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Abstract: Zero-Shot Action Recognition (ZSAR) aims to recognise action classes in videos that have never been seen
during model training. In some approaches, ZSAR has been achieved by generating visual features for unseen
classes based on the semantic information of the unseen class labels using generative adversarial networks
(GANs). Therefore, the problem is converted to standard supervised learning since the unseen visual features
are accessible. This approach alleviates the lack of labelled samples of unseen classes. In addition, objects
appearing in the action instances could be used to create enriched semantics of action classes and therefore,
increase the accuracy of ZSAR. In this paper, we consider using, in addition to the label, objects related to
that action label. For example, the objects ‘horse’ and ‘saddle’ are highly related to the action ‘Horse Riding’
and these objects can bring additional semantic meaning. In this work, we aim to improve the GAN-based
framework by incorporating object-based semantic information related to the class label with three approaches:
replacing the class labels with objects, appending objects to the class, and averaging objects with the class.
Then, we evaluate the performance using a subset of the popular dataset UCF101. Our experimental results
demonstrate that our approach is valid since when including appropriate objects into the action classes, the
baseline is improved by 4.93%.

1 INTRODUCTION

The field of human action recognition (HAR) has
drawn substantial attention from the computer vision
research community. With the increase in the de-
mand for HAR-based applications in real-world sce-
narios (e.g. video surveillance (Wang, 2013)), the low
volume of available labelled action training data is
a challenge when attempting to develop generalised
and robust models. Due to the expensive labour work
involved, it is difficult to build large-scale labelled
video datasets of human actions by collecting ade-
quate video instances with well-defined class-level
annotations. Therefore, due to their reliance on the
difficult-to-acquire large scale labelled datasets, it is
not possible to scale supervised approaches for recog-
nising actions (Huang et al., 2019b).

For this work, we consider the extreme case of
data scarcity in the HAR field, termed Zero-Shot
Action Recognition (ZSAR). ZSAR aims to recog-
nise unseen action classes by training a classification
model using knowledge transferred from other seen
action classes with the assistance of semantic infor-
mation (Mishra et al., 2018; Liu et al., 2019; Man-

dal et al., 2019). The common type of semantic in-
formation can be either annotations of class-level at-
tributes (Liu et al., 2011; Wang and Chen, 2017) or
word embedding (Mikolov et al., 2013). The seman-
tic information is then used to embed both seen and
unseen classes in fixed-sized and high-dimensional
vectors. The general idea behind ZSAR is based on
the fact that a human can recognise and detect un-
seen action classes by matching text-based descrip-
tions of the class with previously learned visual con-
cepts. For example, given the description ‘an animal
horse-like with black-and-white stripes’, a human is
able to detect ‘zebra’ as long as he understands what
a horse looks like and what the pattern ‘black-and-
white stripe’ looks like. Generalised ZSAR attempts
to recognise video instances from both seen and un-
seen classes, whereas with conventional ZSAR, the
test set contains unseen classes only. In this work, we
are exploring a new approach so we consider conven-
tional ZSAR initially. If the results of our approach
are positive, we will apply it to generalised ZSAR in
the future.

Early approaches to ZSAR largely depend on
projection-based methods, which attempt to learn a



projection function to map the visual representations
of seen classes to their corresponding semantic rep-
resentations. Then, the learned projection function is
used to recognise novel classes by measuring the sim-
ilarity level between the prototype representations and
the predicted representations of the video instances in
the embedding space (Liu et al., 2011; Xian et al.,
2016; Wang and Chen, 2017; Huang et al., 2021).
The semantic representations from these works are
generally obtained using only the action class label,
which does not explicitly contain information about
the objects that appear in the videos. However, a
small number of papers proposed to build relation-
ships between the objects and the action label to pro-
duce enriched semantics for representing class knowl-
edge (Jain et al., 2015; Mettes and Snoek, 2017; Gao
et al., 2019), achieving better performance than the
approach of using only the class label.

