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Human mental workload (MWL) has gained importance in the last few decades as an important design concept. It is a
multifaceted complex construct mainly applied in cognitive sciences and has been defined in many different ways. Although
measuring MWL has potential advantages in interaction and interface design, its formalisation as an operational and com-
putational construct has not sufficiently been addressed. This research contributes to the body of knowledge by providing an
extensible framework built upon defeasible reasoning, and implemented with argumentation theory (AT), in which MWL
can be better defined, measured, analysed, explained and applied in different human–computer interactive contexts. User
studies have demonstrated how a particular instance of this framework outperformed state-of-the-art subjective MWL assess-
ment techniques in terms of sensitivity, diagnosticity and validity. This in turn encourages further application of defeasible
AT for enhancing the representation of MWL and improving the quality of its assessment.
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1. Introduction
Human mental workload (MWL) is gaining momentum as
an important design concept in human–computer interac-
tion (HCI) and is important in considering the interaction
of people with computers and other technological devices.
It has been extensively documented that both mental over-
load and underload can negatively affect performance (Xie
and Salvendy 2000). At a low level of MWL, people may
often experience annoyance and frustration when process-
ing information. On the other hand, a high level can also
be both problematic and even dangerous, as it leads to con-
fusion, decreases performance in information processing
and increases the chances of errors and mistakes. Hence,
designers and practitioners who are ultimately interested
in system or human performance need answers about oper-
ator workload at all stages of system design and operation
so that design alternatives can be evaluated (Hart 2006). A
wide range of ad hoc definitions of MWL can be found in
the literature. It can be intuitively defined as the amount
of mental work necessary for a person to complete a task
over a given period of time. However, ‘it is not an ele-
mentary property, rather it emerges from the interaction
between the requirements of a task, the circumstances
under which it is performed and the skills, behaviours and
perceptions of the operator’ (Hart and Staveland 1988).
Although MLW has been extensively applied in the human

factors community for the theoretical advantages it pro-
vides in interaction and interface design, its formalisation
as an operational and computational construct has not suf-
ficiently been addressed. Many researchers agree that there
are too many ad hoc computational models and defini-
tions in the literature and their use by MWL designers
has been subjective, limiting both their application in dif-
ferent contexts and the ease with which they may be
compared. This study is part of a larger research project
(Longo 2011, 2012, 2014) and it introduces a novel com-
putational framework for representing and assessing MWL
based on defeasible reasoning (DR). The starting analysis
is an investigation of the nature of MWL as a defeasible
phenomenon – a concept built upon a set of reasons that
can be defeated by providing additional reasons. The word
‘defeasible’ is inherited from DR and is a form of reasoning
built upon reasons that can be defeated. Here, a conclusion
or claim derived from the application of previous knowl-
edge can be retracted in the light of new evidence. DR is
also known as ‘non-monotonic reasoning’ (NMR) because
of the technical property (non-monotonicity) of the logi-
cal formalisms that are aimed at modelling DR activity
(Baroni, Guida, and Mussi 1997). Formally, state-of-the-
art models of DR are implemented using argumentation
theory (AT). This systematically studies how reasons, built
upon the notions of argument and logical consequence, can
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be sustained or discarded in a reasoning process, and the
validity of the conclusions reached. AT has been chosen as
the knowledge representation tool for MWL because of its
capacity to deal with inconsistent and incomplete knowl-
edge that can be captured more intuitively by employ-
ing the notion of arguments (Longo, Kane, and Heder-
man 2012a). AT captures expertise in an organised fashion
and is a promising tool for handling the uncertainty and
vagueness associated with the representation of MWL. AT
can lead to explanatory reasoning and is a paradigm that
allows the representation of a construct to be retracted
and updated with additional knowledge (Longo and Don-
dio 2014). Eventually, a knowledge base built upon AT can
be elicited without requiring a complete data set, in contrast
with machine and other learning-based techniques. This
is particularly useful for unstructured knowledge, where
quantitative evidence has not yet been gathered (Longo and
Hederman 2013). Since MWL may be seen as a defea-
sible phenomenon, AT may have a positive impact on
its representation and assessment. MWL can be captured,
analysed and measured in ways that increase its under-
standing, allowing it to be used for practical activities. The
research question being investigated is: can the representa-
tion of MWL and the quality of its assessment be improved
by defeasible AT?

In order to investigate this research problem, the paper
is organised as follows. Related works are introduced
describing measurement techniques, definitions and com-
putational strategies employed by state-of-the-art models
of MWL. A summary of the core tenets for representing
and assessing MWL follows, highlighting the limitations
of the current solutions which have been reviewed; this
will provide the motivation for the research question being
investigated. The key notions behind DR and the rea-
sons why MWL can be seen as a defeasible phenomenon
are provided. A brief illustration is given of the main
components employed by AT and used for implementing
DR in practice; in turn, a formal framework based upon
these components is designed. The proposed framework
is subsequently used to build representational instances of
mental workload. These are then evaluated through user
studies by comparing the properties of sensitivity, diag-
nosticity and validity against two well-known subjective
MWL assessment techniques (the NASA Task Load Index
and the Workload Profile, WP) in the context of human–
web interaction (HWI). A summary of the main contribu-
tions concludes this paper, along with some proposals for
future research.

2. Related work
The concept of MWL has a long history in the fields of
ergonomics and psychology, with several applications in
the aviation (Hart and Staveland 1988; Hart 2006) and
automotive industries (De Waard 1996). Although it has
been studied for the last four decades, no clear definition

of MWL has emerged that has a general validity and
that is universally accepted (Cain 2007). The main rea-
son for assessing MWL is to measure the mental cost
of performing a certain task with the goal of predicting
operator and system performance (Cain 2007). MWL is
an important design criterion: at an early system design
phase, not only can the system/interface be optimised to
take workload into consideration, but MWL can also guide
designers in making appropriate structural changes (Xie
and Salvendy 2000). Modern technologies such as web
applications have become increasingly complex (Longo
et al. 2012b), with increments in the degree of MWL
imposed on operators (Gwizdka 2009, 2010). The assump-
tion in design approaches is that as the difficulty of a task
increases, perhaps due to interface complexity, MWL also
increases and performance usually decreases (Cain 2007).
In turn, errors are more frequent, there are longer response
times, and fewer tasks are completed per time unit (Huey
and Wickens 1993). On the other hand, when task diffi-
culty is negligible, systems can impose a low MWL on
operators: this should be avoided as it leads to difficul-
ties in maintaining attention and increasing reaction time
(Cain 2007). In the following sections it is shown how
MWL can be measured and which techniques have so
far been employed to aggregate heterogeneous measures
towards an index of workload. This review of current solu-
tions is aimed at identifying both reasons why a more
generally applicable solution has not yet been developed,
and the key characteristics of MWL representation and
assessment.

2.1. Measures of MWL
The measurement of MWL is a vast and heterogeneous
topic as the related theoretical counterpart. Several assess-
ment techniques have been proposed in the last 40 years,
and researchers in applied settings have tended to prefer
the use of ad hoc measures or pools of measures rather than
any one measure. This tendency is reasonable, given the
multidimensional property that characterises MWL (Longo
and Barrett 2010b). Several reviews attempted to collate
the enormous amount of knowledge behind measurement
procedures. According to Gopher and Donchin (1986),
measurements can be divided into subjective measures,
performance measures, arousal measures, specific mea-
sures and psychophysiological measures. Young and Stan-
ton (2006) proposed three broader classes of measures:
primary and secondary task measures, physiological mea-
sures and subjective measures. This is also supported by
O’Donnell and Eggemeier (1986) and Wickens and Hol-
lands (1999). Tsang and Vidulich (2006) proposed four
categories: performance, subjective, physiological mea-
sures and multiple measures of workload. Xie and Sal-
vendy (2000) introduced a further classification based on
empirical and analytical methods.
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In general, the measurement techniques which have
emerged in the research can be classified into three
broad categories (Young and Stanton 2004; Tsang 2006;
Tsang and Vidulich 2006; Wilson and Eggemeier 2006;
Cain 2007):

• self-assessment measures, including self-report mea-
sures and subjective rating scales;

• performance measures, which consider both primary
and secondary task measures;

• physiological measures, which are derived from the
physiology of the operator.

The class of self-report measures is often referred to
as subjective measures. This category is obtained from
the direct estimation of task difficulty from subjects and it
relies on the subjective perceived experience of the inter-
action operator–system. Subjective measures have always
appealed to many workload practitioners and researchers
because it is strongly believed that only the person con-
cerned with the task can provide an accurate and pre-
cise judgement with respect to the MWL experienced.
Various dimensions and attributes of MWL are consid-
ered in self-report measures. These include effort, per-
formance, as well as individual differences such as the
emotional state, attitude and motivation of the operator (De
Waard 1996). The class of subjective measures includes
multidimensional approaches such as the NASA’s task load
index (NASATLX) (Hart and Staveland 1988), the sub-
jective workload assessment technique (SWAT) (Reid and
Nygren 1988), the WP (Tsang and Velazquez 1996) as
well as unidimensional approaches such as the Cooper–
Harper scale (Cooper and Harper 1969), the rating scale
mental effort (Zijlstra 1993), the subjective workload dom-
inance technique (Vidulich and Ward Frederic 1991) and
the Bedford scale (Roscoe and Ellis 1990).

The class of performance measures assumes that men-
tal workload practitioners and, more generally, system
designers are typically concerned with the performance
of their systems and technologies. The assumption is that
the MWL of an operator when interacting with a system
acquires importance only if it influences system perfor-
mance. As a consequence, it is believed that this class
of techniques is the most valuable options for designers
(Tsang and Vidulich 2006). According to different reviews
(Cain 2007; O’Donnell and Eggemeier 1986; Wickens
and Hollands 1999; Young and Stanton 2004; Wilson and
Eggemeier 2006), performance measures can be classi-
fied into two sub-categories: primary task and secondary
task measures. In primary task methods, the performance
of the operator is monitored and analysed according to
changes in primary task demands. Examples of common
measurement parameters are response and reaction time,
accuracy and error rate, speed and signal detection perfor-
mance, estimation time and tapping regularity (Tsang and
Vidulich 2006). In secondary task assessment procedures,

there are two tasks involved and the performance of the
secondary task may not have practical importance, but
rather may serve to load or to measure the MWL of
the operator performing the primary task (O’Donnell and
Eggemeier 1986).

The class of physiological measures includes bodily
responses derived from the operator’s physiology, and
relies on the assumption that they correlate with MWL.
They are aimed at interpreting psychological processes
by analysing their effect on the state of the body, rather
than measuring task performance or perceptual subjective
ratings. The principal reason for adopting physiological
measures is because they do not require an overt response
by the operator and they can be collected continuously,
within an interval of time, representing an objective way
of measuring the operator state (O’Donnell and Egge-
meier 1986).

2.1.1. Advantages and disadvantages of measurement
techniques

Each typology of measurement technique has its own
advantages and disadvantages and is suitable for different
contexts to different extents. Several criteria exist and have
been proposed as guidelines for selecting and developing
techniques (O’Donnell and Eggemeier 1986):

• sensitivity: the methodology must have a high reli-
ability in terms of sensitivity to changes in resource
demand or task difficulty and in terms of discrim-
ination capacity between significant variations in
workload;

• diagnosticity: the method should be highly diagnos-
tic in that it must be capable of indicating the sources
that cause variations in workload and of quantifying
the contributions by type or resource demand;

• intrusiveness: the methodology should not be intru-
sive or interfere with the performance of the task
of the operator, becoming a source of workload
itself (this property is referred to as obtrusiveness by
Wickens and Hollands (1999, Chapter 11));

• requirements: the methodology should require
the minimum possible equipment to avoid influ-
encing the operator’s performance. Muckler and
Seven (1992) refer to this as resource requirements;

• acceptability: the method should have a high
level of operator acceptance, showing at least
face validity,1 without being onerous. Muckler and
Seven (1992) refer to this as relative simplicity;

• selectivity: the method should be selectively sensi-
tive to differences in resource demand and not to
changes in factors unrelated to MWL (Wickens and
Hollands 1999, Chapter 11);

• bandwidth and reliability: the assessment procedure
should be reliable both within and across tests and
it should be capable of rapidly detecting transient
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changes in workload levels (Wickens and Hol-
lands 1999, Chapter 11). Wierwille and F. (1993)
and Muckler and Seven (1992) refer to this as
transferability and sufficient reliability, respectively,
highlighting the importance of the capability of a
technique to be used in different applications.

Subjective measures are in general easy to administer
and analyse. They provide an index of perceived strain
and multidimensional measures can determine the source
of MWL. However, the main drawback is that they can
only be administered post-task, thus influencing the relia-
bility for long tasks. In addition, meta-cognitive limitations
can diminish the accuracy of reporting and it is difficult to
perform comparisons among raters on an absolute scale.
However, they appear to be the most appropriate types
of measurement for assessing MWL because they have
demonstrated high levels of sensitivity and diagnosticity
(Rubio et al. 2004).

Performance measures can be divided into primary
task and secondary task measures. Primary task measures
represent a direct index of performance and they are accu-
rate in measuring long periods of MWL. They are capable
of discriminating individual differences in resource com-
petition. However, the main limitation is that they cannot
distinguish performance of multiple tasks that are executed
simultaneously by an operator. If taken in isolation, they do
not represent reliable measures, though if used in conjunc-
tion with other measures, such as subjective ratings, they
can be useful. Secondary task measures have the capac-
ity of discriminating between tasks when no differences
are detected in primary performance. They are useful for
quantifying the individual’s spare attentional capacity as
well as short periods of workload. However, they are only
sensitive to large changes in MWL and they might be
highly intrusive, influencing the behaviours of users while
interacting with the primary task.

