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Beyond reasonable doubt: A proposal
for undecidedness blocking in abstract

argumentation

Pierpaolo Dondio* and Luca Longo

School of Computer Science, Technological University Dublin, Dublin, Ireland

Abstract. In Dung’s abstract semantics, the label undecided is always propagated from the attacker to the attacked argument,
unless the latter is also attacked by an accepted argument. In this work we propose undecidedness blocking abstract argumen-
tation semantics where the undecided label is confined to the strong connected component where it was generated and it is not
propagated to the other parts of the argumentation graph. We show how undecidedness blocking is a fundamental reasoning
pattern absent in abstract argumentation but present in similar fashion in the ambiguity blocking semantics of Defeasible
logic, in the beyond reasonable doubt legal principle or when someone gives someone else the benefit of the doubt. The
resulting semantics, called SCC-void semantics, are defined using an SCC-recursive schema. The semantics are conflict-free
and non-admissible, but they incorporate a more relaxed defence-based notion of admissibility. They allow reinstatement and
they credulously accept what the corresponding Dung’s complete semantics accepts at least credulously.

Keywords: Abstract argumentation semantics, ambiguity blocking, standard of proofs, undecidedness

1. Introduction

Abstract argumentation is a framework for non-
monotonic reasoning where conclusions are reached
by evaluating arguments and their conflict relations.
Abstract argumentation is centred on the notion of
argumentation framework [11, 22], a directed graph
where nodes represent arguments and links represent
attack relations defined over arguments.

One of the main tasks of abstract argumentation is
the computation of the acceptability status of argu-
ments. This is achieved by the application of an
argumentation semantics, a set of postulates used
to identify the sets of arguments, called extensions,
which successfully survive the conflicts encoded
in the attack relations. In the labelling approach

*Corresponding author: Pierpaolo Dondio, School of Com-
puter Science, Technological University Dublin, Kevin Street,
Dublin 2, Ireland. E-mail: pierpaolo.dondio@TUDublin.ie.

proposed in [4], the effect of an argumentation seman-
tics is to assign to each argument a label in, out or
undec. This means that an argument can respectively
be accepted, rejected or deemed undecided. The
undec label represents a situation in which the seman-
tics has no reasons to accept or reject an argument.

In this paper the definition of a new family of
abstract semantics called SCC-void semantics is
explored. For each complete semantics, it is possi-
ble to define a SCC-void version of it. SCC-void
semantics are conflict-free and non-admissible, but
they still employ a defence-based relaxed notion of
admissibility. They allow reinstatement and gener-
ate extensions that are supersets of the extensions
generated by the corresponding complete semantics.
Since the paper introduces yet another semantics, it is
important to consider why many semantics have been
proposed and where our new semantics fit in terms of
motivation and originality.

ISSN 1724-8035/19/$35.00 © 2019 — IOS Press and the authors. All rights reserved
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A: Ann said Carol shoot the victim °

C: Carol is innocent,
unless proven guilty

° B: Bob said Carol stabbed the victim

Fig. 1. The floating assignment in a legal context.

The variety of semantics that exists in the litera-
ture of argumentation is due to at least two reasons:
(1) different semantics might model different princi-
ples and (ii) the same principle can be modelled in
different ways and consequently it can lead to differ-
ent strategies for acceptability. For instance, Dung’s
complete semantics [11] are all based on the notion
of reinstatement; however, they differ in the way this
notion is used across them. For example, on one
hand, under the grounded semantics an argument can
be reinstated only by a different accepted argument.
On the other hand, under the preferred semantics an
argument can indeed reinstate itself by attacking its
attackers.

Baroni noticed how different semantics reflect dif-
ferent intuitions and are meant to satisfy specific
properties and/or fulfil some desired behaviours in
problematic examples [24]. Given the same argumen-
tation framework, it is not unusual that two abstract
semantics differ even strongly on the acceptability
status of arguments. For instance, if we consider
the argumentation graph depicted in Fig. 1, known
as the floating assignment example, argument C is
undecided under the grounded semantics but rejected
(sceptically) under preferred or stable semantics.

This behaviour is not a surprise. Each semantics
offers a formal model of some reasoning patterns that
could fit some contexts and be questionable in others.
However, in abstract argumentation arguments are
atomic units and no information about their internal
structure or the context are provided. As a conse-
quence, several interpretations of the same graph are
possible. While, at the abstract level, there is no rea-
son to prefer one semantics over another, it is only
when contextual information about the situation is
considered that one could consider one semantics
a better fit than another. For instance, few authors
[19, 23] underline how grounded semantics might be
more appropriate for epistemic reasoning while pre-
ferred semantics for practical reasoning. However,
an argumentation graph does not encode any infor-
mation about the epistemic or practical nature of the
discussion modelled.

Baroni [24] noticed how, included in the contex-
tual information required to meaningfully applied a
semantics, there are also design choices such as the
way arguments are constructed and attack relations
identified as well as choices that directly interact with
argumentation semantics.

The new semantics introduced in this paper follow
the same line of thought: they need contextual infor-
mation in order to evaluate their appropriateness to
the context.

