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A Novel Parabolic Model of Instructional
Efficiency Grounded on Ideal Mental

Workload and Performance

Luca Longo(B) and Murali Rajendran

Applied Intelligence Research Centre, School of Computer Science, City Campus,
Technological University Dublin, Dublin, Ireland

luca.longo@tudublin.ie

Abstract. Instructional efficiency within education is a measurable con-
cept and models have been proposed to assess it. The main assumption
behind these models is that efficiency is the capacity to achieve established
goals at the minimal expense of resources. This article challenges this
assumption by contributing to the body of Knowledge with a novel model
that is grounded on ideal mental workload and performance, namely
the parabolic model of instructional efficiency. A comparative empirical
investigation has been constructed to demonstrate the potential of this
model for instructional design evaluation. Evidence demonstrated that
this model achieved a good concurrent validity with the well-known likeli-
hood model of instructional efficiency, treated as baseline, but a better dis-
criminant validity for the evaluation of the training and learning phases.
Additionally, the inferences produced by this novel model have led to a
superior information gain when compared to the baseline.

1 Introduction

The construct of efficiency, within the field of learning and instruction, is assumed
to be the capacity to achieve established goals with minimal expenditure of effort
or resources [12]. Models exist for assessing instructional efficiency, and they are
based upon a measure of mental effort or workload exerted during a learning task,
and a measure of test performance [36,46,47]. Ideally, any instructional activity
conducted should be as efficient as possible and it is important to understand
how particular approaches to learning influence the performance of learners. The
above assumption that underpins efficiency is that low mental effort, with high
performance, provides the best efficiency, whereas, high mental effort, with low
performance, provides the worst efficiency. However, this article challenges this
assumption by arguing that there are cases where it does not hold. Through the
illustration of counter-examples, and by using the terminology brought forward
in the years by Cognitive Load Theory, and its cognitive load types, this article
proposes a novel model of instructional efficiency, named the parabolic model.
This is inspired by the well-known assumption, within mental workload research,
focused on the parabolic relationship between experienced mental workload and
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performance, inspired by the seminal Yerkes-Dodson law, an inverted-U shaped
model that links stress and performance [49].

The aim of this research is to propose and describe this novel model, by stat-
ing its main assumptions, contextualising it in the wider framework of instruc-
tional efficiency and cognitive load theory, as well as evaluating its effectiveness
with a comparative empirical experiment. For these purposes, the reminded of
this article focuses on presenting related work on cognitive load theory and on
the construct of instructional efficiency, respectively in Sects. 2.1 and 2.2. The
terminology, extracted from related work, is coupled with an introduction of the
concepts of mental effort and mental workload in Sect. 2.3, serving as necessary
information for discussing, in Sect. 2.4, the issues behind the main assumption
of current instructional efficiency models. The article continues with the presen-
tation of the novel parabolic model of instructional efficiency, in Sect. 3, along
with its main assumption and formalities. Subsequently, a comparative quanti-
tative empirical research experiment is designed and illustrated in Sect. 6, along
with a research hypothesis aimed at testing this one of its kind model of instruc-
tional efficiency, with a set of evaluation criteria described in Sect. 3.2. Empirical
resulting evidence is presented in Sect. 4 followed by a summary of this research,
the implications for teaching and learning, and a delineation, in Sect. 5, of future
work.

2 Related Work

2.1 Cognitive Load and Its Theory

Cognitive Load Theory (CLT) is a widely known theory in educational psy-
chology which is used to enhance the learning phase by developing instructional
material and applying instructional teaching techniques based on the limitations
of the human cognitive architecture [33]. CLT provides an effective framework for
designing and delivering work to learners of any standard. It is backed by empir-
ical research supporting different amounts and types of instruction according to
the level of learners and it enables instructors to provide well-crafted guidance in
their topics. It states that effective learning can only take place where the cogni-
tive capacity of an individual in a particular domain is not exceeded. The human
cognitive architecture (HCA) provides a generic framework of the information-
processing stages that learners use to encode, store, and modify information for
the purposes of reasoning and decision making [1,38]. It describes the necessary
and sufficient conditions for a human to input, process and store information
which in turn becomes knowledge. Cognitive load includes units of knowledge
and elements of relationship. The cognitive load associated to a task is created
when the units of knowledge interact with the relationship elements [44].

Sensory memory, short-term memory, also known as working memory, and
long-term memory are three essential dimensions of HCA. Atkinson and Shiffrin
(1968) proposed that the input of the information entered via sensory memory is
processed in the working memory and then proceeds to be stored in the long-term
memory [1]. Working memory is limited and it processes incoming information
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from sensory memory, long term memory instead is unlimited, highly structured
and it stores relevant information as acquired knowledge [2,28]. Short-term mem-
ory, as described by Miller (1956), has the capacity to hold seven plus or minus
two chunks of information at any given time [28]. It is not specified whether the
chunks of information were novel or familiar, interrelated or discrete, but rather
that a chunk is a unit of knowledge. Long-term memory is a permanent store
of experience, knowledge and process, all of which is held outside the conscious
awareness until recalled in the working memory. It does not have an execu-
tive function [2]. The information stored in the long-term memory in knowledge
structures of varying complexity is called ‘schemata’ [44]. A schemata makes the
construction and transfer of knowledge possible, which equates to learning. The
more schemata an individual holds for a particular topic, the more advanced
they become in learning. Schema construction is believed to reduce the load in
working memory. Leaving sufficient cognitive resources in the working memory
to process new information is one of the core objectives of educational instruc-
tional design [33]. Explicit instructions are required to process information and
build schemata of knowledge in working memory. Cognitive Load Theory dis-
tinguish three types of load, whose definitions have evolved over time: intrinsic,
extraneous and germane loads [33]. Traditionally, CLT has focused on instruc-
tional methods aimed at decreasing the cognitive load experienced by learners
so that their available resources can be fully devoted to learning. However, these
have been redefined over time, and the latest belief, as shown in Fig. 1, is that:

– intrinsic load depends on the number of elements to be processed in working
memory and on the characteristics of the learning task, which are believed to
be fixed and immutable;

– extraneous load depends on the characteristic of the instructional material,
and the characteristics on the instructional design, and on the prior knowledge
of learners;

– germane load depends on the characteristics of the learner and the resources
allocated to deal with the intrinsic load.