Physiological measures are extremely good at mon-
itoring data at a continuous interval, thus having high
measurement sensitivity. They do not interfere with the
performance in the primary task. However, the main draw-
back is that they can be easily confounded by external
interference. Moreover, they require equipment and tools
that are often physically obtrusive and the analysis of data
is complex, requiring well-trained experts.

2.2. Aggregation strategies and computational aspects
As has been seen, several MWL measures exist, showing
how non-trivial the measurement problem is. For unidi-
mensional procedures, intuitively, the only dimension does
not need to be aggregated with any other dimension. How-
ever, for multidimensional procedures, there are issues of
how to uniformly represent those attributes believed to
influence MWL and how to aggregate them towards a
representative meaningful index that can be employed in

practice. In the NASATLX (Hart 2006), for example, sub-
jective ratings are expressed as natural numbers within the
range 0–100, while in the SWAT (Reid and Nygren 1988),
they are expressed as natural numbers within the discrete
range 1–3. These ranges and scales are commonly adopted,
but they are not the only choices for expressing a subjec-
tive judgement of a rater. For example, Moray (Neville
et al. 1988) has proposed the use of fuzzy sets,2 bor-
rowed from Fuzzy set theory (Zadeh 1965) as a means to
express judgements in a qualitative way but at the same
time formalising the use of verbal judgements. In Longo
and Barrett (2010a,b), the authors attempted to propose
an ad hoc formalisation of various attributes believed to
influence MWL. Some of these were modelled as natural
numbers, others ranged from negative to positive numbers
and others were designed as a taxonomy of sub-factors
organised as a unidirectional tree, where leaf nodes rep-
resent subjective judgements and internal nodes indicate
aggregation clusters. Clearly, different scales, non-uniform
attributes and different aggregation strategies are difficult
to share and employ across different MWL assessment
techniques. This issue can be observed by describing the
computational techniques adopted by some subjective mul-
tidimensional workload assessment procedures, as in the
following sections.

2.2.1. Simple aggregation
In the WP assessment procedure (Tsang and Velazquez
1996), the accounted workload dimensions are based upon
the multiple resource theory proposed in Wickens and
Hollands (1999) and Wickens (2008). Each dimension is
quantified through subjective rates (question) and subjects,
after task completion, are required to rate the proportion
of attentional resources used for performing a given task
with a value in the continuous range 0–1. A rating of 0
means that the task placed no demand on the dimension
being rated, while a rating of 1 indicates that the task
required maximum attention on that dimension. The ques-
tions behind the WP model are the ones in Appendix A5
(6–13) and the aggregation strategy employed is relatively
simple as it only sums these 8 rates d provided by a subject:

MWLWP : [0. . .8] ∈ �, MWLWP =
8∑

i=1

di.

Although this aggregation method is intuitive and sim-
ple, it implies that each dimension has the same strength in
affecting overall MWL. Additionally, it does not consider
external factors affecting the execution of the task, the state
of the operator and his/her previous knowledge of the task
being executed.

2.2.2. Weighted aggregation and preferences
In the NASATLX instrument (Hart 2006), the combination
of the factors believed to influence MWL is not based on
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a simple sum, rather on a weighted average. Each factor is
quantified with a subjective judgement (questions 1–5 in
Appendix A5 plus a further question related to physical
demand) whose weight is computed via a paired com-
parison procedure. Subjects are required to decide, for
each possible pair (binomial coefficient) of the six factors
employed by the procedure, ‘which of the two contributed
more to their workload during the task’, such as ‘Mental or
Physical Demand?’, ‘Physical Demand or Performance?’,
and so forth, giving a total of 15 preferences:(

6
2

)
= 6!

2!(6 − 2)!
= 15.

The weights w are the number of preferences, for each
dimension, in the 15 answer set (the number of times
that each dimension was selected). In this case, the range
is from 0 (not relevant) to 5 (more important than any
other attribute). Eventually, the final MWL score is com-
puted as a weighed average, considering the subjective
rating of each attribute di (for the 6 dimensions) and the
correspondent weights wi:

MWLNASATLX : [0. . .1] ∈ �,

MWLNASATLX =
(

6∑
i=1

di × wi

)
1
15

.

The procedure is probably the most adopted because of
its ease of application. However, the main issue associ-
ated with this aggregation approach is that, in the case
a new dimension has to be added, the paired compar-
ison procedure will become more tedious, as requiring
more judgements by subjects. With only 9 or 10 dimen-
sions, the comparisons required are respectively 36 and
45, which can be too cumbersome for an operator to be
performed. This issue has been acknowledged by vari-
ous authors who have proposed a modified version of the
NASATLX (Thomas 1991).

2.2.3. Ranking-based and correlation-based
aggregation

In the SWAT (Reid and Nygren 1988), three workload
attributes (time, effort and stress) are modelled using dis-
crete numbers in the range 1–3. Each number has an asso-
ciated description. A pre-task procedure requires subjects
to rank 27 cards, yielded from the combinations of the three
dimensions at the three discrete levels, beginning with the
card representing the lowest workload and ending with the
card representing the highest workload. The main reason
for completing the card sort procedure is to generate data
that are used to produce a scaling solution which is tailored
to the perception of workload by the group of subjects or
an individual. This step is very important as it differentiates
SWAT from other subjective assessment techniques. The
subsequent step, called prototyping, analyses the sorted

card data to determine the degree of agreement among the
participants (raters), for a certain experiment on a given
task. In this step, Kendall’s coefficient of concordance (W)
is employed, a non-parametric statistic used for assessing
agreement among raters. Kendall’s W ranges from 0 (no
agreement) to 1 (complete agreement). Assuming that card
i is given the rank Ri,j by the subject number j, where there
are in total n cards (27 in the SWAT model) and m subjects,
then the total rank given to card i is Ri = ∑m

j =1 ri,j , and the
mean value of these total ranks is R = 1

2 m(n + 1). The sum
of squared deviations S is defined as S = ∑m

i=1(Ri − R)2,
and then Kendall’s W is defined as

W = 12S
m2(n3 − n)

.

If the statistic W is 1, then all the subjects (raters) have been
unanimous, and each respondent has assigned the same
order to the list of cards. If W is 0, then there is no overall
trend of agreement among the subjects. Intermediate values
of W indicate a greater or lesser degree of unanimity. In the
SWAT procedure, a single scale is developed by averag-
ing data if W > 0.75. However, depending on the typology
of the study being conducted, scales for individual sub-
jects can be developed, in the case individual differences
have to be accounted. Thus, for instance, when W < 0.75,
homogeneous subgroup scales can be developed. In the
original SWAT (Reid and Nygren 1988), the authors have
developed six hypothetical orderings, based on the relative
importance of each attribute. The subsequent step consists
in the application of the Spearman correlation coefficient
between the sorting provided by the subject and the hypo-
thetical ordering. This is aimed at deciding which of the six
subgroups is more suitable, meaning which group a subject
belongs to. Once the number of groups has been deter-
mined, a conjoint analysis is performed in order to generate
a final workload scale bounded between 0 and 100.

MWLSWAT : [0. . .100] ∈ ℵ.

As it is possible to note, SWAT relies on a very cum-
bersome and tedious procedure for subjects to obtain
the workload ratings. Although it has been demonstrated
that it has high diagnosticity and content validity (Rubio
et al. 2004; Vidulich and Tsang 1986), the procedure is
not straightforward to understand even by different MWL
designers. Eventually, it is rather an ad hoc model that
cannot be easily expanded with additional dimensions
believed to affect MWL.

2.2.4. Ad hoc aggregations and frameworks
Hancock and Chignell (1988) employed the construct of
MWL as a means for investigating the capability of oper-
ators interacting with machine through interfaces. Their
theoretical formulation of MWL includes the notions of
skill of operators, the time pressure they are exposed to and
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the effort exerted for the execution of the task. Being psy-
chology their main research field, the authors were inspired
by the proposal of a computational model that included
a power function to represent and assess MWL, formal-
ism widely applied for fitting psychological data. Their
approximation of overall workload may be described by
the following formula:

MWLHC = 1
ets−1 ,

where MWLHC is the overall workload level, e is the effort
exerted by an individual operator, t is the actual time avail-
able for action and s indicates the operator’s skill degree.
The issues associated with this formulation of workload
are various. Firstly, as also agreed by the authors (Han-
cock and Chignell 1988), the use of the function does not
solve the problem of workload assessment as the degree
of effort (e), skill (s) and temporal constraint (t) should be
quantified and scaled using the same data range. Secondly,
the formalism is not extensible: it is hard to be expanded
if further factors are considered. Eventually, it does not
account for the potential interactions that might occur
between workload factors and their theoretical relation-
ships. Other ad hoc solutions have been presented in Longo
and Barrett (2010a,b). However, the aggregation strategies
described so far are sufficient for having an almost com-
plete panoramic view of all the possible techniques for
MWL representation and assessment.

3. Discussion on modelling human MWL
The general consensus is that any single definition and
assessment procedure is not capable of providing full
information and entirely describing MWL (Xie and Sal-
vendy 2000). As a construct, MWL is certainly complex
and multidimensional and its assessment is not straightfor-
ward. Several definitions have been proposed by various
researchers from different backgrounds and influences, and
they seem to be intuitively appealing. However, each of
them considers a different pool of workload factors, some-
times influenced by the context of application, other times
affected by the designer’s background, knowledge, beliefs
and choices, or simply driven by intuition. To further
complicate matters, each assessment technique aggregates
attributes differently, employing different scales, weights
or ad hoc computational techniques. Workload attributes
can be static or dynamic, reflecting MWL over a period of
time or at a single moment. In addition, these attributes
might be related or at least may not always be totally
independent of each other. These relationships can be
theoretical, such as that between the attributes ‘demand’
and ‘performance’ (O’Donnell and Eggemeier 1986), or
empirically demonstrated, such as the U-shaped relation-
ship between ‘arousal’ and ‘performance’ (Yerkes and
Dodson 1908). However, none of the current assessment

techniques includes a strategy of handling these theoreti-
cal relationships and the inconsistencies that might emerge
from their interaction. According to Annett (2002), the
validity of individual attributes, and more generally com-
plex constructs, lies especially in their relationships with
the other attributes of interest in the context of a specific
situation. The suggestion is that the validity of measures,
especially subjective ratings, in a given context, is essen-
tially the determination of the relationships with other
measures of interest. These may be behavioural or phys-
iological, subjective or objective as well as the expression
of intentions or opinions. A measure is rarely valid in iso-
lation, but rather it gains validity as a predictor of some
other measures or observations. Intuitively, more work-
load attributes and their interaction should provide more
insights than one single non-interactive attribute. How-
ever, if the interaction of attributes is acknowledged by
a given assessment technique, a method for resolving
inconsistencies that might arise from their interaction is
needed. To facilitate the understanding of MWL and the
issues associated with its representation and assessment,
we present a summary of the core tenets found in the
literature.

• Multidimensionality: MWL is believed to be a
multidimensional construct influenced by many
factors with both static and dynamic properties
(Hart and Staveland 1988; Cain 2007). Factors can
relate to one of the limited expendable resources
of human processing capacity and can be unbal-
anced during task execution, remaining unaffected,
or becoming overloaded or underloaded (Wick-
ens and Hollands 1999; Wickens 2008; Tsang and
Velazquez 1996).

• Hypotheticality: MWL is believed to be a hypotheti-
cal construct. It cannot be detected directly, but only
through the measurement/aggregation of some other
factors believed to correlate highly with it (Gopher
and Donchin 1986).

• Context-awareness: MWL is a context-aware con-
struct that can be applied in single- or multi-task
environments. A task might be affected by exter-
nal factors or by other concurrent tasks (Eggemeier
et al. 1991; Wilson and Eggemeier 1991; Xie and
Salvendy 2000).

• User-specificity: MWL is a user-specific construct,
influenced not only by factors such as previous task
knowledge, skills and experience but also by a per-
son’s state, intentions and the effort he/she devotes
to it (Hart and Staveland 1988).

• Task-specificity: MWL is task specific, influenced by
factors such as task demands in terms of required
cognitive resources, and objective or perceived task
difficulty (Hart and Staveland 1988; Tsang and
Velazquez 1996; Wickens 2008).
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• Relationality: the dimensions considered within
a MWL assessment technique might be related,
monotonically or not, mitigating or enhancing oth-
ers’ strength (Cain 2007).

• Preferentiality: a factor considered within a MWL
assessment technique might be preferred, thus hav-
ing a greater influence on overall MWL (Reid and
Nygren 1988; Hart 2006).

• Subjectivity: assessments of MWL are characterised
by a degree of subjectivity. This refers to the design
choices adopted for the development of an assess-
ment procedure and the consideration of which
factors to account for and how to aggregate them.

• Uncertainty: representing MWL is intrinsically
uncertain. The selection and quantification of the
factors believed to influence it are non-trivial prob-
lems. Selection is problematic because of disagree-
ment among researchers on how to define MWL
and how to measure it (Cain 2007). The lat-
ter refers to the accuracy of the measurement of
each factor. In particular, in the case of subjec-
tive measures, quantifications are often made under
uncertainty.

