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Evaluating instructional designs with mental workload assessments in
university classrooms
Luca Longoa, Giuliano Orrú

School of Computer Science, Technological University Dublin, Republic of Ireland
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A B S T R A C T

Cognitive Cognitive Load Theory (CLT) has been conceived for improving instructional design prac-
tices. Although researched for many years, one open problem is a clear definition of its cognitive load
types and their aggregation towards an index of overall cognitive load. In Ergonomics the situation is
different with plenty of research devoted to the development of robust constructs of mental workload
(MWL). By drawing a parallel between CLT and MWL, as well as by integrating relevant theories
and measurement techniques from these two fields, this paper is aimed at investigating the reliabil-
ity, validity and sensitivity of three existing self-reporting mental workload measures when applied
to long learning sessions, namely the NASA Task Load index, the Workload Profile and the Rating
Scale Mental Effort, in a typical university classroom. These measures were aimed at serving for the
evaluation of two instructional conditions. Evidence suggests these selected measures are reliable and
their moderate validity is in line with results obtained within Ergonomics. Additionally, an analysis
of their sensitivity by employing the descriptive Harrell-Davis estimator suggests that the Workload
Profile is more sensitive than the Nasa Task Load Index and the Rating Scale Mental Effort for long
learning sessions.

1. Introduction
Cognitive Load Theory (CLT), a cognitivist theory, has

been initially conceived as a form of guidance for instruc-
tional designers [68] eager to develop instructional material
that is presented in a manner that promotes the activities
of learners and optimise their performance as well as their
learning [7]. CLT is an wider framework that takes into ac-
count the limitations of the information processing system
of the human mind [78]. Intuitively, the assumption is that
if a learner is either underloaded or overloaded, learning is
likely to be hampered (figure 1). The main assumption of
CLT is that the human cognitive architecture is limited in
its capacity and its main function to process and store infor-
mation is finite and it has a direct consequence on learning
[43]. Also, the experience of cognitive load is highly sub-
jective, different from human to human, and influenced by
the learner’s education and training as well as own cogni-
tive style [53]. As a consequence, modelling and assessing
cognitive load is far from being a trivial activity [33, 5]. In
his seminal contribution, [68] have initially proposed three
types of cognitive load. The intrinsic load is influenced by
the unfamiliarity of the learners or the intrinsic complexity
of the learning material under use [1, 67]. The extraneous
load is impacted by the way the instructional material is de-
signed, organised and presented [8]. The germane load is
influenced by the effort exerted to deal and to process in-
formation, to construct and automate schemas in the brain
of the learners [53]. It is believed that germane load should
be promoted, the extraneous load should be minimised and
that the intrinsic load is static and cannot be changed for
a given learning task [45, 11]. These three types of load
have gone through three decades of evolution and redefini-
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tion [51]. After a number of critiques related to the theo-
retical development of CLT and after several failed attempts
to develop generally applicable measure of the three types
of load, CLT has been re-conceptualised using the notion of
element interactivity: the amount of elements that have to
be simultaneously processed in working memory. In detail,
elements of the task should be learned while task unrelated
elements should be discarded for a successful schema con-
struction. With this new notion, the definition of the in-
trinsic and extraneous loads were updated [70]. The extra-
neous load is nowadays considered to be the level of inter-
activity of the elements composing an instructional material
used for teaching activities. Instructional designs should be
aligned to it and should not focus on enhancing the number
of items to be processed by learners, otherwise the resulting
load could be considered extraneous [51]. In other words,
if instructional designs do not include instructions that in-
crease the number of elements that have to be processed by
learners within their working memory, more spare capacity
exist for supporting learning. In this specific case, existing
instructions can facilitate the use of working memory that
is allocated for the intrinsic load. Eventually, the germane
load is no longer an independent source of load. Rather,
it depends on those working memory resources related to
the intrinsic load of a learning task. As a consequence, in-
trinsic load depends on the characteristic of a learning task,
extraneous load is influenced by the characteristics of the
instructional material as well by the characteristic of the in-
structional design and on the prior knowledge of learners.
Germane load depends on the characteristics of a learner
that influence the allocation of resources of working mem-
ory devoted to the intrinsic load [70] (figure 2).

Cognitive Load Theory, although highly relevant for
instructional design and with a plethora of applications in
the last decades, providing a series of effects and guidelines
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Figure 1: The theoretical connection between human per-
formance (learning) and overall cognitive load

Figure 2: Redefinition of the cognitive load types and their
roles [51].

to create efficient instructional designs, it has been criticised
because of its theoretical clarity [66] and its methodological
approach [17]. In detail, a fundamental, open and challeng-
ing problem exists: the measurement of its three cognitive
load types [51, 10, 66, 52] and the measurement of the
cognitive load of learners during learning tasks [52]. There
is little evidence that these three types are highly separable
[12, 70, 8] and minimal knowledge exist on the ways they
can be consistently measured and aggregated [14, 52].
Because of this, and by considering the critical rationalism
brought forward by Popper [55, 56], some authors believe
CLT cannot be deemed scientific because its fundamental
assumptions, its cognitive load types, cannot be directly
tested empirically and therefore cannot be falsified [17]. In
other words, it lacks empirical validation and therefore can-
not be considered scientific. However, others believe that
the cognitive load types can actually be tested empirically
by manipulating instructional conditions experimentally.
This rationale is also due because subjective measures of
cognitive load types are problematic because they depend
on learner perception, therefore it is better to depend on
experimental manipulation. Uncertainty also exists on
the methods for aggregating these types towards an overall
index of cognitive load. Therefore, as acknowledged by
other authors, the main research challenge concerns the
development of valid and realiable measure of overall
cognitive load, to empirically demonstrate the scientific
value of CLT as well as all the other theories built upon it
[18, 52, 17]. On one hand, CLT and related measures of
its types have been mainly brought forward by educational
psychologists and evolved for more than three decades

[93, 51]. On the other hand, within the discipline of
Ergonomics and Human Factors more effort has been
dedicated to the development of overall cognitive load
assessment techniques. In this discipline, cognitive load
is mainly referred to as human Mental Workload (MWL),
a well known psychological construct [89] with several
several applications in the aviation [24, 22] and automotive
industries [4]. In these domains, many measurement tech-
niques, both uni-dimensional and multi-dimensional, have
been developed for MWL assessment [92, 6, 89]. Similarly,
various criteria for validating these techniques have been
proposed during the last five decades [65]. In Ergonomics,
the principal reason for measuring and assessing mental
workload, is to quantify the mental cost associated to
executing a task with the goal of predicting operator/learner
and system performance [6]. In Education the situation is
similar: the main reason for measuring cognitive load is to
quantify the mental cost exerted to perform a learning task
in order to predict the learner’s performance and thus trying
to assess learning. By drawing a parallel between CLT
employed within education and MWL within ergonomics,
and by integrating relevant theories and measurement
techniques from these two fields of research, this paper is
aimed at investigating the reliability, validity and sensitivity
of existing overall MWL assessment techniques, when
applied to long learning sessions.

A primary research is designed aimed at comparing two
instructional designs in a third-level post-graduate course
by means of mental workload measurement. The first
condition includes the delivery of instructional material
by employing the traditional teacher-directed instruction
method where slides are projected to a white-board to
learners. The second condition is a conversion of the
instructional material of the first condition into multimedia
videos developed by following a set of design principles
proposed within the Cognitive Theory of Multimedia
Learning (CTML) [37, 38]. CLT and CTML are greatly
connected by various underlying assumptions including
the dual-modality information processing channels, the
limited working memory capacity and the development of
schemata in long-term memory. However, it has to be noted
that the former theory mainly focuses on cognitive load and
its impact on learners to acquire new knowledge. Whereas
the latter focuses on the role of different types of cognitive
processing while learning and not on the working memory
load generated by these processes [30, 41]. For these
reasons, the construct of mental workload, borrowed from
ergonomics has been employed relaxing this distinction.
Here, mental workload is assessed as overall load imposed
by information processing. Three mental workload
measures have been selected: the multidimensional Nasa
Task Load Index [24] and Workload Profile [73] and the
unidimensional Rating Scale Mental Effort [94]. The
investigated research question is: to what degree can self-
reporting measures of mental workload, from Ergonomics,
contribute to the evaluation of instructional designs based
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on the traditional verbal direct-instruction approach and
the multimedia learning approach?