It is noteworthy that the video instances of seen
and unseen classes can be totally disjoint and their
distributions are different, resulting in a large domain
gap (termed domain shift). For example, both classes
of ‘horse’ and ‘pig’ have the same attribute of ‘tail’,
but their tails could look very different. Hence, the
projection-based approaches learn a projection func-
tion using video instances from the seen classes with-
out any adaptation, leading to the problem of domain
shift (Fu et al., 2015). To alleviate the influence of
domain shift, generative-based methods can learn a
model (e.g. GANs) to synthesise visual features for
unseen classes based on the relationships between the
instances of seen classes and the semantic represen-
tations of both seen and unseen classes. A super-
vised model is then trained to produce predictions for
a given test sample (Narayan et al., 2020).

In our work, we propose to explore and im-
prove the GAN-based approach (Narayan et al., 2020)
by using additional object-based information as en-
hanced semantics for the ZSAR task. For our investi-
gation, we use a subset of the UCF101 dataset, which
is a common-used dataset for benchmarking in the
HAR field. We answer the research question - Can
object-based information be used as extra semantic
information to improve the performance in the GAN-
based framework for the ZSAR task? We summarise
our contributions as follows. (1) We improve recog-
nition accuracies for unseen classes by adding extra
object-based knowledge into the GAN-based frame-
work. (2) We perform empirical evaluations to inves-
tigate three methods for injecting object-based knowl-
edge into the GAN-based framework. The methods
are:

• Replacing: the semantic representations of ac-
tion classes are replaced with the corresponding

object-based representations.

• Appending: the object-based representations are
appended to the semantic representations of ac-
tion classes.

• Averaging: both class-based and object-based
representations are averaged.

(3) We created a subset of the UCF101 dataset and
selected multiple objects for each class to empirically
evaluate models, including the selected objects for
each action class.

The rest of this paper is structured as follows. In
Section 2, we introduce an overview of ZSAR, in-
cluding a review of the related works and the cat-
egorisation of the different approaches. In Section
3, we present the GAN-based framework and ex-
plain how the ZSAR task is performed. In Section
4, we describe the proposed methodology, which in-
cludes object-based information using a subset of the
UCF101 dataset. We also define the metrics for evalu-
ating its performance. In Section 5, we explain the ex-
perimental setups and their implementations in more
detail. In Section 6, we show the results and findings.
Finally, in Section 7, we conclude the paper and pro-
pose a few ideas for future work.

2 RELATED WORK

In this section, we review the relevant literature on
early approaches for ZSAR as well as on generative
approaches based on GANs.

Early works on the ZSAR depend on projection-
based methods (Xu et al., 2015; Li et al., 2016;
Xu et al., 2016; Xu et al., 2017; Wang and Chen,
2017). They learned a projection function that models
the relationship between visual features and seman-
tic features for seen classes, where these visual fea-
tures are typically extracted from a deep neural net-
work. The learned projection function is then used
to recognise a novel class by measuring the likeli-
hood between its true semantic representation and
the predicted semantic representation of the video in-
stances in the embedding space. It can be expected
that classes with similar semantic descriptions con-
tain similar vectors in the semantic embedding space.
However, classes with similar attributes-based seman-
tic knowledge may have large variations in the visual
space. For example, both action classes of walking
and running have the semantic description of outdoor
activity, but their video instances could seem very dif-
ferent since walking and running have a very different
pace and outfit. Therefore, building a high-accuracy
projection function is a challenge, which may cause



Figure 1: Pipeline of the GAN-based framework for Zero-Shot Action Recognition based on the approach (Xian et al., 2018).

ambiguity in the visual-semantic projection due to the
large variation in the visual embedding space.

Instead of either using class-level labels or
manual-annotated attributes as external knowledge in
the ZSAR task, other works (Jain et al., 2015; Mettes
and Snoek, 2017; Gao et al., 2019; Xing et al., 2021)
used the relationships between objects and actions as
additional knowledge to improve the ZSAR perfor-
mance. Intuitively, objects that appear in a video help
to identify what the video is about. This leads to an
approach in which the semantics of the action class
can be obtained not only from the class label but also
from the objects that appear in the video. The work
(Jain et al., 2015) aims to recognise action classes
using semantic embedding that are extracted from a
skip-gram model for the object categories detected in
videos. Action class labels are associated with objects
with a convex combination function of action and ob-
ject affinities. The authors of the paper (Mettes and
Snoek, 2017) built a spatial-aware embedding by in-
corporating word embeddings, box locations for ac-
tors and objects, as well as spatial relations to gener-
ate action tubes. This method builds an embedding
to represent the relationships among actions, objects,
and their interactions, providing enriched semantic

representation. Advancing on this approach, the work
(Gao et al., 2019) built an end-to-end ZSAR frame-
work based on a structured knowledge graph, which
can jointly model the relationships between action-
attribute, action-action, and attribute-attribute. All of
these works attempt to build the relationships between
objects detected in videos and action class labels to
represent enriched semantics and that can be applied
in the ZSAR task for better performance.

