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Cognitive Effort for Multi-agent Systems

Luca Longo and Stephen Barrett

Department of Computer Science and Statistics - Trinity College Dublin
{llongo,stephen.barrett}@cs.tcd.ie

Abstract. Cognitive Effort is a multi-faceted phenomenon that has suf-
fered from an imperfect understanding, an informal use in everyday life
and numerous definitions. This paper attempts to clarify the concept,
along with some of the main influencing factors, by presenting a possi-
ble heuristic formalism intended to be implemented as a computational
concept, and therefore be embedded in an artificial agent capable of cog-
nitive effort-based decision support. Its applicability in the domain of
Artificial Intelligence and Multi-Agent Systems is discussed. The techni-
cal challenge of this contribution is to start an active discussion towards
the formalisation of Cognitive Effort and its application in AI.

1 Introduction

Theoretical constructs of attention and cognitive effort have a long history in psy-
chology [11]. Cognitive effort is often understood as a multi-faceted phenomenon
and a subjective concept, influenced by attention, that changes within individ-
uals in response to individual and environmental factors [18]. Such a view, sus-
tained by motivation theories, contrasts with empirical studies that have tended
to treat attention as a static concept [6]. Theories of information processing con-
sider cognitive effort as a hypothetical construct, regarded as a limited capacity
resources that affects the speed of information processing [11]. Studies suggest
that, even though cognitive effort may be a hypothetical construct, it is manifest
as a subjective state that people have introspective access to [10]. Attention can
be related to physiological states of stress and effort, to subjective experiences
of stress, mental effort, and time pressure, and to objective measures of perfor-
mance levels to breakdown in performance. These various aspects of attention
have led to distinct means for assessing cognitive effort including physiological
criteria such as heart rate, performance criteria such as quantity and quality
of performance and subjective criteria such as rating of level of effort. Despite
the interest in the topic for the past 40 years, there is no universally accepted
and clear definition of cognitive effort often referred to as mental workload [9].
There appears to be little work to link the measurement of workload by any
one paradigm to others and the lack of a formal theory of cognitive effort has
lead to a proliferation of several methods with little chance of reconciliation [7].
Formalising cognitive effort as a computational concept would appear to be an
interesting step towards a common definition and an opportunity to provide a
usable structure for investigating behaviours. The goal of this paper is to facili-
tate such a development through the presentation of a formalisation of cognitive
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effort in a organised fashion using formal tools. The principal reason for measur-
ing cognitive effort is to quantify the mental cost of performing tasks to predict
operator and system performances. It is studied from the point of view of ar-
tificial agents: our formalism does not aim to be the de-facto standard but it
provides the tools necessary for its own revision. We are concerned with two key
issues: How can we formalise cognitive effort as a usable computational concept?
How can we provide cognitive effort-based decision supporting capabilities to an
artificial agent?

The methodology adopted to model cognitive effort is presented in section 2.
The subjective nature of the concept is underlined in section 3 where a literature
review identifies some of the main factors, amenable to computational treatment,
that influence cognitive effort along with related works. We present our heuristic
formalism in section 4. In 5 an optimisation problem in multi-agent systems is
presented that aims to clarify a possible application of our heuristic formalism.
We address open issues and future challenges in section 6.

2 Attacking the Phenomenon: Our Approach

Cognitive effort is a subjective, elusive concept and its precise definition is far
from trivial. Indeed, the contextual aspect of the phenomenon may render at-
tempts at both precise and generally applicable definition impossible in practice.
Our approach tries to study the essential behaviour of cognitive effort and seeks
to capture some of its aspects in a formalism structured as an open and extensi-
ble framework. Our method is based on a generalist assessment of the available
literature, seeking to merge together different observations, intuitions and defini-
tions towards a tool for the assessment of Cognitive effort in practical scenarios.
The multi-agent paradigm is a powerful tool for investigating the problem. Al-
though an agent’s cognitive model of its human peer is not necessarily precise,
having at least a realistic model can be beneficial in offering unintrusive help,
bias reduction, as well as trustable and self-adjustable autonomy. It is feasible
to develop agents as cognitive aids to alleviate human bias, as long as an agent
can be trained to obtain a model of a human’s cognitive inclination. Further-
more, with a realistic human cognitive model, an agent can also better adjust
its automation level [19].