• Partiality: the quantification of the factors accounted
for in a MWL assessment technique may be partial
or incomplete. This mainly refers to objective mea-
sures (e.g. physiological) that can be incompletely
gathered by the devices/sensors used. Additionally,
factors might be correctly measured in a laboratory
but only partially measured in a practical setting,
thus invalidating the theoretical model in the event
that it strictly requires them (Kramer, Sirevaag, and
Braune 1987).

• Computational aggregation: the factors believed to
influence MWL might be aggregated towards a sin-
gle index employable for design purposes. Computa-
tional technique can be based on a simple sum Tsang
and Velazquez (1996) or on a weighted average of
factors (Hart and Staveland 1988; Hart 2006). Oth-
ers can use ranking or correlation-based aggregation
(Reid and Nygren 1988) or ad hoc, not-extensible
formulas (Hancock and Chignell 1988).

The aforementioned tenets represent the starting points
for the design of a new defeasible framework for MWL
representation and assessment. In this study it is argued
that, in order to facilitate an understanding of the construct
of MWL and its application, an extensible/open frame-
work, able to handle several workload factors and their
interrelationships and capable of resolving the potential
inconsistencies that can derive from their interaction, is
needed. This solution should account for the uncertainty
that characterises the definition of each factor and provide
clear aggregation semantics to merge these factors mean-
ingfully. This new perspective on MWL representation and

assessment might breathe new life into this fascinating area
of research.

4. MWL as a defeasible phenomenon
According to state-of-the-art research studies in the field,
MWL is a complex multidimensional construct built upon
a network of pieces of evidence. This network can vary
according to the knowledge base of a workload designer
elicited in a practical context. It is composed of those fac-
tors and their hypothetical or demonstrated relationships
believed to be useful for assessing the MWL of a user per-
forming a given task in a given context. Different MWL
factors might support different and contradictory levels of
MWL, creating inconsistent scenarios. To clarify these dif-
ficulties, let us consider an illustrative reasoning process
that a designer might follow to assess the MWL imposed
by a web-based interface on a skilled user after interacting
with it and performing a given task.

The ‘mental demand’ of the task perceived by the user
was poor, thus low MWL can be inferred. If this is the
only evidence available, the majority of MWL designers
would likely infer the same conclusion. However, if it is
also known that ‘interruptions’ occurred during task exe-
cution, then the previous conclusion could be retracted
inferring higher MWL. Yet, if it is also known that the
user was highly skilled with respect to the task, addi-
tional evidence is now available and a lower degree of
MWL could be inferred, retracting again the previous con-
clusion. Eventually, if the overall task ‘performance’ was
perceived being poor, an inconsistency now arises and the
conclusion could be retracted again to a higher degree
of MWL because low performance is believed to be a
sign of high workload. Although the task was not demand-
ing and the user was skilled, external distractions might
have played a significant role in increasing the comple-
tion time, minimising performance. The designer might
eventually infer a relatively high degree of MWL because
‘time’ and ‘distractions’ are preferred over ‘skill’ and
‘task complexity’.

From the aforementioned illustrative (and arguable)
reasoning process, it is plausible to assume the following:

• Assumption 1: MWL is a complex construct built
upon a network of pieces of evidence with different
strength.

• Assumption 2: accounting the relationships of these
pieces of evidence and resolving the inconsisten-
cies arising from their interaction are essential in
modelling MWL.

In formal logics, these assumptions are the key compo-
nents of a defeasible concept: a concept built upon a set
of interactive pieces of evidence, the reasons, that can
become defeated by additional reasons. The term ‘defeasi-
ble’ comes from the multi-disciplinary fields of defeasible
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reasoning (DR) aimed at studying the way humans reason
under uncertainty and with contradictory and incomplete
knowledge (Pollock 1987). A reasoning process is defea-
sible when accounted arguments are rationally compelling
but not deductively valid. In other words, DR is a form of
reasoning built upon reasons that are defeasible, not infalli-
ble and a conclusion or claim, derived from the application
of previous knowledge, can be retracted in the light of new
evidence. DR is also known as NMR because of the techni-
cal property (non-monotonicity) of the logical formalisms
that are aimed at modelling DR activity (Baroni, Guida,
and Mussi 1997). A computational implementation of DR
is provided by AT, a new important multi-disciplinary topic
in artificial intelligence that incorporates element of philos-
ophy, psychology and sociology and that studies how peo-
ple reason and express their arguments. It systematically
investigates how arguments can be built, sustained or dis-
carded in a DR process and the validity of the conclusions
reached through resolutions of potential inconsistencies.
AT has been proved useful for implementing DR activities
and modelling complex constructs (Toni 2010). Argumen-
tation systems are based upon the notion of argument
and around an associated notion of logical consequence.
This notion is monotonic: new information cannot inval-
idate existing arguments as constructed, but can only be
responsible for the generation of new counterarguments.
Argumentation systems are typically constructed upon an
underlying logical language and are generally built on four
layers (Longo and Dondio 2014):

(1) internal definition of arguments (monological
structure),

(2) definition of an argumentation framework intro-
ducing conflicts (relations) among arguments (dia-
logical structure),

(3) validation of defeat (valid) relations among argu-
ments (activation/elicitation of an argumentation
framework),

(4) definition of the arguments’ dialectical status
(acceptability semantics for computation of argu-
ments justifications).

The definition of an argument means internally assign
a structure to it (Toulmin 1958). The focus is on the
logical connection between the different elements of an
argument and how a set of premises is linked to a con-
clusion in a monological structure (Bentahar, Moulin, and
Bélanger 2010). The definition of conflicts, often replaced
by the terms attacks or counterarguments, is aimed at
connecting arguments in a dialogical structure. Dialogi-
cal models have driven argument-based approaches to be
referred to as DR systems incorporating defeasible argu-
ments. An argument is not a final absolute reason for the
conclusion it supports, instead it is open to attacks by
other arguments (Dung 1995). The validation of defeats
relations refers to the identification of those conflicts that

seem to be valid and credible. Eventually, the definition
of the dialectical status is aimed at assigning a justifica-
tion status to each argument. A fifth layer can be added
and a final conclusion, claim or decision can be drawn
by accruing arguments according to their status. In line to
the multilayered schema, the following section is aimed at
designing a defeasible framework for MWL representation
and assessment. This framework incorporates the afore-
mentioned fifth layer to produce a usable numerical index
of MWL.

5. Design
In the following subsection, a framework for MWL rep-
resentation and assessment is designed according to the
multilayered schema of the previous section. Each layer is
described in detail providing illustrative examples.

5.1. Layer 1 – Definition of the monological structure
of arguments

The knowledge base of a designer in relation to MWL
can be initially represented as a set of natural language
propositions as in the following examples:

(1) ‘the mental demand required by a task is linearly
related to MWL: the higher the demand, the higher
the MWL’,

(2) ‘given a low degree of performance there is a rea-
son to believe the MWL exerted by a user on a
given task is high’,

(3) ‘although the task can be highly mentally demand-
ing, if the user devoted low effort and has a high
degree of skills, there is a reason to believe MWL
is low’.

Each of the aforementioned proposition can be seen as
an argument: a structure composed of a set of premises,
each related to a given workload attribute (e.g. men-
tal demand) and a conclusion derivable by applying an
inference rule →.

Argument: premises → conclusion

Informally, possible translations of the earlier propositions
into structured arguments might be

(1) a: Low mental demand → Underload,
b: Medium mental demand → Fitting load
c: High mental demand → Overload

(2) d: Low performance → Overload
(3) e: Low effort and high skill → Underload

Each premise can be seen as a piece of knowledge that
alone or jointly to other premises is tentatively linked to a
degree of MWL believed to be appropriate. In other words,

GoughH
Cross-Out
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Figure 1. Multilayered argument-based framework for human MWL.

Figure 2. Possible membership functions for the fuzzy set
‘Performance’ and its fuzzy subset ‘Low’.

a set of premises represents a set of reasons to believe
that MWL is likely to fall within a certain region (under-
load, fitting load or overload). In order to computationally
represent the vague linguistic terms associated with each
premise of an argument (e.g. low or high) here the proposal
is to use membership functions and the notion of degree of
truth (Zadeh 1965).

DEFINITION 1 (Membership function) For any set X, a
membership function on X is any

f : X → [0, 1] ∈ �.

Membership functions on X represent fuzzy subsets of X.
For an element x of X, the value f (x) is called the ‘degree
of truth’ of x in the fuzzy set and quantifies the grade of
membership of x to the fuzzy set X. The set of membership
functions defined over X is defined as

MFX = {f |f : X → [0, 1] ∈ �}.

Possible membership functions for describing the
premise of the argument ‘d’ are shown in Figure 2. Each
function, once elicited, produces a degree of truth as per
Definition 1.

An argument might contain multiple premises; thus
multiple degrees of truth can be produced. It turns out that
in order to obtain a representative degree of truth from a
set of premises of an argument, an aggregation strategy is
needed. Here, the proposal is to average them. This repre-
sentative value has to be tentatively linked to a conclusion,
which means an estimation of MWL. In the literature, the
overall spectrum of MWL is often separated by two red
lines, theoretical thresholds that indicate when MWL is
too low or too high (Wierwille and Eggemeier 1993; Colle
and Reid 2005). Red lines (RL) can be set by a designer,
according to his knowledge applied in a given context or
they could be automatically learnt. They define three not
overlapping regions of MWL: underload (U), fitting (opti-
mal) load (F) and overload (O). Each region has a precise
influence on user performance, attention and reaction time
as highlighted in Figure 3.

In this study, the overall spectrum of MWL is proposed
to be a number in the continuous range [0. . .100] ∈ �;
thus, the two RL are numbers lying within this range.

DEFINITION 2 (Redlines) RLU
F , RLF

O : [1. . .100] ∈ ℵ,
with 0 < RLU

F < 50 < RLF
O < 100.

With a method (average) for computing a representa-
tive degree of truth of the premises of an argument, now
the goal is to formally model its conclusion. The proposal
here is to use a function that, given a representative degree
of truth of an argument’s premises, infers one unique index
of MWL. In formal terms, this function has to be a strict
monotonic function.3 Although it would be intuitive to
design strict monotonic functions for the regions of under-
load and overload, this is not the case for the region of
fitting workload. In fact, a designer might propose a trian-
gular or a parabolic (symmetric) function with the top-peak

Figure 3. Disadvantages associated with low/high MWL and advantages of optimal workload.
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Figure 4. Workload spectrum separated into four regions by 4
illustrative dichotomies and by 2 RL.

around 50 and with two bottom-peaks in proximity of the
two RL. However, this proposal violates the definition of
a strict monotonic function because given one input, two
outputs are possible. In order to solve this issue, it is rea-
sonable to split the fitting workload region (F) into two
sub-partitions (fitting workload lower F− and upper F+).
Thus, the emerging configuration requires a MWL designer
to define four functions, now on referred to as workload
dichotomies4 as in Figure 4.

DEFINITION 3 (Workload dichotomies) A workload dich-
otomy is a strict monotonic function:

f : [0. . .1] ∈ � → [0. . .100] ∈ �

such that ∀x, y with x ≤ y, then f (x) < f (y). Four
dichotomies are defined using RL:

• fU : [0. . .1] → [0. . .RLF
U)

• fF− : [0. . .1] → [RLF
U. . .50)

• fF+ : [0. . .1] → [50. . .RLO
F ]

• fO : [0. . .1] → (RLO
F . . .100]

A possible definition of the workload dichotomies is
shown in Figure 4.

Using membership functions for premises and dichoto-
mies for conclusions, the argument has now a complete
structure and can be formally defined.

DEFINITION 4 (Argument) An argument Ar is a tenta-
tive inference → that links one or more premises Pi to a
conclusion C

Ar : P1, . . ., Pn → C,

where each premise Pi is a membership function and the
conclusion C is a workload dichotomy fC.

Eventually, to assess an index of MWL of an argument,
the proposal is to use the argument’s degree of truth (aver-
age of degrees of truth of its premises) as the input of the
workload dichotomy associated with its conclusion.

DEFINITION 5 (Argument’s degree of truth) Given an argu-
ment Ar, its degree of truth Ardeg coincides with the
average of the degrees of truth of its premises

Ardeg :
1
n

∑
Pi ∈ Pi,...,Pn

Pi.

The average is an intuitive aggregation strategy that
can be used for the unification of more premises; however,
other approaches might be considered in the future, such as
the fuzzy AND/OR unifications.

DEFINITION 6 (Argument’s MWL) Given an argument
Ar, its degree of truth Ardeg and the associated workload
dichotomy fC, the MWL inferred from Ar is

ArMWL = fC(Ardeg).

In order to bring clarity to the representation of the
internal structure of arguments, and the MWL assessed by
each of them, consider Example 1.

Example 1

• Ar: Low effort ∧ high skill → underload
• Workload attributes: Effort (E), Skill (S)
• Possible inputs: E = 25, S = 85
• Premises: f low

E ∈ MFE ∧f high
S ∈ MFS

• Conclusion: fU
• ARdeg = (f low

E (25) + f high
S (85))/2

• ARMWL = fU(ARdeg)

5.2. Layer 2 – Definition of the dialogical structure of
arguments

Monological models, aimed at internally represent an argu-
ment are complemented by dialogical models, focused on
the relationships among arguments. The latter investigates
the issue of invalid arguments that appear to be valid
(fallacious arguments). According to a previous similar
study (Matt, Morgem, and Toni 2010), arguments might
be classified as

• forecast when in favour or against a certain claim
(workload dichotomy), but justification is not infal-
lible;

• mitigating when defeating forecast or other mitigat-
ing arguments, undermining their justification.

