets. To avoid the bias
due to the substantial variation in the number of images,
we combined the PedX dataset with the equal number
of pose parameters randomly sampled from the BEHAVE
dataset. The number of samples in the HYBRID dataset are
approximately 20K.

Both the PedX and BEHAVE datasets are captured using
a fixed camera. The PedX dataset contains images from real
scenarios where the subjects may or may not be aware of
whether they are being recorded. In contrast, the BEHAVE
dataset is recorded by actors performing various actions.
Our framework will therefore be evaluated against both
real and simulated environments with various lighting and
background conditions.

C. Experimental Setup

All the experiments are performed using batch size B=50,
n=4 past poses, and epochs of size 500. The value ’n’ of
past poses was selected assuming that a pedestrian generally
completes walking cycle in 5-6 frames [2]. An Adam opti-
mizer [33] is used with a learning rate of 0.0003 and 0.0006



for the generator and the discriminator respectively. Finally,
weighting coefficients for the generator loss are ξsa = 0.40
and ξg = 1.0. VIBE is used to process all datasets using
the following configuration : batch size=6, vibe batch size =
100, and a minimum number of frames=6. Each dataset is
divided into 70% training, 15% validation, and 15% testing
sets.

V. RESULTS AND DISCUSSION

This section first introduces the evaluation metrics and
then presents the quantitative and qualitative results. The
quantitative results are the average results from three random
initializations of pose parameters.

A. Evaluation Metrics

The output of the proposed models are 76 parameters
including 23 joint rotation angles in axis angle format
(23× 3 = 69), three global rotation angles, and four camera
parameters. Note that the shape parameters are considered
constant from frame to frame. All models are evaluated using
the standard vertex-to-vertex RMSE error (Vertex), Mean Per
Joint Position Error (MPJPE) [34], and Mean Per Joint Angle
Errors (MPJAE) [35]. The predicted and ground truth 24
joint rotation angles (including the global rotation) are used
to calculate MPJAE. From the predicted SMPL parameters, a
3D wireframe mesh is regressed [18] to calculate the Vertex
and MPJPE metrics. The standard evaluation metrics Vertex,
MPJPE and MPJAE calculates the average errors across all
SMPL components. In order to evaluate the effectiveness of
the proposed SMPL-based architecture on global rotation,
the following evaluation metrics are also introduced:

GR-E: The angular difference between the global rotation
in the predicted and ground truth SMPL parameters.

JA-E: The Mean Per Joint Angle Error for 23 joints
excluding the global rotation angle.

TR: The Mean Translation Error between predicted and
ground truth SMPL parameters.

TABLE I: Pose prediction results on PedX dataset. Units for
Vertex and MPJPE are ×10−3m

Model Vertex MPJPE MPJAE JA-E GR-E TR
2LR-P-MSE 635.54 421.81 8.51 5.68 73.58 202.43

2LR-FD-MSE 579.48 368.98 7.63 5.07 66.46 91.69
2LR-P-MAE 437.18 219.92 6.29 4.80 40.69 157.06

2LR-FD-MAE 380.76 162.91 5.54 4.41 31.66 82.22
SA-LSTM 353.58 135.46 5.54 4.69 25.08 81.20

ADV-SA-LSTM 276.46 69.81 5.18 4.72 15.84 82.63

TABLE II: Pose prediction results on BEHAVE dataset.
Units for Vertex and MPJPE are ×10−3m

Model Vertex MPJPE MPJAE JA-E GR-E TR
2LR-P-MSE 550.84 329.32 5.59 3.30 58.25 126.03

2LR-FD-MSE 473.54 276.16 4.79 2.76 51.42 72.69
2LR-P-MAE 327.58 126.25 3.86 2.84 27.24 117.68

2LR-FD-MAE 302.78 111.88 3.55 2.63 24.64 72.32
SA-LSTM 289.91 93.80 3.49 2.69 21.97 71.71

ADV-SA-LSTM 289.06 91.72 3.47 2.69 21.51 71.74

TABLE III: Pose prediction results on HYBRID dataset.
Units for Vertex and MPJPE are ×10−3m

Model Vertex MPJPE MPJAE JA-E GR-E TR
2LR-P-MSE 567.48 345.02 6.25 3.89 60.65 158.18

2LR-FD-MSE 475.26 279.14 5.24 3.19 52.29 76.40
2LR-P-MAE 360.05 152.89 4.40 3.24 31.25 104.32

2LR-FD-MAE 307.59 107.88 3.82 2.96 23.58 74.38
SA-LSTM 280.43 83.89 3.77 3.06 20.11 74.32

ADV-SA-LSTM 277.99 82.43 3.77 3.03 20.75 74.41

B. Results

Table I presents the quantitative results for the PedX
dataset. and shows that the proposed SA-LSTM and ADV-
SA-LSTM methods are able to produce improved results
compared to the baseline methods. Models with frame differ-
ence as inputs perform better than those with pose parameters
as inputs. The improved performance might be due to the
ability of the frame difference inputs to capture the temporal
difference in consecutive frames. Furthermore, training the
model with the MAE loss function yields better results
compared to the MSE loss function. For this reason, the SA-
LSTM model uses the frame difference parameters as the
model input parameters and MAE as training objective and
ADV-SA-LSTM also uses MAE as LSA.