Recently, generative-based methods are used to
synthesise visual features for unseen classes based on
their semantic representations. In the GAN context,
most approaches were originally proposed for the task
of zero-shot image classification (ZSIC). GANs can
be used for synthesising fake unseen samples. The
authors of the paper (Xian et al., 2018) proposed a
conditional Wasserstein GAN (WGAN) model using
classification loss to synthesise visual features for un-
seen classes. Specifically, the conditional WGAN
is learned using visual features of seen classes and
their corresponding semantic embeddings. The visual
features of the unseen classes are then synthesised
using the trained conditional WGAN and used to-
gether with the real visual features from seen classes
to train a classifier in a supervised manner. The over-



all pipeline of the GAN-based approach to achieve the
ZSAR task is shown in Fig. 1. Other works (Felix
et al., 2018; Huang et al., 2019a; Mandal et al., 2019;
Narayan et al., 2020; Mishra et al., 2020) also apply
auxiliary components to enforce a cycle-consistency
constraint on the reconstruction of the semantic em-
beddings during training. The auxiliary components
help to produce a higher quality generator to synthe-
sise semantically consistent visual features for unseen
classes. However, these approaches only embedded
the action class label to train GANs and did not con-
sider any semantics related to objects that may ap-
pear in video instances. In this work, we propose to
include object knowledge as further conditioning in-
formation. We add external knowledge into the se-
mantic space to represent the semantics for the action
classes. We expect this object-based enriched seman-
tics to improve the ZSAR performance on the GAN-
based framework.

3 APPROACHES

In this section, we first explain how GANs are used
for ZSAR. We then present a specific GAN-based
framework used in our empirical evaluations.

The general GAN-based framework shown in Fig.
1 was originally proposed for the ZSIC by (Xian et al.,
2018). The main objective of using a GAN is to gen-
erate visual representations for unseen classes due to
the lack of unseen instances. There are three stages
in the framework, which are GAN training, generat-
ing unseen visual representations, and ZSAR testing.
The GAN consists of a generator G and a discrimi-
nator D. D attempts to distinguish real visual repre-
sentations from the generated ones, and G attempts to
fool the discriminator by generating visual represen-
tations that are similar to the real ones. The GAN here
is also trained with the condition of word embeddings
for a seen action class label (e.g. word2vec), which
enables a generator to synthesise accurate visual rep-
resentations that are representative of that class. Once
the GAN has been trained, G is applied to synthe-
sise visual representations for unseen action classes,
using the corresponding semantic embedding along
with random noise. A discriminative classifier is then
trained with real seen visual representations, synthe-
sised unseen visual representations, and all the seen
and unseen class labels in a fully supervised fash-
ion as shown in the middle layer called ‘Generat-
ing unseen visual representations’ of Fig. 1. In the
ZSAR testing stage, the learned discriminative clas-
sifier is used to predict a label by inputting the real
visual representation of the testing action video. It is

noted that the GAN-based framework is only trained
with visual and semantic representations from seen
action classes. But,it has the ability to synthesise
semantically visual representations conditioned on a
class-specific semantic vector (e.g. word2vec) with-
out having access to any video instances of the unseen
classes.

In our work, we follow the GAN-based approach
named TF-VAEGAN (Narayan et al., 2020) and this
work extended evaluations from the ZSIC to the
ZSAR. To keep this paper self-contained, we intro-
duce the TF-VAEGAN framework in more detail,
which recently delivered impressive ZSAR results.
The process of training a GAN is a key part of the
framework and it is illustrated in Fig. 2. As discussed,
GANs can synthesise visual representations that are
close to the distribution of real instances, but they
could suffer from an issue called mode collapse (Ar-
jovsky and Bottou, 2017), which leads to the problem
of having low diversity of generated visual represen-
tations. In other words, mode collapse could produce
visual representations without large variations in the
end. While similar to GANs, variational autoencoders
(VAEs) (Kingma and Welling, 2013) are another gen-
erative model that employs an encoder to represent
the input as a latent variable with a Gaussian distri-
bution assumption and a decoder that reconstructs the
input from the latent variable.