The motivation for these new semantics is to model
a fundamental reasoning mechanism absent in cur-
rent abstract semantics. This mechanism, that we call
undecidedness blocking, is inspired by the notion
of ambiguity blocking semantics [14, 29], by the
beyond reasonable doubt legal principle or by com-
mon decision-making patterns such as the benefit of
the doubt. The genesis of such new semantics starts
from a reconsideration of the way the undecided label
is propagated onto an argumentation framework.
Under any of Dung’s complete semantics, an argu-
ment a attacked by an undecided argument is never
accepted. Itis either undecided or, if another accepted
arguments is also attacking a, it is rejected. There-
fore the undecided label is always propagated from
the attacker to the attacked argument in the absence
of accepted attackers. Using a terminology belong-
ing to defeasible logic, Governatori [14] observed
how Dung’s complete semantics are all ambiguity
propagating.

In this work we prefer to speak about undecided-
ness propagation (or blocking) rather than ambiguity
propagation (or blocking). Undecidedness is not the
same as ambiguity and we also intend to detach our-
selves from the notion of ambiguity of Defeasible
Logic, as we explain later in this section. An agent
blocking undecidedness would prevent the undecided
arguments to affect other parts of a reasoning process.
An attack from such arguments, for instance, would
not be effective, and the undecided label would not
spread from the attacker to the attacked argument.

There are plenty of reasoning patterns, both in for-
mal contexts and informal routine situations, in which
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humans adopt a mechanism where the undecidedness
cast by conflicting arguments is confined and not
propagated to the other parts of the decision making
process.

In the formal context of Defeasible Logic, the stan-
dard semantics is ambiguity blocking. In Defeasible
Logic a literal is ambiguous if there is a chain of rea-
soning concluding a and another concluding —a and
the superiority relation cannot resolve such conflict.
The ambiguity blocking mechanism of defeasible
logic is that both a and —a are refuted and there-
fore any argument b; based on a or —a is refuted. The
effect is that other arguments that are in conflict with
b; might result provable, rather than being deemed
ambiguous as well.

The notion of ambiguity, as defined in Defeasi-
ble Logic, does not map to undecidedness in abstract
argumentation. Ambiguous literals are most likely to
be represented in abstract argumentation with two
rebuttal arguments, which would indeed generate
undecided arguments in some semantics, but not in
all of them. Moreover, paradoxical situations like a
cycle of three arguments with unidirectional attacks
also generate an undecided situation in abstract argu-
mentation, but they are not possible in Defeasible
Logic since the superiority relation is required to be
acyclic. Even if we consider the meaning of ambiguos
in the English language (that is a situation open to
multiple interpretations), it is clearly not the same as
being undecided. For instance, in a paradox there is
no ambiguity, since there are no multiple potentially
valid interpretations but rather all the interpretations
are contradictory.

An undecidedness blocking mechanism is cer-
tainly the most appropriate in a legal dispute. In the
majority of legal systems, evidence in a criminal case
has to satisfy the standard of proof beyond reasonable
doubt. If evidence versus an accused is not definitive
or open to multiple interpretations, then evidence is
void and the judge rules in favour of the accused. Note
the asymmetry of the principle: only evidence against
the accused needs to be definitive (beyond reasonable
doubt).

A typical example is the situation of two tes-
timonies, both of them accusing x but providing
conflicting accounts. In a Dung-style argumentation
graph, the situation can be modelled as two rebuttal
arguments (the testimonies) attacking the presump-
tion of innocence of x that is the default position
valid unless the contrary is proven (see Fig. 1). Note
how arguments A and B undercut the validity of C,
but not vice versa: C does not attack back A and

B. This is because C is an example of defeasible
argument, a default position whose validity is sub-
ject to exceptions. C is valid unless there is (valid)
evidence against it. C does not rebut A or B since C is
not based on evidence but rather on a presumption that
can be retracted in light of the evidence provided by B
and A. In order to rebut A and B, another kind of argu-
ment has to be provided, such as a testimony in favour
of Carol’s innocence. None of the complete semantics
accepts the innocence of x and preferred and stable
semantics sceptically reject the innocence of x. In
this situation, an undecidedness blocking semantics
seems to be more appropriate, since in a legal context
the judge will consider x innocent.

Undecidedness blocking patterns are not confined
to legal courts. An example is the benefit of the doubt,
a mechanism routinely used by humans. When we
reason using the benefit of the doubt, we tend to
believe something even if we are not certain about
it. The benefit of doubt is deeply embedded in human
relationships, often granted to a person based on trust
[16].

The proposal for an undecidedness blocking
abstract semantics starts from an analysis of how
undecided arguments affect the status of attacked
arguments. In SCC-void semantics, only attacks from
in-labelled arguments always prevent the attacked
arguments to be accepted, while attacks from unde-
cided arguments could have no effect, blocking
the undecided label to spread, contrary to what
would happen under Dung’s complete semantics.
The notion of admissibility is relaxed and the notion
of effective attack is stronger, being harder for an
argument to be excluded from the set of accepted
arguments.

The reminder of the paper is organized as fol-
lows. Section 2 describes the required background
of abstract argumentation. Section 3 provides a SCC-
recursive definition of the new proposed SCC-void
semantics, while Section 4 focuses on a discussion
of their properties. Section 5 contains related works
to date and section 6 concludes the paper and presents
future research directions.

2. Background: Argumentation semantics

Definition 1. An argumentation framework AF is a
pair (Ar, R), where Ar is anon-empty finite set whose
elements are called arguments and R C Ar x Arisa
binary relation, called the attack relation. If (a, b) € R
we say that a attacks b. Two arguments a, b are
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rebuttals iff (a, b) € R A (b, a) € R, that means they
define a symmetric attack. An argument a is ini-
tial if it is not attacked by any arguments, including
itself.