3 Cognitive Effort and Related Work

The assessment of the cognitive effort expended in the completion of a task is
dependent on several factors such as individual skill, background and status that
means the individual’s subjective experience and cognitive ability. Self-regulation
theories [4] suggest that individuals with different levels of cognitive ability may
react to changes in task difficulty in different ways because their perception of
the task may be different. High ability individuals have a larger pool of cognitive
resources than their counterparts who need to make larger resource adjustments
to achieve the same outcome. People of low ability who perceive a high degree
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of difficulty in a task, will expend greater cognitive effort [20]. Similarly, inten-
tions play a role on attention, and individuals with strong intentions allocate
more cognitive effort to a task: highly conscientious individuals choose to work
harder and persevere longer than their counterparts [1]. In the literature, curios-
ity, motivation, psychological stress, anxiety are often referred as arousals [11]
and have a strong impact on attention and therefore on cognitive effort. Simi-
larly, time plays a central role on attention as well: time-pressure may increase
the amount of attention an individual needs to allocate on a task. Furthermore,
performing a task requires an interval of time in which an individual has to elicit
an amount of cognitive effort. Finally, contextual biases may influence attention
over time: these may be unpredictable external distractions, contextual or task-
related constraints. All these factors represent a sub-portion of all the possible
factors used by several existing models of workload and mental effort. The popu-
lar NASA-Task load index, for instance, consists of six clusters of variables such
as mental, physical and temporal demands, frustration, effort and performance
[8]. The Subjective Workload Assessment Technique is a subjective rating tech-
nique that considers time load, mental effort and psychological stress load to
assess workload [14].

Multi-agents systems are often used to model social structure where artificial
agents collaborate with each other towards a common goal [17] seeking to find
the best solution for their problems autonomously without human intervention.
Most of the work in agent-based systems has assumed highly simplified agent
models and artificial agents developed so far incorporate a wide range of cogni-
tive functionalities such as memory, representation, learning and sensory motor
capabilities. However, at present, there is a weak consideration of cognitive ef-
fort in multi-agent systems [16]. Integrating cognitive effort in an artificial agent
may increase its robustness in terms of interdependence with other agents and
the ability in the decision-making process, without loosing any of the freedom
of choice such agents will be expected to possess.

4 A Presumption-Based Heuristic Formalism

As discussed briefly in section 3, models of cognitive effort involve a highly con-
textual and individual-dependent set of factors. Our approach begins by focusing
on a set of context-dependent influencing factors, each representing a presump-
tion or interpretation of facts in literature useful for inferring cognitive effort.
Each presumption needs to be formally conceptualised in order to be computable,
and in the following paragraphs we present six factors with different difficulty of
formalisation. The set of factors considered here can be expanded, refined, crit-
icised and reducted: we provide these as illustrative of our approach. The aim
of our framework is to be open, extensible and applicable in different contexts
where only some influencing factor can be monitored, captured and conceptu-
alised formally.

Cognitive Ability. Some people obviously and consistently understand new
concepts quicker, solve new problem faster, see relationship and are more



58 L. Longo and S. Barrett

knowledgeable about a wider range of topics than others. Modern psychological
theory views cognitive ability as a multidimensional concept and several studies,
today known as IQ tests, tried to measure this trait [5]. Carroll suggested in his
work [3] that there is a tendency for people who perform well in a specific range
of activities, to perform well in all others as well. Prof. T. Salthouse suggested in
his recent work [15] that some aspects of people’s cognitive ability peak around
the age of 22 and begin a slow decline starting around 27. However, he pointed
out that there is a great deal of variance among people and most cognitive func-
tions are at a highly effective level into their final years, even when living a long
life. Some type of mental flexibility decreases relatively early in adulthood, but
how much knowledge one has, and the effectiveness of integrating it with one’s
abilities may increase throughout all of adulthood if there are no pathological dis-
eases. This research provides suitable evidence to model cognitive ability with a
long-term growing function as the flexible sigmoid function proposed by Yin [22]:

CA : [1..Gth] ∈ ℵ3 → [0..1] ∈ �
CA(Gth, Gr, t) = CAmax

(
1+

Gth−t

Gth−Gr

) (
t

Gth

) Gth
Gth−Gr

where CA is cognitive ability whose maximum level is defined by CAmax (in this
case equal to 1) and t is the age in years of an individual. Gth is the growing
threshold, set to an average of mortality of 85 years and Gr is the growing rate,
set to 22 years that identifies where the curve reaches the maximum growing
weight and from that, increases moderately. The properties Gth and Gr are flex-
ible because they may be set by considering environmental factors.

Arousal. The concept of arousal plays an important role in assessing cognitive
effort. It is sometimes treated in literature as a unitary dimension, as if a subject’s
arousal state could be completely specified by a single measurement such as
the size of his pupil. However, this is an oversimplification since arousal is a
multidimensional concept that may vary in different situations [11]. Its intrinsic
degree of uncertainty and subjectiveness are hard to model and we propose a
simple subjective arousal taxonomy where different types of arousal, such as
curiosity, motivation, anxiety, psychological stress, are organised in a multi-level
tree. A subjective arousal taxonomy is a 3-tuple < A, W, R >, composed by
vertexes A connected as a tree by unidirectional weighted edges, defined in R,
by using the weights in W . Each vertex has at most one parent, except the root
node Aroot which has no parent and represents the final level of arousal that
influences cognitive effort.

A : {a|a ∈ {[0..1] ∈ �}} W : {w|w ∈ {[0..1] ∈ �}}
R : {∀ ai ∈ A ∃! r | r : A × A → W, r : (ai, ap) = w}
Aleaf

explicit ∪ Ainternal
aggregated = A; ∀ ai ∈ A ∃! path(ai, aroot)

All the nodes have a path towards the root node: this property guarantees the
non-presence of cycles. Leaf nodes (node without children) are values explicitly
provided by an agent: they indicate the related degree of a given type of arousal
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(eg. 0 is not motivated at all, 1 is highly motivated). Internal nodes represent
aggregation nodes and like the root node’s value are inferred by the relationship
with their children defined in R along with the related strength in W . In partic-
ular, each internal node’s value is the weighted sum of its c children’s values:

aleaf
explicit = [0..1] ∈ �, ainternal

aggregated =

(
c∑

z=0

(az · wz)

)

≤ 1

Finally, the root node is a special internal node with weight wroot = 1 and, as
it has no parent, its relation rroot = ∅. The weights w in the arousal taxonomy
may be derived from the literature or learnt while the explicit values aleaf

explicit

represent an individual’s subjective status before starting a task. An example
of a possible subjective arousal taxonomy is depicted in figure 1. Based on the
level of arousal, we may adopt the descriptive Yerkes-Dodson law [21] which
empirically studied the relationship between performance and arousal. For ex-
ample, the authors discovered that increasing the intensity of a shock adminis-
tered to mice facilitated the learning of brightness discrimination, up to a point.
However, further increases of shock intensity caused learning deteriorate. These
conclusions, appear to be valid in an extraordinarily wide range of situations.
The law is usually modeled with an inverted U-shape curve which increases the
level of performance at low level of arousal and then decreases with higher levels
of arousal. The law is task-dependent: different tasks require different levels of
arousal for optimal performance thus the shape of the curve can be highly vari-
able. The first part of the curve, which increases, is positively affected by the
strength of arousal while the second part, which decreases, is influenced by the
negative effect of arousal on cognitive effort. The law is useful to study the max-
imum performance an agent can achieve based on his subjective status before
performing a task. As each task may have a different complexity and as the law
is task-dependent, we propose to introduce a task dictionary formally described
as a tuple < TS, A, P, TP, D, Y D, δyd, δd, δtp >:

· TS ⊆ ℵ is the set of possible tasks;
· A, P, TP, D ⊆ {[0..1] ∈ �} are the possible set of values for Arousal, Perfor-
mance, Time-pressure, Difficulty;
· Y D ⊆ {fyd : A → P} is the set of possible functions that model the Yerkes-
Dodson law. Each of them takes an arousal level and return a performance value;
· δyd : TS → Y D assigns to a task a Y.D. law function;
· δtp : TS → TP assigns to a task a degree of time-pressure.
· δd : TS → D maps for each task a level of difficulty.

A task dictionary example is depicted in table 1. Here the YD laws associated to
each task are for descriptive purposes but in reality they may be approximated
with experiments via numerical analysis. Once we have the subjective arousal
taxonomy for a subject and the task difficulty dictionary, we are able to study
the effect of arousal on cognitive effort. The derived performance is the maximum
level of attention that a subject can elicit on a certain task. Formally, given a task
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Table 1. Tasks dictionary with descriptive YD equations

Description D TP YD law (a ∈ A)

math equation 0.8 0.9 fyd(a) = e−a2

reading/summary 0.6 0.7 fyd(a) = −a2 + a
reading 0.3 0.2 fyd(a) = −2a2 + 2a

dictate 0.4 0.8 fyd(a) = e−(a−2)2

memorising poetry 0.7 0.6 fyd(a) = −3a2 + a

Fig. 1. A possible Subjective Arousal Taxonomy

ts ∈ TS, the max performance p on the task ts is derived from the associated
Yerkes-Dodson law with an input level of arousal a, that means p = (δyd(ts))(a).

Intentions. A subject’s intentions have an important role in determining the
amount of cognitive effort while performing a task. As with arousal, this is an
individual, subjective concept that may be split into short-term and long-term
intentions, and that may be modelled with real values. We refer to short-term
intentions or momentary intentions with Ist and to long-term intentions with
Ilt. Those are subjective judgments in the range [−1..1] ∈ � (-1: no intention
at all; 1: highly intentioned). The overall degree of intentions I is the average of
the above values and may have a negative, positive or null influence on cognitive
effort:

I : [0..1] ∈ �2 → [−1..1] ∈ �, IST , ILT : [−1..1] ∈ �
I(IST , ILT ) = 2

3IST + 1
3ILT

This model deals with intentional shades: an individual may be momentarily
intentioned to success in a IQ test without any future intention.

Involuntary Context Bias. Several external factors may influence cognitive
effort as pseudo-static and unpredictable biases. The former refers to biases that
are almost static and depend on environmental aspects. For instance, there is
a large difference across ethnic groups and geographic areas in the available
knowledge: people living in poor African countries have a reduced access to
knowledge compared to their counterpart in occidental countries so they may
find a question dependent on access to information to be more difficult to answer.
Another pseudo-static bias is the task’s difficulty. Even though it is hard to
exactly estimate the complexity of different tasks, it is not unfeasible perhaps
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to claim that reading a newspaper demands less cognitive effort than resolving
a math equation. Unpredictable context biases represent involuntary context
biases such as a phone ringing, questions from colleagues, e-mail delivering in a
working context. These involuntary distractions and environmental aspects, in
comparison to arousals and intentions, are easier to embed in a formalism as they
are not individual-dependent. We propose real fuzzy values to model contextual
available knowledge and unpredictable bias, while the level of task difficulty is
obtained from the task dictionary. Knowledge availability is a positive factor,
that means it elicits less cognitive effort, while task-difficulty and unpredictable
bias are negative as they require more cognitive effort as value increases. The
higher the value of contextual bias is, the more a subject has to concentrate
allocating more cognitive effort on a task. To model how context bias negatively
affects attention, we take the complement of knowledge availability:

CB : [0..1] ∈ �3 → [0..1] ∈ �, Cknow,Tdiff ,Ubias: [0..1]∈�

CB(Cknow , Tdiff , Ubias) =
[1 − Cknow] + Tdiff + Ubias

3

where CB is the total context bias, Cknow is the contextual knowledge availabil-
ity, Tdiff is the task difficulty and Ubias is the unpredictable bias.