The generation of unseen visual representations
with VAEs can be achieved with more stable outputs
than with GANs (Verma et al., 2018). Hence, the
TF-VAEGAN framework combines the advantages of
VAEs and GANs by assembling the decoder of the
VAE and the generator of the GAN to synthesise se-
mantically consistent visual representations, achiev-
ing impressive classification ZSAR results. In Fig. 2,
the real visual representations of seen action classes x
extracted from a deep neural network (e.g. I3D model
(Carreira and Zisserman, 2017)) along with the se-
mantic embeddings a are the input to the encoder E.
The output of E is the latent code z that compresses
the information from visual representations x, opti-
mised by the Kullback-Leibler divergence. The ran-
dom noise and semantic embeddings a are the input of
the generator G that synthesises the visual represen-
tation x', and the synthesised visual representations
x'and real visual representations x are compared us-
ing a binary cross-entropy loss.

The discriminator D takes either x or x'along with
the corresponding semantic embeddings a as input,
and determines whether the input is real or synthe-
sised. The WGAN loss is applied to the output of
D to distinguish between the real and the synthesised
visual representations. Additionally, both the seman-



tic embedding decoder SED and the feedback module
F improve the process of visual representation syn-
thesis and reduce ambiguities among action classes
during the zero-shot classification. The SED inputs
either x or x'and reconstructs the semantic embedding
a', which is trained by a cycle-consistency loss.

The feedback module F transforms the latent em-
bedding of SED and puts it back to the latent represen-
tation of G which can refine x'to achieve an enhanced
visual representation synthesis. It is worth noting that
the generator G transforms the semantic embeddings
to visual representations, while SED transforms the
visual representations to semantic embeddings. Con-
sequently, the G and the SED include supplementary
information regarding visual representation and also
the supplementary information can assist to improve
the quality of visual representation synthesis and re-
duce ambiguity and misclassification among action
classes.

In our work, we enrich the semantic embeddings
a by incorporating object-based semantic embedding
with different inclusion techniques such as replacing,
appending and averaging rather than only using sim-
ple word embedding of action labels. By doing this,
we expect to achieve better performance based on the
TF-VAEGAN framework for the ZSAR task.

4 METHODOLOGY

In this section, we describe our methodology to per-
form the ZSAR task using the TF-VAEGAN frame-
work with the inclusion of object-based semantics on
a subset of a benchmark dataset (i.e. UCF101). We
also describe in more detail the applied visual and se-
mantic embeddings.

Dataset The videos in our selected dataset only
contains a single action, so we are not dealing with
the complexities of either action transitions or mul-
tiple actions in the same instance (Ye et al., 2010).
In our work, we choose the UCF101 (Soomro et al.,
2012) dataset, which has 101 action categories with a
total of 13320 videos. To apply object-based semantic
information, we select objects for each action class.
First, we selected 10 seen classes for training and 10
unseen classes for testing. Then, for each seen class,
we manually selected three objects that appear in the
videos. Also, we manually reviewed all the objects
for seen classes to ensure that the objects we picked
are linked to the actions recommended by Concept-

Table 1: The information of action classes and their objects
for our generated subset.

Seen Classes Objects
Archery arrow,bow,bracer

Basketball Shoot basketball,hoop,backboard
Brushing Teeth teeth,toothpaste,mouth

Diving pool,water,springboard
Mopping Floor mop,floor,mphead
Shaving Beard beard,face,shaver