These definitions and terminology will be useful for a subsequent discussion on
the limitations of current instructional efficiency models, as described in the
following section, as well as the design of a novel model.

2.2 Instructional Efficiency

Efficiency of instructional designs in education is a measurable concept. Effi-
ciency in the context of problem-solving, learning and instruction is the capac-
ity to achieve established goals at the minimal expense of resources [12]. Pass
and colleagues suggest that combining performance and mental effort measures
allows the calculation of an index of mental efficiencies [35,36]. Studies that
investigated processing instructional efficiency made use of uni-variate scores to
compare the impact of an experimental condition in respect to a control condi-
tion. Sweller (2010) argues that instructional effectiveness will be compromised
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Fig. 1. Latest definition of the cognitive load types of Cognitive Load Theory [31],
including intrinsic, extraneous and germane loads.

by the extent that instructional choices require learners to devote working mem-
ory resources to dealing with elements imposed by extraneous cognitive load [45].
It is also believed that, at a basic level, understanding efficiency is an essential
precursor to assessing educational effectiveness and improvement. Various stud-
ies that propose measures of efficiency have been conducted in the past. The
most common and widely used models of efficiency are discussed below.

Deviational Model - In search of a single measure to determine the relative
efficiency of instructional conditions in terms of learning outcomes, Paas and
Van Merrienboer developed a computational approach for combining a measure
of performance with a measure of mental effort to attain efficiency [36]. This
was characterised as the instructional condition efficiency. This is referred to as
the Deviational model of efficiency by Hoffman and Schraw because this model
computes the difference between a standardised score of performance and a stan-
dardised score of effort [12]. The reasoning behind this formula is based on the
assumption that the resulting efficiency is high when an individual experiences
high performance and low effort. Conversely, the resulting efficiency is low when
an individual experiences low performance and high effort [36]. The deviational
model of efficiency computes a measure of efficiency based on how the partic-
ipant performs relative to the group [12]. It measures the distance from the
observed score to the ideal efficiency slope. The deviational model provides a
group-referenced score representing an individual efficiency that requires scores
to be converted to a common scale. Formally, Efficiency = (ZP−ZR)√

2 , where
ZP is the standardised performance score and ZR the standardised effort score.
If ZP − ZR > 0, then efficiency is positive. If ZP − ZR < 0, then efficiency is
negative. According to the authors, the highest efficiency condition occurs when
performance is maximal and effort is minimal. The lowest efficiency corresponds
to the lowest performance and highest effort [36]. There are concerns expressed
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by Hoffman and Schraw that the efficiency score computed by the deviational
model is problematic because the standardised scores are affected by variabil-
ity and performance of others within the group [12]. They also suggested that
resulting scores should be interpreted cautiously as they may be conceptually
incommensurate even if they can be mathematically identical in magnitude and
direction. Additionally, the original deviational model was believed to assess
only learning efficiency. However, over the years, a differentiation between var-
ious types of efficiency was made [47]. In particular, for the reminded or this
article, in line with [46], training efficiency is referred to that measure computed
with effort/mental workload obtained prior test performance, while learning effi-
ciency with effort/mental workload obtained after it.

Likelihood Model - Another measure of efficiency widely employed within edu-
cation is based upon the likelihood model put forward by Hoffman and Schraw
[12]. Efficiency in this model is computed as a ratio of work output to input.
In other words, a ratio of performance to perceived mental effort. Output is
identified with learning and input is identified with time, work or effort [43].
Formally Efficiency = P

R , where P is the raw score of performance and R is
the raw score of perceived effort. An estimation of the rate of change of per-
formance is calculated by dividing P by R and the resulting ratio represents
the individual efficiency based on individual scores of performance and effort
[12]. The ratio ranges from zero to extensive positive values; it goes towards zero
when performance is low and effort is high (low efficiency) and conversely, it goes
towards the extensive positive value when performance is high and effort is low
(high efficiency). The authors argue that, compared to the deviational model
of efficiency, the likelihood model provides an unambiguous measure because
the inputs are not standardised scores, and there is no restrictions in the range
of efficiency scores. However, the resulting efficiency here is always going to be
positive. It must be interpreted with caution because the formula assumes that
the work input is not zero [11]. It is also acknowledged that efficiency scores
based on this model is supposedly more reliable and sensitive to minor effect
size changes compared to the deviational model. An extension of this model has
been proposed by Kalyuga and Sweller where an extra reference to a critical
value is used, under or above which the efficiency can be considered negative
or positive [14]. The authors suggest to obtain the critical value by dividing
the maximum performance score by the maximum effort exertable by a learner
in order to establish whether that learner is competent or not. The ratio of
the critical value is based on the underlying assumption that an instructional
design is inefficient if a learner invests maximal effort in a task without reaching
maximal performance and vice-versa [14]. Through this extended formula, the
model evolves from one being able to define only positive efficiency scores to one
capable of defining a positive or negative efficiencies.
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2.3 Mental Effort and Mental Workload