Forecast arguments are tentative defeasible infer-
ences: they can be seen as justified claims concerning
the expected or the anticipated behaviour of the tar-
get (MWL index). They represent hints or clues given
by a designer under uncertainty and not mathematical
proofs. The definition of forecast argument coincides with
Definition 4. Mitigating arguments are used to express
uncertainties concerning the validity of other arguments.
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DEFINITION 7 (Mitigating argument) A mitigating argu-
ment A is an undermining inference ⇒ that links a set
or premises to an argument B, negating its validity. A :
P1, . . ., Pn ⇒ B where each premise Pi is a membership
function and the conclusion is another argument either
forecast or mitigating: B ∈ ArF ∪ ArM .

Notation: Now on, the sets of forecast and mitigating
arguments defined by a designer are, respectively, denoted
as ARF and ARM .

The notion of mitigating argument allows a designer
to model possible conflicts between arguments. Conflict,
often replaced by the terms attack or counterargument, is
an important notion for DR. Three types of conflicts have
emerged in the literature (Prakken 2011): undermining,
rebutting and undercutting.

A rebutting attack occurs when a forecast argument
negates the conclusions of another argument.5 A rebuttal
attack is symmetrical, so it holds that if an argument A
rebuts B, then also B rebuts A.

DEFINITION 8 (Rebutting attack) Given two distinct fore-
cast arguments A, B ∈ ARF with A : P1, . . ., Pn → c1, B :
P1, . . ., Pj → c2, A is a rebuttal of B, denoted as (A, B) if
c1 logically contradicts c2.

Property 1 A rebuttal attack is symmetrical so it holds
that iff (A, B), then ∃(B, A)

An undermining attack occurs when an argument is
attacked on one of its premises, by another argument
having a conclusion that negates that premise.6

An undercutting attack occurs when the target argu-
ment uses a defeasible (tentative) inference rule; thus; it
can be attacked on its inference by arguing that there is
a special case that does not allow the application of the
defeasible inference rule (Pollock 1974, 1987). In contrast
to rebutting, an undercutting attack does not negate the
conclusion of its target argument, rather it argues that the
target’s conclusions are not supported by its premises and,
as a consequence, cannot be drawn. For simplicity, just
undercutting attacks are used in this research study.

DEFINITION 9 (Undercutting attack) Given a mitigating
argument A ∈ ARM that challenges some or all of the infor-
mation used to construct a forecast or another mitigating
argument B ∈ ARF ∪ ARM , A undercuts B and it is indi-
cated as (A, B) when A claims there is a special case that
does not allow the application of the inference rule of B.

In the definitions of rebutting, undercutting and under-
mining, the attacker and the attacked arguments must be
distinct. This excludes situations of self-defeating. Here,
it is assumed that a workload designer does not deal with
self-defeating propositions. The set of arguments, forecast

and mitigating (nodes) as well as the set of attacks, rebut-
ting and undercutting (links) can be seen as a graph, now
on referred to as argumentation framework. This repre-
sents a knowledge base of a designer that can be elicited
for assessing MWL.

5.3. Layer 3 – Activation of argumentation framework
Once the knowledge base of a designer is formally
translated into an argumentation framework, it can be
now elicited with objective inputs. These inputs activate
designed arguments with certain degrees of truth, making
them more or less credible. In turn, also the credibility of
the designed attacks is affected, thus few questions raise:
What are the arguments that are credible enough? what are
the proper attacks? When is an attack from a less credible
attacker to a more credible attacked argument still valid?
In other words, two key issues emerge: how to consider
an argument strong enough to be part of an argumenta-
tion framework and (2) how to consider an attack powerful
enough in order to succeed. These issues are well known
in the arena of computational models of arguments that use
the notion of strength both for arguments and attacks and
their resolution is far from being trivial. In detail, in rela-
tion to attacks, we argue that if an attacker’s degree of truth
is higher than the degree of truth of the attacked argument,
there is no doubt the attack can be considered a proper one.
Even if the difference in their degrees of truth is minimal,
the attack still makes sense because it is conceptualised
by a designer. However, if an attacker has a lower degree
of truth than the attacked argument, the issue is when to
consider it a proper attack and when to disregard it.

The proposal here is to use the degree of truth
of an argument, as in Definition 5, for the two prob-
lems, jointly with two reluctancy thresholds. These
thresholds respectively indicate how reluctant a designer
would be to disregard: (1) an argument (and all its
outgoing/incoming attacks) and (2) an attack (rebut-
ting/undercutting/undermining). The application of these
reluctancy thresholds defines the set of activated argu-
ments and the set of activated attacks. These thresholds,
applicable jointly with the notion of degree of truth, have
been designed for a finer-grained level of investigation of
the elicitation of a knowledge base in relation to MWL.
A similar proposal has been presented in another study
(Dunne et al. 2011). However, future works will be more
focused on these thresholds.

DEFINITION 10 (Argument reluctancy threshold) The
argument reluctancy threshold RelArg : [0. . .1] ∈ � indi-
cates the minimum degree of truth an argument must
have to be activated and included in an argumentation
framework.7

DEFINITION 11 (Set of activated arguments) Given a set
Args of designed arguments and the argument reluctancy
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threshold RelArg, the set of activated arguments is

Argact =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a|a ∈ Args ∧ (1 ≥ adeg ≥ RelArg)

if a ∈ ArF ,
a|a ∈ Args ∧ (1 ≥ adeg, bdeg ≥ RelArg)

if a : P1, . . ., Pn → b ∈ ArM .

In simpler words, for forecast arguments, their degree
of truth has to be equal or higher than the value specified
by the argument reluctancy threshold, while for mitigating
arguments, the degree of truth of both their premises and
the attacked argument has to be equal or higher than the
argument reluctancy threshold.

DEFINITION 12 (Attack reluctancy threshold) The attack
reluctancy threshold RelAtt : [0. . .1] ∈ � indicates the
reluctancy to tolerate an attack from a less to a more
credible argument.8

DEFINITION 13 (Set of activated attacks) Given the set
Argact of activated arguments, a set Atts of attack rela-
tions, the attack reluctancy threshold RelAtt and Abs the
absolute function. the set of activated attacks is defined as
Attackact : {(a, b)|(a, b) ∈ Atts ∧ a, b ∈ Argact ∧ (adeg ≥
bdeg ∨ 0 ≤ Abs(adeg − bdeg) < 1 − RelAtt)}.

The set of activated arguments and the set of activated
attacks define a new argumentation framework which is
equal or smaller than the framework emerged at the end of
layer 2.

5.4. Layer 4 – Execution of acceptability semantics
In order to investigate the potential inconsistencies that
might emerge from the interaction of activated arguments
(through the activated attacks), Dung-style acceptability
semantics are applied (Dung 1995). The underlying idea is
that, given a set of arguments, where some of them defeat
(attack) others, a decision is to be taken to determine which
arguments can ultimately be accepted. Merely looking at
an argument’s defeaters to determine the acceptability sta-
tus of an argument is not enough: it is also important to
determine whether the defeaters are defeated themselves.
An argument B defeats argument A if and only if B is a rea-
son against A. If the internal structure of arguments and the
reasons why they defeat each other are not considered, an
abstract argumentation framework emerges (Dung 1995).

An abstract argumentation framework (AAF) is a pair
〈Arg, attacks〉 where

• Arg is a finite set of (abstract) arguments,
• attacks ⊆ Arg × Arg is binary relation over Arg.

Given sets X , Y ⊆ Arg of arguments, X attacks Y if
and only if there exists x ∈ X and y ∈ Y such that (x, y) ∈

Figure 5. Argument reinstatement.

attacks. The question is which arguments should ultimately
be accepted. In Figure 5, A is defeated by B, and apparently
A should not be accepted since it has a counterargument.
However, B is itself defeated by C that is not defeated by
anything, thus C should be accepted. But if C is accepted,
then B is ultimately rejected and does not form a reason
against A anymore. Therefore, A should be accepted as
well. In this situation, it is said that C reinstates A. Due
to this issue of reinstatement, a formal criterion that deter-
mines which arguments of an AAF can be accepted is
needed. In the literature, this criterion is known as seman-
tics: given an AAF, it specifies zero or more sets of accept-
able arguments, called extensions. Various argument-based
semantics have been proposed (Baroni, Caminada, and
Giacomin 2011), but here the focus is on the preferred
semantics proposed in Dung (1995). A set X ⊆ Arg of
argument is

• admissible iff X does not attack itself and X attacks
every set of arguments Y such that Y attacks X ;

• complete iff X is admissible and X contains all argu-
ments it defends, where X defends x if and only if X
attacks all attacks agains x;

• grounded iff X is minimally complete (with respect
to ⊆ );

• preferred iff X is maximally admissible (respect to
⊆ ).9

Preferred semantics can produce one or more exten-
sions (set of arguments). In the case just one extension
is produced, this coincides with the grounded extension.
However, in the case multiple extensions are computed,
a quantification of the credibility of each extension is
needed. Here, it is argued that the cardinality of an exten-
sion is an important factor: intuitively, an extension with a
higher cardinality can be seen as more credible than exten-
sions with lower cardinality as it contains more pieces of
evidence that are consistent with each other (extension:
a conflict-free set of arguments). However, considering
just the cardinality might be reductive in the case, for
instance, an extension with several arguments has a com-
bined degree of truth lower than an extension containing
fewer arguments. For these reasons, the proposal is to
adopt the cardinality of an extension jointly with the degree
of truth of its arguments to quantify its credibility.

DEFINITION 14 (Acceptable extension credibility) Given
the set of activated arguments Argact, an acceptable exten-
sion E, as computed by the Dung-preferred acceptability
semantics and Card the cardinality function, E’s credibility
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is defined as

Ecred :
Card(E)

Card(Argact)
+ 1

Card(E)

∑
Arg ∈ E

Argdeg.

5.5. Layer 5 – Computation of MWL
Given a set of extensions, as computed by the preferred
acceptability semantics, and their quantified credibility, the
final step is aimed at inferring a final MWL index. The
most credible extension could be used as the most cred-
ible and reasonable point of view for assessing MWL.
One preferred extension should emerge as the most cred-
ible, but in the case multiple equally credible extensions
are computed by an acceptability semantics (preferred in
this study), all are considered to assess a final crisp index
of MWL. As defined before, two typologies of arguments
can exist within an extension: forecast and mitigating.
However, just forecast arguments support a conclusion
(workload dichotomy) that can be considered to infer a sin-
gle MWL index. Mitigating arguments already played their
role (through their attacks against other arguments), con-
tributing to the computation of the acceptable extensions.

DEFINITION 15 (Overall MWL index) Given a set AE
containing the n computed preferred acceptable exten-
sions, the set SE containing the most credible extension/s
SE = {A | A ∈ AE ∧ Acred = max(E1

cred, . . ., En
cred) with

E1, . . ., En ∈ AE}, the overall index of MWL : [0. . .100] ∈
� is

MWL =
∑
A∈SE

(∑
arg∈A argc(argdeg)

Card(A)

)
1

Card(SE)
,

with argc being the workload dichotomy of a forecast
argument and Card the cardinality function.

The final index of MWL is assessed using the degree
of truth of each argument, in the acceptable preferred
extension, as the input of the same argument’s workload
dichotomy. Each output represents a partial MWL assess-
ment that is then averaged with the other values computed
for the other arguments in the same extension. In case mul-
tiple equally stronger extensions exist, the aforementioned
process is repeated for each of them and computed values
are averaged again.

6. Experiments and evaluation
In order to evaluate the designed argument-based frame-
work for MWL, the knowledge base of the author of this
study (Appendix 1) has been translated into arguments
and attack relations as per layers 1 and 2 of the multi-
layer schema of Figure 1. The emerging argumentation
framework (Appendix 2, now on referred to as MWLdef or
MWLNI

def when interaction of arguments is not accounted
– no attacks) has been elicited performing a user study.

Computed MWL indexes have been compared against the
indexes computed with two well-known subjective MWL
assessment techniques:

• the NASATLX (Hart 2006), developed by the
Human Performance Group at NASA.

• the WP (Tsang and Velazquez 1996), based upon the
multiple resource theory (Wickens 2008).

In particular, three of the properties of Section 2.1.1
have been compared: the degree of sensitivity, diagnostic-
ity and validity. As previously mentioned, these properties
are well known in the literature of MWL and they have
been proposed as guidelines for evaluating MWL assess-
ment techniques (O’Donnell and Eggemeier 1986; Rubio
et al. 2004; Tsang and Velazquez 1996; Zhang and Lux-
imon 2005). Table 1 underlines each property and the
formal statistical tool adopted to test it.

