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A comparative analysis of rule-based,
model-agnostic methods for explainable artificial

intelligence

Giulia Vilone1[0000−0002−4401−5664], Lucas Rizzo1[0000−0001−9805−5306], and
Luca Longo1[0000−0002−2718−5426]

School of Computer Science, Technological University Dublin.
{giulia.vilone, lucas.rizzo, luca.longo}@tudublin.ie

Abstract. The ultimate goal of Explainable Artificial Intelligence is to
build models that possess both high accuracy and degree of explainabil-
ity. Understanding the inferences of such models can be seen as a process
that discloses the relationships between their input and output. These
relationships can be represented as a set of inference rules which are usu-
ally not explicit within a model. Scholars have proposed several methods
for extracting rules from data-driven machine-learned models. However,
limited work exist on their comparison. This study proposes a novel
comparative approach to evaluate and compare the rulesets produced
by four post-hoc rule extractors by employing six quantitative metrics.
Findings demonstrate that these metrics can actually help identify supe-
rior methods over the others thus are capable of successfully modelling
distinctively aspects of explainability.

Keywords: Explainable artificial intelligence · Rule extraction ·Method
comparison and evaluation.

1 Introduction

Explainable Artificial Intelligence (XAI) has emerged as an important sub-field
of Artificial Intelligence, aimed at building methods and techniques to learn
predictive models from data that possess high accuracy and a high degree of
explainability. Explainability can be seen as the degree of transparency and un-
derstandability of the functioning of a model as perceived by end-users. The
explosion of data availability and the advances of machine learning and deep
learning have led to the fast development of new models in a variety of domains.
Unfortunately, most of these are considered as ‘black-box’ with underlying com-
plex structures that are difficult to explain to end-users. As a consequence, a
number of approaches have emerged to extract information from trained mod-
els and try to reconstruct their inference process [9, 21]. Some of these methods
are model agnostic and, theoretically, suitable for building a global layer of ex-
planation. However, research studies have demonstrated that this is a difficult
task as they merely extract a set of rules that attempts to achieve the same
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inference of the underlying model [9]. Furthermore, these rules are not neces-
sarily consistent with a user’s domain knowledge. Rather, they might be based
on spurious correlations of an input dataset. Recent studies have tried to solve
these issues by integrating machine-learned models and symbolic representation
of knowledge. For instance, symbolic rules are extracted from trained models
in [5]; however, they are built upon a set of symbols not easily interpretable
by non-experts. Other attempts are based upon the generation of if-then rules
that should be easily readable and understandable by humans, thus adding a
meaningful descriptive layer to the underlying model [17]. Nonetheless, little has
been done to assess the degree of explainability of these rules in an objective
and quantitative manner. This study aims at filling this gap by evaluating XAI
methods for rule extractions and compare their explainability across a number of
metrics. The machine-learned models were trained on datasets with handcrafted
features. The underlying research question of this research is “To what extent
can a set of quantitative metrics be formed and employed to assess and compare
the degree of explainability of if-then rule extraction methods?”.

The remainder of this manuscript is organised as it follows. Section 2 pro-
vides a description of the strategies used by scholars to generate explanations
of machine learned models, with a focus on rule-extraction algorithms. Section
3 describes the design of a secondary research experiment and the metrics em-
ployed to evaluate and compare the degree of explainability of rulesets extracted
by four XAI post-hoc model agnostic methods. Section 4 discusses the findings
obtained from the experiment. Eventually, Section 5 emphasises the contribution
to knowledge and sets future directions.