Despite all the years of empirical research, no proven measure of the three cog-
nitive load types of the Cognitive Load Theory have emerged. Similarly, no
single measure of mental effort or workload exist, and many models have been
proposed, each employing different techniques [19–21,24,40,41]. The concept of
cognitive load is mainly employed in the educational field, whereas the concept of
mental workload, a psychological construct strictly connected to cognitive load,
is employed mainly within ergonomics and human factors [7,25]. Although very
similar, some difference exists. Among them, the former relates mainly to work-
ing memory resources, whereas the latter takes into account other factors such as
the level of motivation, stress and the physical demand experienced by humans
as a consequence of a learning task. Despite of their different fields of research,
they both assume that working memory limits, or a limited pool of resources and
their capacity must be considered to predict performance while accomplishing
an underlying task. Although the field of educational psychology is struggling
to find ways of measuring cognitive load of learning tasks [27], there is an entire
field within Ergonomics devoted to the design, development and validation of
reliable measures of mental workload. Intuitively, mental workload (MWL) can
be defined as the volume of cognitive work necessary for an individual to accom-
plish a task over time [22,39]. However, many other definitions exists, making its
formalisation a non-trivial goal. The measurement of cognitive load is of crucial
importance for instructional research. The few efforts to measure it are almost
exclusively concerned with performance measures [35]. Different techniques, with
different advantages and disadvantages, have been proposed in education to mea-
sure cognitive load and they can be clustered in two main groups: subjective and
objective measures [37]. Subjective measures are more suitable to be applied in
an educational context and in general are easy to administer and analyse, in con-
trast to objective measures. Subjective measures, also referred to as self-reported
measures, rely on the individual’s perceived experience of the interaction with
a learning task. They are based on the assumption that only the individual
involved in the task can provide an accurate and precise judgement about the
experienced load, as employed in a number of studies [13,30]. The perception of
the individual can be gathered through means of a survey or questionnaire. Sub-
jective measures include both uni-dimensional and multidimensional approaches,
which have been conceptualised, applied and validated. On one hand, the most
commonly used subjective measures are uni-dimensional, for example the Rat-
ing Scale of Mental Effort (RSME) and its modifications [51]. They provide an
index of overall workload/effort, but provide no information about its temporal
variation. On the other hand, multidimensional measures, such as the NASA
Task Load Index [9] and its raw version [3,8,10,18], can determine the source
of mental workload, as based upon different factors. They seem to be the most
appropriate types of measures for assessing mental workload because they have
demonstrated high levels of sensitivity and diagnosticity [42]. However, it was
argued that their use is exceptional within education [4], with only a few studies
investigating its validity and sensitivity [5,6,17].
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2.4 Discussion on Instructional Efficiency Models and Assumptions

The deviational and likelihood models of instructional efficiency, as described
in Sect. 2.2, have their own advantages and limitations. The deviational model
is group-referenced, and although is good to consistently investigate the vari-
ations of efficiency scores of learners within the same instructional design, it
does not allow comparison across different instructional designs. In fact, the
procedure that converts raw scores to standardised scores affects the variability
and performance of learners within a group. Thus scores may be mathemati-
cally identical in magnitude and direction across different instructional designs,
but they may be conceptually incommensurate. For example, a very difficult
instructional design can generate the same distribution of standardised scores
when compared to a very easy instructional design. The likelihood model aims at
solving some of the problems associated to the deviational model, as it provides
an unambiguous measure since the inputs are not standardised scores. Unfor-
tunately, with null effort, the formula cannot work, as dividing performance by
zero is mathematically not possible. This technical issue is rather minor since
it is reasonable to assume that the plausibility of performance with no reported
effort is improbable, and in practice, the scale for effort assessment always starts
with values higher than zero. However, a major issue is that, since there are no
restrictions in the range of efficiency scores - from greater than zero to infinite -
it still makes comparison across different instructional designs difficult. In fact,
the efficiency scores obtainable by a group of learners associated to a particular
instructional design, can be totally the same when compared to a totally dif-
ferent instructional design, even if the magnitude of performance and effort are
different. In other words, an efficiency score of 2 can be achieved both with a
performance of 10 and an effort of 5, or with a performance of 20 and an effort of
10 (10/5 = 20/10), assuming performance and effort are assessed using the same
scale across the two instructional conditions. Eventually, given the definition of
efficiency as the capacity to achieve established goals at the minimal expense of
resources [12], it is here argued that negative efficiency scores do not make sense.
In fact, the achievement of established goals, regardless if with a minimal of max-
imal expenses of resources, can be null, or equates to some positive extent, but
can never be negative. In short, the opposite of achieving, which is not achiev-
ing, cannot be measured. Additionally, the fact that a model of instructional
efficiency has infinite values can make comparisons across instructional designs
more cumbersome. Therefore, it is argued that a measure of efficiency with a
positive bounded range is ideal to tackled the above consideration. The devi-
ational and likelihood models of efficiency share the same assumption of other
models often employed in education, as synthesised below:

ASSUMPTION 1 (likelihood model)

Instructional efficiency is higher if similar degrees of performance are
achieved with less effort, or similarly, if higher degree of performance are
achieved with the same expenditure of resources.
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Fig. 2. The likelihood model of efficiency with a critical value, and five learners who
achieved different levels of performance, exerting different degrees of effort.

This assumption is the starting point of a critical discussion and a number
of considerations aimed at challenging its validity. In order to elaborate on this,
consider Fig. 2 where 5 learners (Lo1 − Lo5) are depicted at the intersection of
performance and experienced effort, with efficiency scores computed with the
likelihood model (Table 1).

Table 1. An illustrative example with 5 learners who exerted different degrees of
effort achieving different levels of performance, thus leading to different instruc-
tional efficiency scores as computed by the likelihood model [12] with a critical value
Pmax/Rmax = 100/100 = 1.

Learner Performance (P) Effort (R) Efficiency (E)

Lo1 70 10 +7.00

Lo2 40 30 +1.33

Lo3 70 60 +1.16

Lo4 20 68 – 0.29

Lo5 90 85 +1.06

According to the likelihood model, by employing the critical value, four learn-
ers obtained positive instructional efficiency (Lo1, Lo2, Lo3, Lo5) and one neg-
ative efficiency (Lo4), as per Table 1. Through the use of the terminology asso-
ciated to the latest definition of the cognitive load types of the Cognitive Load
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Theory [31] (Sect. 2.1), these learners had various experiences when exposed to
a certain instructional design, and these are analysed below.

1. Lo1 - a learner who exerted very low germane load but achieved good perfor-
mance. Intuitively, this could be a skilled learner with good prior knowledge.
As a consequence, the very high efficiency score computed by the likelihood
model (+7.0) is not fully justifiable and correctly reflecting the fact that the
instructional design might have been probably of low utility for this learner,
because of the low intrinsic load. Additionally, the extraneous load was prob-
ably intermediate, not influential nor redundant, as the learner achieved good
performance anyway.

2. Lo2 - a learner who exerted minimal germane load and achieved medium
performance. This is probably due to the medium extraneous load that means
the instructional material might have not been fully engaging and stimulating
and the intrinsic load was probably not optimal and not fully influential.
Therefore, the efficiency score of the likelihood model (+1.33) is positive and
close to the critical line (1). However, it is hard to establish to what extent
the instructional design was efficient.