Surfing wave,surfboard,surf
Typing finger,keyboard,monitor

Walking With Dog leash,dog,road
Writing On Board board,mark pen,finger

Unseen Classes Objects
Biking bicycle,helmet,wheel

Blow Dry Hair hair,dryer,head
Blowing Candles candle,light,table

Golf Swing golf,golf club,grass
Haircut hair, hand,scissors

Horse Riding horse,saddle,race course
Rafting raft,river,paddle

Soccer Penalty soccer,goal,pitch

Table Tennis Shot ping pong,table tennis bat,
table

Tennis Swing tennis ball, tennis racket,
tennis net

Net (Speer et al., 2017). 1 For unseen classes, we
found suitable objects solely using ConceptNet, as
video instances of unseen action classes are not avail-
able during the training process. Hence, only an ex-
ternal knowledge base (i.e. ConceptNet) is used to
find out objects for unseen action classes, which can
avoid breaking the premise of zero-shot learning (i.e.
seen and unseen classes are disjoint). For example,
the objects for the action class of Shaving Beard are
beard, face and shaver. The action class of Biking has
the objects bicycle, helmet and wheel. In a nutshell,
we choose 10 seen classes and 10 unseen classes from
the UCF101 dataset along with the selection of three
objects for each class as shown in Table 1.

Visual & Semantic Embeddings To produce real
visual representations x in Fig. 2, we adopted the
off-the-shelf I3D model for visual feature extraction
provided by (Mandal et al., 2019), which is the most
common approach. I3D was originally proposed by

1ConceptNet is a knowledge base that connects words
and phrases of natural language with labelled relationships.
Its knowledge was collected from many resources, such as
WordNet(Bond and Foster, 2013) and DBPedia(Auer et al.,
2007).



Figure 2: The overall architecture of TF-VAEGAN framework.

(Carreira and Zisserman, 2017) and contains RGB
and Inflated 3D networks to generate appearance and
flow features from Mixed 5c layer. For each video
instance, the outputs from Mixed 5c layer for both
networks are averaged through a temporal dimension,
pooled in the spatial dimension, and then flattened to
obtain a 4096-dimensional vector for appearance and
flow features. In the end, both appearance and flow
features are concatenated to represent a video with an
8192-dimensional vector.

It has been recently shown that the Bidirectional
Encoder Representations from Transformers (BERT)
(Devlin et al., 2018) presents state-of-the-art results
in a wide variety of natural language processing
tasks, such as question answering and natural lan-
guage inference. However, in the literature of ZSAR,
Word2Vec has been extensively used to produce se-
mantic embedding for action labels. The aim of this
paper is to justify whether the ZSAR performance
can be improved by including object-based informa-
tion and therefore, we used the common approach
to compare our performance with other researchers
(Xu et al., 2015; Li et al., 2016; Xu et al., 2016;
Xu et al., 2017; Wang and Chen, 2017). In the
same way, we implemented the I3D CNNs rather than
the latest CNN models as they are much more pop-
ular in the literature. Therefore, for producing the
class-specific semantic representations a in Fig. 2,
Word2Vec (Mikolov et al., 2013), which is built upon
a skip-gram model that was pre-trained on a large-
scale text corpus (i.e. Google News Dataset), is used
to deliver a 300-dimensional vector for each action
class label on our generated subset. Furthermore, for
all the selected objects, each of their names is repre-

sented as a 300-dimensional vector using Word2Vec.
For this subset of the UCF101 dataset, all the action
class labels and object names have the same type and
size of word embedding.

The Inclusion of Object Semantics In previous
GAN-based ZSAR works, the component of class
embedding a in Fig. 1 is a simple word embedding
(i.e. Word2Vec) for each action label. The input
does not contain any object-related semantics. As
discussed earlier, we aim to include objects into the
class embedding a as enhanced knowledge to im-
prove ZSAR performance, evaluating on the GAN-
based framework (i.e. TF-VAEGAN). We have con-
sidered three approaches to add object-based seman-
tics that are replacing, appending, and averaging. For
replacing, the embedding of the class label is directly
substituted by either the embedding of the one corre-
sponding object or by more objects. For appending,
the object embeddings are concatenated to the corre-
sponding action class embedding to form a new high
dimensional vector, whose length relates to the num-
ber of objects to be appended. For example, the new
embedding would be a 600-dimensional vector if one
object embedding is appended to action class embed-
ding. For averaging, we calculate the mean of the em-
bedding of the action class label and the embedding of
the corresponding objects as a new 300-dimensional
vector, which also contains semantic information for
both class and objects within a small-size vector. All
three object-inclusion approaches will be empirically
evaluated on our generated subset using the modified
TF-VAEGAN framework.