Perception. The same task may be perceived differently by two subjects. In
literature there is evidence suggesting that perceived difficulty is higher when
individuals are presented with a new task: they may not know what the optimal
amount of effort is, given a particular difficulty level [20]. We propose to model
this concept as a simple real fuzzy value Pdiff = [0..1] ∈ � where values close to
0 indicate a task perceived highly complex. Perception is connected to cognitive
ability and skill acquisition. Intermediate students may perceive the resolution
of math equations to be difficult compared to university students due to their
limited experience, preparation and background. Perception has a negative effect
as a subject who perceives a task to be difficult needs to allocate more resources
eliciting higher cognitive effort.

Time. Time is a crucial factor that must be considered in modelling cogni-
tive effort. Temporal properties are essential because performing a task is not
a single-instant action, rather is an action over time, therefore cognitive effort’s
influencing factors need to be considered over time. Our environment is dynamic
and, consequently, time-related: the temporal dimension is an important aspect
of perception necessary to guide effective action in the real world [12]. Several
temporal theories are available in the literature of computer science but less
effort has been spent on the temporal-related aspect of cognitive effort.

Firstly, we take into consideration time as a single stimulus that influence
attention. We refer to this as time-pressure which is sometimes imposed by
explicit instruction to hurry and sometimes by intrinsic characteristics of the
task. The former may me modelled as a fuzzy value T explicit

press : [0..1] ∈ �. For
instance, a student may resolve a task within an interval of 10 minutes. In
this case we need to estimate or learn the maximum time to perform a task
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(mapped to 1) and transform 10 minutes in the scale [0..1]. The latter may be
modelled as a fuzzy value T implicit

press : [0..1] ∈ � and we propose to adopt the
task-related time-pressure value from the task-dictionary previously proposed
that underlines the intrinsic pressure imposed by a certain task. For instance, a
student may resolve an integral equation which requires an auto discipline and
rigorousness in performing the task. He must keep track of the initial problem,
partial results, the next step, requiring greater cognitive effort: slowing down or
even stopping for just an instant of time may force the student to start again.
The more difficult arithmetic problems require more storage, the more they
impose high time-pressure eliciting greater cognitive effort [11]. The final degree
of time-pressure is modelled as the average of the above values:

Tpress : [0..1] ∈ �, Tpress = 1
2T

explicit
press + 1

2T
implicit
press

Everyday experience suggests that time intervals also play an important role in
directing our attention to the external world. Cognitive effort may vary while
performing a task due to the variation on the degree of focused attention and
sustained attention. The former is referred to as the ability to respond discretely
to specific visual auditory or tactile stimuli while the latter refers to the ability to
maintain a consistent behavioural response while performing a certain task [11].
The modelling of focused, and sustained attention, is not easy at all and these
properties are individual-dependent. However, taking into consideration a cer-
tain task, a trajectory that describes how the degree of sustained attention would
likely behave for most of the people on that task would be useful. To deal with
this we propose an extension for our task-dictionary by adding an estimation of
the time needed to complete a certain task. This value may be learnt through
experimentations by using unsupervised techniques and is needed to estimate
the end of a certain task in order to model the focused attention function. This
function likely has a S-shape that increases quickly at the beginning reaching
the maximum peak of attention, then decreases very moderately during the sus-
tained attention time-interval, and decreases quicker until the estimated time for
the completion of the task. Yet, this function may be approximated by applying
numerical analysis and should model the fact that, at the beginning, people elicit
almost the highest degree of attention, which is the maximum performance level
obtained by the Yerkes-Dodson law of a task ts with a given arousal a defined
before (p = (δyd(ts))(a)); from here it follows an interval of time in which indi-
viduals perform well, maintaining a high level of sustained attention. Then the
curve starts to decrease towards the estimated end-point of the task from which
the function persists but at very low levels, underlying that a small amount of
cognitive effort is dedicated to the task. Formally, we add to the task-dictionary:

· T ⊂ � is the domain of time;
· AT ⊆ P is the set of possible degrees for attention;
· SA : {ffa : T → AT } is the set of possible functions that models the concept
of focused attention for tasks;
· δfa : TS → SA is the function that maps a S-shaped function from the domain
SA to a given task;
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· δTE : TS → T is the function that assigns to a task a completion estimated
time.