2 Related work

Over time, researchers have tried to comprehend and explain the inner mechan-
ics of data-driven machine-learned models in various ways [19, 14]. Thus, several
types of XAI methods have been proposed. They can be clustered according to
the scope of an explanation, the stage at which a method generates explanations,
the input data of the underlying model, and the output format of the explanation
itself [23]. Methods for explainability with a global scope attempt to make the en-
tire inferential process of a model transparent and understandable, whereas local
methods explain it around a specific input instance. Ante-hoc methods tackle the
explainability of a model from its implementation and during training. The goal
is to make it naturally explainable while still trying to reach optimal accuracy
and minimal error. Post-hoc methods instead keep a trained model unchanged
and mimic or explain its behaviour by using an external explainer at testing
time. The format of the input data (numerical/categorical, pictorial, textual or
times series) of a model can play an important role in constructing a method for
explainability as the logic followed by its inferential process can vary according
to the inputs, thus requiring different formats of explanations (numerical, rules,
textual, visual or mixed). Several rule extraction methods exist in the literature,
but this study utilised only four of them selected according to three criteria
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listed in Section 3. Rule Extraction From Neural Network Ensemble (REFNE)
was originally designed to extract symbolic rules from trained neural network
ensembles, but its application can be also extended to other learning approaches
[26]. Once the original labels of a training dataset are replaced with those gen-
erated by the ensemble, REFNE selects a categorical feature and checks if there
is a value such that all the instances possessing it fall into the same class. If this
condition is satisfied, a rule is created with the value as antecedent. Otherwise,
the algorithm selects another categorical input feature, combines its values with
those of the feature previously selected and checks if it is possible to create new
rules with two antecedents. Rules are limited to only three antecedents [26].
When all the categorical features have been examined, the continuous ones are
discretised with the ChiMerge discretization algorithm and considered as new
categorical features. The process terminates when no more rules can be created.
An alternative method which extracts if-then rules from neural network ensem-
bles is C4.5Rule-PANE [25]. It uses the C4.5 rule induction algorithm to build a
ruleset to mimic the inferential process of an ensemble from a training dataset
whose original labels have been replaced with those predicted by the ensemble.
Similarly, the third method, TREPAN, induces a decision tree by querying the
underlying network to determine the output class of each instance [7, 6]. Sub-
sequently, it splits each node of the tree by using the gain ratio criterion. In
addition, it considers as constraints the previously selected splits that lie on the
path from the root to that node. Another method is Rule Extraction by Re-
verse Engineering (RxREN) which relies on a reverse engineering technique [4].
It traces back input features that lead to the final result, whilst pruning the
insignificant input neurons. Afterwards, it determines the data ranges of each
significant neuron in each output class. This is done by iteratively removing one
input input feature at the time and measuring the impact on the number of
misclassified instances. This process can be seen as a feature selection approach
and it is easily applicable to other architectures. The algorithm is recursive and
generates hierarchical if-then rules where conditions for discrete attributes are
disjoint from the continuous ones.

Scholars have identified various attributes that might affect the degree of
explainability of a ruleset [10–12, 15]. Among them, attribute costs represent the
computational effort to get access to the actual value of an attribute of the
data. For example, it is easy to assess the gender of a patient but some health-
related attributes can require an expensive investigation. Rules that utilise only
attributes based on easily-accessible data are more appealing as they help in
keeping the costs low. The interestingness of a rule must take into account the
misclassification costs. In some domains of application, the erroneous classifi-
cation of an instance might have a significant impact, not only in economical
terms, but also in terms of human lives. To be measured in a quantitative man-
ner, these factors require the integration of user’s domain knowledge which is
a manual and time-consuming process. Luckily, scholars have identified several
other factors of explainability that can be assessed in an objective manner, mean-
ing that they just need the information provided by the data, without relying
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on domain knowledge [2, 1, 20, 16]. For example, the number of rules and the
number of antecedents of each rule should be minimised as conciseness is a
key factor of interpretability [16]. Beyond these attributes, scholars proposed
other requirements, or validation factors, to be met by every type of explanation
automatically generated by a XAI method. These include, for instance, the cor-
rectness of a ruleset, measured as the portion of the dataset correctly classified
by rules, must be maximised to generate trustable explanations [15].