Table 2: Experimental configurations for the inclusion of
one object. Note that, Rep., App. and Avg. denote the in-
clusion approaches of replacing, appending and averaging,
respectively. obj1, obj2 and obj3 denote the first, second
and third objects being selected for an action class, respec-
tively.

Experiments Object
Inclusion

Semantic
Embedding

1 No
(baseline) action

2 Rep. obj1
3 Rep. obj2
4 Rep. obj3
5 App. action, obj1
6 App. action, obj2
7 App. action, obj3
8 Avg. AVG(action, obj1)
9 Avg. AVG(action, obj2)
10 Avg. AVG(action, obj3)

Evaluation Metrics Class accuracy is a standard
metric in the ZSAR field. We use the average per-
class accuracies defined in the following equation
(Xian et al., 2017):

ACCclass =
1

Nclass

Nclass

∑
C=1

# correct predictions in Class C
# instances in Class C

(1)

5 EXPERIMENTS

In this section, we explain the experimental configu-
rations for evaluating the TF-VAEGAN framework on
our generated subset with the three aforementioned
operations (i.e. replacing, appending and averag-
ing) to include object-based information as enhanced
knowledge. The ZSAR implementations are then de-
scribed in more detail.

Experiments and Baseline Table 2 shows ten
experimental configurations conducted to perform
ZSAR with different inclusion approaches with only
one object. The object inclusion approaches are re-
placing (Rep.), appending (App.) and averaging
(Avg.). As the baseline, the object-based knowledge
is not used in Experiment 1, but only knowledge re-
lated to the action class. From Experiment 2 to Ex-
periment 10, a single object is included to produce
the object-involved semantic embedding a, shown in
Fig. 2. The results from Experiment 2 to Experi-
ment 10 are compared to the baseline to see whether
the object inclusion can improve the ZSAR perfor-
mance. Notably, the visual features of seen classes

Table 3: Experimental configurations for the inclusion of
multiple objects.

Exp. Object
Inclusion

Semantic
Embedding

11 App. action, obj1, obj2
12 App. action, obj1, obj3
13 App. action, obj2, obj3
14 App. action, obj1, obj2, obj3
15 Avg. AVG(action, obj1, obj2)
16 Avg. AVG(action, obj1, obj3)
17 Avg. AVG(action, obj2, obj3)
18 Avg. AVG(action, obj1, obj2, obj3)

(i.e. x) are represented by I3D and the synthesised vi-
sual features for unseen classes (i.e. x') are the same
as I3D in size. Also, the semantic representations of
action class labels and object names are extracted us-
ing Word2Vec to form the different types of semantic
embedding (i.e. a) with different object inclusion ap-
proaches.

For further investigations, Table 3 shows eight ex-
perimental configurations including multiple objects
as semantic embedding to perform the ZSAR evalua-
tions with the approaches of App. and Avg. We ignore
the approach of Rep. in the cases of including multi-
ple objects because of its poor performance in single-
object inclusion evaluations, which will be shown in
the next section.

Implementation Details Similar to the TF-
VAEGAN approach (Narayan et al., 2020), the
structures of discriminator D, encoder E, and gener-
ator G are developed as fully connected networks in
two layers along with 4096 hidden units. Also, the
semantic embedding decoder SED and the feedback
module F have the same structure as D, E and G.
Leaky ReLU is used for each activation function,
except in the output of G, where a sigmoid activation
is applied to calculate the binary cross-entropy loss.
The whole framework is trained using an Adam
optimiser with 10−4 learning rate. The final discrim-
inative classifier is a single-layer fully connected
network with equal output units to the number of
unseen classes. We directly apply the same hyper-
parameters as the TF-VAEGAN work, such as α, β

and σ are set to 10, 0.01 and 1, respectively. As in
the work (Xian et al., 2019), α is the coefficient for
weighting the WGAN loss, β is a hyper-parameter
for weighting the decoder reconstruction error in the
semantic decoder embedding SED, and σ is used
in the feedback module F to control the feedback
modulation. The gradient penalty coefficient λ

is initially set to 10 for training a WGAN in the
framework. Additionally, each configuration is run 5



Table 4: Experimental results for the baseline without ob-
ject knowledge and other experiments with single object in-
clusion and the comparison results are shown in percentage.
Note that, MAA denotes the mean average accuracy and
STD denotes the standard deviation.