An argumentation semantics identifies a set of sets
of arguments that can survive the conflicts encoded by
the attack relation R. Dung’s semantics require a set
of acceptable arguments to be conflict-free (an argu-
ment and its attacker cannot be accepted at the same
time) and admissible (the set of arguments defends
itself from external attacks).

Definition 2. A set Arg C Ar is conflict-free iff
Ja, b € Arg so that (a, b) € R

Definition 3. A set Arg € Ar defends an argument
a € Ariff Vb € Ar such that (b, a) € R, Ic such that
(c, b) € R. The set of arguments defended by Arg is
denoted F (Arg). A conflict-free set Arg is admissible
if Arg C and it is complete if Arg = F (Arg).

The labelling approach of [4] is employed in this
paper, where a semantics assigns to each argument a
label in, out or undec.

Definition 4. Let AF = (Ar, R). A labelling is
a total function L : Ar — {in, out, undec}. We
write in (L) or {a € Ar|L (a) =in} out(L) for
{a € Ar|L (a) = out} undec (L) for {a € Ar|L (a)
= undec}

Definition 5. ([4]). Let AF = (Ar, R). A complete
labelling is one such that for every a € Ar it holds
that:

1. ifaislabelled in then all its attackers are labelled
out,

2. ifaislabelled out then it has at least one attacker
that is labelled in;

3. if a is labelled undec then it has at least one
attacker labelled undec and it does not have an
attacker that is labelled in.

Definition 6. Given AF = (Ar, R),

1. L is the grounded labelling iff £ is a complete
labelling where undec (L) is maximal (w.r.t. set
inclusion) among all complete labellings of A F

2. L is a preferred labelling iff £ is a complete
labelling where in (£) is maximal (w.r.t. set
inclusion) among all complete labellings of A F

3. £ is a stable labelling iff £ is a complete
labelling where undec (L) = ¢

4. L is a semi-stable labelling iff £ is a complete
labelling where undec (£) is minimal (w.r.t. set
inclusion) among all complete labellings of A F

The labelling and the extension-based approach are
equivalent. Given an argumentation framework and a
semantics s for each set of in-labelled arguments there
is an extension generated by the same semantics s and
vice versa (proof in [4]).

An argumentation framework A F = (Ar, R) iden-
tifies a directed graph. The following are some
graph-based definitions needed for the rest of the

paper.

Definition 7. A subgraph of a graph G = (Ar, R) isa
graph G = (S, Rg) whose set of nodes S is included
in Arand Rg = RN (S x S)

A subgraph contains a subset of nodes of the orig-
inal graph and any link whose endpoints are both
in S (note how this subgraph is usually called a
vertex induced subgraph). Given an argumentation
framework A F, the restriction of an argumentation
framework to a set of nodes S is the framework iden-
tified by a vertex induced subgraph of A F identified
by the nodes S.

Definition 8. If G is a graph, a strongly connected
graph of G is a subgraph of G where, for each pair
of nodes a, b € G there is at least one directed path
from a to b and at least one directed path from b
to a. A strongly connected component (SCC) of G
is a maximal (with respect to set inclusion) strongly
connected subgraph.

Given a graph G = (A, R), we consider the graph
composed by the strongly connected components of
G. This is the graph Ggc= < Ssee, Rgee,> Where
Sscc is the set of strongly connected components of
G, and there is a link from the strongly connected
component S; to Sy if at least an element of S
attacks an element of S in the graph G. Formally,
VS], Sz € SSC(j, RSCC (Sl, Sz) iff Ja € Sl, b e Sz
such that R (a, b). The graph G is adirected acyclic
graph. Therefore, it is possible to define a topolog-
ical ordering of such graph. A topological ordering
of a graph G is an ordering such that, Va, b € G, if
R(a, b) then a > b. Given G and Gy in order to
simplify the discussion in the paper, the following
shortcut notation is introduced: for a, b € G we say
that a > b if a belongs to S1 € Gy, b belongs to
S$> € Gyecand S| > S». Therefore, if a and b are in the
same SCC, none of the two arguments precedes the
other.
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2.1. SCC-recursiveness and complete semantics

Definition 9. A given argumentation semantics Sem
is SCC-recursive if and only if for any argumentation
framework AF = (A, R) its extensions are given by
Esem (AF) = GF (AF, A), where GF (AF, A) C
24 is defined as follows:

VE C A, E € GF (AF, A) if and only if:

1. incase |[SCCSar| =1, E € BF(AF, A)
2. otherwise, VS e SCCSar is (ENS) e
GF (AFwPAF(s,E), Uar(S,E)N C)

where SCCSar is the set of the strongly connected
components of AF, BF (AF, C) is a function, called
base function, that, given an argumentation frame-
work AF = (A, R), such that |SCCSar| =1 and
a set C C A it returns a subset of 24. The set
UP4F (S, E) is the set of all the arguments in S not
attacked by the arguments already in the extension E,
while Uar (S, E) € UP4F (S, E) is the set of argu-
ments of § that are not attacked by an argument
in the extension E and also defended by arguments
in E.