6.1. Participants and procedure
A sample of 40 people fluent in English volunteered to
participate in the study. They were divided into 2 groups
of 20 each. Ages ranges from 20 to 35 years; there were
20 females and 20 males (Total – Avg.: 28.6, Std. 3.98;
Group A – Avg. 28.35, Std.: 4.22; Group B – Avg: 28.85,
Std.: 3.70), all with a daily Internet usage of at least
2 hours. Subjects were instructed about the study and were
required to sign a consent form. Participants were required
to execute a set of 11 information-seeking web-based tasks
(Table A4 in the appendix) as naturally as they could,
over 2 or 3 sessions of approximately 45

70 minutes each,
on different non-consecutive days. Tasks differed in terms
of difficulty, time pressure, time-limits, and interruptions.
Two groups were created because the tasks were executed
on web-based interfaces, sometimes altered at run-time and
sometimes not (as in Table A3). This was done because
at the end of the study a statistical analysis of the MWL
imposed by the original and altered interfaces was per-
formed. However, the outcomes of this analysis are not
presented in this paper. Subjects in group A were different
to the subjects in group B. Participants could not interact
with examiners during the tasks. Although the 11 tasks
were the same across the two groups, they were performed
on two different web interfaces. The order of the tasks
administered over the sessions was the same for all the par-
ticipants (8, 1, 3, 10, 9, 6, 11, 4, 5, 2, 7). In each experiment,
a computerised questionnaire (Table A5 in the appendix)
was administered immediately after task completion.10 In
addition, a pair-wise comparison of the questions required
by the NASATLX instrument was performed.11 Each ques-
tion had to be answered with a value within the range
0–100, by moving a slider on a web page. The default
value was 50 and the range was divided into three parts
of equal size, guided by two separation lines, generating 3
regions (low, medium and high). Each answer represents
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Table 1. Properties for evaluating different MWL assessment techniques and associated statistical tests.

Property/method Description/goal

Sensitivity The reliability to detect changes in resource demand, task difficulty, user features and environmental
influence

ANOVA + Post Hoc To find out to what extent the indices of MWL varied as a function of objective changes and
manipulation of tasks

Diagnosticity The capacity to quantify the contributions to MWL by the type, resource demand or the human
operator capabilities

Multinomial logistic regression To determine to what extent MWL attributes allow discrimination between tasks
Validity The capacity to measure MWL
Pearson/Spearman Convergent validity: to determine to what extent the model measured what is supposed to be

measured
Concurrent validity: to determine to what extent the model is able to explain objective performance

measure

an objective input (numerical value) and can be employed
to compute the degree of truth of one or more arguments.

6.2. Results
6.2.1. Sensitivity
In order to test the sensitivity of MWLdef, a one-way analy-
sis of variance (ANOVA) is adopted to determine whether
there are any significant differences between the means of
the 11 independent tasks . The assumptions behind the pro-
cedure are met: continuity of dependent variables, their
independency, the absence of outliers, their normality and
the homogeneity of variance. In details, homogeneity of
variance was verified using Levene’s test that was positive
for the WP and the MWLdef but not for the NASATLX
instrument. In the last case, a Welch F-test is added to the
ANOVA procedure and the Games–Howell post hoc tests
were carried out instead of the Tukey post hoc tests. In the
other cases (WP, MWLdef) the classical ANOVA procedure
was adopted, and the Tukey post hoc test was conducted
as all the assumptions were met. In general, the ratio of
between-groups (tasks) and within-groups (participants)
was higher with the NASATLX (Group A: F(10, 206) =
13.467, Group B: F(10,81.065) = 10.316) and the instance
MWLdef (Group A: F(10, 207) = 12.146, Group B:
F(10,205) = 9.895), underlying higher variance. WP was
the assessment instrument with the lowest variance (Group
A: F(10,209) = 5.182, Group B: F(10,204) = 5.649). From
the summary of detected statistically significant differ-
ences with post hoc tests (Table 2), WP was the lowest
in sensitivity, detecting half of the statistically significant
differences spotted by the other instruments. For group A,
the defeasible instance MWLdef behaved very analogously,
demonstrating similar sensitivity with the NASATLX but
a higher sensitivity for group B, using a confidence interval
of 95%. However, when increasing the confidence interval
to 99%, the instance MWLdef was clearly superior than the
NASATLX underlying a higher degree of robustness and
being more stable in detecting differences among tasks in
the groups.

Table 2. Detected statistically significant differences.

Group A Group B

Model |α 0.05 0.01 0.05 0.01

NASATLX 22 13 14 10
WP 9 5 8 6
MWLDef 21 18 18 13

In summary, according to the number of detected sta-
tistically significant differences in Table 2, out of all the
possible detectable differences (110 – 55 for each group),
the instance MWLdef showed 39.9% and 36.3% of sensi-
tivity more than the WP and 5.45% and 14.5% of sensitiv-
ity more than the NASATLX instrument, respectively, at
significance levels of 0.05 and 0.01.

6.2.2. Diagnosticity
In order to test the diagnosticity of MWLdef, stepwise
multinomial logistic regression12 has been used to inves-
tigate the differences between tasks on the basis of the
MWL attributes of the cases, indicating which attributes
contributed the most to task separation. This technique
is aimed at analysing relationships between a non-metric
dependent variable (task) and metric independent variables
(MWL attributes) and it extends logistic regression as it
compares multiple groups (tasks) through a combination
of binary logistic regressions. The goal was to determine
the impact of multiple independent MWL attributes to
predict the membership of one or other of the 22 tasks
(11 for group A and 11 for group B). The assumptions
behind multinomial logistic regression were met: minimum
sample size of 10 (Peduzzi et al. 1996) and absence of
multicollinearity of the independent variables.

Table 3 shows the model fitting information: every
Sig. value for every set of attributes, considered in each
MWL instrument, is less than the level of significance
(< .05). The null hypothesis of no difference (Chi-square
value) between the model without independent variables
(intercept only) and the model with the independent
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Table 3. Model fitting information.

22 tasks – 11 Group A, 11 Group B

Fitting criteria Likelihood ratio tests

Model −2 Log likelihood Chi-Square df Sig.

Intercept only 2720.117

NASATLX (5 MWL attributes)
Final 2258.907 461.210 105 < 0.001
WP (8 MWL attributes)
Final 1773.885 946.233 168 < 0.001
MWLdef (19 MWL attributes)
Final 1188.568 1531.550 357 < 0.001

Table 4. Accuracies of regression models.

95% CI Prediction accuracy (%)

NASATLX attributes 19.1
WP attributes 32.3
MWLdef and MWLNI

def attributes 53.2

variable (final) is rejected in every test. This underlines
the existence of a relationship between the MWL attributes
and the tasks conducted. However, it does not tell where
exactly these differences occurred as well as the errors
associated with the model. In order to assess the utility
of a multinomial logistic regression model, its classifica-
tion accuracy is computed. This compares the predicted
task membership of the logistic model to the actual (the
known) one, which is the value for the dependent vari-
able. In order to evaluate the usefulness of the logistic
regression model, a benchmark of 25% improvement over
the rate of accuracy achievable by chance alone is used.
In other words, even if it is assumed that the indepen-
dent MWL attributes had no relationship to the tasks
defined by the dependent variable, it is still expected to
be correct in the predictions of task membership some per-
centage of the time. The estimate of by-chance accuracy
used is the proportional by-chance accuracy rate com-
puted by summing the squared percentage of cases in each
group (20/440 = 4.5%). Thus, the proportional by-chance
accuracy criteria is 5.56% (0.0452 × 22 × 1.25 = 5.56%).
Table 4 summaries the classification accuracy rates com-
puted by each logistic regression model. All of these rates
are above 5.56%, satisfying the criteria for classification
accuracy.

These accuracies reflect the combination of a set of
attributes for correctly classifying each task considered in
each case. However, they cannot tell anything about the
contribution of an individual independent MWL attribute
to the overall classification. The interpretation for an inde-
pendent MWL attribute focuses on its ability to distinguish
between pairs of tasks and the contribution which it makes
to changing the probability of being in one dependent task
rather than the other. The significance of an independent

MWL variable’s role in distinguishing between pairs of
tasks should not be interpreted unless it has also an overall
relationship to the dependent variable (task) in the like-
lihood ratio tests. These tests are listed in Appendix 5.
From Table A6, it is possible to note how all the attributes
considered in the NASATLX show a statistically signif-
icant relationship with the dependent variable (task) as
all the Sig. values are less than the level of significance
(< 0.05). The same interpretation applies for the attributes
considered in the WP instrument whose results are depicted
in Table A7. All the Sig. values are less than the level
of significance (< 0.05), supporting the fact that each of
them has an influential role in classifying each case’s
task. Regarding the instances of the defeasible framework
(MWLdef and MWLNI

def), Table A8 shows the likelihood
ratio tests. Here, the attributes all have a significance value
less than 0.05, but the mental demand and intention are
not included, as they are not considered significant to clas-
sify tasks by the stepwise multinomial logistic regression
procedure.

The information associated with the likelihood ratio
tests tells which variable has an overall relationship to the
dependent variable, considering all the tasks. However, it
does not tell the individual strength of each MWL attribute
for classifying tasks. Appendix 6 lists the step summary
tables for each multinomial logistic regression procedure
of each MWL assessment instrument. From these tables,
it is possible to analyse in which order and what work-
load attribute is entered in the empty multinomial logistic
regression model (including just the intercept), as well as
the contributions that each attribute had to the model’s
goodness of fit. In the case of the attributes accounted in
the original NASATLX, temporal demand, effort and per-
formance were the most significant contributors as their
addition, at each step, reduced the chi-square significantly.
Table A9 shows how temporal demand reduced the chi-
square of 2720.117 to 2579.573, in turn reduced by effort to
2446.946 and in turn reduced by the attribute performance
to 2337.516. Psychological stress and mental demand,
although they were valid contributors, had a less power-
ful role in reducing the chi-square. Regarding the attributes
accounted in the WP instrument, all had a significant effect
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in reducing the chi-square. From Table A10, the attribute
auditory resources was the most impact full in reducing
the chi-square, followed by central processing and man-
ual response. The attribute visual resources was the last
contributor to the model’s goodness of fit. Eventually, all
the attributes accounted in the two instances (MWLdef and
MWLNI

def) of the defeasible framework had a significant role
in reducing the chi-square of the intercept model (empty
model), except the attributes mental demand and intention
that were not used. From Table A11, the most impactful
contributor was auditory resources, followed by paral-
lelism, temporal demand and effort. The attributes with
lowest influence to the goodness of fit were arousal and
central processing.

In summary, the attributes accounted in MWLdef
showed a greater diagnosticity compared to the one
achieved by the attributes of the NASATLX and WP

instruments, in terms of capacity of classifying each case in
the right category (one of the executed tasks). Considering
the set of executed tasks, listed in Table A4 , MWLdef had
an accuracy rate 34.1% higher than that of the NASATLX
instrument and 20.9% higher than that of the WP instru-
ment, confirming its prospective in assessing subjective
MWL.

6.2.3. Validity
In order to test the validity of MWLdef, the intercorrelation
of the scores computed by the other two MWL instru-
ments (NASATLX and WP) and the correlation of each
of them against objective performance measure have been
computed. The former is referred to as convergent valid-
ity, while the latter as concurrent validity, both assessed
using Pearson’s correlation coefficients and Spearman’s

Table 5. Convergent validity of the MWL scores and concurrent validity against time – Pearson’s
coefficients.

Pearson

NASATLX WP MWLNI
def MWLdef Time

NASATLX Correlation 1 0.584 0.562 0.778 0.315
Sig. 0.000 0.000 0.000 0.000
Cases 440 440 440 352

WP Correlation 1 0.654 0.859 0.264
Sig. 0.000 0.000 0.000
Cases 440 440 352

MWLNI
def Correlation 1 0.713 0.272

Sig. 0.000 0.000
Cases 440 352

MWLdef Correlation 1 0.381
Sig. 0.000
Cases 352

Note: All the coefficients are statistically significant (p < .000).

Table 6. Convergent validity of the MWL scores and concurrent validity against time – Spearman’s
coefficients.

Pearson

NASATLX WP MWLNI
def MWLdef Time

NASATLX Correlation 1 0.571 0.579 0.780 0.335
Sig. 0.000 0.000 0.000 0.000
Cases 440 440 440 352

WP Correlation 1 0.658 0.854 0.259
Sig. 0.000 0.000 0.000
Cases 440 440 352

MWLNI
def Correlation 1 0.738 0.250

Sig. 0.000 0.000
Cases 440 352

MWLdef Correlation 1 0.346
Sig. 0.000
Cases 352

Note: All the coefficients are statistically significant (p < .000).
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Table 7. Convergent validity of the MWL scores and concurrent validity against time – No time-limit
tasks – Pearson coefficients.

Pearson

NASATLX WP MWLNI
def MWLdef Time

NASATLX Correlation 1 0.590 0.597 0.763 0.384
Sig. 0.000 0.000 0.000 0.000
Cases 320 320 320 248

WP Correlation 1 0.679 0.856 0.305
Sig. 0.000 0.000 0.000
Cases 320 320 248

MWLNI
def Correlation 1 0.752 0.344

Sig. 0.000 0.000
Cases 320 248

MWLdef Correlation 1 0.447
Sig. 0.000
Cases 248

Note: All the coefficients are statistically significant (p < .000).

Table 8. Convergent validity of the MWL scores and concurrent validity against time – no time-limit
tasks – Spearman’s coefficients.

Spearman

NASATLX WP MWLNI
def MWLdef Time

NASATLX Correlation 1 0.571 0.623 0.761 0.369
Sig. 0.000 0.000 0.000 0.000
Cases 320 320 320 248

WP Correlation 1 0.681 0.853 0.286
Sig. 0.000 0.000 0.000
Cases 320 320 248

MWLNI
def Correlation 1 0.779 0.333

Sig. 0.000 0.000
Cases 320 248

MWLdef Correlation 1 0.392
Sig. 0.000
Cases 248

Note: All the coefficients are statistically significant (p < .000).

rank correlation coefficients.13 In this comparison, also
the instance MWLNI

def has been included. The performance
measure adopted for convergent validity is the objective
task completion time of participants.14 Tables 5 and 6 refer
to all the tasks used in the experiments, while Tables 7
and 8 present the correlations of those tasks with no
imposed time limit.