3. Lo3 - a learner who exerted medium germane load but achieved good per-
formance. The extraneous load was probably optimal, either because of the
good prior knowledge of the learner or because of the moderately efficient
instructional material. Additionally, the intrinsic load might have been good
as the learning task might have moderately and positively engaged the learner.
Therefore, the efficiency score of the likelihood model (+1.16) is positive and
close to the critical line (1). However, as for learner Lo2, it is hard to establish
to what extent the instructional design was efficient.

4. Lo4 - a learner who exerted a good portion of germane load but achieved
poor performance. The extraneous load might have been low as the instruc-
tional material failed to promote learning and was probably not engaging, or
the learner’s prior knowledge was almost absent, not allowing to follow the
material itself for the formation of knowledge. Also, the intrinsic load might
have been probably high and the learner could not cope fully with the learn-
ing task. The likelihood model led to an efficiency score of −0.29 which is
very close to the critical line (1). Additionally, for the same level of effort 68,
but with a lower level of performance, let’s say 5, the likelihood model would
have led to an efficiency score of 5/68 = 0.073, which would have been deemed
negative as below the critical value of 1, thus becoming −0.073. However, the
latter case was clearly worse in term of efficiency than the former case, but
its efficiency value is closer to 1 that the former, suggesting a slightly bet-
ter efficiency (less negative) when in reality should have been deemed worse
(more negative). Clearly, this is counter-intuitive, generating confusion during
interpretations.

5. Lo5 - a learner who exerted high germane load and achieved good perfor-
mance. The extraneous load might have been probably optimal as it might
have motivated the learner to exert high germane load for coping with an high
intrinsic load and thus correctly promoting the formation of knowledge. This
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case might be seen as a situation in which a learner had high perseveration
in exerting effort, despite the difficulty of the instructional design exposed to,
but eventually achieved high performance. This can be regarded as a positive
outcome, in terms of instructional efficiency. However, according to the like-
lihood model, this learner achieved a positive efficiency score of +1.06, very
similar to those of learners Lo2 and Lo3, which is clearly counter-intuitive
since they either exerted significant lower effort or achieved significant lower
performance.

According to the above considerations, examples, interpretations and discus-
sion, a novel model of instructional efficiency is proposed in the next section. This
model, grounded on measures of test performance and cognitive load, is aimed at
tackling the above problems by providing scholars with instructional efficiency
scores that should support higher interpretation of behavioural performance of
learners and facilitate comparisons among instructional designs.

3 Design and Methodology

The discussion of Sect. 2.4 serves as the main motivation for the design of a
novel model of instructional efficiency that is referred to as the parabolic model
of instructional efficiency. The word ‘parabolic’ originates from a well-known
assumption within mental workload research. This assumption focuses on the
parabolic relationship between experienced mental workload and performance,
as depicted in Fig. 3 (right). This relationship has been theorised by many schol-
ars within mental workload research over the last 50 years [15,16,29,48,50],
and originally motivated by the Yerkes-Dodson law, as depicted in Fig. 3 (left),
whereby the relationship between pressure and performance was formulated from
empirical research [49], the well-known inverted U-model. Starting from this
reasonable assumption, a novel model of instructional efficiency is proposed, as
depicted in Fig. 4.

Fig. 3. The Yerkes-Dodson inverted U-model of stress and performance (left) and the
assumed relationship between mental workload and performance (right)

This new model expects that performance, intended as test performance of
learners, achieves maximality when experienced mental workload and expendi-
ture of resources or effort is moderate, and it achieves minimality when mental
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workload is either too little (underload) or too much (overload). The optimal
point for performance is depicted with the label ideal in Fig. 4, which equates to
the top of the inverted parabola (black) that models the expectation itself. This
is the first difference with state-of-the-art models of instructional efficiency, as
discussed in Sect. 2.4, whereby efficiency is the linear capacity to achieve estab-
lished goals with minimum expenditure of effort or resources [12], while in the
parabolic model, it is the non-linear capacity to achieve established goals with
moderate expenditure of effort or mental workload.

Fig. 4. A novel parabolic model of instructional efficiency based on ideal mental work-
load and performance, with 5 illustrative learners. (Color figure online)

Secondly, it is argued that the efficiency associated to a learner depends on
the distance between a point at the intersection of exerted mental workload
(MWL) and observed test performance (P ) to the ideal point. Formally:

D(Lox, ideal) (1)

with D is the function of the euclidean distance between two points, which
is the length of the line segment between the point Lox (the observed intersec-
tion of mental workload and performance for a learner L) and the ideal point
(MWLmax/2, Pmax). The yellow segments of Fig. 4 depict these distances for five
illustrative learners. The goal of this measure of distance is to penalise learn-
ers far from the ideal point, in terms of efficiency, and award those close to it.
Consequently, the worst performing learner is one who exerts minimal mental
workload, the closer available point to zero on the x axis, with null performance.
Therefore, the longest distance from the ideal point equates to the red dashed
line in Fig. 4. Formally:

D(worst, ideal) (2)
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with D is the function of the euclidean distance between two points, which is
the length of the line segment between the point worst (0, 0) and the ideal point
(MWLmax/2, Pmax). Thus, the proportional distance associable to a learner,
is the ratio between the formula 1, the observed distance, and the formula 2,
the maximum distance to the ideal point. Such ratio is inversely proportional
to instructional efficiency, which, in this model is set in the range [0, 1] ∈ �.
In other words, the higher the ratio, the lower the efficiency, and vice-versa.
Thus, the instructional efficiency associable to a learner is the ratio between the
distance to the ideal point over the maximum distance to it, subtracted from 1,
the maximum value of efficiency. Formally:

1 − D(Lo, ideal)
D(worst, ideal)

(3)

Formula 3 is aimed at penalising those learners far from the ideal point,
in terms of instructional efficiency. Additionally, it penalises even more learn-
ers who have achieved minimal performance, given minimal or maximal mental
workload, than those who achieved maximum performance with minimal or max-
imal exertion of mental workload. This is because the distance between the point
(0, Pmax) and the ideal point, is lower than the distance between the point (0, 0)
and the ideal point. In other terms, D((0, Pmax), ideal) < D((0, 0), ideal).