Intuitively, the idea is that a semantics is com-
puted by recursively analysing the strongly connected
components of the argumentation graph [2]. At the
beginning, the procedure is applied to the entire argu-
mentation graph. If the graph is composed by more
than one SCC, then it is decomposed in its SCCs
and the extension is recursively built by analysing
each SCC following the topological ordering of the
acyclic graph identified by its SCCs. Portions of the
graph that are represented by a single strongly con-
nected component are analysed using a base function
BF specific to each semantics. Therefore, the exten-
sions of an initial SCC are identified using the base
function BF. A non-initial strongly connected com-
ponent S is analyzed once all the SCCs preceding
it in the topological ordering have been analysed.
The extension of a non-initial SCC § is computed
recursively by the function GF on a restriction of
S, containing all the arguments in S except the
ones attacked by those arguments already accepted
(that are the arguments already in the extension E)
and belonging to one of the SCCs previously anal-
ysed. This is the reason why the recursive step is
applied to a restriction of S including the argu-
ments in the set U P4 r, representing all the arguments
in § not attacked by the arguments already in the
extension E. In building the extension of S, the
definition also considers the set of arguments in
S that are attacked from outside by those argu-

ments not in the extension E, but that in turn are
defended by at least an argument in E (the set
Uar € UPy4F, the second parameter of the function
GF).

All Dung’s complete semantics are SCC-recursive.
We describe the computation of any complete Dung’s
semantics with the following variation of the SCC
schema, which uses a different notation more con-
venient for our labelling-based discussion. For each
complete semantics x, the base function is a func-
tion £, turning the labelling of a graph consisting of
a single SCC according to the semantics x. Follow-
ing the general SCC-recursiveness schema, a SCC S
is labelled by considering arguments in S but also
the effect of the external attacks from arguments in
SCCs preceding S in the topological ordering, that
were labelled before S and independently from the
labelling of S. In detail, some arguments in S could
be attacked by arguments that have been labelled out,
but these attacks are irrelevant in a complete labelling.
Some arguments in S could be attacked by arguments
labelled in (we refer to the arguments in S, attacked
by in-labelled arguments, as the set Aft;,) and some
could be attacked by arguments labelled undec. We
refer to the arguments in S attacked by undec-labelled
arguments as the set Aff,,4... The labelling of S is
performed by applying £, over the arguments of S
after having labelled out the arguments in the set Aft;,
(and therefore only the restriction of Sto S\ Aft;, is
de facto labelled), and by considering that arguments
in Attyngec are attacked by undecided arguments.
Therefore, these arguments are labelled undecided if
they are not labelled out (again, according to defini-
tion 5), and their undecided label might spread over
other nodes in S.

Referring to the original SCC-recursiveness paper
[2], we note how S \ Aftj, = UPar. The set Atty,gec
carries the same information that in [2] is represented
by the set U4 r (part of the second argument of G F).
Indeed, Att,;ge. represents what in the original SCC-
recursiveness paper [2] is the set P4r (provisionally
defeated arguments), consisting of arguments of S
attacked by arguments not in the extension (not
labelled in) and not defended by an argument in
the extension. Since UPsp = Uar U Par, then the
two sets Uar and Par = Attyngec carry the same
information in complementary ways. While U4  rep-
resents the set of arguments of UP4r C S that could
be part of the extension E, Att,,4ec is the set of argu-
ments of UP4r C S that (even if not defeated by
in-labelled arguments) cannot belong to the extension
of S.
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3. SCC-void undecidedness blocking
semantics

Our discussion starts from the beyond reasonable
doubt principle. This principle should protect argu-
ments from doubtful attacks and make it harder to
remove an argument from the set of accepted argu-
ments. In the context of abstract argumentation, we
propose to consider, on one hand, only the attacks
from the accepted arguments always effective in mak-
ing the attacked argument non-acceptable. On the
other hand, the attacks coming from undecided argu-
ments are doubtful and, under some circumstances,
they have no effect. As a result, the undecided label
is blocked and it is not assigned to the attacked argu-
ment.

In our proposal, an attack from an undecided argu-
ment a to an argument b is blocked (i.e. is ineffective)
if a is in a SCC preceding the SCC containing the
argument b in the topological order of the SCC graph.
The rationale is the following: if two arguments are in
the same SCC, each of them might affect the accept-
ability status of the other. Therefore, an argument
could be undecided because of its own attacks to
the other argument and vice versa. Both of the two
arguments might be equally considered not beyond
reasonable doubt and their attacks to each other con-
sidered ineffective. This could lead to accept both
of them and potentially violate conflict-freeness!.
Therefore our proposal is to defend an argument a
from an undecided attacker b only if a is not involved
in the assignment of the undecided label to its attacker
b, condition that is guaranteed by the fact that the SCC
containing b precedes in the topological order of the
graph the SCC component containing a. This pro-
posal blocks the propagation of undecidedness and
limits it inside the strong connected component where
it was generated.

Let us consider the graph in Fig. 2 that has two
strongly connected components, one containing the
arguments a and b and the other containing argument
c only. Arguments a and b are forming a cycle and
they are responsible for generating the undecided sit-
uation, while the label undec is propagated to the
argument c that has no involvement in the cycle. Our
proposal would be to keep a and b undecided, but
accept c: the undec label is not propagated outside the
cycle. In the floating assignment example (Fig. 1), our

! Unless we consider different labellings, where one of the two
arguments is accepted and the other is not, generating preferred-
semantics-like labellings.

08050
Fig. 2. Propagation of the undec label.

proposal implies that both a and b remain undecided,
but c is accepted.

This is not the only possible way of modelling
undecidedness blocking, but we believe it is one
of the possible valid proposals. We formally define
our new semantics, called SCC-void semantics, by
modifying the SCC-recursive schema of complete
semantics. For each Dung’s complete semantics x,
we define a corresponding SCC-void semantics, that
is the semantics x where the above undecidedness
blocking criterion is applied.