The reminded of this paper continues in Section 2 by re-
viewing state of the art measures of mental workload within
Ergonomics with a discussion on their advantages and limi-
tations. A detailed description of the selected self-reporting
mental workload assessment techniques follows, along with
the Cognitive Theory of Multimedia Learning and its de-
sign principles. Section 3 provides further details on the
design of the primary research experiment involving human
learners, detailing the methodology and research hypothe-
ses. Section 4 present the results of the experiment followed
by a critical discussion. Section 5 concludes this paper high-
lighting the contribution to the body of knowledge and set-
ting future directions for research.

2. Theoretical background
The construct of mental workload has a long history in

the fields of psychology and ergonomics with several ap-
plications in the aviation [24, 22] and automotive industries
[4]. Although it has been studied for the last five decades,
no clear definition of MWL has emerged that has a general
validity and that is universally accepted [6] The principal
reason for measuring and assessing MWL is to quantify the
mental cost of performing a certain task with the goal of
predicting operator and system performance [6]. A measure
of MWL can be considered as an extremely powerful de-
sign criterion. In fact, at the initial stage of design, not only
can a system/interface be developed with mental workload
into consideration, but a measure of MWL can also guide
designers in designing and implementing relevant structural
variations [88]. For example, in modern technologies, such
as web applications, becoming increasingly complex, there
is an increment in the degree of MWL imposed on opera-
tors [19, 20], thus design alternatives have to be evaluated at
different design phases [34]. The main belief usually con-
sidered in design approaches is that as the task complexity
and difficulty increases, MWL also should increase and per-
formance decrease [6]. Consecutively, errors have a higher
frequency, response times are longer, and fewer tasks are
completed within an established unit of time [27]. How-
ever, when task difficulty is minimal, systems might impose
a very low mental workload on operators. This case should
also be avoided as it likely leads to complications in preserv-
ing attention and increase reaction time [6]. Modeling the
construct of Mental Workload is not easy. Many approaches
to aggregate factors believed to influence mental workload
have been proposed, both deductive as in [59, 61, 60], and
inductive as in [47, 46]. Regardless of the aggregation
strategies three main classes of measures, as described in the
following sections, exist: self-reporting, task-performance
measures and physiological measures. The field of research
devoted to the development of measures of mental workload
is large, scattered and extremely challenging as the related
theoretical counterpart. Several assessment techniques have

been proposed in the last 40 years, and researchers in ap-
plied settings have tended to prefer the use of ad hoc mea-
sures or pools of measures rather than any one measure.
This tendency is reasonable, given the multi-dimensional
property that characterises mental workload Several reviews
attempted to organise the vast amount of knowledge related
to measurement procedures. In general, the measurement
techniques which have emerged in the literature can be clus-
tered into three large categories [79, 90, 72, 74, 86, 6, 91]:

• self-assessment, subjective measures: it includes self-
reporting rating scales or questionnaires.

• task objective performance measures: divided into
primary and secondary task measures, they mainly
refers to objective indicators of task performance;

• physiological measures: they are derived from human
physiology and responses of the body.

The class of self-report measures, often referred to as
subjective measures, relies on the subjective perceived
experience of the interaction operator-system. They are
referred to as subjective because the focus of such measures
may be subjective, that means a perception of a specific
factor by an individual. They have always appealed many
workload practitioners because it is strongly believed that
only the person concerned with a task can provide an
accurate and precise judgement with respect to the mental
workload exerted. This category of measures comprise
multi-dimensional approaches for mental workload mea-
surement such as the NASA Task Load index [24], the
Workload Profile [73], the Subjective Workload Assessment
Technique [58] as well as uni-dimensional approaches such
as the Subjective Workload Dominance Technique [77],
the Instantaneous Self-Assessment of workload [71], the
Bedford scale [62] and the Rating Scale Mental Effort
[94]. Various dimensions and factors influencing mental
workload are accounted for as for instance, task-related as
mental and temporal demands, person-specific individual
characteristics including the emotional state, motivation
and general attitude of an operator [4]. These measures
usually include close-ended scales and, when case mul-
tidimensional, they comprise an aggregation strategy that
combines the different operator answers into an overall
scalar of mental workload. The class of task performance
measures is of utility for those practitioners and designers
mainly interested in the performance of their systems
and interactive technologies. In this context, the belief is
that the mental workload exerted by a human while inter-
acting with a certain interface, technology or a complex
system, becomes essential only if it influences system
performance. Therefore, it is believed that this class is
the most valuable option for user-centred designers [74].
Performance measures are primary and secondary. In the
former type, the performance of an operator is monitored
and evaluated according to variations in primary-task
demands. Whereas in the latter type, the performance of
a human on the secondary task might not have practical
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relevancy, but it can serves to load the primary task or
to measure the mental workload of the person executing
it [6, 79, 90, 86]. The class of physiological measures
includes bodily responses derived from the operator’s phys-
iology, and it relies on the assumption that they correlate
with mental workload. They are aimed at interpreting
psychological processes by evaluating their effect on the
body’s states, and not by measuring performance on the
primary tasks or self-reported ratings. Examples include
heart rate, pupil dilation and blinking, blood pressure,
brain activation and muscle signals as measured respec-
tively by electroencephalograms and electromyograms [87].

Self-reporting measures are in most of the times of easy
administration and analysis. They usually provide designers
with an overall score of mental workload. Additionally,
multi-dimensional measures can help designer trace back
the main sources of mental workload. These measures are
usually administer after the execution of a task, however,
they influence the reliability in the case of long tasks.
Sometimes they are administered during task execution but
the drawback is that they might influence the execution
itself, becoming a source of workload. Additionally,
meta-cognitive constraints can reduce the precision of
reporting making it arduous to perform comparisons on an
absolute scale among raters. However, from the literature, it
seemsthey are the most appropriate measures for assessing
mental workload because they have demonstrated high
levels of sensitivity and diagnosticity [65]. Task perfor-
mance measures can be primary or secondary. Primary-task
measures represent a direct indicator of human performance
and they are usually precise for long tasks. They are capable
of discerning individual differences because of different
cognitive resource allocation strategies. However, the main
drawback relates to their poor capacity in distinguishing
human performance on multiple parallel tasks. If they are
taken individually, they have demonstrated poor reliability,
but if used with other classes of measures, they have been
proven useful. Secondary task measures are usually good in
discriminating tasks when primary performance measures
cannot help find differences. This is mainly due to the fact
that they are useful for quantifying the spare attentional
capacity of an individual for short tasks. Unfortunately,
they are usually intrusive and sensitive to large changes
in mental workload, influencing the behaviour of an
operator while performing the primary task. Physiological
measures are suitable for monitoring continuous signals.
They have demonstrated high sensitivity and they tend not
to interfere with the human performance on the primary
task. The main limitation is that they can be influenced by
external artifacts and interference and they usually required
equipment that is often physically obtrusive. Eventually, the
analysis of these measures is very complex, requiring the
presence of well trained experts and engineers for setting
the equipment and interpret the gathered signals. However,
with advances in sensor-based technology, these limitations
have been becoming weaker as less obtrusive and more

precise equipment is available and accessible to designers
and people without expertise or an engineering background.

In this study, the class of measures that have been con-
sidered is the self-reporting class. The rationale behind this
decision is that these measures are easy to be administered at
the end of a typical university classroom. Primary task mea-
sures, such as multiple choice questionnaires, can indeed
be helpful as they represent a direct indication of classroom
learning, but unfortunately they require the intervention of a
lecturer for setting them up as they are topic specific. Sec-
ondary task measures are believed to affect the behaviour of
learners in a typical university classroom. Eventually, phys-
iological measures require equipment to be attached to the
body or scalp of each learner, demanding significant setting
time that is not available in a typical university class. The
next sections are devoted to the detailed description of three
mental workload assessment techniques, their formalism to
produce a score of mental workload.