Beside the distance to the ideal point, and the penalisation of learners
far from it, another factor to consider is the expected behaviour of learners,
given experienced mental workload and achieved performance. This is modeled
with the parabola (black) of Fig. 4, following the assumption stated above, and
depicted in Fig. 3 (right). In detail, given an observed level of performance,
the parabola defines a corresponding level of mental workload that a learner
is expected to exert for reaching such performance. Departures from such an
expected point on the parabola equates to penalisations, in terms of instruc-
tional efficiency. This can be modelled with another measure of distance between
the observed behaviour (o), the actual point at the intersection of actual men-
tal workload and actual performance, and the expected behaviour (e), the point
at the intersection between expected mental workload and actual performance
on the parabola, which defines a straight horizontal segment (blue segments in
Fig. 4. Formally,

D(Lo,Le) (4)

with D is the function of the euclidean distance between two points, which
is the length of the line segment between the observed point at the intersec-
tion between observed mental workload and performance of learner L (Lo), and
the point at intersection of expected mental workload given a certain level of
experienced performance (Le). The longest straight segment that can be drawn
from the parabola equates to the half of the mental workload range MWLmax/2
(green segment). This is the maximum distance from the parabola that models
a learner who achieved null or maximal performance, with either minimal or
maximal mental workload (the four corners of the diagram of Fig. 4), the far-
thest points from the expected points on the parabola. Thus, the proportional
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distance associable to a learner is the ratio between the formula 4, the distance
to the expected point on the parabola, and MWLmax/2, the maximal distance
achievable from the parabola. Such ratio is inversely proportional to instructional
efficiency, which, as mentioned above, is set in the range [0, 1] ∈ �. Thus, the
instructional efficiency associable to a learner, in this case, is the ratio between
the distance to the expected point on the parabola, over the maximal distance
to it, subtracted from 1, the maximal value of efficiency. Formally:

1 − D(Lo,Le)
MWLmax/2

(5)

Formulas 3 and 5 are two terms of instructional efficiency, and since they are
percent proportions, they are bounded in the same range [0, 1] ∈ �. They are
treated with equal priority, thus have the same importance. Eventually, averag-
ing them give a combined measure of instructional efficiency, also bounded in
[0, 1] ∈ �. Formally:

E : [0, 1] ∈ �

E =
1
2

(
1 − D(Lo, ideal)

D(worst, ideal)

)
+

1
2

(
1 − D(Lo,Le)

MWLmax/2

)
(6)

This novel measure of instructional efficiency is aimed at solving the theo-
retical issues emerged in the discussion of Sect. 2.4. In fact, let us consider the
illustrative learners, their performance and effort scores, presented in Table 1,
and depicted in Figs. 2 and 4. The application of the parabolic model to these
learners generates a new set of efficiency scores, as depicted in Fig. 5.

Fig. 5. A comparison between the likelihood model and the parabolic model of instruc-
tional efficiency, with five illustrative types of learner.

As it is possible to see, the efficiency score computed by the parabolic model
(PM) for the first learner Lo1 has been drastically reduced from the score com-
puted by the likelihood model (LM). This is because of the bounded range within
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0 and 1 of the parabolic model as well as its capacity to penalise learners whose
intersection between performance and mental workload is not close to the ideal
point on the parabola, and far from the expected exertable mental workload level
given the achieved performance. However, the rank of Lo1, out of five learners,
is 1 (the best) for the likelihood model, and 2 for the parabolic model, thus not
drastically different in the group. On the one hand, Lo2 has instead earned a
rank of 4 with the parabolic model, against 2 reached with the likelihood model,
loosing position in the group. This is reasonable, given the fact that this learner
has exerted very low effort, with a moderate performance, thus the underlying
instructional design should not be considered as very efficient, because proba-
bly it did not engage the learner. On the other hand, Lo3 has achieved rank 1
with the parabolic model, against rank 3 with the likelihood model. In this case,
the efficiency of the underlying instructional design could be considered good,
as it might have engaged the learner because of the good level of performance
reached. Lo4 was the worst both for the likelihood and the parabolic models,
demonstrating a consistent outcome. This learner exerted a good amount of
mental workload, but achieved very low performance, thus reasonably deriving
that the underlying instructional design was not efficient. For this learner, it is
also possible to see the effect of the parabolic model not to produce negative
efficiencies, as instead possible with the likelihood model. Eventually, Lo5 was a
learner who exerted a very high mental workload, but still positively achieving
a very high performance. Although this is good, because the performance scores
actually points to a good learning experience, the exertable effort could have
been reduced, thus the underlying instructional condition cannot be considered
optimal in terms of efficiency.

3.1 Research Hypothesis and Comparative Design

In order to gauge the empirical value of the parabolic model for tackling the
challenging technical problem of instructional efficiency assessment within edu-
cation, a comparative experiment has been designed to assess its validity and
informativeness. This experiment is replicable and indeed should be replicated
multiple times across various studies in order to validate such a novel model,
and this article is the very first attempt towards this goal. A research hypothesis
is set below and the detailed research design is depicted in Fig. 6.

‘H 1: IF the parabolic model (PM) is employed to compute the instructional effi-
ciencies of a set of instructional designs,
THEN it is expected that it exhibits a good concurrent validity with the likelihood
model (LM) but a superior discriminant validity and higher information gain’
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Fig. 6. The comparative experimental design diagram with details on instructional
conditions, collected data, models of instructional efficiency employed, the evaluation
criteria and methods employed to assess them.