3 Design

The subset of XAI methods generating if-then rules from the inferences of
machine-learned models is quite large, so it was necessary to narrow it down
by adding the following three inclusion criteria:

1. The methods must be model-agnostic, meaning that they do not consider the
internal components of a model such as weights or structural information,
therefore they can be applied to any black-box model. This limits the choice
to the post-hoc methods as the ante-hoc ones are inherently model-specific.

2. The rule-extractors must consider the underlying model as an oracle. This
means that the method queries the trained model by inputting an evaluation
dataset and registering the predictions made on each instance.

3. The output ruleset must be comprised of if-then rules or rules that can be
translated into this format.

Fig. 1: Diagrammatic view of the design of the experiment carried out in this
study for evaluating and comparing the degree of explainability of rulesets, au-
tomatically extracted by four methods from machine learned models.

Four rule-extraction methods fulfil these criteria, namely C4.5Rule-PANE,
REFNE, RxREN and TREPAN. Their algorithms are summarised as pseudo-
codes in Table 5 in the appendix and briefly described in Section 2. These meth-
ods were tested on eight public datasets (listed in Table 1) retrieved from the
UCI Machine Learning Repository1. The datasets were selected according to the

1 https://archive.ics.uci.edu/ml/index.php
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following criteria: (I) all the features must be manually engineered by humans,
(II) they must contain enough instances to avoid the curse of dimensionality,
meaning too many features for too few instances, (II) the dependent variable is
categorical whereas the independent variables are both continuous and categor-
ical predictors, and (III) the number of instances is in the order of thousands
(thus also limiting the number of features).

Table 1: Properties of the selected datasets.

Dataset
Total

instances
Training
instances

No. of input
features

No. of continuous
(categorical) features

No. of
classes

Abalone 4177 2924 8 7 (1) 29
Contraceptive 1473 1031 10 2 (8) 3
Credit Germany 1000 700 20 7 (13) 2
Mushroom 8124 5687 22 0 (22) 2
Page-Block 5473 3831 9 9 (0) 5
Wave Form 5000 3500 40 40 (0) 3
Wine Quality 6497 4548 11 11 (0) 7
Yeast 1484 1039 8 8 (0) 10

Six metrics were selected to assess, in a objective and quantitative manner,
the degree of explainability of the rulesets generated by the XAI methods from
neural networks trained on the eight datasets. The objectivity is reached by
excluding any human intervention or expert’s domain knowledge in this evalua-
tion process. Two of these metrics, number of rules and average rule length, are
attributes of explainability. The other four, completeness, correctness, fidelity
and robustness, are general validation factors to be fulfilled by any method for
explainability. Table 3 reports their definition and the formulas used to calculate
them. The ideal ruleset should minimise both the number of rules and the av-
erage rule length in order to be easily interpreted and understood by end-users
[16]. In contrast, a ruleset must score high in terms of the other four metrics.
This means that it can appropriately classify any input instances, it is faithful
to the underlying model and its inferences do not vary when inputs are slightly
distorted by applying a gaussian noise. The models trained on the eight datasets
were all vanilla feed-forward neural networks with a single hidden layer. These
simple networks were chosen to assess the feasibility of the proposed experiment.
The number of nodes in the hidden layer, together with other hyperparameters
of the networks, was determined by performing a grid search to guarantee the
absence of overfitting/underfitting and reach the highest feasible prediction ac-
curacy. Table 2 reports the list of the optimal values of the hyperparameters
together with the accuracies obtained on the eight datasets.

To answer the research question, the experiment was designed as shown in
the diagram of Figure 1. A model, which is the output of a learning algorithm
(in this study vanilla feed-forward neural networks) trained on an input dataset,
and an evaluation dataset were fed into the four XAI methods under analysis.
Each method extracted a set of if-then rules whose degree of explainability was
assessed with six objective and quantitative metrics. This process was repeated
over the eight datasets and their neural networks.
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Table 2: Optimal hyperparameters of neural networks obtained through grid
search procedure, grouped by dataset, and their resulting accuracies.