The SCC-void labelling for a complete seman-
tics x, called Lscc,, is a SCC-recursive labelling
computed following the topological ordering of the
strongly connected components of an argumentation
graph. Arguments belonging to an initial strongly
connected component S; are labelled using the
labelling function £, of the chosen complete seman-
tics x. We then apply our criterion: attacks from
undecided arguments in S; to arguments not in S; are
considered not beyond reasonable doubt attacks and
thus they have no effect. These attacks are therefore
discarded in the labelling of the subsequent SCCs
in the topological order of the graph. As a result,
the undec label is not propagated outside the SCC
component where it was generated. Recursively, the
arguments that are in a non-initial SCC S are labelled
in the following way. First, we label out all the argu-
ments in S included in the set Att;,, that are the
arguments in S attacked by an in-labelled argument
not belonging to S that was labelled in a previous
step of the recursion. Then, we apply again the recur-
sive step on the argumentation framework composed
by the remaining arguments. We continue until all
the arguments have been labelled. Therefore, while
labelling a SCC §, we ignore the attacks coming from
undecided arguments preceding S.

Note how the recursive scheme of the chosen
complete semantics described in section 2.1 is fol-
lowed, but we are not considering the external
attacks from the set of undecided arguments when
labelling an SCC. Using the terminology of the orig-
inal SCC-recursiveness paper [2], neglecting attacks
from external undecided arguments is equivalent to
assume that the set P4 = ¥ and therefore UPsr =
Uar. We can therefore give the following two
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extension-based and labelling-based SCC-recursive
definitions of SCC-void semantics.

Definition 10. Given an argumentation framework
AF = (Ar, R), E is an extension of the SCC-void
semantics Sggc, if and only if:

1. incase |SCCSar| =1, E € S (AF)
2. otherwise, VS € SCCSap, it is (ENS) €
Sssc, (AFLuap(s.B))

where SCCS 4 is the set of strongly connected com-
ponents of AF, Sy (AF) returns the extensions of
a complete semantics x of an argumentation frame-
work AF, and Uy F is the set of arguments in S € Ar
that are not externally attacked by an argument in
the extension E. A labelling-based definition is also
provided.

Definition 11. Let us consider the argumentation
framework AF = (A, R), and L, the labelling func-
tion for one of the complete semantics x. The
SCC-void labelling for semantics x is identified by
the function Lscc, idefined as follows:

1. incase |[SCCSar| =1, Lscc, = Ly
2. otherwise, VS € SCCSaF, it is

Lscc, Yae S\ Attin (S)

Lsce, = {out Ya € Attiy (S)
where Aft;, (S) is the set of arguments in S exter-
nally attacked by an in labelled argument: Att;, (S) =
{ae S ein(Lscc,) :b¢ SARDb.a)}.

We note how the stable SCC-void semantics
always coincides with Dung’s complete stable
semantics, since in a stable labelling there are no
undecided arguments and therefore the undecided-
ness blocking criterion can never be applied.

3.1. Examples

In the floating assignment example (Fig. 3, part
1) using grounded SCC-void semantics, a and b are
in an initial SCC and are therefore labelled undec
using grounded semantics. However, their attacks are
not propagated to ¢ that is labelled in. The labellings
of the preferred SCC-void semantics coincide with
Dung’s preferred semantics labellings, since in this
case there are no undecided arguments.

In Fig. 3 (part 2), a is labelled undec and b is
in for all the SCC-void semantics. In Fig. 3 (part
3), all the arguments are undecided in the grounded

SCC-void labelling since, even if the attack from b to
d could be neglected, the arguments d and e are still in
a cycle. Therefore the grounded SCC-void labelling
agrees with Dung’s grounded labelling. For preferred
SCC-void semantics there are two labellings: a, b, ¢
are always undecided but, since the attack from b to
d could be neglected, d is accepted and e is rejected
in one labelling, while e is accepted and d is rejected
in the other. Note that only the second labelling is a
Dung’s valid preferred labelling.

In Fig. 3 (part 4), by using the grounded SCC-
void semantics arguments a and b are labelled undec,
the initial argument e is in, d is out (defeated by
e) and since we neglect the attack from b to ¢ also
c is accepted. Regarding preferred semantics, the
two SCC-void preferred semantics labellings are also
Dung’s preferred labellings.

4. Discussion and properties

Table 1 (next page) shows the properties satis-
fied by SCC-void semantics and the corresponding
Dung’s complete semantics. As it is possible to note,
the stable SCC-void semantics always coincides with
Dung’ stable semantics, since stable labelings do not
contain undecided arguments.

SCC-void semantics are clearly non-admissible,
since they can accept arguments that are not defended
by in-labelled arguments. These semantics could be
seen as employing a different form of admissibility
since they still require an argument to be defended
from the attacks of in-labelled arguments, but, under
some conditions, not from the attacks of undec-
labelled arguments.

All SCC-void semantics satisfy the reinstatement
property since, if an argument has all its attackers
labelled out, it is labelled in. However, SCC-void rein-
statement is easier, since an argument a defeated by b
is fully reinstated even by an argument c rebutting b,
since ¢’s attack makes b undecided and therefore the
attack of b on a is not effective anymore. Our seman-
tics are the only non-admissible semantics known
to the authors satisfying reinstatement. Other non-
admissible semantics, such as Stage semantics, allow
an initial argument to be excluded from the extension,
while both CF1 and CF2 semantics allow an argument
whose attackers are all labelled out to be labelled
out.