2.1. Assessing Mental workload via self-reporting
measures

Many self-reporting mental workload assessment tech-
niques exist. In this section, the three that have been selected
for experimental purposes are further described. The NASA
Task Load Index is a type of self-assessment subjective mea-
sure [22]. It has been validated in the aviation industry and
in other contexts in Ergonomics [22, 65] with several appli-
cations in many socio-technical domains. It is a combo of
six factors that can highly influence mental workload (ques-
tions of table 10). Each of this is self-reported with a close-
ended subjective judgement and a paired comparison among
factors determines the weight (importance) for each judge-
ment. Learners are required to choose, for each possible pair
(binomial coefficient,

(6
2

)

= 15) of the 6 factors, ‘which of
the two contributed the most to mental workload during the
task’, such as ‘physical or mental Demand?’,‘frustration or
performance?’ and so forth. The weights w coincides with
how many times each dimension has been selected. Since
there are 15 comparisons, the weight of a factor is in the
range 0 (not relevant) to 5 (more important than any other
factor). The overall mental workload index is a weighed av-
erage of the self-reporting ratings, one for each attribute di
multiplied by the correspondent weight wi:

NASATLX =

( 6
∑

i=1
di ×wi

)

1
15
, [0..100] ∈ ℜ

An alternate version exist in the literature that do not con-
sider the pair-wise comparison procedure and its derived
weights: the RAW-TLX [23, 48].

RAW TLX =
6
∑

i=1
di, [0..100] ∈ ℜ

It has been shown that a high correlation between the
weighted and unweighted workload indexes can be often
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obtained thus some author suggest to use the simpler raw
version [44, 13]. In this study, we preferred to use the origi-
nal version due to its potential for providing more diagnostic
information for analysis.

The Workload Profile (WP) mental workload assess-
ment procedure [73] is built upon the Multiple Resource
Theory proposed in [78, 79]. Here, individuals as learn-
ers have different cognitive capacities or ‘resources’. These
include the stage of information processing which can
be perceptual/central and/or related to the response selec-
tion/execution; the code of information processing which
cab be spatial and/or verbal; the input modality refers to
visual and/or auditory processing; the output modality can
be either manual and/or verbal (speech). Each resource
is quantifiable via a self-reported scale (questions of table
11) and humans, after each task completion, are requested
to self-assess and quantify the proportion of attentional re-
sources employed for the execution of a task (with a value
in the range 0..1 ∈ ℜ). A rating of 0 is meant to refer
to that situation in which a task placed no demand what-
soever on the human, while 1 expresses that the task re-
quired maximum attention on that resource. The final score
is due by summing the 8 rates d (averaged here, and scaled
in [1..100] ∈ ℜ for comparison purposes):

WP ∶ [0..100] ∈ ℜ WP = 1
8

8
∑

i=1
di × 100

The uni-dimensional Rating Scale Mental Effort
(RSME) is measure that assesses effort with the assumption
that it is highly correlated to mental workload. This scale
take into consideration for the exerted effort by a human dur-
ing the execution of a task. It can be reported across a con-
tinuous scale (intervals within the range 0 to 150 and ticks
each 10 units, Appendix 8). Labels such as ’a little effort’
and ‘rather much effort’ are used along the continuous scale.
The final mental workload is the exerted effort self-reported
by a learner, from the origin of the scale (zero).Formally:

RSME ∶ [0..150] ∈ ℜ

On one hand, although the scale is simple and fast to be ad-
ministered, it has demonstrated good sensitivity [94]. How-
ever, on the other hand, it has shown a poor diagnostic power
[94]. For further details about the scale, its history, and de-
velopment, the reader is referred to [94].

2.1.1. Assessment in educational contexts
Research exists at the intersection of mental workload

measurement applied in educational contexts. For example,
Wiebe et al. [80] examined the NASA-TLX and the Subjec-
tive Cognitive Load measure [52] and assessed the relative
efficacy in the design of multimedia-based educational en-
vironments. Findings firstly showed how the weighted ver-
sion of the NASA-TLX had minimal additional value when
compared to its unweighted counterpart. Secondly, both
the measures were sensitive in both extraneous and intrin-
sic loads, and they showed differences. Authors suggested

that an account and better understanding of germane load is
essential to improve the mental workload utility in instruc-
tional design.

2.2. Cognitive Theory of Multimedia Learning
A popular cognitivist theory of learning is the Cognitive

Theory of Multimedia Learning (CTML). It has been con-
ceived and developed by Prof. Mayer [37, 38, 36]. This
theory is strictly supported by other learning theories such
as the Cognitive Load Theory [69]. CTML is based upon
three assumptions. I) dual-channel assumption: two sep-
arate channels can be used for processing information in
the brain, namely the auditory and the visual channel, in
line with the dual-coding approach of [54]. II) the assump-
tion of limited processing capacity: each channel is limited
in its capacity, this be aligned also with the assumption of
CLT [68] and the working memory model of Baddeley [2].
III) active processing assumption: learning is considered
to be an active process involving the selection of informa-
tion, its filtering and organisation as well as its integration
with prior knowledge. Humans, in each channel, can pro-
cess a finite set of pieces of information at a time. Accord-
ing to the CTML, multimedia instructions either made by
words, audios or pictures are not interpreted by the brain
independently and mutually exclusively. Rather, these indi-
vidual representations of information are selected and sub-
sequently dynamically organised to produce coherent men-
tal logical representations called schemas.

These are particular cognitive constructs able to organ-
ise information for storage in long-term memory. In detail,
schemas are capable of organising simpler elements in a
way these can subsequently act as elements in higher-order
schemas. Learning coincides with the development of com-
plex schema and the transferring of those procedures that
are learned from controlled processing to automated pro-
cessing. This shift frees working memory that can be sub-
sequently employed for other mental processes. Mayer sug-
gested five ways of representing words and pictures while
information is processed in memory [39]. These are partic-
ular stages of processing information (as depicted in figure
3). The first is the pictures and words in the layer of mul-
timedia presentation. The second form includes the acous-
tic (sounds) and iconic representation (images) in sensory
memory. The third form concerns the sounds and images
within working memory. The fourth form coincides with
the model of verbal and pictorial information, always within
working memory. The fifth form relates prior knowledge, or
schemas, stored in long-term memory.

In relation to instructional design, Mayer proposed a
set of design principles (table 1) for creating instructions
aligned to the above limitations of the brain and the dual-
channel paradigm of learning. These principles are aimed at
supporting the design of coherent instructional material for
learners as a combination of verbal and pictorial informa-
tion. Coherent information is aimed at guiding the learners
to select the relevant words and pictures therefore reduc-
ing the cognitive load in each elicited channel. CTML is
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Figure 3: The model developed within the Cognitive Theory of Multimedia Learning [42]

strictly connected to the Cognitive Load Theory because its
twelve principles can be linked to the original three types of
loads. In fact, it has been suggested that the principles that
minimise extraneous load are: coherence, signaling, redun-
dancy, spatial contiguity, temporal contiguity; Those that
manage intrinsic load are: segmenting, pre-training, modal-
ity fostering; and those that optimise germane load are: mul-
timedia, personalisation, voice, image (as per table 1). Note
that since there is uncertainty surrounding the three cogni-
tive load types, which are now believed to be two [30, 28], as
described in the introduction, then this categorisation should
be taken mainly as a form of guidance. These principles
have emerged from more than hundred of empirical research
studies [40] and have evolved into more advanced princi-
ples [36]. This evolution exhibits the dynamism surround-
ing this theory and it suggests how the principles should not
be taken rigidly, but rather as a starting point for discus-
sion and experimentation as in this study. CTML has been
mainly described to provide readers with those key elements
necessary for the comprehension of the primary research ex-
periment presented in the next section.