The completion time would be useful for understanding whether an agent per-
formed similarly to others or required further time to complete a task or even
before giving up.

Taking into account the explanations so far, we are now able to provide a
general formula to compute cognitive effort of an agent on a given task along
with a formalism summary depicted in figure 2.

CE : [0..1] ∈ �5 × [−1..1] ∈ � × TS × T 2 → �
CA

′
= CA(Gth,Gr,t), A

′
= (δyd(α))(Aroot), PD

′
= PD

t
′
= tpress, I

′
= I(Ist,Ilt), CB

′
= CB(Cknow,Tdiff ,Ubias)

CE(CA
′
, A

′
, I

′
, CB

′
, PD

′
, t

′
, α, t0, t1) =

∫ t1

t0

[
δfa(α)

]
(x)

(
CA

′
+ A

′
+ I

′
+ CB

′
+ PD

′
+ t

′

6

)
dx

where CA is cognitive ability, A represents arousals, I is intentions, CB is con-
textual bias, tpress is the time pressure, t0 is the start time and t1 the time spent
on the task α.

Fig. 2. The Cognitive Effort’s formalism

5 A Multi-agent Application

In this section we take the viewpoint of an agent α situated in an open envi-
ronment trying to choose the best interaction partners from a pool of potential
agents A and deciding on the strategy to adopt with them to resolve an effort-full
task T in an optimal way. Our heuristic, based on cognitive effort, represents a
possible strategy to select reliable partners. Each agent in the system has certain
cognitive properties such as experience, motivation, intentions, cognitive ability,
and it is realistic to assume that they operate in environments with different
constraints and biases. Furthermore, we assume each agent acts honestly and
provides real information about its cognitive status. An agent α may split the
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Table 2. Agents, influencing factors and Cognitive Effort

Factor a1 a2 a3 a4 a5

Gth (Growing Threshold) 85 85 85 85 85
GR (Growing Rate) 22 22 22 22 22
Age (Years) 18 25 28 40 55
CA (Cognitive Ability) 0.25 0.37 0.43 0.62 0.82

IST (Short-term Intentions) 0.4 0.6 -0.5 -1 0.5
ILT (Long-term Intentions) 0.6 -0.3 -1 0 0.2
I (Intentions) 0.47 0.3 -0.67 -0.67 0.4

Pdiff (Perceived Difficulty) 0.7 0.7 0.6 0.5 0.7

TP (Time Pressure) 0.5 0.5 0.5 0.5 0.5

Cknow (Context Knowledge) 1 1 0.9 0.8 1
Tdiff (Task Difficulty) 0.8 0.8 0.8 0.8 0.8
Ubias (Unpredictable Bias) 0.6 0.3 0.4 0.6 0.7
CB (Contextual Bias) 0.47 0.37 0.43 0.53 0.5

ar1 (Anxiety) 0.5 0.7 0.5 0.4 0.3
ar2 (Curiosity) 0.7 0.3 0.5 0.8 0.4
ar3 (Sleepiness) 0.3 0.3 0.5 0.7 0.4
ar4 (Tiredness) 0.4 0.3 0.6 0.2 0.5
ar5 (Motivation) 0.6 1 0.8 0.6 0.3