Exp. Object
Inclusion MAA / STD Compared

to baseline
1 Baseline 47.06% / 0.02 \
2 Rep. obj1 43.69% / 0.03 -3.37%
3 Rep. obj2 17.08% / 0.04 -29.98%
4 Rep. obj3 42.88% / 0.02 -4.18%
5 App. obj1 51.96% / 0.02 4.90%
6 App. obj2 31.33% / 0.02 -15.73%
7 App. obj3 48.55% / 0.01 1.49%
8 Avg. obj1 51.00% / 0.01 3.94%
9 Avg. obj2 36.28% / 0.03 -10.78%
10 Avg. obj3 50.56% / 0.03 3.50%

times.

6 RESULTS & ANALYSIS

In this section, we present and discuss the experimen-
tal results for the configurations shown in Table 2 and
Table 3. For each configuration, we measure the mean
average accuracy across 10 unseen classes over 5 rep-
etitions. We compare the results obtained in the ex-
periments with object inclusion to the results from the
baseline experiment without any object knowledge.

Table 4 shows the mean average accuracy from the
baseline and other experiments with a single object
inclusion, and also the comparison results in percent-
age against the baseline. As can be seen, the approach
of Rep. (Experiment 2-4) yields poor performance
against the baseline regardless of which object is in-
corporated as there is no semantic knowledge of the
action class included which could have improved the
quality of visual feature synthesis of the generator. To
this point, the approach of Rep. is not considered for
the experiments with multiple objects inclusion.

For the App. approach (Experiments 5-7), the
comparison results against the baseline are 4.90%, -
15.73% and 1.49% by incorporating obj1, obj2 and
obj3, respectively. Similarly, after evaluating the
Avg. approach (Experiments 8-10), the comparison
results are 3.94%, -10.78% and 3.50% when includ-
ing obj1, obj2 and obj3, respectively. It is worth not-
ing that the inclusion of the second object (obj2) de-
livers the worst performance by a large margin of all
approaches when compared to the baseline and more-
over, there is an improvement when using obj1 and
obj3 for both App. and Avg. approaches. In this re-
gard, we observe that the selection of objects for each

Table 5: Experimental results for the baseline and other
experiments including multiple objects inclusion and the
comparison results are shown in percentage.

Exp. Object
Inclusion MAA / STD Compared

to baseline
1 Baseline 47.06% / 0.02 \

11 App.(obj1, obj2) 43.62% / 0.02 -3.44%
12 App.(obj1, obj3) 50.40% / 0.01 3.34%
13 App.(obj2, obj3) 43.34% / 0.02 -3.72%
14 App. all obj. 45.63% / 0.02 -1.43%
15 Avg.(obj1, obj2) 44.37% / 0.01 -2.69%
16 Avg.(obj1, obj3) 51.69% / 0.02 4.63%
17 Avg.(obj2, obj3) 43.18% / 0.01 -3.88%
18 Avg. all obj. 43.10% / 0.01 -3.96%

action class has a significant impact on the ZSAR
evaluation in the TF-VAEGAN framework. We then
check our generated subset to find out which exact
obj2 is selected for each action class. For example, we
choose ‘light’ as obj2 for the action class of ‘Blow-
ing Candles’ and ‘river’ as obj2 for the action class
of ‘Rafting’. These objects seem too general to be
added to the corresponding action class, which in-
dicates that the selected objects for an action class
should be specifically related to the contents of the
videos of that class to provide more precise knowl-
edge to represent its semantic embedding. On the
contrary, a boost compared to the baseline is gained
by including obj1 (e.g. Experiments 5 and 8) because
obj1 is specifically related to the corresponding ac-
tion class. For example, the object ‘hair’ is selected
as obj1 for the action class ‘Haircut’, and also the ob-
ject ‘horse’ as obj1 belongs to the action class ‘Horse
Riding’. To this point, it is understood that includ-
ing high-relevant objects into one action class can im-
prove the performance in the ZSAR field.

As can be seen in Fig. 3, the inclusion approach
of Rep. does not improve the ZSAR performance. We
consider that removing class labels has a negative im-
pact on representing semantic embedding given to the
GANs. This is congruent with the results of App. and
Avg., which have better results than the Rep. and also
than the baseline for obj1, obj2 and obj3. Further-
more, the objects of the second column (i.e. obj2) do
not improve the results but worsen them. We think
the objects were not properly selected and in the fu-
ture, we will explore different strategies for selecting
objects to improve the baseline individually as well as
when combined with other objects.