3. Research design, methods and hypotheses
A primary research experiment has been designed to in-

vestigate the reliability and the validity of the three afore-
mentioned self-reporting mental workload assessment tech-
niques (NASATLX, WP, RSME) as well as their sensitiv-
ity to discriminate different design conditions. Experiments
have been conducted in the School of Computer Science at
the (XXX university - Blind review), in the context of an
MSc module: ‘Research design and proposal writing’. This
module is usually taught both to full-time and part-time stu-
dents. The main difference between full-timers and part-
timers is the way classes are planned for them. Full-timers
attend 12 classes within an academic semester, of 2 hours
each, on a day of the week. Part-timers attend 4 classes of
6 hours, within an academic semester. Each part-time class
is scheduled on a Saturday and are usually separated by a
period of 3 to 4 weeks of inactivity. Full-timers have usu-
ally no break during their classes, while part-timers, given
the long day in class, have two to three breaks. At the begin-

ning of each semester, four topics were presented to learn-
ers: ‘Science’, ‘The Scientific Method’ ‘Planning Research’
and ‘Literature Review’. The rationale behind the selection
of these topics are various. The first reason is due to the
nature of the taught subject: theoretical at the beginning
of the semester and more practical towards its end. This
would have allowed the delivery of the four topics, during
the first class, in a controlled one-way style, from the lec-
turer to the students, by employing direct instructions meth-
ods. In other words, this would have facilitated the applica-
tion of the three selected self-reporting mental workload as-
sessment techniques at the end of the delivery of each topic,
without interruptions or unexpected events. The second rea-
son lies in the ease of manipulation of this traditional one-
way delivery method without altering the content of each
topic. In fact, by keeping the content constant, a number
of delivery methods could have been employed, including
for instance, a verbal presentation of the content backed
up with a set of slides projected on a white board; a ver-
bal presentation of the content with relevant keywords writ-
ten on a black-board; a verbal presentation of the content
supported by diagrams; a multimedia presentation making
use of pictorial and acoustic material and many others. The
third reason refers to the state of mind of each individual
learner during classes. In fact, part-time students, given the
long classes, were expected to loose interest during the day,
with a constant reduction of their engagement and the effort
exerted towards learning. In contrast, full-timers were ex-
pected to better maintain attention, given the 2-hour classes
they were exposed to. All these factors along with other
individual characteristics of each learner were expected to
increase the overall cognitive load towards the upper limit,
due to fatigue, or to decrease it towards the lower limit, due
to boredom. For experimental purposes, and taking into
account the above rationales, two design conditions were
eventually formed. These conditions were built according to
the design principles behind the Cognitive Theory of Mul-
timedia Learning (CTML) - as described in section 2.2. In
detail, the differences between the two design conditions are
described in table 2, grouped by the underpinning principles
of the CTML (table 1). Figure 4 synthesises and depicts the
full research design.
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Table 1
Design Principles of Cognitive Theory of Multimedia Learning and their theoretical rela-
tion to the load types of Cognitive Load Theory [40] according to earlier conceptualisa-
tion with three types of load

Principle Description Reference
to load type
(CLT)

Coherence humans better learn when instructions do not contain extraneous material extraneous

Signaling learning is increased when explicit cues, for highlighting the organisation of the essential instruction,
are added to the instructional material

extraneous

Redundancy humans’ learning is better promoted by only using narration and graphical aids than by using narra-
tion jointly with graphical aids and printed text

extraneous

Spatial Contiguity learning is greatly improved when corresponding pictures and words are closely placed in space
and not in separate screen locations or pages

extraneous

Temporal Contiguity humans better learn when corresponding pictures and words are presented simultaneously rather
than presented at different stages over time

extraneous

Segmenting learning is increased when multimedia-based instructions are delivered in user-paced segments and
not as a single continuous unit

intrinsic

Pre-training humans learning is greatly enhanced from multimedia instructions when a pre-training is offered
providing to learners with key names and characteristics of the instructional components

intrinsic

Modality learning is enhanced when graphical aids and verbal narration are employed rather than graphics
and printed textual information

intrinsic

Multimedia humans learn better from pictures and words than from only words germane

Personalisation learning is increased by a multimedia presentation when words are presented in a conversational
manner rather than using a formal style

germane

Voice humans learning is enhanced from multimedia-based instructions when words are narrated by a
friendly human voice rather than by an artificial machine

germane

Image learning is not necessarily improved by multimedia instructions only because the speaker’s image is
displayed on the screen rather than when is not

germane

Figure 4: Outline of and key components of the empirical research experiment

3.1. Research hypotheses
Informally, the research hypotheses are that the NASA

Task Load Index (NASATLX), the Workload Profile (WP)
and the Rating Scale Mental Effort (RSME) are reliable and
valid measures of mental workload when applied in an ed-
ucational context. If this will be the case, then the extent
to which these instruments can discriminate the two design
conditions will be investigated by computing a measure of
their sensitivity. Table 3 shows the research hypotheses, lists
the criteria for evaluating different mental workload mea-

sures, their definition, the associated statistical test and the
expected outcome. Note that both forms of validity are ex-
pected to be moderate. A high degree of face validity would
imply that participants could subjectively and precisely as-
sess the construct of mental workload as good as the se-
lected mental workload measures. Therefore these mea-
sures would not have reason to exist as participants could
precisely assess mental workload autonomously. Similarly,
a high degree of convergent validity would imply that two
different measures assess the construct of mental workload
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Table 2
The design conditions and their differences in terms of adherence to the principles of
Cognitive Theory of Multimedia Learning

Principle Screenshots Design condition (A) Design condition (B)

coherence fig. 17 extraneous instructional material was maintained to a minimum level.

signaling fig. 18 cues, as relevant keywords in the text, were
made more visible by using a larger font
size

cues, as relevant keywords in the narration, appeared in the
video in order to emphasise the organisation of the essen-
tial material.

redundancy fig. 19 use of graphical aids and the lecturer did
not fully read the content of the slides but
narrated them

the majority of words of the printed text was eliminated in
order to offload the visual channel (eyes); use of graphical
aids from lecturer who narrated the content.

spatial
contiguity

fig. 20 corresponding words and pictures were placed close to each other in space
and not in different slides.

temporal
contiguity

fig. 21 corresponding pictures and words were
presented at the same stage over time

corresponding pictures and words (verbally transmitted)
were presented at the same stage over time.

segmenting fig. 22 the instructions are presented as a single
unit

the instructions are presented in different segments and
they are separated by visual transition effects.

pre-training - pre-training was not offered to learners.

modality fig. 23 printed text is kept in the slides and verbally
explained

printed text is eliminated in order to offload the visual chan-
nel (eyes) and verbally explained loading another channel
(ears)

multimedia fig. 24 words and pictures.

personalisation fig. 25 words are presented by using a friendly conversational tone and not by using a formal
style

voice - words are verbally pronounced by a human lecturer and not by an artificial tool

image fig. 26 no video has been employed, therefore no
speaker’s image was available. However,
the lecturer was in the classroom, thus
present.

the lecturer’s image was most of the time kept in the video,
sometimes using the full space available, sometimes using
half-space, with the second half used for important pieces
of text or pictures. Other times, the image was removed and
important sentences were textually presented full screen.

Table 3
Criteria for the evaluation of different mental workload (MWL) assessment techniques,
their definition, the associated statistical tests and the expectations for this primary re-
search

Criteria Description Correspondent
statistical test

expectation

Reliability the stability or consistency of a MWL measure Cronbach’s Alpha high

Validity
(face)

the extent to which a MWL measure is subjectively viewed as
covering the construct of MWL itself

Pearson/Spearman
correlation

positive and
moderate

Validity
(convergent)

the degree to which two measures of MWL, expected to be theo-
retically related, are in fact related

Pearson/Spearman
correlation

positive and
moderate

Sensitivity the extent to which a MWL measure allows the detection of
changes in instructional design conditions

ANOVA +
T-test/Wilcoxon test

moderate

exactly in the same way, but given the known difficulties
in measuring this construct, the chances that this occurs are
low. As a consequence a positive moderate correlation is
expected for both the forms of validity, underlying a reason-
able relationship of the different mental workload measures.

3.2. Procedure and participant demographics
Distinct groups of full-time and part-time post-graduate

learners participated in the experimental study and attended

the post-graduate module ‘Research design and proposal
writing’ in various semesters. In detail, learners attended
the four topics listed in figure 4 (T1-T4), not necessarily in
the same order, depending on the semester. Classes were
delivered either using the first instructional condition (DC1)
or the second (DC2). Thus, all learners in each class were
exposed to one and only one condition, for a given topic.
After the delivery of each topic, and with no distinction of
design condition, students were invited to compile question-
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naires to obtain information necessary to quantify their men-
tal workload experienced while attending the class. In de-
tail, three self-reporting mental workload measures (as in
section 2.1) were employed:

• the NASA Task Load Index (NASA-TLX, question-
naire in table 10);

• the Workload Profile (WP, questionnaire in table 11);

• the Rating Scale Mental Effort (RSME, questionnaire
in figure 8).

To facilitate the completion of each questionnaire and
not to overload students with many questions, two sub-
groups were formed, one receiving the NASA-TLX and one
receiving the WP questionnaire. Eventually, both the groups
received the RSME questionnaire. The rationale was that,
being RSME uni-dimensional, adding one further question
to the other two questionnaires was deemed reasonable. In
synthesis, the two subgroups are:

• sub-group A (NASA-TLX + RSME);

• sub-group B (WP + RSME).