Dataset list

Model
parameters

Abalone Contrac.
Credit

Germany
Mushroom

Page
Block

Wave
Form

Wine
Quality

Yeast

Optimizer NAdam NAdam Adam NAdam NAdam Adagrad NAdam NAdam

Weight
initialisation

Glorot
Normal

Uniform Uniform
Glorot

Uniform
He-

Uniform
He-

Uniform
He-

Normal
He-

Normal

Activation f. Relu Tanh Softplus H. Sigm. Tanh Linear Softsign Tanh
Dropout rate 30% 10% 0% 0% 0% 0% 30% 10%
Weight const. 4 5 3 4 5 1 2 3
Batch size 80 20 40 20 20 20 40 10
Epochs 100 50 100 100 100 50 50 100
Hidden neur. 30 30 25 15 15 10 20 15
Accuracy 36.88% 57.42% 74.86% 100% 96.36% 87.17% 51.90% 62.43%
(test set) (26.22%) 54.81% (73.39%) (100%) (95.46%) (85.83%) (53.02%) (56.95%)

Table 3: Objective metrics to assess the explainability of rulesets.
Factor Definition Formula

Completeness
Ratio of input instances covered by rules (c) over
total input instances (N) [8]

c

N

Correctness
Ratio of input instances correctly classified by rules
(r) over total input instances [15]

r

N

Fidelity
Ratio of input instances on which the predictions of
model and rules agree (f) over total instances [22]

f

N

Robustness
The persistence of methods to withstand small
perturbations of the input (δ) that do not change the
prediction of the model (f(xn)) [3, 18]

∑N
n=1 f(xn)− f(xn + δ)

N

Number of rules
The cardinality of the ruleset (A) generated by the
four methods under analysis [11, 13, 16]

|A|

Average rule
length

The average number of antecedents, connected with
the AND operator, of the rules contained in each
ruleset [24]. ai represents the number of antecedents

of the ith rule and R the number of rules.

∑R
i=1 ai

R

Each dataset was split into a training (70%) and an evaluation (30%) datasets,
so the majority of the data was used to train the model whilst leaving enough
data in the evaluation dataset to guarantee the representation of all the output
classes. The final step of this experiment consists of ranking, in an objective
and automatic way, the selected XAI methods according to these six metrics.
The research hypothesis, to be verified with a statistical test, is that there are
statistically significant differences in the degree of explainability of rulesets au-
tomatically extracted by the four methods. The Friedman test, a non-parametric
statistical test designed to detect differences in treatments (the four XAI meth-
ods) across multiple test attempts (the six metrics), was applied to check whether
any methods ranked consistently higher (or lower) according to the metrics of
choice on each dataset. The alternative hypothesis of the test is that there are
significant differences in the results of the four methods, hence one of them can
be ranked as the best. The Friedman test was chosen instead of ANOVA because
it was not possible to fulfil the assumption of the latter on the distribution of
the samples that must come from normally distributed populations with equal
standard deviations.
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4 Results and discussion

The results obtained from this experiment are reported in Figures 2 and 3.
Noticeably, all the methods but REFNE produced rulesets that reach 100% of
completeness, meaning that the rules cover all the instances of the training and
test datasets. These three methods use different strategies to achieve this result,
as explained in Section 2. It is worth pointing out that all the four methods
achieved more than 80% fidelity and robustness on the Credit Germany dataset,
but these results are flawed. The 70% of the instances included in this dataset
belong to the same output class: a good credit rating. The neural network trained
on it assigned every new input instance to the majority class, thus completely
ignoring the alternative class (a bad credit rate).

Fig. 2: Quantitative measures of the degree of explainability of the rulesets au-
tomatically generated by four rule-extraction methods, grouped by method.