SCC-void semantics are also conflict-free and they
satisfy rejection (in-labelled arguments always defeat
attacked ones). The grounded SCC-void semantics
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Fig. 3. SCC-void labellings of argumentation frameworks.

always exists and it is unique, while the complete
and preferred versions are multiple-status semantics
with cardinality greater or equal than 1. Regarding

directionality, all the SCC-void semantics (except
the stable one) satisfy it, since the label assigned to
an argument a does not depend on the label of the
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Table 1
Properties of SCC-void semantics and complete semantics

Property Lscc, Lo Lscc, Lpr Lscc., Leo Lsccy Lst
Admissible N Y N Y No Y Y

Conflict-free Y Y Y Y Y Y Y Y
Reinstatement Y Y Y Y Y Y Y Y
Rejection Y Y Y Y Y Y Y Y
Directionality Y Y Y Y Y Y N N
Abstention N N N N N Y N N
Cardinality 1 1 >1 =1 =1 =1 =0 =0
I-maximality Y Y Y Y N N Y Y

arguments following a in the topological order of the
graph.

The property abstention states that, if an argu-
ment a is labelled out in at least one valid labelling
and labelled in in at least another, then there must
be a valid labelling where a is labelled undec. The
grounded, preferred and stable SCC-void do not sat-
isfy it, since Dung’s grounded, preferred and stable
semantics do not. Complete semantics satisfies it, but
the complete SCC-void semantics does not. An exam-
ple is in Fig. 3 (part 4) for arguments e and d. There
is at least one complete SCC-void labelling with e
accepted and d reject and one with d accepted and e
rejected, but there is no complete SCC-void labelling
where e or d are undecided.

A semantics satisfies [-maximality if no extension
is astrict subset of another. Itis not satisfied by Dung’s
complete semantics and therefore neither by the com-
plete SCC-void semantics. Itis indeed satisfied by the
other SCC-void semantics since it is satisfied by the
corresponding Dung’s semantics.

4.1. Relation between SCC-void acceptability
and Dung acceptability

Itis interesting to study the relation between the set
of in-labelled arguments of semantics x and the set of
in-labelled arguments of the corresponding SCC-void
semantics Sscc, .

In the SCC-void semantics, some of the arguments
previously labelled undec could be promoted to the
label in, and those arguments are now free to effec-
tively attack other arguments. We wonder if some of
the arguments accepted by x are now discarded by the
corresponding SCC-void semantics. The following
holds.

Theorem 1. If an argument a is at least credu-
lously accepted by semantics x, then a is at least

credulously accepted by SCC-void semantics for
semantics x.

Proof. We prove that, if an argument a is labelled
in in a complete labelling /, there is also a SCC-
void labelling ;. where a is labelled in. We first
notice that arguments labelled in, within a complete
labelling [, are indifferent to the undecided argu-
ments. They either are initial arguments or defended
by some in-labelled arguments (potentially including
themselves). The same is for arguments labelled out
in [: their label is assigned by the presence of an in-
labelled argument. Moreover, in a complete labelling
[, in-arguments do not receive any attacks from unde-
cided arguments, and undec arguments only attack
arguments labelled undec or out. In a SCC-void
labellings, attacks from a subset of undecided argu-
ments are neglected. Following this, two cases are
possible:

Case 1. The neglected attacks are directed to
undec-labelled arguments. In this case, the attacked
arguments could be promoted to the label in. How-
ever, each new in-labelled argument b does not attack
any in-labelled argument in /, but only arguments
labelled undec and out, since b was undecided in
I. Therefore the only potential effect of the attacks
from b is that those arguments are now labelled out
in Igc. The effect of these new out-labelled argu-
ments is potentially to change the label of some
arguments previously undecided to in, and therefore
in(l) Cin (lsc).

Case 2. The neglected attacks are directed to argu-
ments labelled out in [. In this case, the effect is that
each attacked argument ¢ remains labelled out also in
lscc, since the out label of ¢ in [ was necessarily the
effect of the attack from an in-labelled argument. This
in-labelled argument is still labelled in in .., since
it cannot be affected by attacks included in case 1
above, and itis not affected by attacks included in case
2, since all the attacked arguments ¢ remain labelled
out, and therefore they do not affect any in-labelled
arguments in /, and in (I) C in (lsc). O

In case of a single-status semantics, like the
grounded semantics, Theorem 1 means that the
grounded SCC-void semantics is unique, always
existing, and its extension is a superset of the Dung’s
grounded semantics. In particular, some undecided
arguments could be promoted to in or demoted to
out, while arguments labelled out and in under Dung’s
grounded semantics, retain their label in the grounded
SCC-void labelling.
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4.2. An alternative definition of SCC-void
semantics

We defined SCC-void semantics as a modifica-
tion of an underlying Dung’s complete semantics x.
By doing so, we have retained some desirable prop-
erties of Dung’s semantics and a relation between
the extensions prescribed by a semantics x and its
SCC-void version. However, an alternative path could
have been followed. In the literature, grounded, pre-
ferred and stable semantics are often defined as
complete labellings whose set of undec- or in-labelled
arguments satisfy some properties of maximality or
minimality. For instance, a complete labelling is
grounded iff it maximizes the set of undec arguments.
We could have defined each SCC-void semantics in
the same way, starting from the set of all complete
SCC-void labellings.

However, the question is whether the two pro-
posals coincide. Trivially, they coincide for stable
SCC-semantics, since this semantics is equivalent to
Dung’s stable semantics. A weaker result holds for
grounded and preferred, but the answer is negative.

Lemma 1. The grounded (respectively a preferred)
SCC-void labelling maximizes the set of unde-
cided arguments, (respectively maximizes the set of
in-labelled arguments) among all the complete SCC-
void labellings.