A study information sheet was presented to students as
well as a consent form to sign. This documentation was
approved by the ethics committee of the (XXX University,
Blind review). Students had the right to withdrawn at any
time during the experiment and collection of data. The for-
mation of the two subgroups was random for each topic,
therefore students could receive any questionnaire during
a class. Table 4 summarises the groups and sub-groups
formed, aggregated by topic and the design condition re-
ceived. It also lists the number of students who participated,
and the length of each topic. Note that some of the student
who took part in the experimental study did not fully com-
plete the administered questionnaires or not completed at
all. This was because some of them left the classroom be-
fore its end, or because of incorrect filling of the question-
naire. In the latter case, if most of the questions were unan-
swered, the observation was discarded. However, if only a
small percentage of questions were unanswered, the obser-
vation was kept and empty answers were imputed from the
rest of the class. In detail, on one hand, for the NASA-TLX,
some data was missing for the pair-wise comparison pro-
cedure, thus logistic regression was used for imputing the
binary preference. On the other hand, concerning the WP
instrument, linear regression was used for imputing omitted
answers. Also note that, one one hand, the length of the
classes for the four topics delivered with design condition 1
( table 4) slightly differ. This is because the lecturer did not
read the slides but narrated them at different peaces in dif-
ferent days and class-rooms. Also, full control on the con-
text in which the class took place, and the people, was not
possible. In fact, some minor inconvenient occurred such
as rebooting the computer or the projector, some attempt
from students to ask questions or to repeat. However, ex-
cept technical problems with technology, and to guarantee

Table 4
Description of topics, design conditions, sub-groups, mental
workload instruments received and number of students for
each sub-group, and each class, with length in minutes. For
example, line 1 refers to the topic ‘Science’, delivered in de-
sign condition 1 twice: the first delivery had 7 students who
received the NASA+RSME and 11 the WP+RMSE, and it
lasted 62 mins; the second had 6 students who received the
NASA+RSME while 6 the WP+RSME, and lasted 60 mins.

Topic
(# of students) Class

A (NASA
+ RSME)

B (WP +
RSME)

length
(mins)

Design condition DC1:
T1 - Science 7/6 11/6 62/60
T2 - The scientific method 10/11 13/10 46/46
T3 - Planning research 11/11 9/10 54/21
T4 - Literature Review 10/11 11/10 55/33

Totals 77 80 377
Design condition DC2:
T1 - Science 13/10/13 13/11/9 17
T2 - The scientific method 12/6 12/6 28
T3 - Planning research 11/11 11/11 10
T4 - Literature Review 13/9 11/9 18

Totals 98 93 163

Overall totals DC1+DC2 175 173 540

that the intrinsic load was maintained as similar as possible
across classes, no fragments of content was repeated and no
questions were answered during the delivery of the content.
An opportunity to have feedback to students was only ad-
dressed after the end of each experimental task, when all
experimental data was collected. On the other hand, the ex-
ecution time for design condition 2 was always the same, as
these are multimedia pre-recorded videos. Someone can ar-
gue that time might influence cognitive load. A recent study
attempted to investigate the impact of processing time on
cognitive load [57]. However, in this study, the time dimen-
sion has not been taken into consideration. The rationale is
that this hypothesis has been mainly tested for short tasks
[57], leading to uncertain findings while the learning tasks
under consideration are long. Also, according to [57], one
variable that likely affect processing time, and thus cogni-
tive load, is prior knowledge, not available in the present
study. Overall, 540 minutes of class delivery was per-
formed (9 hours) by the same lecturer (377 for DC1, 163
for DC2), over 6 semesters (3 academic years), across the
four topics.

4. Results
Table 5 presents the descriptive statistics of each sub-

group introduced in table 4. In detail, it shows the average
(avg), the standard deviation (std), the median (med) and
the Shapiro-Wilk test (W) of normality of the distribu-
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Table 5
Descriptions of topics, design condition received, mental workload questionnaires ad-
ministered and descriptive statistics for each subgroup (average, standard deviation,
median, Shapiro-Wilk test (W) of normality with p-value and 95% confidence level)

Mental Workload assessment technique

Topic
NASA WP RSME

# avg SD med W/p # avg SD med W/p # avg SD med W/p

Design condition 1
science 13 43.62 8.64 42.67 0.96/0.69 17 58.6 18.81 60 0.98/0.99 30 42.2 20.58 40 0.89/0
scientific
method

21 52.29 11.55 52.67 0.96/0.48 23 51.83 15.11 51.88 0.94/0.22 44 57.36 22.87 56.5 0.97/0.3

planning
research

22 46.27 13.77 51.17 0.91/0.04 19 51.31 18.02 54.38 0.89/0.03 41 52.51 21.97 50 0.94/0.03

literature
review

21 47.12 12.46 49.67 0.97/0.65 21 56.49 10.75 56.25 0.97/0.67 42 53.87 19.47 50.54 0.97/0.28

Design condition 2
science 36 43.12 15.2 42.83 0.98/0.85 33 47.99 17.28 50 0.95/0.14 69 44.06 18.07 40 0.95/0.01
scientific
method

18 47.69 12.65 48.17 0.96/0.69 18 57.29 9.79 55.94 0.95/0.36 36 61.67 17.93 67.5 0.93/0.02

planning
research

22 43.55 12.23 42.33 0.96/0.43 22 51.93 14.16 56.56 0.94/0.2 44 46.59 18.26 40 0.94/0.02

literature
review

22 50.82 15.05 51.33 0.97/0.7 20 48.88 20.24 46.88 0.98/0.86 42 58.38 21.63 57.5 0.95/0.07

tions, along the p-values (p-val) of the mental workload
scores obtained across the different topics and the mental
workload techniques (NASA, WP, RSME), grouped by
design condition (DC1, DC2) and topic (T1-T4). Looking
at table 5, the majority of the p-values (p-val) as well
as the Shapiro-Wilk test scores (W) are greater than the
chosen alpha level (� = 0.05). Therefore, for most of the
subgroups, the hypothesis of data coming from a normally
distributed population cannot be rejected . This means that
the mental workload scores associated to most of the topics,
follow a normal distribution. Figures 10, 11, 12 show the
distributions of the mental workload scores with a red line
indicating the normal distribution and the black line fitting
the data.

4.1. Reliability
To assess the reliability of the selected mental work-

load instruments, Cronbach’s Alpha has been employed. It
measures the internal consistency of the items of a multi-
dimensional instrument, that means, how closely related
these items are as a group. For this reason, the Rating Scale
Mental Effort is not subject to reliability analysis as it is
uni-dimensional. Table 6 shows the Cronbach’s Alpha co-
efficients of the other two selected multidimensional mental
workload assessment instruments (NASA-TLX and the WP)
obtained by considering all the answers of students across
all the topics and design conditions. A reliability coeffi-
cient greater than .70 is deemed acceptable for considering
a scale being consistent measure of a construct. Therefore,

Table 6
Reliability of the multidimensional mental workload scales,
namely the Nasa Task Load Index (without and with the pair-
wise procedure) and the Workload Profile with sample size,
related number of items in the scales and associated Cron-
bach’s Alpha. Note: NASA-TLX

Instrument Sample
size

Number
of items

Cronbach’s
Alpha

The NASA-TLX
(without pair-wise)

175 6 0.748

The NASA-TLX
(with pair-wise)

175 6+15=21 0.612

The Workload Profile 173 8 0.876

both the NASA Task Load Index and the Workload Profile
can be considered reliable measures of mental workload, as
assessed with the data collected in this research study. To
confirm the obtained high reliability, Cronbach’s Alpha has
been computed also for each topic as well as each design
condition. Table 7 demonstrates how the reliability scores
are mostly above 0.7 across the topics and design condi-
tions. Therefore there is a strong evidence suggesting how
the NASA-TLX and Workload Profile might be reliably ap-
plied in educational contexts.