As shown in Table 2, both the test and train accuracy of this network are
respectively 74.9% and 73.4%, corresponding almost precisely to the portion of
the input instances belonging to the majority class. The four rule-extraction
methods captured this behaviour and they returned rulesets whose prediction is
always “good-credit-rating”. This issue is also the reason why the four methods
reach the same level of correctness on the Credit Germany datasets (around
70%, in line with the underlying network) whereas they present differences in
the results related to the other seven datasets. Overall, C4.5Rule-PANE per-
formed better than the other three methods in terms of correctness, fidelity and
robustness. However, the charts related to the number of rules and their average
length suggest some drawbacks to reach these results. C4.5Rule-PANE indeed
produced the biggest rulesets across all datasets under analysis, compared to the
other three methods. This hampers the interpretability of its rulesets. REFNE
created instead the smallest rulesets in terms of the average number of an-
tecedents because of its algorithms limits to three the antecedents for each rule.
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However, it has the downside of generating many rules, being the method that
can be ranked second worst according to this metric. In contrast, RxREN and
TREPAN produced rulesets with a few numbers of rules, ranging between 5 and
76, but their average length is comparable to C4.5Rule-PANE, especially on the
Mushroom and Credit Germany datasets. RxREN and TREPAN reached also
similar results in terms of fidelity and correctness, but TREPAN significantly
outperformed all the other methods in robustness. Likely, this is because its al-
gorithm generates rules based on binary splits of the datasets, thus making it
insensitive to small variations in the data. Apparently, REFNE is the method
that can be ranked as the worst across all the metrics but rule length. This is the
consequence of extending the original training dataset with randomly generated
data which breaks the relationships that might exist among predictors.

Fig. 3: Quantitative measures of the degree of explainability of the rulesets au-
tomatically generated by four rule-extraction methods, grouped by dataset.

Abalone is the dataset that pushes all the four XAI methods towards their
limits as they all reach poor explainability on it. Indeed, this is the dataset
with the lowest levels of correctness, fidelity and robustness across all the four
methods. Meanwhile, it is also the dataset with the biggest ruleset per number
of rules produced with C4.5Rule-PANE, REFNE and TREPAN. Only RxREN
managed to keep this metric in line with the other seven datasets. Abalone is also
among the datasets with the highest average rule length. Likely, this happened
because it has by far the highest number of output classes (29) and seven out
of its eight features are continuous. Furthermore, the neural network trained on
Abalone reaches low prediction accuracy on both the training and test datasets,
meaning that both the neural network and the four methods struggle in identify-
ing which relationships among the data are decisive for correctly predicting the
output classes. This might hint that these methods are not adapt to generate
interpretable rulesets to explain predictive models trained on complex datasets,
made of diverse and dispersed data.
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In summary, this experiment provided a few interesting insights. Firstly,
the results suggest that there is a trade-off between the size of the rulesets,
in terms of both the number of rules and antecedents and the other four met-
rics, namely completeness, correctness, fidelity and robustness. In other words,
when a method for rule extraction produces small rulesets or short rules, then
the latter four metrics tend to score low. Secondly, all the methods captured
the behaviour of the neural network trained on the Credit Germany dataset,
which was highly unbalanced, as it ignored the minority output class by assign-
ing almost every input instance to the majority class. Someone can argue this
was expected because no up or down-sampling was applied to the majority or
minority classes nor training with stratification was performed. However, this
is a promising result as it shows that the selected XAI methods are actually
capable to correctly uncover this situation by producing rulesets that minimises
the latter four metrics. Finally, the Friedman test was applied to check whether
these differences are statistically significant and a method can be considered
superior to the others according to the six metrics under analysis across the
selected datasets. The test output statistics and p-values are reported in Table
4 and Figure 4. All the p-values are lower than the typical tolerance level of
5%, thus there is strong evidence in support of the alternative hypothesis. This
means that one of the four methods perform consistently better than the others,
as shown in the last row of Table 4. Specifically, C4.5Rule-PANE is consistently
ranked higher than the other methods across datasets with TREPAN coming as
the second one. It seems that the mechanisms for splitting the space determined
by the test set (normalised information gain and the gain ratio criterion), are
more suitable than the mechanisms followed by the other two methods, respec-
tively checking if there are values such that all the instances possessing them fall
into the same class (REFNE) and determining the data ranges that minimise
the number of misclassified instances.