Data for this experiment was collected in various taught modules at the Tech-
nological University Dublin, in the context of a larger research project in edu-
cation [31,32,34]. All procedures performed involving human participants were
in accordance with the ethical standards of the institutional research committee
and with the 1964 Helsinki Declaration and its later amendments or compa-
rable ethical standards. Ethical approval was obtained by the ethics commit-
tee of the above institution. Informed consent was obtained from all individual
participants involved in the experiment, who were also provided with a study
information sheet and could withdraw the study at any point in time. This exper-
iment deals with two instructional design conditions. The first condition followed
the traditional direct instruction approach to learning, while the second design
extended it with a collaborative inquiry activity. In detail, the former approach
involved a theoretical explanation of a chosen topic, whereby the instructor pre-
sented the information through direct instructions, projected to a white board,
and verbally narrated. The latter approach extended the former approach with
a guided inquiry activity amongst participants based on the use of cognitive
trigger questions. Both groups received direct instructions, while only the exper-
imental group subsequently participated in the collaborative inquiry activity.
In the wider research project that originated such an experiment [31–34], the
purpose of the second condition was to establish whether the additional inquiry
activity could improve the efficiency of learners when compared to those learners
who receive direct instructions only. Further details on the rationale behind the
two conditions is not necessary here, since the goal is the comparison of two
instructional efficiency models. For further detail, the reader is referred to our
other published work [31,32,34]. In the experiment set here, any two different
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instructional conditions, assuming their difference, could have also been suitable.
In fact, the more replications of this experiment, the better for its evaluation
and thus validation.

In the first instructional condition, after the topic was presented to the class
by an instructor, on the one hand the control group participants received ques-
tionnaires aimed at quantifying the effort and mental workload they experi-
enced, using the Rating Scale Mental Effort (RSME) [51] and the raw version
of NASA task load index (R-NASA) [9], models described in Sect. 2.3. Subse-
quently to these self-reporting questionnaires, a multiple-choice questionnaire
(MCQ) associated to the taught topic was administered to the control group.
On the other hand, the experimental group, the remaining half of the class,
was split into teams of three or four participants for the inquiry activity. The
participants discussed and exchanged information related to the topic leading
to informed agreements collaboratively. The participants then wrote the shared
answers individually to the cognitive trigger questions, part of the inquiry activ-
ity. Subsequently, the participants in the experimental group, similarly to those
in the control group, received the same self-reporting questionnaires (RSME, R-
NASA, and MCQ). Once the participants in both groups completed the MCQ,
they were provided again with another RSME and Raw-NASA questionnaires.
Filling the questionnaire on both occasions (pre and post MCQ) allows for the
computation of both the training and the learning efficiencies, as they are related
to different stages of the learning process [47]. Efficiency scores were then cal-
culated using both the RSME and the R-NASA for each model of efficiency,
namely the likelihood model (LM), used as baseline, and the parabolic model
(PM), resulting in a total of eight different efficiency models, as shown in Table 2.

Table 2. Experimental configuration of the likelihood model (LM) and the parabolic
model (PM) of instructional efficiency, with both the use of the Rating Scale Mental
Effort (RSME) and the raw NASA Task Load index (RNASA) for the assessement of
mental workload (MWL), and a multiple choice questionnaire (MCQ) for the assess-
ment of test performance.

Model label Efficiency type Instructional model MWL Performance

LrEff-LM-RNasa Learning Likelihood (LM) R-NASA MCQ

LrEff-LM-Rsme Learning Likelihood (LM) RSME MCQ

LrEff-PM-RNasa Learning Parabolic (PM) R-NASA MCQ

LrEff-PM-Rsme Learning Parabolic (PM) RSME MCQ

TrEff-LM-RNasa Training Likelihood (LM) R-NASA MCQ

TrEff-LM-Rsme Training Likelihood (LM) RSME MCQ

TrEff-PM-RNasa Training Parabolic (PM) R-NASA MCQ

TrEff-PM-Rsme Training parabolic (PM) RSME MCQ
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3.2 Evaluation Criteria

To assess the instructional efficiency models, namely the likelihood model (LM)
and the parabolic model (PM), with their 8 variations, a set of evaluation criteria
are selected, as described below, namely concurrent validity, discriminant validity
and information gain.

Concurrent validity is the capacity of a measure to actually represent an
underlying construct, in this case instructional efficiency, and it can be demon-
strated by correlating the efficiency scores generated by a new model, here the
parabolic model (PM), with those from another well-known model, in this case
the likelihood model (LM). Concurrent validity is in practice measured with a
correlation test.

Discriminant validity is aimed at measuring whether two constructs that
theoretically should not be highly related to each other are, in fact, not related
to each other. In this experiment the capability of the likelihood model, and the
parabolic model is assessed, to better separate training and learning efficiencies,
as two independent constructs and, in practice, this is achieved by performing a
correlation test between the training and learning efficiency scores of each model.

Information gain is the level of impurity in a group of observations. It mea-
sures how much ‘information’ a variable provides about a target variable. In this
research, it is used to understand which instructional efficiency model leads to
efficiency scores that provide a higher amount of information about whether an
observation belongs to a specific group (control or experimental). It is a mea-
sure of reduction in entropy (H) by transforming a set of data in some way. In
practice, it is calculated by comparing the entropy of the data before and after a
transformation. H =

∑
i −pilog2pi, with p the probability of class i that means

the proportion of class i in a set. The higher the entropy the less the information
content. The idea is to look at how much it is possible to reduce the entropy
of the parent node (group) by segmenting on a given child (efficiency score).
Formally, IG = Hp − ∑n

i=1 pciHci, where Hp is the entropy of the parent node,
n is the number of child segments of the target variable, pci is the probability
that an observation is in child i (the weighting), and Hci is the entropy of child
i. To compute the information gain the following steps are necessary:

1. split the efficiency score variable of each efficiency model into 5 bins;
2. calculate the entropy for each bin;
3. calculate the proportion of all records in each bin;
4. compute the entropy of the parent node (group);
5. subtract the sum of the entropy scores of the bin weighted by the proportion

of data they represent from the root node entropy, obtaining information gain.
6. repeat the steps above for all 20 taught modules and for each instructional

efficiency model and their variations.

The information gain associated to each version of an instructional efficiency
model will be assigned a rank value from 1 to 8, 1 to the model with the most
information gain units (I.G.), 8 to the model with the least I.G. units, per taught
module, and the rank values will be aggregated across all the taught 20 modules.
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This aggregated value is referred to as the sum of rank values. Subsequently, the
efficiency models will be ranked again from 1 to 8 based on this sum of rank
values, with 1 indicating the least sum of rank values achieved, 8 the highest.
This will be referred to as the ranking position across models. In summary, the
efficiency models that achieve lower ranking position will be deemed superior,
in terms of average information gain across taught modules.