The convergent validity of the ML instruments is
high, with the instance MWLdef highly correlating with
the NASATLX and WP both according to Pearson’s
and Spearman’s correlation coefficients (Pearson: 0.778,
0.859 with all tasks, 0.763, 0.856 without time-limit tasks
– Spearman: 0.780, 0.854 with all tasks. 0.761, 0.853
without time-limit tasks). The NASATLX and the WP
showed a moderate positive correlation (Pearson: 0.584
with all tasks, 0.590, without time-limit tasks – Spearman:
0.571 with all tasks, 0.571 without time-limit tasks). The
instance MWLNI

def of the framework with no interaction of

arguments only moderately correlated to NASATLX WP
(Pearson: 0.562, 0.654 with all tasks, 0.597, 0.679 without
time-limit tasks – Spearman: 0.579, 0.658 with all tasks.
0.623, 0.681 without time-limit tasks) having less conver-
gent validity than its counterpart with interactions among
arguments (MWLdef).

Regarding the concurrent validity, the instance
MWLdef of the defeasible framework correlated better with
time, showing a moderate positive correlation (Pearson:
0.381 with all tasks, 0.447, without time-limit tasks –
Spearman: 0.346 with all tasks. 0.392 without time-limit
tasks) than the NASATLX (Pearson: 0.315 with all tasks,
0.384, without time-limit tasks – Spearman: 0.335 with all
tasks. 0.369 without time-limit tasks), the WP instrument
(Pearson: 0.264 with all tasks, 0.305, without time-limit
tasks – Spearman: 0.259 with all tasks. 0.286 without
time-limit tasks) and the instance MWLNI

def of the defeasi-
ble framework with no interaction of arguments (Pearson:
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Figure 6. Sensitivity, diagnosticity, validity – comparisons.

0.272 with all tasks, 0.344, without time-limit tasks –
Spearman: 0.250 with all tasks. 0.333 without time-limit
tasks). All the correlation coefficients are statistically
significant.

In summary, the instance MWLdef, as hypothesised,
showed a high convergent validity with the NASATLX and
the WP instruments, but it had a better concurrent validity
with the objective time than the other two instruments and
its counterpart MWLNI

def with no interaction of arguments.

7. Discussion
Enhancement in the quality of MWL assessment has
been proved by building two new instances of the defea-
sible framework (MWLdef, MWLNI

def), with and without
interaction of arguments, respectively. In line with other
studies aimed at comparing the psychometric properties
of different MWL assessment instruments (Rubio et al.
2004), these two instances have been compared against the
NASATLX (Hart 2006) and the WP (Tsang and Velazquez
1996) instruments with respect to sensitivity, diagnosticity
and validity.

Figure 6 summarises the outcomes of this compari-
son, as achieved in previous sections. Using a confidence
interval of 95%, the instance MWLdef was superior to
its counterpart MWLNI

def (with no interaction), similar to
the NASATLX and clearly superior to the WP in terms
of sensitivity. These outcomes were also confirmed by
increasing the confidence interval to 99%, where, however,

the NASATLX lost capacity in detecting statistically sig-
nificant differences among tasks.

Regarding diagnosticity, the pieces of knowledge used
in the argumentation frameworks of MWLdef and MWLNI

def
enabled better discrimination between tasks than the other
two instruments. This suggests that an open framework
able to incorporate different MWL attributes allows mul-
tiple tests and can provide information on their capacity in
discriminating tasks.

The convergent validity showed the capacity of the two
constructed instances (MWLdef and MWLNI

def) of the defea-
sible framework to measure MWL effectively, as their cor-
relations against the NASATLX and the WP instruments
were strong and positive (on average ρ > 0.57).

However, the concurrent validity of the MWLdef,
against the objective time for task completion, was superior
to the other three procedures (both considering all tasks and
just those tasks with no time-limit). This achievement not
only suggests that MWLdef (as constructed) can explain the
objective time better than the other procedures, but it also
underlines how studying and reasoning upon the construct
of MWL in a defeasible way can enhance its assess-
ment effectively. In addition, the fact that the instance
of the framework (MWLdef) was clearly superior to its
counterpart (MWLNI

def), with no interactions of arguments,
highlights the real benefits achievable by incorporating the
relationships among the pieces of evidence during the for-
malisation of a knowledge base. This confirms the role of
AT in MWL representation and assessment, enabling and
promoting further research.
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8. Conclusions
The main contribution of this research is the presentation
of a methodology, developed as a formal framework, to
represent MWL as a defeasible computational concept and
to assess it as a numerical usable index. This research
contributes to the body of knowledge by providing an
extensible framework, built upon AT, in which MWL can
be better measured, analysed and explained. The frame-
work allows the translation of a knowledge base of a MWL
designer into interactive defeasible arguments. These are in
the form of premises-conclusion, incorporating the notion
of logical consequence. In turn they are activated through
quantification of their premises using the notion of degree
of truth. The emerging activated argumentation framework
is subsequently evaluated by applying acceptability seman-
tics for the resolution of the potential inconsistencies that
might emerge from interaction of arguments. These are
algorithms that partition the argument set in conflict-free
extensions of arguments. A strategy for selecting the most
credible extension is then introduced from which a final
index of MWL can be assessed. The proposed framework
has been firstly employed in practice for the translation of
the author’s knowledge base into a set of interactive argu-
ments. The resulting instance of the framework has been
elicited through a users’ study involving 40 participants
who were asked to execute a set of 11 information-seeking
web-based tasks with different conditions. Afterwards, par-
ticipants were asked to fill in a questionnaire, providing
numerical inputs for the designed instance. A comparative
evaluation showed how this particular instance was supe-
rior in terms of sensitivity, diagnosticity and validity to the
NASA Task Load Index and the WP, these being among
the most popular current subjective MWL assessment tech-
niques. The results underlined the positive impact of the
defeasible framework on MWL representation and assess-
ment, encouraging further research.

As the first study of this kind, this study proposes a new
reasoning framework for tackling the problem of MWL
representation. This has been introduced as a theoretical
solution with the aim of breathing new life into research on
MWL. Future work will focus on the implementation of a
graphical interface for automating the use of the theoretical
framework. This is aimed at increasing its acceptability by
MWL designers, guiding them towards the translation of
their knowledge bases using more familiar terms and less
formal reasoning notions. The goal is to supply most of the
logic out of the box, allowing designers to extend it and
tweak input parameters.

On the theoretical side, alternative methods for select-
ing the most credible extension and for the accrual of its
internal arguments using degrees of truth will be investi-
gated. This will include the test of different acceptability
semantics, as proposed in the literature on formal AT.
Eventually, an analysis of the impact of the variation of the
reluctancy thresholds on the elicitation of knowledge bases

will follow aimed at evaluating whether the theoretical
framework could be simplified.

Eventually, regarding the evaluation of the capability of
the framework to assess MWL, a more effective sensitivity
analysis will be performed, with a more focused manip-
ulation of task loads. This will help to achieve a better
understanding of the relationship between the changes in
the task loads (input) and the assessed MWL (output).
Similarly, future work will include a more detailed investi-
gation of the diagnosticity capacity of different instances of
the framework to detect the pool of mental resources being
taxed.

Finally, the ultimate goal of the solution described in
this paper is to allow different MWL designers with dif-
ferent backgrounds, knowledge and beliefs to create differ-
ent instances of the framework, with different arguments,
workload attributes and relationships towards a better mod-
elling and understanding of the construct of MWL.
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Notes
1. Face validity refers to what a concept superficially appears to mea-

sure, mainly testing whether it looks valid. It is in contrast with
content validity – a more strict property that requires the use of
recognised tests or subject experts for evaluating whether the items
evaluated assess defined content. This includes statistical tests which
are in general more rigorous than methodologies applied in face
validity tests.

2. Fuzzy sets are sets containing elements that have degrees of mem-
bership. In classical set theory, the membership of an element in a
set is assessed in binary terms, meaning that it can either belong
or not belong to the set. Fuzzy set theory allows the assessment of
the membership of an element in a set in a gradual way. This grad-
ual membership is described with the use of a membership function
bounded in the real unit interval 0–1.

3. A strict monotonic function has the property that for two different
inputs, being the former greater than the latter, its output, given the
former input, is greater than its output, given the latter input. In other
words, just one unique output corresponds to an input.

4. Dichotomies are both jointly exclusive and mutually exclusive.
5. ‘Tweety flies because it is a bird’ can be negated by ‘Tweety does

not fly because it is a penguin’.
6. ‘Tweety flies because it is a bird’ can be attacked by another

argument ‘Tweety is not a bird’.
7. 1 mean just those arguments with full degree of truth are acti-

vated (indeed too restrictive). 0 indicates no reluctancy at all: each
designed argument will be activated, regardless of its degree of truth.

8. 0 indicates null reluctance: any designed attack is considered valid.
Intermediate values indicate partial reluctancy: with 0.6 the designer
is willing to tolerate an attack if the difference in the argument’s
degrees of truth is less than or equal to 1 − 0.6 = 0.4.

9. In Figure 5 there is just one complete extension, {A, C}, which is
conflict-free and defends exactly itself. It can be seen as a subjec-
tive and internally coherent point of view. The grounded extension
is {A, C}. The admissible sets are C, A, C. B and A are not admissible
as they do not defend themselves, respectively, against C and B. One
preferred extension exits: A, C.

10. This included 20 questions. Six were associated with the NASA Task
Load Index original instrument (Hart 2006). Eight were associated
with the WP procedure (Tsang and Velazquez 1996). The remaining
six were designed to model some other aspects of MWL. The order
of these three blocks was random.
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11. This procedure aims to create an individual weighting of the 5
sub-scales (physical demand was not taken into account) by let-
ting the subjects compare them pair-wise, based on their perceived
importance. The user is required to choose which measurement is
more relevant to the workload. The number of times each is cho-
sen is the weighted score. This is multiplied by the scale score for
each dimension and then divided by 10 to get a workload score
[0. . .100] ∈ � (Hart 2006).

12. Differently from other studies that employed discriminant analysis
to assess diagnosticity (Rubio et al. 2004; Tsang and Velazquez
1996), multinomial logistic regression was adopted because it does
not impose all the assumptions required by the discriminant analysis
that were not all met in this study.

13. Spearman’s rank correlation coefficient is a non-parametric measure
of statistical dependence between two variables. Likewise, Pearson’s
correlation coefficient tells how the relationship between two vari-
ables can be described using a monotonic function, but upon the
ranked variables.

14. Some cases do not have time due to measurement error.
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Appendix 1. Knowledge base of author to be translated
• Task demands (exogenous factors) (from Reid and Nygren

1988; Hart 2006)
(1) Mental demand: the higher the perceived mental

demand of the task, the higher the MWL.
(2) Temporal demand: the higher the perceived temporal

demand of the task, the higher the MWL.
(3) Physical demand: the higher the perceived physical

demand of the task, the higher the MWL.
• Task features/complexity and interaction with the user

(exogenous factors) (from Wickens and Hollands 1999;
Wickens 2008; Tsang and Velazquez 1996)
(4) Solving and deciding: the higher the attention required

for decision-making, problem-solving, the higher the
MWL.

(5) Selection of response: the higher the attention required
for selecting the proper response channel, the higher
the MWL.

(6) Task and space: the higher the attention required for
spatially paying attention around, the higher the MWL.
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(7) Verbal material: the higher the attention required for
processing linguistic material or listening to verbal
conversation or reading, the higher the MWL.

(8) Visual resources: the higher the attention for task exe-
cution (based on information visually received), the
higher the MWL.

(9) Auditory resources: the higher the attention for task
execution (based on information auditorily received),
the higher the MWL.

(10) Manual response: the higher the attention required for
manually responding to the task, the higher the MWL.

(11) Speech response: the higher the attention required for
producing the speech response, the higher the MWL.

• User’s state (endogenous factors)
(12) Psychological stress has been thought as having a

direct relationship with MWL: the higher the stress felt
by the user, the higher the MWL (Hart and Staveland
1988; Reid and Nygren 1988; Hart 2006). However,
here the belief is that the stress perceived by the user
influences MWL only when it is too low or too high.
In these two cases, the operator’s state is significantly
affected. In the former case, MWL is at a minimum
level (underload), while in the latter case, it is at a
maximum level (overload).

(13) Arousal has a complex relationship with performance,
following a curve that changes due to task differ-
ences. For simple or well-learned tasks, the relation-
ship can be considered linear with improvements in
performance as arousal increases. For complex or
unfamiliar tasks, the relationship becomes inverse,
with declines in performance as arousal increases
(Yerkes and Dodson 1908).

• User intentions (endogenous factors)
(14) Effort: the higher the effort exerted by the user the

higher the MWL (Hart and Staveland 1988; Hart
2006).

(15) Motivation is related to effort and performance: the
higher the user’s motivation to attend to the task, the
higher the willingness to exert effort to improve task
performance. When motivation is moderate, the belief
is that it does not have a significant influence on MWL.
When motivation is too low, it might have a direct
relationship with MWL: the user’s state is affected and
workload is hypothesised to be at a minimum level.