Aroot (Arousal Root) 0.67 0.81 0.72 0.67 0.37

fyd(A) = e−A2
root 0.64 0.52 0.59 0.64 0.87

t0/t1 (secs) 0 / 55 0 / 40 0/45 0/40 0/50

C.E. (Cognitive Effort) 18.30 14.32 11.00 11.87 22.63

task T in partial sub-tasks t1...tn with the same estimation of required effort. We
suppose he has direct connections with 5 agents, a1 .. a5 ∈ A , and it forwards
to each of them one of the 5 sub-tasks t1..t5.. Now, each agent starts to resolve
the sub-task of competence by using its own resources, skills and experience.
Once the sub-task is completed, they send back to α their subjective status of
arousals, their intentions, cognitive ability, perception, involuntary context bias
and the start/stop time needed to complete the assigned sub-task. Let’s assume
the agent α adopts the first task (math equation) of the task-dictionary de-
picted in table 1 and uses the subjective arousal taxonomy depicted in figure 1
with the explicit values (ari) provided by each agent and showed in table 2. The
Yerkes-Dodson law associated to the task is δyd(α) = fyd(a) = e−a2

while the
task difficulty is δd(α) = 0.8. The time pressure is δtp(α) = 0.9 and the focused
attention trajectory is: δfa(α) = ffa(t) = [1 + e(bt−a)]−1.

The parameter b shrinks the S-shaped curve while a shifts the function to
the right. We set b = 15

100 to model sustained attention at the beginning of α
for around 20 seconds, and a to effectively start from the 0 of the time line
(x-axis) with attention at high level (1). The function decreases quickly after
20 seconds reaching low levels of around 50 (δTE(α) = 50) seconds which is the
estimated time we set for the completion of T . α uses our heuristic formalism as a
potential decision-supporting tool useful to generate an index of cognitive effort
for each partner: the results obtained are presented in table 2. It may forward
remaining sub-tasks in proportion of the elicited agents’ cognitive effort, it may
deliver more sub-tasks to agents that showed less cognitive effort (eg. a3, a4)
in completing assigned work. Furthermore, α has a knowledge of its partners’
skills, their subjective status and over time it can infer something about their
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behaviour. For instance, information about the learning rate may be learnt, as α
might assume that its partners, over time, should acquire experience, get more
skilled therefore manifesting less cognitive effort in performing similar tasks.

6 Open Issues and Future Challenges

Cognitive effort is a subjective phenomenon and its formalisation for a virtual
agent is not a trivial problem. In this paper we tackled the problem by analysing
current state-of-the-art in psychology, cognitive and neuro-science to build a
formalism that is extensible and open to further refinements. The heuristic pro-
posed here can be embedded in an artificial agent providing it with a cognitive
effort-based decision supporting system. The computational model is an aggre-
gation of a subset of the possible presumptions or factors influencing cognitive
effort such as cognitive ability, arousals, intentions, contextual bias, perception
and time. We intend this to be the starting point of an active discussion among
researchers in social and computer science fields.

In this work we have considered each factors’ influence being the same but
a simple aggregation is not subtle enough to provide good estimates of cogni-
tive effort. Argumentation theory provides a framework for systematic studying
how cognitive effort influencing factors may be combined, sustained or discarded
in a computable formalism towards a robust approximation of the concept. In
our opinion, cognitive effort shares some of the properties of a non-monotonic
concept by which we mean that adding a factor to the overall formalism never
produces a reduction of its set of consequences [2]. Adding a new argument
and reasoning on its plausibility/combination with previous ones increases the
robustness of the overall formalism. A new factor may attack or support an ex-
isting one therefore amplifying or diminishing its strength. The consideration of
mutual relationships among arguments is fundamental in assessing an index of
cognitive effort, therefore a future challenge might be the investigation of the
strength of each argument and their mutual influence by using non-monotonic
logics such as the defeasible reasoning semantic proposed by Pollock [13].

It remains to demonstrate this aspect of computation of cognitive effort. In
terms of evaluation, popular frameworks such as the NASA-TLX [8] and SWAT
[14] may be useful for comparisons. Furthermore, our framework, as conceived to
be open and adaptable to different contexts, may be applied in operational en-
vironment and, for instance, populated by physiological-based argument related
to neuro-science equipment such as fMRI, EEG and other types of physiological
scanner.
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