Tables II and III present the results for the BEHAVE and
HYBRID datasets respectively. For all baseline methods,
it can be observed that the models trained on PedX are
underperforming compared to the models trained with the
BEHAVE and HYBRID datasets. This may be due to the
difference in the number of training and testing samples
across datasets and camera parameters (The PedX dataset is
collected using 6 FPS, and the BEHAVE dataset is collected
with 25 FPS). Regardless of the camera parameters and train-
ing samples, the proposed ADV-SA-LSTM and SA-LSTM
models yield improved results across datasets compared to
state-of-the-art baseline models.

SMPL-based Architecture: It can be observed that pro-
posed SA-LSTM and ADV-SA-LSTM architectures are able
to minimize the global rotation angle error (GR-E) due to
introduction of dedicated layer. Although JA-E is slightly
increased, it has a minimum impact on the MPJAE and
overall model performance compared to baseline models.

Qualitative Results: Fig. 4 shows some of the 3D pose
prediction results on the PEDX, BEHAVE, and HYBRID
datasets. The ground truth and predicted 3D wireframe
meshes are represented in red and blue respectively. The
global rotation angle have a huge impact on the rendered
3D mesh position due to its centrality. The proposed ADV-
SA-LSTM model successfully minimizes the global rotation
angle error along with 23 joint rotation errors, and enforces
the model to predict naturally feasible human poses.

VI. CONCLUSION AND FUTURE WORK

This work presents a novel SMPL-based recurrent neu-
ral network for 3D pedestrian pose prediction. While the
current joint-rotation-based pose prediction methods work
reasonably well, most of them ignore the centrality of
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Fig. 4: Qualitative 3D pose prediction results comparison for PedX [24], BEHAVE [25], and HYBRID datasets. The Ground
truths are represented in red and the predicted poses are in blue. Two sets of results ( (A,B) for PedX, (C,D) for BEHAVE
and (E,F) for HYBRID) are presented for each dataset with each showing qualitative results for 2LR-P-MSE,2LR-FD-
MSE,2LR-P-MAE,2LR-FD-MAE,SA-LSTM and ADV-SA-LSTM models starting from left.

global rotation and translation parameters with respect to
pose parameters. Ignoring the centrality of each component
forces the model to assign equal weights for all compo-
nents, resulting in high error accumulation in the kinematic
chain leading to qualitative errors. The proposed architecture
extends current models by introducing the novel SMPL-
based architecture to address the centrality and network
weight distribution. Furthermore, a discriminator network
is proposed to constrain the network to generate naturally
feasible poses.

The results show that the proposed SMPL-based archi-
tecture is able to reduce the average error term introduced
by SMPL components and achieves improved performance
compared to the current state-of-the-art. Future work include
modelling inter joint spatial dynamics using graph neural net-
works to further improve the model performance. In addition,
current work can be extended by introducing a novel dataset
with increased pedestrian presence across multiple cameras
to validate the model performance in the comprehensive
temporal domain.
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[5] Alexandra Willisô, Nathalia Gjersoe, Catriona Havard, Jon Kerridge,
and Robert Kukla. Human movement behaviour in urban spaces:
implications for the design and modelling of effective pedestrian
environments. page 24.

[6] Mohamed H Zaki and Tarek Sayed. Automated Analysis of Pedestrian
Group Behavior in Urban Settings. IEEE TRANSACTIONS ON
INTELLIGENT TRANSPORTATION SYSTEMS, 19(6):10, 2018.

[7] Dario Pavllo, Christoph Feichtenhofer, Michael Auli, and David
Grangier. Modeling human motion with quaternion-based neural
networks. International Journal of Computer Vision, pages 1–18,
2019.

[8] Erwin Wu and Hideki Koike. Futurepose - mixed reality martial arts
training using real-time 3d human pose forecasting with a rgb camera.



In 2019 IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 1384–1392, 2019.

[9] Sam Toyer, Anoop Cherian, Tengda Han, and Stephen Gould. Human
pose forecasting via deep markov models. In 2017 International
Conference on Digital Image Computing: Techniques and Applications
(DICTA), pages 1–8, 2017.

[10] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra
Malik. Recurrent network models for human dynamics. In Proceedings
of the IEEE International Conference on Computer Vision, pages
4346–4354, 2015.

[11] Maosen Li, Siheng Chen, Yangheng Zhao, Ya Zhang, Yanfeng Wang,
and Qi Tian. Dynamic Multiscale Graph Neural Networks for 3D
Skeleton Based Human Motion Prediction. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
pages 211–220, Seattle, WA, USA, June 2020. IEEE.

[12] Emre Aksan, Manuel Kaufmann, and Otmar Hilliges. Structured
Prediction Helps 3D Human Motion Modelling. In 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pages 7143–
7152, Seoul, Korea (South), October 2019. IEEE.

[13] Emad Barsoum, John Kender, and Zicheng Liu. HP-GAN: Proba-
bilistic 3D Human Motion Prediction via GAN. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 1499–149909, Salt Lake City, UT, USA, June 2018.
IEEE.

[14] Liang-Yan Gui, Yu-Xiong Wang, Xiaodan Liang, and José M. F.
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