Fig. 4: Ranks of the four rule-extraction methods, grouped by datasets.
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Table 4: Output statistics and p-values of the Friedman test, grouped by dataset.
Dataset list

Abalone Contrac.
Credit

Germany
Mushroom

Page
Block

Wave
Form

Wine
Quality

Yeast

Test statistic 9.643 9.000 8.760 12.429 8.571 9.214 12.429 12.055
p-value 0.022 0.029 0.033 0.006 0.036 0.027 0.006 0.007
Superior C45-Pane C45-Pane C45-Pane C45-Pane C45-Pane C45-Pane C45-Pane C45-Pane

5 Conclusions

This study presented a novel approach to evaluate and compare four XAI meth-
ods which extract rules from black-box machine-learned models, trained via
vanilla neural networks on eight datasets. Six objective metrics were identified
in the literature, namely ruleset cardinality, number of antecedents, complete-
ness, fidelity, correctness, robustness. The Friedman test was used to check if
one of the selected methods ranked consistently higher then the others across
these metrics. The experiment provided sufficient evidence to support the al-
ternate hypothesis of the Friedman test, hence one of the methods, specifically
the C45-Pane, based on a feature splitting algorithm, outperformed the others.
Furthermore, the selected metrics proved to be apt to highlight the weaknesses
and strengths of the tested methods, thus providing scholars with an approach
to test their XAI methods. Future work will extend this research study with
additional metrics, datasets, deep neural networks and by performing feature
pre-processing and cross-validation on the input datasets. This should enhance
the intelligibility of the trained models and avoid issues during their training
process due to unbalances in the data distribution among the output classes. It
is also worth investigating, with a human-in-the-loop approach, the correlation
of these metrics against qualitative perceptions gathered from humans.
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A Appendix

Table 5: Pseudo-code of the algorithms of four rule-extraction methods.
1: REFNE(X):
2: R = empty ruleset
3: Create synthetic dataset S by varying

each input feature of X across
its value range

4: y’ = Oracle(model, S)
5: Select a categorical feature F of S
6: Find value U such that all y’

with U belong to class C
7: Create rule r
8: If fidelity of r > delta:
9: Add r to ruleset R
10: Remove y’ covered by r from S
11: If size(S) = 0 return R
12: Else select another F
13: If all F have been selected, discretize

continuous variables with ChiMerge

1: C4.5Rule-PANE(X):
2: y’ = Oracle(model, X)
3: Create synthetic dataset S by

varying each input feature of
X across its value range

4: y’’ = Oracle(model, S)
5: xSynth = concatenate X and S
6: ySynth = concatenate y’ and y’’
7: C45_build_tree(xSynth, ySynth)

1: TREPAN(training_examples, features):
2: Queue = 0
3: For each example E in training_examples:

class_E = Oracle(model, E)
4: Initialize the root of tree T as leaf
5: Put (T,training_examples,{}) into Queue
6: While size(Queue) > 0 &
7: size(T) < tree_limit:
8: Remove node N from head of Queue
9: example_N = examples stored w/ N
10: constraint_N = constraints

stored with N
11: Use features and example_N to

build set of candidate splits
12: Oracle(constraint_N, example_N)

to evaluate splits
13: S = best binary split
14: Search for best m-of-n split S’

using S as seed
15: Make N an internal node with

split S’
16: Put (N,example_N,constraint_N,S’)

into Queue

1: RxREN(X):
2: T = set of correctly classified

instances of X
3: original_acc = model accuracy
4: Remove each input feature and

estimate new accuracy n_acc
5: If n_acc > original_acc - 1%, then

prune feature
6: E = instances from T incorrectly

classified by pruned network
7: Compute mandatory data ranges for

each significant feature from E
8: Construct rules for each class using

mandatory data range
9: Check if each new rule improve the

accuracy of ruleset
10: Classify test examples using ruleset
11: Find min and max of misclassified

examples corresponding
to each class

12: Replace previous data ranges if new
min and max improves accuracy
of ruleset
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