4.2. Validity
To assess the validity of the three selected mental work-

load assessment instruments, two sub-forms of validity were
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Figure 5: Boxplots of the distribution of the mental workload
scores grouped by assessment instrument, design condition
and topic

selected, namely face and convergent validity. The former
measures the extent to which a MWL measurement is sub-
jectively viewed as covering the construct of MWL itself
while the latter measures the degree to which two measures
of MWL, expected to be theoretically related, are in fact re-
lated. To assess face validity, a question of overall mental
workload has been asked to students right before the com-
pletion of each topic and before the completion of the men-
tal workload questionnaires. This question can be found in
9 and its answers have been correlated to the mental work-
load scores of the three selected measurement techniques.
To assess convergent validity, the mental workload scores
produced by the NASA-TLX and the Workload Profile in-

Table 7
Reliability of the multidimensional mental workload scales,
namely the Nasa Task Load Index and the Workload Pro-
file, grouped by topic, class and design condition (overall 17
classes

Topic
Mental Workload technique

NASA-TLX WP
Size Cronbach’s

Alpha
Size Cronbach’s

Alpha

Design condition 1
T1 - Science 7 0.72 11 0.94
T1 - Science 6 0.53 6 0.86
T2 - The scientific method 10 0.68 13 0.89
T2 - The scientific method 11 0.66 10 0.84
T3 - Planning research 11 0.59 9 0.93
T3 - Planning research 11 0.87 10 0.93
T4 - Literature Review 10 0.43 11 0.88
T4 - Literature Review 11 0.86 10 0.22

Design condition 2
T1 - Science 13 0.85 13 0.82
T1 - Science 10 0.85 11 0.74
T1 - Science 13 0.70 9 0.95
T2 - The scientific method 12 0.45 12 0.6
T2 - The scientific method 6 0.76 6 0.79
T3 - Planning research 11 0.76 11 0.83
T3 - Planning research 11 0.57 11 0.48
T4 - Literature Review 13 0.81 11 0.92
T4 - Literature Review 9 0.91 9 0.95

struments have been correlated against the mental workload
scores associated to the Rating Scale Mental Effort self-
reporting uni-dimensional measure. Note that this was pos-
sible because a participant filled in the questionnaire asso-
ciated to the NASA-TLX or WP and the RSME. Correla-
tion between the NASA-TLX and WP cannot be computed
because no participant received both the questionnaires as-
sociated to these two instruments at the same time. Both
the Pearson correlation coefficient and the Spearman’s Rank
correlation coefficient have been employed for computing
the two forms of validity. Table 8 shows the correlations for
face validity while table 9 lists the correlations for conver-
gent validity.

4.3. Sensitivity
The sensitivity of the mental workload instruments has

been calculated performing and analysis of the variance of
the mental workload scores for each instrument. Figure
5 shows the boxplots of the mental workload scores
associated to the three different mental workload measures
grouped by topic, design condition and assessment tech-
nique. From a visual inspection of these box-plots, no
difference between the mental workload scores associated
to each topic when compared across the two design con-
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Table 8
Face validity of the mental workload assessment instru-
ments, sample size, Pearson and Spearman correlation co-
efficients

Instrument Sample size Pearson r Spearman �
NASA-TLX 175 0.47 0.48
WP 173 0.46 0.45
RSME 348 0.44 0.43

Table 9
Convergent validity of the mental workload assessment in-
struments, sample size, Pearson and Spearman correlation
coefficients

Instrument Sample size Pearson r Spearman �
NASA-TLX vs RSME 175 0.51 0.49
WP vs RSME 173 0.37 0.39

ditions emerged. To confirm this, a formal comparison
has been conducted to verify whether the distributions of
the mental workload scores for each topic are statistically
significant different across the two design conditions.
Independent two-sample T-Tests (t) [16] have been adopted
in most of the cases, when the two underlying distributions
are normal, while the Wilcoxon signed-rank test (V ) when
distributions are not normal [64, 85].

All the p-values associated to the T -tests were greater
than 0.05, therefore it is possible to conclude that the means
of the two groups under comparison are not statistically
significantly different. Similarly, Also the p-values associ-
ated to the V -tests are greater than 0.05, thus it is possible
to conclude that the means have remained essentially
unchanged. These comparisons can be visually inspected in
the overlapping density plots of tables 13-16. From these it
is possible to see that clear discriminations between the two
design conditions cannot drawn.

These findings suggest that there is no difference be-
tween the first design condition and the second design con-
dition across the four topics in terms of mental workload
variation. However, t-Test in general makes very strong as-
sumptions: i) it is sufficient to detect changes in location;
ii) the typical observation within each distribution can be
summarised only by the mean; iii) the underlying compared
distributions differ only in central tendency, not in other as-
pects. As it often happens in educational settings, sample
size of sample students are very small, exactly as in this re-
search. Additionally, there is no reason only to assume that
the two distributions for each design condition differ only in
the location of the set of the observations [82]. In fact, ef-
fects can be spotted in the tails of these distributions. For
these considerations, a powerful descriptive statistics has
been used to assess in details the differences between de-

sign conditions: shift functions [83]. Originally proposed
in [15], a more systematic way to examine how two inde-
pendent distributions differ exist. This includes plotting the
difference between the quantiles associated to the two dis-
tributions of two groups as a function of the quantiles of one
group. This version was further improved by Wilcox [81] in
terms of better probability coverage and more power. This
technique includes the use of the Harrell-Davis quantile esti-
mator [84] and it computes confidence intervals of the decile
differences with a bootstrap estimation of the standard error
of the deciles. It is robust as it controls for multiple compar-
isons so that the type I error rate remains around 0.05 across
the 9 confidence intervals. This leads to confidence intervals
to be a bit larger than what they would be if only one decile
was compared, thus the long-run probability of a type I error
across all 9 comparisons remains near 0.05. This approach
can be applied not only to deciles, but also to quartiles [63].
Figures 27, 28 and 29 present the Harrel-Davis quantile es-
timations of the mental workload scores respectively for the
NASA-TLX, Workload Profile and the RSME instruments
grouped by taught topic (as listed in figure 4).

Each plot depicts the differences between the two de-
sign conditions (DC1, DC2) for the quartiles. The three
vertical lines in each plot indicate the confidence interval
for each quartile (3 overall), with a dot in the middle, rep-
resenting the mean. If this dot is above the zero horizontal
line (null differences between the two design conditions) it
means DC1 is more right-shifted than DC2. In other words,
the mental workload scores in that quartile are higher for
DC1. Contrarily, if the lines are below the zero line, it
means DC2 is more right shifted than DC1, meaning that
the mental workload scores for that quartile are higher for
DC2. Yellow lines (and dots) underline the right shift of the
values for DC1 for that quartile, whereas violet lines (and
dots) for DC2. If a vertical confidence interval line does not
cross the zero horizontal line, then the differences in mental
workload scores for that quartile are considered significant
in a frequentist term. These plots allow a deeper qualitative
investigation of the differences between the two design con-
ditions and a more detailed investigation of the sensitivity
of the mental workload assessment instruments.

Figure 6 summarises graphically the differences and
their magnitude between the two design conditions and the
direction of these, grouped by mental workload assessment
instrument and taught topic. Differences above the zero-
line are higher for DC1, while below are in favour of DC2.
Results are mixed and are further summarised in Figure 7
that depicts the number of null, weak and strong differ-
ences spotted by each mental workload assessment instru-
ment. Differences are considered weak when the vertical
line for a quartile crosses the zero line, but the mean is ei-
ther above or below. Strong differences occur when a ver-
tical line does not cross the zero-line, and so the mean is
not on that, whereas null differences occur when the dot in
the vertical line is on the zero horizontal line. The Workload
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Figure 6: Harrell-Davis quartile differences between design conditions grouped by mental workload instrument

Figure 7: Details of Harrell-Davis quartile differences grouped by strength (null, weak, strong) and mental workload instrument

Profile instrument was the most sensitive to variations of the
mental workload assessed for students, with overall 8 strong
differences spotted against only 2 for the RSME and none
for the NASA Task Load Index. All the three instruments,
were able to spot many of the weak differences. The unidi-
mensional RSME seem to be the most insensitive to men-
tal workload variations followed by the NASA Task Load
index. Therefore, the proportional of attentional resources
used for attending a long university learning session, self-
reported by students with the Workload profile instrument,
seem to be a more suitable way to assess their mental work-
load than only reporting experienced effort via the RSME,
or by using the NASA-TLX. Future scholars are encouraged
to further explore these mental workload assessment instru-
ments with other learning sessions, and test their suitability
with long tasks.