• context/domain (exogenous factors)
(16) Parallelism: the higher the parallelism regarding the

execution of multiple tasks, the higher the MWL. In
addition, harder tasks are harder to perform in parallel
as they require more attention and cognitive resources.
On the other hand, easier tasks can be concurrently
executed more easily. Analogously, tasks that are sim-
ilar to each other are harder to execute in parallel
than more distinct ones. Similarity of tasks could be
measured by employing the dimensions accounted in
the multiple resource theory, as previously mentioned
(Wickens and Hollands 1999; Wickens 2008; Tsang
and Velazquez 1996).

(17) Context bias: when bias is not too low, the higher
the bias and distraction degree, the higher the MWL.
When bias is too low, workload is not influenced. On
the other hand, when a moderate or high degree of bias
and interruptions occurs during a primary task, users
can take longer time to complete the task, committing
more errors and experiencing even double negative
effects with a significative increment in MWL (Bai-
ley and Konstan 2006). In addition, it is reasonable

to assume that when the degree of context bias is too
high, the psychological stress of a subject is likely not
to be low.

• User’s features (endogenous factors)
(18) Past knowledge: the higher the user’s knowledge of the

task or the context/domain, the lower the MWL. This
is related to the notion of learning as described by Kah-
neman whose model explains why learning helps, as
it makes execution of tasks easier (Kahneman 1973).
When past knowledge is too low, the user has likely
never dealt with the task under consideration, thus the
MWL is likely to be high. On the other hand, when
past knowledge is high, the user has already learnt
the task or similar ones in the past, thus the resulting
MWL is likely to be low. Past knowledge is an impor-
tant factor that contributes to developing the skill of
a person. In addition, if past knowledge is too low, it
is very unlikely that a subject exerted no effort to per-
form a task. Similarly, if past knowledge is too high, it
is unlikely that a subject exerted high effort to perform
a task.

(19) Skill: the higher the user’s skill, the lower the MWL.
Skills incorporate the notion of strategy (heuristic)
used for dealing with more difficult and complex tasks
in the same context/domain. Heuristic might be seen
as mental shortcuts which could provide a reason-
able performance without investing too much effort
(Wickens and Hollands 1999). User’s skill is important
when it is too low or too high. In the former case, the
user is not skilled enough to perform the task, expe-
riencing high workload, while in the latter case, the
user’s skill plays a significant role in reducing MWL
on task. Skill can be related to past knowledge: if a
subject has already dealt with a task or similar tasks,
the skill degree is likely not to be low. In addition, if
the degree of skill is too low, it is very unlikely that a
subject exerted no effort to perform a task. Similarly,
if the degree of skill is too high, it is unlikely that a
subject exerted high effort to perform a task.

(20) Performance: the higher the performance perceived
by the user, the lower the MWL (Hart and Staveland
1988; Hart 2006; O’Donnell and Eggemeier 1986).

Appendix 2. Working example
A new instance of the defeasible framework is designed accord-
ing to the knowledge base of the author of this paper (as sum-
marised with the natural language proposition of Appendix 1),
driven by his subjective interpretation of the literature of MWL
and his beliefs. It does not aim to be fully exhaustive and the final
ultimate set of pieces of evidence to consider for representing
MWL, but just a subjective proposal open to criticisms that can be
extended, reduced or discarded as a whole. This knowledge base
serves for demonstrating how to create a set of interactive argu-
ments according to the multilayer schema presented in Section 5
(layers 1 and 2).

A.1. Layer 1 – definition of the monological structure
of arguments

For the attribute mental demand (1st of Appendix 1), the designed
forecast arguments are:

• MD1: [low mental demand → U]
• MD2: [medium lower mental demand → F−]
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• MD3: [medium upper mental demand → F+]
• MD4: [high mental demand → O]

The same rationale applies to the attributes 2–11, 14, 16, 17
(forming other 52 arguments).

For the attribute psychological stress, the arguments are:

• PS1: [low psychological stress → U]
• PS2: [high psychological stress → O]

For the attribute arousal, no forecast argument is designed.
For motivation, just one argument is designed:

• MV1: [low motivation → U]

For past knowledge:

• PK1: [ low past knowledge → O ]
• PK2: [ high past knowledge → U ]

For skills:

• SK1: [ low skills → O ]
• SK2: [ high skills → U ]

For the performance, which has an inverted relationship with
MWL, 4 arguments are designed:

• PF1: [low performance → O]
• PF2: [medium lower performance → F+]
• PF3: [medium upper performance → F−]
• PF4: [high performance → U]

The mitigating arguments that might be designed considering the
aforementioned knowledge base (Appendix 1) are as follows:

13 arousal:
• AD1a: [low arousal ∧ easy task → PF4]
• AD1b: [low arousal ∧ easy task → PF3]
• AD1c: [low arousal ∧ easy task → PF2]
• AD2a: [low arousal ∧ difficult task → PF4]
• AD2b: [low arousal ∧ difficult task → PF3]
• AD2c: [low arousal ∧ difficult task → PF2]
• AD3a: [medium lower arousal ∧ easy task → PF1]
• AD3b: [medium lower arousal ∧ easy task → PF4]
• AD4a: [medium lower arousal ∧ difficult task → PF1]
• AD4b: [medium lower arousal ∧ difficult task → PF3]
• AD4c: [medium lower arousal ∧ difficult task → PF4]
• AD4d: [medium upper arousal ∧ difficult task → PF1]
• AD4e: [medium upper arousal ∧ difficult task → PF3]
• AD4f: [medium upper arousal ∧ difficult task → PF4]
• AD5a: [medium upper arousal ∧ easy task → PF1]
• AD5b: [medium upper arousal ∧ easy task → PF2]
• AD5c: [medium upper arousal ∧ easy task → PF3]
• AD5d: [high arousal ∧ easy task → PF1]
• AD5e: [high arousal ∧ easy task → PF2]
• AD5f: [high arousal ∧ easy task → PF3]
• AD6a: [high arousal ∧ difficult task → PF2]
• AD6b: [high arousal ∧ difficult task → PF3]
• AD6c: [high arousal ∧ difficult task → PF4]

15 motivation:
• MV2: [low motivation → EF3]
• MV3: [low motivation → EF4]
• MV4: [high motivation → EF1]
• MV5: [high motivation → EF2]

19 skills:
• DS1 [difficult task ∧ high skills → EF4]
• DS2 [difficult task ∧ high skills ∧ low effort → PF1]
• DS3 [difficult task ∧ high skills ∧ medium lower effort

→ PF1]
• DS4 [difficult task ∧ high skills ∧ medium upper effort

→ PF1]

A.2. Layer 2 – Definition of the dialogical structure
of arguments

The rebutting attack that might be extracted from the aforemen-
tioned knowledge base (Appendix 1) is as follows:

• Rebutting
• The attributes ‘mental demand’ and ‘solving and decid-

ing’ model similar notions; therefore, they contradict
each other if they support totally different conclusions
(two total opposite workload dichotomies). In this case,
rebutting attacks model this inconsistency:
• r1: (MD1, SD4)
• r2: (MD4, SD1)

• From the knowledge base, (A.1) high skills and low past
knowledge (and vice versa) are situations that should not
occur. Therefore, rebutting attacks between these two
extreme opposite degrees of skill and past knowledge
are aimed at modelling such inconsistency:
• r3: (PK1, SK4)
• r4: (PK4, SK1)

• From the knowledge base, (points chkA.1, A.1) high
skills and high effort, low skills and low effort are situa-
tions that should not occur; similarly, between high past
knowledge and high effort (and low past knowledge and
low effort). These inconsistent cases are modelled with
the following rebutting attacks:
• r5: (PK1, EF1)
• r6: (PK2, EF4)
• r7: (SK1, EF1)
• r8: (SK4, EF4)

• From the knowledge base, a higher degree of context
bias is in contradiction with a lower degree of psy-
chological stress. Thus to model this inconsistency, the
following rebutting attack might be designed:
• r9: (CB4, PS1)

The undercutting attack relations that follow from the
designed mitigating arguments are as follows:

• Undermining
• um1: (AD1a, PF4), um2: (AD1b, PF3), um3: (AD1c,

PF2)
• um4: (AD2a, PF4), um5: (AD2b, PF3), um6: (AD2c,

PF2)
• um7: (AD3a, PF1), um8: (AD3b, PF4)
• um9: (AD4a, PF1), um10: (AD4b, PF3), um11: (AD4c,

PF4), um12: (AD4d, PF1), um13: (AD4e, PF3), um14:
(AD4f, PF4)

• um15: (AD5a, PF1), um16: (AD5b, PF2), um17:
(AD5c, PF3), um18: (AD5d, PF1), um19: (AD5e, PF2),
um20: (AD5f, PF3)

• um21: (AD6a, PF2), um22: (AD6b, PF3), um23:
(AD6c, PF4)

• Undercutting
• uc1: (MV2, EF3), uc2: (MV3, EF4), uc3: (MV4, EF1),

uc4: (MV5, EF2)
• uc5: (DS1, EF4), uc6: (DS2, PF1), uc7: (DS3, PF1), uc8:

(DS4, PF1)

The argumentation graph that results by joining all the fore-
cast and mitigating arguments represents a possible instance of
the defeasible framework that is referred to as MWLNI

def (no
interactions). Extending this instance by adding the designed
rebutting, undercutting and undermining attacks, in the argumen-
tation graph, a new instance emerges, referred to as MWLdef.
These two are treated as different instances of the defeasible
framework because they are separately evaluated.
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The last step for completing the definition of these two
instances is the design of the membership functions for each
MWL factor considered in the aforementioned knowledge base.
During the completion of the questionnaire of Table A5, it has
been noted that subjects could better quantify low levels rather
than high levels while answering a question. In other words, sub-
jects were able to easily quantify the null impact of a workload
factor rather than the full impact, manifesting more uncertainty in
indicating higher levels. These reasons lead to the definition of the
following functions, generalised Bell curves or Gaussian curves
commonly used in Fuzzy Logic (that could be easily automised
with a GUI).

The functions adopted for the workload dichotomies are
depicted in Figure A2, partitioned by the following RL:

• RLF
U = 33

• RLF
O = 66

The argument reluctancy threshold and the attack reluctancy
threshold are defined as follows:

• RELth
Arg = 0. Willingness to consider all the arguments

with degree of truth greater than 0.
• RELth

Att = 0.5. Willingness to tolerate an attack from a
less to a more credible argument just if their difference in
degree of truth is less than 0.5.

Eventually, as it is possible to see in the list of attributes
of Appendix 1, the attribute arousal is based on task difficulty
for which no question has been designed in the questionnaire of
Table A5. As a consequence, an explicit mechanism to quantify
task difficulty is needed. Here, the proposal is to model it as the
average of the workload attributes accounted in the WP instru-
ment which can be quantified because an explicit question has
been designed for each of them (questions 6–13 of questionnaire
of Table A5).

A.3. Layer 3: reduction of argumentation graph
The argument reluctancy threshold and the attack reluctancy
threshold are defined as it follows:

• ReluctthArg = 0. Willingness to consider all the arguments
whose degree of truth is greater than 0 (Definition 5).

Figure A1. Membership functions associated to the premises of
every argument.

Figure A2. Function associated with the workload dichotomies
partitioned by RL.

Table A1. An illustrative scenario: activated arguments and
degree of truth for MWLdef.

Argument Internal representation Degree of truth

MD4 High mental demand
→OVERLOAD

0.606

TD1 Low temporal demand
→UNDERLOAD

0.843

EF4 High effort
→OVERLOAD

0.980

PF4 High perceived performance
→UNDERLOAD

0.923

PS1 Low psychological stress
→UNDERLOAD

0.945

SD1 Low solving/deciding degree
→UNDERLOAD

0.706

SR1 Low selection of response degree
→UNDERLOAD

0.754

TS1 Low task and space degree
→UNDERLOAD

0.882

VM4 High verbal material degree
→OVERLOAD

0.980

VR4 High visual resources degree
→OVERLOAD

1.000

AR1 Low auditory resources degree
→UNDERLOAD

0.996

MR1 Low manual response degree
→UNDERLOAD

0.916

SP1 Low speech response degree
→UNDERLOAD

0.916

MV1 Low motivation
→UNDERLOAD

0.800

PA1 Low parallelism degree
→UNDERLOAD

1.000

CB1 Low context bias degree
→UNDERLOAD

0.996

PK2 High past knowledge
→UNDERLOAD

0.666

MV3 Low motivation
→ EF4

0.800

ADa1 Low arousal and easy task
→ PF4

0.371

Table A2. An illustrative scenario:
activated attack relations for MWLdef.

Attack Internal representation

uc2 (MV3, EF4)
r2 (MD4, SD1)
r6 (PK2, EF4)

• ReluctthAtt = 0.5. Willingness to tolerate an attack from a
less to a more credible argument just if their difference of
degree of truth is not more than 0.5 (Definition 12).

The instance MWLdef can be summarised with the follow-
ing tuple using an illustrative set of inputs (answers of the
questionnaire of Table A5 in the appendix):

MWLdef = {ATTR, fPref, MF, RL, DMF,

ARGS, ATTACKS, RT, INPUTS}
• ATTR: {Mental demand, temporal demand, effort, per-

formance, frustration, solving and deciding, selection of
response, task and space, verbal material, visual resources,
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auditory resources, manual response, speech response,
context bias, past knowledge, skill, motivation, paral-
lelism, arousal, task difficulty}

• Pref: fpref(x) is undefined (no preferentiality considered)
• MF: the membership function for the attributes are the

ones defined in Figure A1
• RL: {RedLinefitting

underload = 33, RedLineoverload
fitting = 66 }

• DMF: workload dichotomies of Figure A2
• ARGS: the designed arguments built upon the attributes in

ATTR are the ones listed in Section B.1
• ATTACKS: the designed attack relationships are the ones

defined in Section A.2
• RT: {ReluctthArg = 0, ReluctthAtt = 0.5 }
• INPUTS: {70, 15, 78, 76, 12 18, 17, 14, 78, 82, 9, 13, 0, 9,

71, 64, 16, 7, 21, 30}

The values in the INPUTS are responsible for the activation
of the argumentation graph behind the instances MWLNI

def and
MWLdef.