4 Results and Evaluation

The data collected contained 455 observations across 20 university modules in
computer science as per Table 3. Most of the taught topics were different and data
was collected over 3 years, each over two academic semesters, and participants
in each class were different than those in all the other classes, thus independent
to each other.

Table 3. Distribution of participants across taught modules in computer science and
how they were split across control and experimental groups.

Module ID Module name Control Experimental Total learners

1 Research methods 14 15 29

2 Research hypothesis 20 16 36

3 Visualising geo spatial data 5 7 12

4 Operating systems 20 18 38

5 Problem solving 14 11 25

6 Data mining 10 9 19

7 Literature review 7 8 15

8 Research hypothesis 8 8 16

9 Strings 10 12 22

10 Program design 15 15 30

11 Machine learning 5 8 13

12 Image processing 7 9 16

13 Research methods 8 9 17

14 Statistics 6 7 13

15 IT forensics 19 14 33

16 Literature comprehension 7 9 16

17 Virtual memory 8 7 15

18 Research hypothesis 18 14 32

19 Literature review 16 15 31

20 Operating systems 14 13 27
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The following scores were computed using collected data:

1. RSME (Rating Scale Mental Effort) scores (R) for each participant: pre and
post a multiple choice questionnaire (training and learning);

2. a Raw NASA-TLX (Nasa Task Load Index) scores (R) for each participant:
pre and post a multiple choice questionnaire (training and learning);

3. a performance score (P), in percentage, gathered from the application of a
multiple choice questionnaire tailored to each taught module, and designed
with the expert lecturer for that taught topic;

4. an efficiency score for each participant, by employing the two mental workload
assessment techniques of 1 and 2, both for the two phases (training and
learning), and for both the two models of instructional efficiency (likelihood
and parabolic). In total 8 efficiency scores are produced for each participant,
in line with the models defined in Table 2.

4.1 Concurrent Validity

All the efficiency scores were paired up with each other for each learner, and for
each instructional efficiency model (LM and PM) and their 8 variations (Table 2),
grouped by taught module (Table 3). The non-parametric Spearman correlation
test was performed for each of these paired lists. The Pearson correlation instru-
ment was not used since its assumptions were not met. Figure 7(a) illustrates the
number of statistically significant correlations of the models, grouped by learning
and training efficiency (LrEff, TrEff), and by the mental workload self-reporting
assessment instrument employed (RSME, R-NASA). Figure 7(b) shows the aver-
age correlation coefficient rs of these significant correlations.

Fig. 7. Concurrent validity of the parabolic model (PM) of instructional efficiency with
the likelihood model (PM) with a) depicting the number of significant correlation tests
across the 20 taught modules, and b) their average Spearman correlation coefficients.

Out of 20 possible modules, the parabolic model has shown, for more than
half of them, a high concurrent validity with the likelihood model, with average
correlation coefficients higher than 0.57, these being statistically significant (α <
0.05). The lack of a perfect correlation was expected, since the parabolic model
measures instructional efficiency differently than the likelihood model. However,
the fact that for more than half of the modules the two models of instructional
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efficiency produce scores moderately and highly correlated, it shows that the
underlying construct they are actually measuring is similar, and not drastically
different.

4.2 Discriminant Validity

The correlation between the training and learning efficiency scores of each model
(PM and LM) were examined using Spearman’s correlation test to determine
their discriminant validity across the 8 models (Table 2) and the taught mod-
ules (Table 3). The Spearman test was used because the assumption of the
Pearson test were not met. Figure 8a illustrates the number of statistically sig-
nificant correlations between the efficiency score pairs, while Fig. 8b their average
spearman’s correlation (rs).

Fig. 8. Discriminant validity of the parabolic model (PM) of instructional efficiency
with the likelihood model (PM) with a) depicting the number of significant correla-
tion tests across the 20 taught modules, and b) their average Spearman correlation
coefficients. (Color figure online)

Results demonstrate that the parabolic model (PM) has led to both the
lowest number of significant correlations (13 + 13, Fig. 8a), against those of the
likelihood model (16 + 14), and for those significant, it exhibited the lowest cor-
relation coefficients (0.71, 0.62, Fig. 8b) against those of the likelihood model
(0.74, 0.64). This is promising as it shows that the parabolic model led to com-
pute training and learning efficiency scores that are more distinctive, since they
do not correlate, when compared to those generated by the likelihood model. In
other words, evidence suggests that the parabolic model (green bars of Fig. 8)
has a superior discriminant validity than the likelihood model (blue bars).

4.3 Information Gain

Information gain was calculated for each of the efficiency models (Table 2) in
order to explore which one provides the most information about whether or
not an observation belongs to the control or experimental group, for each of
the 20 modules (Table 3). In other words, through a measure of information
gain, it is possible to determine which efficiency model provides the ‘purest’
segmentation with respect to these two groups. Figure 9 shows the distribution
of the information gain values for these models.
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Table 4 provides a summary of all the information gain units (I.G. units)
calculated for all of these efficiency models across the 20 modules, and ranked
by lower to higher, that means from the model that exhibits on average lower
entropy to that of higher entropy.

Table 4. Ranking of efficiency score models based on the Information gain (I.G.) units,
with Tr indicating the training phase, Lr the learning phase, Rsme the Rating Scale
Mental Effort, RNasa the Raw Nasa Task load Index, PM the parabolic model, and
LM the likelihood model of instructional efficiency.

Efficiency model Rank Val. Sum I.G. Avg I.G. StDev. Ranking Pos.