Proof. The proof is for grounded semantics, but the
proof for preferred semantics is analogous. We have
to prove that undec (»Csccgr) is not contained in the
undec set of any other SCC-void complete labellings
Lycc,- The Lycc,, labelling uses the grounded labelling
as base function. Because of this, we can be certain
that in all the initial SCCs the set of undec argu-
ments is maximal. If in another complete SCC-void
labelling Ly, there is at least one initial SCC S
with a different labelling, then undec (Lycc, (S)) C
undec (Lgcc,, (5)), and we prove lemma 1. If this
is not the case, we then move to the next non-
initial SCC § in the topological order. So far, the
labels of all the arguments considered coincide
with the labels assigned by the grounded SCC-
void labelling Esccg,‘- Therefore, every SCC-void
labelling labels the same restriction of S in the
next recursive step. The grounded semantics guar-
antees again that the labelling of § maximizes the set
of undecided arguments. Therefore, in every SCC-
void labelling L., generating a different labelling
for S it is undec (ESCCX (S)) C undec (ESCCW (S)),

Fig. 4. A preferred SCC-void labelling (left) and the grounded
SCC-void labelling for the same argumentation graph, both max-
imizing the set of undec arguments.

and we prove the lemma. When all the arguments
have been labelled, either all the complete SCC-
void labellings agree with the unique grounded
SCC-void labelling, or for every different SCC-void
labellings Ly, there was at least one SCC § labelled
in a different way for which undec (Esccx (S)) C
undec (Esccgr (S)) and we prove the lemma. O

The above lemma is not a double implication. Not
all the SCC-void labellings maximizing the undec
set are grounded SCC-void labellings, and not all the
labelling maximizing the set of in-labelled arguments
are preferred SCC-void labellings.

For instance, labelling generated by L., can also
maximize the set of undec arguments. An example is
given in Fig. 4, where both the grounded and the pre-
ferred SCC-void labellings maximize the set of undec
arguments. The example also shows that the SCC-
void labelling maximizing the set of undec arguments
is not always unique and therefore a grounded SCC-
void labelling defined as the labelling maximizing
the number of undecided arguments would have lost
that property. The example also shows that a labelling
produced by Esccgr can also maximise the set of in
labelled arguments.

4.3. Undecidedness Blocking in SCC-void
semantics

SCC-void semantics are undecidedness blocking
since, under some conditions, the label undec is
not allowed to be transferred from the attacking to
attacked arguments. Specifically, we can prove the
following lemma, a straightforward consequence of
our definition of SCC-void semantics:

Lemma 2 (Topological order sufficient condition).
If all the undecided attackers of argument b belong
to SCCs preceding the SCC containing b in the topo-
logical order of the graph, then b is labelled in or out
in all the SCC-void labellings.
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Proof. The lemma follows from our definition of
SCC-void semantics. If all the undecided attackers
of argument b belong to some SCCs preceding the
one containing b in the graph, those attacks are inef-
fective, and therefore, since there are no more attacks
to b from undecided attackers, argument b is either
labelled in or out. Il

Corollary. If b is not part of a cycle, than b is labelled
in or out in all SCC-void labelligs.

The corollary implies that acyclic parts of the graph
do not have undecided arguments, and the undecided
label is not propagated outside the SCC where it was
generated.

4.4. Mixed decisions

An agent might require different standards of proof
for different arguments in the same discussion. For
some arguments, it might require a high standard of
proof such as beyond reasonable doubt (therefore
blocking undecidedness), while for others it might
require a weaker standard of proof. It indeed depends
on the context, the attitude of the agent, how critical
the decision is with respect to costs, benefits, risks and
so forth. This implies that there could be labellings
mixing Dung’s complete semantics and SCC-void
semantics, where in different parts of the graph dif-
ferent standards of proof are applied. For instance, let
us consider the following situation.

Ann is the manager of Bob. Bob came late to work
today and his justification was doubtful. Ann could
grant the benefit of the doubt to Bob based on the
fact that she knows him well and trust him, but the
HR department could apply stricter rules and con-
sider the doubtful justification not enough to avoid a
penalty.

Figure 5 shows a situation in which the same argu-
mentation graph is labelled by three different agents.
The vertical bar on the attack shows where unde-
cidedness blocking is used. Let us discuss the three
situations:

(1) The agent uses Dung’s grounded semantics
and therefore it lets the undecidedness spread
to all the arguments;

(2) The agent uses the grounded SCC-void seman-
tics. The arguments in the cycle remain
undecided, but argument d is now accepted
since the attack from b is considered not
beyond reasonable doubt;

'~

(<) ()
(O)—) O

1. Grounded 2. Grounded SCC-void

. O+O
oo

3. Mixed

Fig. 5. A grounded, grounded SCC-void and a mixed labelling of
the same argumentation graph. In the mixed labelling, the standard
of proof beyond reasonable doubt is applied on the attack from d
to e, but not on the attack from b to d.

(3) The agent uses a mixed strategy. It does not
apply the standard of proof beyond reasonable
doubt to defend argument d from the attack of
argument b, but it applies the standard of proof
to defend argument e from d. This could be,
for instance, because argument e requires strict
indisputable evidence to be rejected, while d
does not.