4.4. Discussion
One uni-dimensional and two multidimensional self-

reporting mental workload (MWL) assessment techniques,
largely used within Ergonomics, have been employed in a
novel primary research experiment within Education. The
former is the Rating Scale Mental Effort [94] while the lat-
ters are the Nasa Task Load Index [22] and the Workload
Profile [73]. These instruments, widely used within psy-
chology, have been applied in a typical university classroom
in the context of a module taught in the School of Computer
Science, at the (XXX university, blind review). The exper-

iment involved the quantification of the mental workload
experienced by students during third-level classes. Learn-
ers were exposed to two different design conditions across
four topics of the post-graduate module ‘Research Design
and proposal writing’. The former condition included the
delivery of the topics by employing a traditional lecturer-to-
students direct delivery of instructional material employing
slides projected to a white-board built with text, pictures
and diagrams. The latter condition included the delivery
of the same four topics through multimedia video presen-
tations built by following the set of principles offered by the
Cognitive Theory of Multimedia Learning [40].

An analysis of the reliability of the two multidimen-
sional MWL assessment techniques has been conducted
through a measure of their internal consistency. In detail,
the Cronbach’s Alpha has been employed to assess the rela-
tion of the items associated to each technique. An obtained
overall alpha value of 0.748 for the NASA task Load Index,
considering all the students and topics, suggested that
all its items share high covariance and probably measure
the underlying construct (mental workload). This value
dropped to 0.612 when the pairwise comparison, part of the
instrument, was added to the reliability test. The situation
is similar for the Workload Profile with an even higher
alpha of 0.876 considering all students across all topics.
Although the standards for what can be considered a ‘good’
alpha coefficient are entirely arbitrary and depend on the
theoretical knowledge of the scales in question, results
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are in line with what literature recommends: a minimum
coefficient between 0.60 and 0.8 is required for reliability.
Having reasonably reliable multidimensional measures of
mental workload, an analysis of their validity has been
subsequently performed. In particular, two forms of validity
were employed: face and convergent validity. The former
validity indicates the extent to which the three employed
mental workload measures - the Nasa Task Load Index,
the Workload Profile and the Rating Scale Mental Effort -
are subjectively viewed as covering the construct of MWL
itself by subjects. The latter validity indicates the degree
to which the two multidimensional measures of MWL
are theoretically related to the unidimensional measure of
mental workload. The obtained Pearson and Spearman
coefficients suggest how the three MWL measures are mod-
erately correlated to a subjective value of overall mental
workload self-reported by students, thus demonstrating
moderate face validity. Similarly, correlation coefficients
show the moderate relationship that exist between the two
multidimensional MWL measures and the unidimensional
MWL measure, thus demonstrating moderate convergent
validity. Eventually, with the expected moderate validity
achieved, the sensitivity of the three measures of mental
workload was subsequently computed. Sensitivity referred
to the extent to which a MWL measure was able to detect
changes in instructional design conditions. In detail,
sensitivity was initially assessed through an analysis of
the variance of the mental workload scores, associated to
the four topics across the two design conditions, and a
formal comparison of their distributions using the T-test
or the Wilcoxon test, depending on their normality of the
scores and other assumptions. Evidence suggests how
the two design conditions imposed on average similar
mental workload on students as computed using the three
mental workload assessment techniques in terms of central
tendency. Intuitively, given the strong reliability and
moderate validity achieved by the selected mental workload
measures, it seems to be reasonable to infer that the design
principles from the Cognitive Theory of Multimedia Learn-
ing when applied for the design of the second instructional
condition, were as not effective as expected because of the
insensitivity to discriminate the two design conditions in
this primary research.

However, a number of considerations are needed.
Firstly, the low sensitivity of the mental workload measures
(NASA, WP, RSME) adopted in this research to discrim-
inate the two design conditions might be attributed to a
particular line of thought emerged in the literature. This
line of thought argues that despite the apparent advantage
of presenting the learning material using auditorial and pic-
torial content embedded in a multimedia video, multimedia
materials still require high levels of cognitive processing to
synthesise the visual and auditory streams and extract the
semantics of the main new information [26]. In fact, in this
research, even if the second design condition resulted in
the development of videos that led to significantly shorter

classes (as per table 4), even if the signalling principle
was used to emphasise essential material with cues and
the redundancy principle applied by removing most of the
text, offloading one channel (eyes) and presented using a
temporal alignment between words (verbally transmitted)
and pictures, still students likely experienced high levels of
cognitive processing for new information as no pre-training
was offered to them. Secondly, the low sensitivity of the
mental workload measures could be explained by the fact
that both the design conditions were adhering already to
the coherence principle, with extraneous material kept
to minimum, and to the spatial contiguity principle, by
which words and pictures were showed at the same time
(slide or screen), using the same conversational style
(personalisation principle), narrated by the lecturer and not
by an artificial machine synthesiser (voice principle). This
overlapping might explain the non-significant difference of
the obtained mental workload scores across the two design
conditions, which were on average in the middle range of
the mental workload distributions, that means no situations
of underload or overload. Similarly, from the data in table 2,
it is possible to note that the CTML principles associated to
the germane load type of CLT (multimedia, personalisation,
voice principles, as described in table 1) have not been
altered across the two design conditions, thus, with high
probability, germane load was not differently promoted.
This is gauged by the perceived effort rated by students,
using the Rating Scale Mental Effort (RSME) workload
instrument, that resulted in scores not significantly different
across the two design conditions.

As suggested by [36], there is uncertainty and dy-
namism behind his Cognitive Theory of Multimedia
Learning, suggesting how its principles should not be taken
rigidly, but rather as a starting point for discussion and
experimentation, as showed in this research. Multimedia
videos have the high potential to improve learning in
various ways, however they can also be very demanding
for the cognitive system of a learner. The findings from the
present study are aligned to previous research on CTML
and the underlying assumption driven from it whereby
learners and their mind can process only small portions
of large amount of auditory and visual stimuli at one time
[35, 42]. The experiment proposed in this study can be
seen as a potential solution to the problem highlighted by
[32], whereby, nowadays, the majority of faculty members
are involved in instructional design activities that mostly
lack scientific underpinning and proper documentation,
therefore more evidence-based instructional designs are
needed. Eventually, this experiment is in line with the critics
carried forward by [9] whereby multimedia instruction is an
example of a new area of instructional research and practice
that has led to a significant amount of excitement among
educational scholars. Like any new area of research, CTML
is based upon a set of assumptions about the way students
learns and will solve problems, therefore implicitly creating
a set of expectations about multimedia benefits. However,
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these assumptions and expectations are repeatedly taken for
granted, valid and appropriate, often forgetting about their
empirical validation through evidence-base research. Clark
et al. insist that if these implicit assumptions turns out to be
incorrect, researchers may unintentionally adopt them for
designing their multimedia instructional material that does
not support learning [9]. Additionally, when a new research
finding is in contradiction to a previous one, for instance as
demonstrated in this research, there is a tendency among
scholars to ignore it by simply justifying this as a poorly
designed multimedia video rather than performing a careful
analysis.

For the above reasons, a deeper sensitivity analysis has
been performed on the mental workload scores obtained
with experimental research by applying the Harrell-Davis
estimator [21]. This is a weighted linear combination of or-
der statistics in which the order statistics used in traditional
non-parametric quantile estimators are given the greatest
weight. It is suitable for small sample sizes, as those associ-
ated to the university classes of this research (between 7 and
15 students per group) and it represents the limit of a boot-
strap average as the number of bootstrap resamples becomes
infinitely large. This estimator represents a more systematic
way to characterise how two independent distributions dif-
fer not only in central tendency, but also in their tails. It is
a descriptive statistics that was applied using quartiles and
that actually revealed many differences between the two de-
sign conditions. Results showed that the Workload Profile
mental workload assessment instrument was the most sen-
sitive to mental workload changes, followed by the NASA
Task Load Index and the Rating Scale Mental Effort. Also,
the fact that the RMSE has low sensitivity can be explained
by the results obtained in [75] whereby authors have demon-
strated that timing and frequency of effort ratings influence
results and that repeated measures of mental effort, espe-
cially in long session, are preferable.

This research, through the adoption of quantitative mea-
sures of mental workload, can be seen as a way to provide
scholars with a new set of mental workload measures that
can be used to enhance the empirical validation of their
instructional designs and facilitate comparisons across re-
search studies. Additionally, in case of small sample sizes,
as it often happens within education, and when effects are
not necessarily homogenous among participants, the appli-
cation of the Harrell-Davis estimator is very useful to deter-
mine how, and to what extent, two distributions differ.