As further explorations, we conduct more exper-
iments including multiple objects into one class for
ZSAR evaluations (Experiment 11-18), and the re-
sults are shown in Table 5. For the App. approach,
the results against the baseline are -3.44%, 3.34%,
-3.72% and -1.43% by incorporating obj1 + obj2,
obj1 + obj3, obj2 + obj3 and all objects, respec-



Figure 3: The results of mean average accuracy when in-
cluding single object for three inclusion approaches.

tively. It can be found that the performance boost
is only gained when excluding obj2, which also de-
livers poor performance in the single-object inclusion
experiments. Similarly, for the Avg. approach, the
comparison results are -2.69%, 4.63%, -3.88% and -
3.96% for the cases of obj1 + obj2, obj1 + obj3, obj2
+ obj3 and all objects, respectively. The inclusion
of obj2 yields poor performance regardless of which
other objects to be included together, shown in Fig.
4. In other words, similar to experiments of using
single object, obj2 can pull down the ZSAR perfor-
mance if it is included into semantic embedding in
the framework. Additionally, the Avg. approach can-
not dominantly outperform the App. approach in all
cases, and vice versa. The standard deviation values
for all the experiment results are under 0.04, indicat-
ing that the generation process of visual features for
unseen classes is stable in the TF-VAEGAN and also
the final discriminative classifier based on the super-
vised learning approach is learned consistently.

The limitations of our work are described as fol-
lows: (1) We manually selected objects that appear in
videos, along with manual-checking in the Concept-
Net, for each action class. This approach does not
scale well if the number of considered action classes
along with their selected object increases. (2) We only
considered evaluating our object-inclusion approach
on the TF-VAEGAN framework which could be a
limitation, leading to finding out the less conclusive
points.

All discussions so far are focused on model per-
formance with object inclusion as enhanced knowl-
edge in the framework. There is no doubt that includ-
ing high-relevant objects for action classes can im-
prove the ZSAR results in the TF-VAEGAN frame-
work. We also believe that the approach of object in-
clusion can be applied to the generative-based model,
which can be GANs, VAE and the combination of
both GAN and VAE. Additionally, our results in the

Figure 4: The results of mean average accuracy when in-
cluding multiple objects for three inclusion approaches.

experiments show that it is possible to improve the
performance of ZSAR by adding related objects to
the classes. Other investigations have better results
because they use more elaborated frameworks. How-
ever, in order to understand better what kind of objects
improved the baseline the most to refine the object se-
lection, it was more suitable not to select a complex
framework.

7 CONCLUSION

In this piece of research, we have investigated the im-
pact on the evaluations of zero-shot action recognition
by incorporating object-based knowledge in the TF-
VAEGAN framework. We generated a subset from
the UCF101 dataset by manually selecting objects
that appear in videos for each action class, and then
evaluated the framework on this subset. Furthermore,
we evaluated and discussed the different approaches
of object inclusion (i.e. Replacing, Appending and
Averaging). We have proved that adding objects to the
class labels is a feasible strategy to improve the results
when Appending and Averaging approaches are ap-
plied. We have also seen that the objects can improve
but also can hinder the performance of ZSAR. Our
approach can also be applied to generalised ZSAR.
Lastly, we concluded that a performance boost can
be achieved by incorporating high-relevant and spe-
cific objects as enhanced semantic knowledge into the
corresponding action classes in the generative-based
method for the ZSAR task.

As future work, we aim to investigate generalised
ZSAR which is a more challenging task that tests
both seen and unseen classes together in the classi-
fication stage. Also, we will explore strategies for
selecting objects in a better way. In addition, more
approaches to include the object-based information
as enriched knowledge will be explored and exam-



ined, such as extracting semantic knowledge from an
existing knowledge graph (i.e. ConceptNet) for ac-
tion classes. Furthermore, we expect that this perfor-
mance could be improved by applying optimisation
techniques to the hyper-parameters values. We also
think that using more recent and effective modules in
the pipeline such as BERT or 3D ResNets (Kataoka
et al., 2020) will boost the performance of our ap-
proach.
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