5. Related works

Despite not coinciding with undecidedness block-
ing, the problem of ambiguity blocking and
propagation in Defeasible logic (abbreviated DL)
is certainly a relevant field of research. In defeasi-
ble logics, the problem of ambiguity blocking and
propagation has been extensively studied. In partic-
ular, the work by [14] is the most relevant, since the
authors propose an ambiguity propagating defeasible
logics, and they provide a Dung-like argumentative
version of both the standard (ambiguity blocking)
and their ambiguity propagating semantics. Authors
do not start from a modification of Dung’s abstract
semantics, but they propose a rule-based model of
arguments using DL rules, and they study such struc-
tured argumentation systems using Dung’s notion of
acceptability. They show how their DL ambiguity
propagating semantics can be obtained from Dung’s
grounded semantics postulates. We wonder how sim-
ilar their ambiguity blocking semantics is to ours. As
their semantics is for a structured rule-based argu-
mentation system, we need to map some of their
concepts to the abstract framework. Their semantics
is a two-state (accepted/rejected) semantics. There
are indeed arguments that cannot be labelled neither
accepted or rejected, but they do not correspond to the
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notion of undecided arguments. De facto, they have
no effect on other arguments, as they are rejected.
Arguments built using ambiguous literals are marked
as rejected. It is indeed easier for an argument to be
accepted, since ambiguous literals that might pre-
vent those argument to be accepted are rejected.
The absence of a notion of undecidedness implies
that, in Dung’s term, the semantics would lose the
reinstatement property, since a pair of otherwise non-
attacked rebuttal arguments are both labelled out. The
authors show how grounded semantics accepts less
arguments than the standard DL-based semantics, in
accordance with our Theorem 1, but it also rejects
more than the standard DL-based semantics, in dis-
agreement with our Theorem 1. This is due to the
absence of an undecided status.

The principles of beyond reasonable doubt and
of standard of proof have been extensively study in
argumentation theory [13], but only few studies are
relevant to abstract argumentation. In the context of
structured argumentation, we mention the work of
Prakken [20] on modelling standards of proof, and
the modification of the Carneades framework [12].

Regarding abstract argumentation, the most
explicit study about standard of proof is [1]. Here,
the authors consider how each Dung’s semantics has
a different level of cautiousness that is mapped to
a corresponding legal standard of proof. Only ini-
tial arguments are beyond doubt, but they consider
the sceptically preferred justification a beyond rea-
sonable doubt position. In the floating assignment
example (Fig. 1), the authors recognize the two
attackers as doubtful, but they consider the sceptically
preferred rejection of ¢ beyond reasonable doubt.
It could be noticed that this position is failing to
acknowledge that, if each of the attackers are con-
sidered doubtful, their effect cannot be (at last in all
the situations) beyond doubt.

Brewka et al. [3] also criticises [1] since they doubt
the fact that various Dung’s semantics can capture the
intuitive meaning of legal standard of proof (detailed
discussion in here [13]). In the case of beyond reason-
able doubt, we agree with Brewka, complete Dung’s
semantics are not adequate to model this principle.
Prakken has analysed the floating assignment and its
link to standard of proof in his work [21], where he
responds to objections advanced by Horty in [15].
Prakken underlines that, in many problematic situa-
tions, including the floating assignment, there could
be hidden assumptions about the specific problem
which, if made explicit, are nothing but extra infor-
mation that defeat the defeasible inference. In the

case of the floating assignment, Prakken agrees that
if beyond reasonable doubt is our standard of proof
— like in a criminal case where there are two con-
flicting testimonies - we should not conclude that the
accused is guilty. However, this does not mean that
argumentation semantics are somehow invalid. In the
case of conflicting testimonies, as already showed by
Pollock [19], the situation could be correctly mod-
elled by making some hidden assumptions explicit
and adding extra arguments to model such assump-
tions. In the conflicting testimonies, the fact that two
witnesses contradict each other is a reason to add an
argument undercutting the credibility of both. How-
ever, the problem of when to add arguments and
how they interact with existing arguments has still
to be faced, and in this work we have tackled it by
embedding assumptions in an abstract argumentation
semantics rather than adding arguments.

In his presentation of semi-stable semantics, Cami-
nada [5] also clarifies the logical assumptions beyond
the treatment of the floating assignment. In particular,
he observes how the preferred semantics solution is
based on the assumption that we know with certainty
that one of the two attacking arguments is valid, since
in this case we do not need to know which one is valid
in order to safely discard c.

6. Conclusions and future works

In this paper we have explored a new family
of semantics where undecidedness is blocked. We
proposed to consider attacks from undecided argu-
ments a weaker form of attacks, considering them
not beyond reasonable doubt. We have proposed
to neglect attacks from undecided arguments under
some conditions and we have defined the SCC-
void semantics using an SCC-recursive schema and
proved their fundamental properties.

For each complete semantics, it is possible to
define a corresponding SCC-void semantics. SCC-
void semantics are conflict-free, non-admissible
(in Dung’s sense), but employing a defence-based
relaxed notion of admissibility, they allow rein-
statement and they accept credulously what the
corresponding complete semantics accepts at least
credulously. SCC-void semantics block the propaga-
tion of undecidedness over an argumentation graph,
by confining it to the SCC where the undecided sit-
uation was generated. We believe to have proposed
a novel and well-motivated contribution to abstract
argumentation semantics.
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Future work will focus on blocking undecidedness
in quantitative extensions of Dung’s abstract frame-
works such as probabilistic [8, 10], fuzzy [7, 9] or
graded [6, 27] argumentation frameworks. Moreover,
we intend to study the application of undecidedness
blocking semantics in contexts such as the medical
field [17, 25] or persuasive dialogues [26].
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