5. Conclusions
This study attempted to investigate the impact of three

mental workload assessment techniques, on the evaluation
of different instructional design conditions. A primary
research study has been performed in a typical university
classroom and a case study involved the development
and evaluation of two design conditions. The former

condition included the delivery of four topics by employing
the traditional direct instructions method lecturer-driven
whereby the delivery of instructional material was done
by employing slides projected to a white-board built with
text, pictures and diagrams. The latter condition included
the delivery of the same four topics through multimedia
video presentations built by following the set of principles
proposed within the Cognitive Theory of Multimedia
Learning [40]. Empirical evidence strongly suggested how
the three MWL measures are reliable when applied in a
typical university classroom. Results demonstrated their
moderate validity, in line with the validity achieved in other
experiments within ergonomics and psychology. On the
contrary, their sensitivity was very low in discriminating
the two instructional design conditions. However, given the
high reliability and modest validity of the three MWL mea-
sures, the achieved sensitivity might reasonably underlines
the minimal impact of the principles of Cognitive Theory
of Multimedia Learning for developing the second design
condition, in line to other research studies [26, 35, 42].

The contributions of this research are to offer a repli-
cable methodology for the evaluation and application of
existing mental workload measures in education which in
turn supports empirical and evidence-base instructional
design. Contrarily to the limited falsifiability of Cognitive
Load Theory, mainly given by the robustness of measures
for its cognitive load types, as reported in the literature,
this study conforms to the rules of science because its
methodology is replicable and its adoption might led to
new findings, falsifying existing ones. Every single test
of existing measures of mental workload in Education is
aimed at increasing our understanding of mental workload
itself as a construct, and in turn facilitating the exploration
of the effectiveness of various instructional design all aimed
at enhancing learning.

Future work might include the application of more ad-
vanced principles of CTML [39] for the development of var-
ious design conditions. These might include, for instance,
the application of the navigation principle by which humans
learn better in those instructional environments where rele-
vant navigational aids are provided or the application of the
collaborative principle, by which people learn better when
involved in collaborative learning activities. Additionally,
further multidimensional and unidimensional measures of
mental workload might be employed and tested against re-
liability, validity and sensitivity. The multimedia artefacts
developed in this research might be also extended as sug-
gested in [3] by adopting guiding questions. These are
questions available upfront and during the entire multimedia
video and, they represent a means to share learning objec-
tives with students, aimed at promoting their germane load
devoted to the underlying learning task and reducing their
extraneous load by redirecting their attention to the core in-
structional elements. Eventually, other instructional designs
conditions, should be designed and tested against mental
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workload. In particular, following the recent suggestions
for complex learning environments [31], more flexible ap-
proaches to learning based on differentiating specific goals
of various learning activities can be tested. In details, men-
tal workload assessment at various instructional stages and
tasks can lead to more precise findings as these stages and
tasks might be linked to different specific goals. Eventually,
the three mental workload assessment instruments used in
this research can be employed with existing measures of ef-
ficiency [29, 76, 49, 50] and engagement [25], extending
current evaluations of instructional designs.
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Table 10
The NASA Task Load Index mental workload assessment instrument

Label Question

NT1
How much mental and perceptual activity was required (e.g. thinking, deciding, calculating, remembering, looking,
searching, etc.)? Was the task easy or demanding, simple or complex, exacting or forgiving?

NT2
How much physical activity was required (e.g. pushing, pulling, turning, controlling, activating, etc.)? Was the task easy
or demanding, slow or brisk, slack or strenuous, restful or laborious?

NT3
How much time pressure did you feel due to the rate or pace at which the tasks or task elements occurred? Was the
pace slow and leisurely or rapid and frantic?

NT4 How hard did you have to work (mentally and physically) to accomplish your level of performance?

NT5
How successful do you think you were in accomplishing the goals, of the task set by the experimenter (or yourself)? How
satisfied were you with your performance in accomplishing these goals?

NT6
How insecure, discouraged, irritated, stressed and annoyed versus secure, gratified, content, relaxed and complacent
did you feel during the task?

Table 11
The Workload Profile mental workload assessment instrument

Label Question

WP1
How much attention was required for activities like remembering, problem-solving, decision-making, per-
ceiving (detecting, recognising, identifying objects)?

WP2
How much attention was required for selecting the proper response channel (manual - keyboard/mouse, or
speech - voice) and its execution?

WP3 How much attention was required for spatial processing (spatially pay attention around)?

WP4
How much attention was required for verbal material (eg. reading, processing linguistic material, listening
to verbal conversations)?

WP5 How much attention was required for executing the task based on the information visually received (eyes)?
WP6 How much attention was required for executing the task based on the information auditorily received?
WP7 How much attention was required for manually respond to the task (eg. keyboard/mouse)?

WP8
How much attention was required for producing the speech response (eg. engaging in a conversation,
talking, answering questions)?

Please indicate, by marking the horizontal axis below, how much effort it took for you to attend the class.

Figure 8: The Rating Scale Mental Effort assessment instrument

Figure 9: A self-reporting uni-dimensional measure of perception of mental workload
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Figure 10: Distributions of the NASA-TLX scores grouped by design condition and topic
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Figure 11: Distributions of the Workload Profile scores grouped by design condition and topic

First Author et al.: Preprint submitted to Elsevier Page 21 of 29



Evaluating instructional designs with mental workload assessments in university classrooms

Figure 12: Distributions of the Rating Scale Mental Effort scores grouped by condition and topic
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Figure 13: Comparison of the distributions of the mental workload scores for the topic ’science’ grouped by instrument

Figure 14: Comparison of the distributions of the mental workload scores for the topic ’the scientific method’ grouped by
instrument

Figure 15: Comparison of the distributions of the mental workload scores for the topic ’planning research’ grouped by instru-
ment

Figure 16: Comparison of the distributions of the mental workload scores for the topic ’literature review’ grouped by instrument
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Figure 17: Application of the coherence principle of Cog-
nitive Theory of Multimedia Learning in design condition 2
(bottom) as compared to design condition 1 (top)

Figure 18: Application of the signaling principle of Cognitive
Theory of Multimedia Learning in design condition 2 (bottom)
as compared to design condition 1 (top)

Figure 19: Application of the redudancy principle of Cog-
nitive Theory of Multimedia Learning in design condition 2
(bottom) as compared to design condition 1 (top)

Figure 20: Application of the spatial contiguity principle of
Cognitive Theory of Multimedia Learning in design condition
2 (bottom) as compared to design condition 1 (top)
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Figure 21: Application of the temporal contiguity principle of
Cognitive Theory of Multimedia Learning in design condition
2 (bottom) as compared to design condition 1 (top)

Figure 22: Application of the segmenting principle of Cog-
nitive Theory of Multimedia Learning in design condition 2
(bottom) as compared to design condition 1 (top)

Figure 23: Application of the modality principle of Cognitive
Theory of Multimedia Learning in design condition 2 (bottom)
as compared to design condition 1 (top)

Figure 24: Application of the multimedia principle of Cog-
nitive Theory of Multimedia Learning in design condition 2
(bottom) as compared to design condition 1 (top)
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Figure 25: Application of the personalisation principle of
Cognitive Theory of Multimedia Learning in design condition
2 (bottom) as compared to design condition 1 (top)

Figure 26: Application of the image principle of Cognitive
Theory of Multimedia Learning in design condition 2 (bottom)
as compared to design condition 1 (top)
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Figure 27: Harrell-Davis quantile estimations of the mental workload scores between design condition 1 and 2 for the Nasa
Task Load Index instrument, grouped by taught topic. Horizontal lines and dots respectively represent the confidence interval
and the mean for that quartile. Yellow and violet lines indicate the higher mental workload scores respectively for DC1 and
DC2.
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Figure 28: Harrell-Davis quantile estimations of the mental workload scores between design condition 1 and 2 for the Work-
load Profile instrument, grouped by taught topic. Horizontal lines and dots respectively represent the confidence interval and
the mean for that quartile. Yellow and violet lines indicate the higher mental workload scores respectively for DC1 and DC2.
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Figure 29: Harrell-Davis quantile estimations of the mental workload scores between design condition 1 and 2 for the Rating
Scale Mental Effort instrument, grouped by taught topic. Horizontal lines and dots respectively represent the confidence
interval and the mean for that quartile. Yellow and violet lines indicate the higher mental workload scores respectively for DC1
and DC2.
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