TrEff-PM-Rsme 74 0.218 0.141 1

TrEff-LM-RNasa 80 0.195 0.132 2

TrEff-PM-RNasa 83 0.176 0.084 3

LrEff-PM-Rsme 88 0.187 0.145 4

LrEff-LM-RNasa 90 0.171 0.109 5

LrEff-PM-RNasa 91 0.190 0.143 6

LrEff-LM-Rsme 97 0.167 0.144 7

TrEff-LM-Rsme 109 0.126 0.085 8

The parabolic model of instructional efficiency, as it is possible to observe
from the ranks of Table 4 (highlighted rows), provided higher information gain
(less entropy) across model variations when compared to the variations of the
likelihood model, thus had lower rank values on average. In fact, for the training
phase, the parabolic model had a sum of rank values lower than the likelihood
model (74 vs 80). Similarly, for the learning phase, it has a lower rank values
than the likelihood model (88 vs 90). The application of the unidimensional
measure of effort, or that of the multi-dimensional measure of mental workload,
did not provide clear evidence of the superiority of one measure over the other
for producing lower ranks. Thus they seem equivalent, and as a consequence,
the multidimensional measure might be preferable, as it can give more informa-
tion on the learner’s behaviour for post-hoc analysis. In summary, the parabolic
model tends to generate efficiency scores with higher information gain than those
produced by the likelihood model, as confirmed by the general lower rank values,
and higher averages of information gain units.
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(a) likelihood model (LM)

(b) parabolic model (PM)

Fig. 9. Density plots of information gain values per efficiency model, with Tr indicating
the training phase, Lr the learning phase, Rsme the Rating Scale Mental Effort, RNasa
the raw Nasa Task load Index, PM the parabolic model, and LM the likelihood model
of instructional efficiency.
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5 Summary and Future Work

Instructional efficiency is a measurable concept within education and it has
gained importance for the quantitative assessment of the efficiency of instruc-
tional designs. After a description of the deviational and the likelihood model of
instructional efficiency, two well-known models employed within education, and
after highlighting their advantages and disadvantages, the constructs of effort and
mental workload have been briefly reviewed. This is because the above models of
instructional efficiency are based upon a measure of effort or workload, which is
combined with a measure of test performance. Additionally, on one hand, the main
assumption behind these models is that efficiency is the capacity to achieve estab-
lished goals, assessed with test performance measures, at the minimal expense of
resources [12], assessed with perceived effort or mental workload. However, on the
other hand, this article, through the proposal of a novel model of instructional
efficiency, the parabolic model, challenged this assumption. Through illustrative
examples, and by employing the various cognitive load types, fundamental com-
ponents of the Cognitive Load Theory, it has been shown how this assumption
is not always reasonable. This novel and one of its kind model is based upon the
assumption that the relationship between mental workload and performance has
an inverted-U shape, similarly to the well-known Yerkes-Dodson law of stress and
performance [49]. Performance should peak with moderate mental workload, an
ideal point, and be at the minimal level when experienced mental workload is
either at a minimal or maximal level, that means underload or overload.

An empirical experiment has been designed, part of a larger study within
education, aimed at investigating the inferences produced by this novel model
when compared to the likelihood model of instructional efficiency. Empirical
evidence is promising at it shows how the parabolic model has a good concur-
rent validity with the likelihood model, reasonably demonstrating its capacity
to actually measure the construct of instructional efficiency. However, it has a
better discriminant validity as demonstrated by a lower correlation between the
efficiency scores of the training and the learning phases. Eventually, the parabolic
model has led to efficiency scores with a higher information gain, as assessed by
employing a measure of information entropy, highlighting its potential for the
evaluation of instructional designs with practical implications for the disciplines
of teaching and learning and generally for education. Future work are needed to
further validate the parabolic model of instructional efficiency. This includes the
replication of the experiment conducted in this study over additional instruc-
tional designs, and a further assessment of the efficiency scores generated by
the parabolic model across a larger set of evaluation criteria [23,26], such as for
example sensitivity, reliability, predicting validity.
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42. Rubio Valdehita, S., Ramiro, E., Garćıa, J., Puente, J.: Evaluation of subjective
mental workload: a comparison of SWAT, NASA-TLX, and workload profile meth-
ods. Appl. Psychol. 53, 61–86 (2004)

43. Smith, P.C., Street, A.: Measuring the efficiency of public services: the limits of
analysis. J. Roy. Stat. Soc. Ser. A (Stat. Soc.) 168(2), 401–417 (2005)

44. Sweller, J.: Evolution of human cognitive architecture. Psychol. Learn. Motiv.
43(2003), 216–266 (2003)

45. Sweller, J.: Element interactivity and intrinsic, extraneous, and Germane cognitive
load. Educ. Psychol. Rev. 22, 123–138 (2010)

46. Tuovinen, J.E., Paas, F.: Exploring multidimensional approaches to the efficiency
of instructional conditions. Instr. Sci. 32, 133–152 (2004)

47. Van Gog, T., Paas, F.: Instructional efficiency: revisiting the original construct in
educational research. Educ. Psychol. 43(1), 16–26 (2008)

48. Wickens, C.D.: Multiple resources and mental workload. Hum. Factors 50(3), 449–
455 (2008)

49. Yerkes, R.M., Dodson, J.D., et al.: The Relation of Strength of Stimulus to Rapidity
of Habit-Formation. Punishment: Issues and Experiments, pp. 27–41 (1908)

50. Young, M.S., Brookhuis, K.A., Wickens, C.D., Hancock, P.A.: State of science:
mental workload in ergonomics. Ergonomics 58(1), 1–17 (2014)

51. Zijlstra, F., Doorn, L.: The construction of a scale to measure perceived effort.
Department of Philosophy and Social Sciences, p. 53, January 1985

https://doi.org/10.1007/978-3-030-62302-9_7
https://doi.org/10.1007/978-1-4419-1428-6
https://doi.org/10.1007/978-3-319-44944-9_19

	A Novel Parabolic Model of Instructional Efficiency Grounded on Ideal Mental Workload and Performance
	Recommended Citation

	A Novel Parabolic Model of Instructional Efficiency Grounded on Ideal Mental Workload and Performance
	1 Introduction
	2 Related Work
	2.1 Cognitive Load and Its Theory
	2.2 Instructional Efficiency
	2.3 Mental Effort and Mental Workload
	2.4 Discussion on Instructional Efficiency Models and Assumptions

	3 Design and Methodology
	3.1 Research Hypothesis and Comparative Design
	3.2 Evaluation Criteria

	4 Results and Evaluation
	4.1 Concurrent Validity
	4.2 Discriminant Validity
	4.3 Information Gain

	5 Summary and Future Work
	References