The instances MWLNI
def and MWLdef can now be evaluated

by starting with the activation of arguments and attack relations
(using the values in the INPUTS set of the tuple). Table A1 lists
which arguments are activated with the correspondent degree of
truth (according to Definition 11).

Table A2 lists the activated attacks (according to Definition 13).
The union of the set of activated arguments and the set of
activated attacks forms the argumentation graph depicted in
Figure A3 that can now be evaluated by applying Dung’s pre-
ferred semantics, as described in Section 5.4.
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Figure A3. An illustrative scenario: activated arguments and
attack relations for MWLdef.

A.4. Layer 4: extraction of credible extensions
Multiple extensions of arguments might be computed by the
preferred semantics. In this case, their strength is separately
computed as per Definition 14. From the reduced argumenta-
tion graph of Figure A3, two preferred extensions are computed
(with the values in the INPUTS set of the tuple), and according to
Definition 14 their strengths are as follows:

• Extension 1: 1.673
• Extension 2: 1.679

As a consequence, extension 2, although very similar to 1, is
the strongest preferred extension that can be used to compute the
final index of MWL, according to Definition 15.

A.5. Layer 5: assessment of MWL
The degree of truth of each forecast argument in the stronger
extension (ex. 2) is used as the input of the workload dichotomy
supported by the argument itself to compute a partial workload
score. The average of these scores represents the final index
of MWL, which in this case is 16.81. It is important to recall
that Definition 15 can handle multiple strongest extensions, and
it accounts for the importance associated with each arguments
that, however, it is undefined in the instance MWLdef (fpref(x) =
undefined).

Extension 1: 1.673 Extension 2: 1.679

Extension 2Extension 1

Figure A4. An illustrative scenario: computed preferred exten-
sions for MWLdef.
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Appendix 3. List of experimental tasks

Table A3. Interfaces used in experimental tasks by the two groups.

Task Typology of tasks & conditions Website Group A interface Group B interface

T1 Fact finding: simple search Wikipedia altered
T2 Browsing: not goal oriented + time limit Wikipedia altered
T3 Browsing: goal-oriented task YouTube altered
T4 Fact finding: dual task + arithmetic Google altered
T5 Fact finding: dual task + arithmetic Google altered
T6 Fact finding: single task + time pressure Google altered
T7 Fact finding: constant demand on visual +

auditory resource
YouTube altered

T8 Fact finding: simultaneous demand on auditory
resource + visual resource + arithmetic

YouTube + Wikipedia altered

T9 Fact finding: single tasks on visual resource +
external interference

YouTube altered

T10 Fact finding: multiple concurrent tasks + time
pressure

Google + Wikipedia altered

T11 Fact finding: demands on auditory + visual
resources + verbal processing

YouTube altered

Table A4. List of experimental tasks.

Task Description Notes Website

T1 Find out how many people live in Sydney Wikipedia
T2 Read the content of simple.wikipedia.org/

wiki/Grammar
No time imposed (user can exit at any time) Wikipedia

T3 Use youtube.com to play your favourite song and
while listening to it, search the related lyrics

90 secs limit YouTube + Google

T4 Find out the difference (in years) between the year
of the foundation of the Apple Computer Inc.
and the year of the 14th FIFA world cup

Google

T5 Find out the difference (in years) between the
foundation of the Microsoft Corporation and
the year of the 23rd Olympic games

Google

T6 Find out the year of birth of the 1st wife of the
founder of Playboy

2 mins-limit. Each 30 secs user is warned of the
time left

Google

T7 Find out the name of the man (inter-
preted by Johnny Depp) in the video
www.youtube.com/watch?v = FfTPS-TFQ_c

Participant can replay the video if required YouTube

T8 (a) Play the following song
www.youtube.com/watch?v = Rb5G1eRIj6c
and while listening to it, (b) find out the
result of the polynomial equation p(x), with
x = 7 contained in the Wikipedia article
http://it.wikipedia.org/wiki/Polinomi

The song is extremely irritating Wikipedia

T9 Find out how many times
Stewie jumps in the video
www.youtube.com/watch?v = TSe9gbdkQ8s

Participant is distracted twice & can replay video YouTube

T10 Find out (a) (using google.com) the difference
(in years) between the foundation of the
Alfa Romeo and the year of the 15th
New York City marathon, (b) (using
wikipedia.com) the capital of Namibia, (c)
the two common words appearing in the
titles of each referenced paper of Longo L. in
en.wikipedia.org/wiki/Collaborative_search_engine

Every 30 secs user is forced to switch to
subsequent task in a loop until the 3 tasks are
completed

Google + Wikipedia

T11 Find out the age of the blue fish in the video
www.youtube.com/watch?v = H4BNbHBcnDI

150 secs-limit. User can replay. There is no
answer

YouTube
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Appendix 4. Experimental questionnaire

Table A5. Experimental study questionnaire.

No. Dimension Question

1 Mental demand How much mental and perceptual activity was required (e.g. thinking, deciding, calculating,
remembering, looking and searching)? Was the task easy (low demand) or complex (high
mental demand)?

2 Temporal demand How much time pressure did you feel due to the rate or pace at which the tasks or task
elements occurred? Was the pace slow and leisurely (low demand) or rapid and frantic
(high temporal demand)?

3 Effort How much conscious mental effort or concentration was required? Was the task almost
automatic (low effort) or did require it total attention (high effort)?

4 Performance How successful do you think you were in accomplishing the goal of the task? How satisfied
were you with your performance in accomplishing the goal?

5 Frustration How secure, gratified, content, relaxed and complacent (low psychological stress) versus
insecure, discouraged, irritated, stressed and annoyed (high psychological stress) did you
feel during the task?

6 Solving & deciding How much attention was required for activities such as remembering, problem-solving,
decision-making and perceiving (e.g. detecting, recognising and identifying objects)?

7 Response selection How much attention was required for selecting the proper response channel and its execution
(manual – keyboard/mouse, or speech – voice)?

8 Task and space How much attention was required for spatial processing (spatially pay attention around you)?
9 Verbal material How much attention was required for verbal material (e.g. reading or processing linguistic

material or listening to verbal conversations)?
10 Visual resources How much attention was required for executing the task based on the information visually

received?
11 Auditory resources How much attention was required for executing the task based on the information auditorily

received?
12 Manual Response How much attention was required for manually responding to the task (e.g. keyboard/mouse

usage)?
13 Speech response How much attention was required for producing the speech response (e.g. engaging in a

conversation or talk or answering questions)?
14 Context bias How often interruptions on the task occurred? Were distractions (mobile, questions, noise,

etc.) not important (low context bias) or did they influence your task (high context bias)?
15 Past knowledge How much experience do you have in performing the task or similar tasks on the same

website?
16 Skill Did your skills have no influence (low) or did they help to execute the task (high)?
17 Motivation Were you motivated to complete the task?
18 Parallelism Did you perform just this task (low parallelism) or were you doing other parallel tasks (high

parallelism) (e.g. multiple tabs/windows/programs)?
19 Arousal Were you aroused during the task? Were you sleepy/tired (low arousal) or fully awake (high

arousal)?
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Appendix 5. Likelihood ratio tests for the multinomial logistic regression

Table A6. Likelihood ratio tests of the multinomial logistic regression with the attributes of the NASATLX.

Model fitting criteria Likelihood ratio tests

Effect(s) − 2 Log likelihood of reduced model Chi-square df Sig.

Intercept 2287.548 28641 21 0.123
Effort 2333.009 74.101 21 0.000
Psychological 2303.701 44.793 21 0.002
Mental 2294.018 35.111 21 0.027
Temporal 2376.493 117.586 21 0.000
Performance 2360.125 101.217 21 0.000

The chi-square statistic is the difference in − 2 log likelihoods between the final and a reduced model that is
formed by omitting an effect from the final model. The null hypothesis is that all parameters of that effect are 0.

Table A7. Likelihood ratio tests of the multinomial logistic regression with the attributes of the WP.

Model fitting criteria Likelihood ratio tests

Effect(s) − 2 Log likelihood of reduced model Chi-square df Sig.

Intercept 1858.838 84.953 21 0.000
Speech 1828.189 54.304 21 0.000
Verbal 1856.830 82.945 21 0.000
Auditory 2129.535 355.650 21 0.000
Response 1832.535 58.504 21 0.000
Central 1847.477 73.592 21 0.000
Visual 1820.956 47.071 21 0.001
Spatial 1831.489 57.604 21 0.000
Manual 1843.307 69.423 21 0.000

The chi-square statistic is the difference in − 2 log likelihoods between the final and a reduced model that
is formed by omitting an effect from the final model. The null hypothesis is that all parameters of that effect
are 0.

Table A8. Likelihood ratio tests the multinomial logistic regression with the attributes of MWLdef and MWLNI
def.

Model fitting criteria Likelihood ratio tests

Effect(s) − 2 Log likelihood of reduced model Chi-square df Sig.

Intercept 1228.870 40.302 21 0.000
Skill 1227.784 39.216 21 0.009
Knowledge 1241.983 53.415 21 0.000
Bias 1243.347 54.780 21 0.000
Speech 1244.528 55.960 21 0.000
Verbal 1250.175 61.607 21 0.000
Auditory 1499.734 311.166 21 0.000
Response 1245.445 56.877 21 0.000
Effort 1270.755 82.187 21 0.000
Psychological 1234.922 46.355 21 0.001
Temporal 1300.782 112.214 21 0.000
Performance 1243.812 55.244 21 0.000
Central 1224.444 35.877 21 0.023
Visual 1247.265 58.697 21 0.000
Spatial 1239.049 50.481 21 0.000
Manual 1247.037 58.469 21 0.000
Arousal 1226.932 38.364 21 0.012
Parallelism 1289.076 100.509 21 0.000

The chi-square statistic is the difference in − 2 log likelihoods between the final and a reduced model that is formed by
omitting an effect from the final model. The null hypothesis is that all parameters of that effect are 0.
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Appendix 6. Step summaries of the multinomial logistic procedure

Table A9. Step summary of the multinomial logistic regression with the attributes of the NASATLX.

Model fitting criteria Likelihood ratio tests

Model Action Effect(s) − 2 Log likelihood of reduced model Chi-squarea df Sig.

0 Entered Intercept 2720.117
1 Entered Temporal 2579.573 140.544 21 0.000
2 Entered Effort 2446.946 132.627 21 0.000
3 Entered Performance 2337.516 109.430 21 0.000
4 Entered Psychological 2294.018 43.497 21 0.003
5 Entered Mental 2258.907 35.111 21 0.027

Stepwise method: forward entry.
aThe chi-square for entry is based on the likelihood ratio test.

Table A10. Step summary of the multinomial logistic regression with the attributes of the WP instrument.

Model fitting criteria Likelihood ratio tests

Model Action Effect(s) − 2 Log likelihood of reduced model Chi-squarea df Sig.

0 Entered Intercept 2720.117
1 Entered Auditory 2312.625 407.493 21 0.000
2 Entered Central 2190.580 122.044 21 0.000
3 Entered Manual 2083.952 106.628 21 0.000
4 Entered Verbal 1987.693 96.259 21 0.000
5 Entered Spatial 1933.067 54.626 21 0.000
6 Entered Response 1872.922 60.144 21 0.000
7 Entered Speech 1820.956 51.967 21 0.000
8 Entered Visual 1773.885 47.071 21 0.001

Stepwise method: forward entry.
aThe chi-square for entry is based on the likelihood ratio test.

Table A11. Step summary of the multinomial logistic regression with the attributes of MWLdef and MWLNI
def.

Model fitting criteria Likelihood ratio tests

Model Action Effect(s) − 2 Log likelihood of reduced model Chi-squarea df Sig.

0 Entered Intercept 2720.117
1 Entered Auditory 2312.625 407.493 21 0.000
2 Entered Parallelism 2165.939 146.686 21 0.000
3 Entered Temporal 2051.458 114.481 21 0.000
4 Entered Effort 1934.399 117.059 21 0.000
5 Entered Manual 1839.024 95.375 21 0.000
6 Entered Bias 1750.272 88.751 21 0.000
7 Entered Verbal 1674.376 75.896 21 0.000
8 Entered Knowledge 1617.276 57.099 21 0.000
9 Entered Speech 1559.886 57.390 21 0.000
10 Entered Performance 1504.388 55.498 21 0.000
11 Entered Visual 1444.192 60.196 21 0.000
12 Entered Response 1396.445 47.747 21 0.001
13 Entered Spatial 1347.588 48.857 21 0.001
14 Entered Psychological 1303.836 43.752 21 0.003
15 Entered Skill 1262.599 41.237 21 0.005
16 Entered Arousal 1224.444 38.154 21 0.012
17 Entered Central 1188.568 35.877 21 0.023

Stepwise method: forward entry.
aThe chi-square for entry is based on the likelihood ratio test.
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