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ARTICLE

Classification and biological identity of complex
nano shapes
Luca Boselli1,6, Hender Lopez 1,2,6, Wei Zhang1,3, Qi Cai1, Valeria A. Giannone1, Jingji Li1, Alirio Moura4,

João M. de Araujo1,4, Jennifer Cookman1, Valentina Castagnola1✉, Yan Yan 1,5✉ & Kenneth A. Dawson1,3✉

Everywhere in our surroundings we increasingly come in contact with nanostructures that

have distinctive complex shape features on a scale comparable to the particle itself. Such

shape ensembles can be made by modern nano-synthetic methods and many industrial

processes. With the ever growing universe of nanoscale shapes, names such as “nano-

flowers” and “nanostars” no longer precisely describe or characterise the distinct nature of

the particles. Here we capture and digitise particle shape information on the relevant size

scale and create a condensed representation in which the essential shape features can be

captured, recognized and correlated. We find the natural emergence of intrinsic shape groups

as well-defined ensemble distributions and show how these may be analyzed and interpreted

to reveal novel aspects of our nanoscale shape environment. We show how these ideas may

be applied to the interaction between the nanoscale-shape and the living universe and

provide a conceptual framework for the study of nanoscale shape biological recognition and

identity.
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It is now clear that man-made nanoscale objects are processed
by the whole range of endogenous biological machinery, in
part via their in situ biomolecular corona surface1–6. The idea

that “biology sees nanoscale shape” and that certain shape fea-
tures could also specifically regulate (or even target) given bio-
logical pathways is an intriguing but still emerging concept7–13.
Various aspects of shape at different length scales have always
been implicitly involved in nanoscience14–20; nanostructures are
never smooth and spherical (on an atomic or few-atom scale)
by virtue of their synthetic or other origin, and also some highly
non-spherical (for example rod-like) objects are quite well stu-
died21–28. However, everywhere in our surroundings we
increasingly make (purposefully or by accident, as in 3D printing)
nanoscale shape ensembles, that possess complex features on
length-scales comparable to the particle itself29–35. Also, advan-
cing synthetic methods now potentially offer “unlimited” freedom
to controllably make a new universe of such complex geometrical
ensembles that cannot be described, recognized or characterized
with only a few length parameters36–42. We currently find our-
selves unable to even name and share information, let alone carry
out many systematic investigations of them. These general lim-
itations become very significant barriers to understanding the link
between nanoscale shape ensembles and biology, and progress
there now requires new ways of thinking, new concepts, as well as
practical innovations.

As a basic step we require a quantitative statistical definition of
nanoscale shape that can ensure complex shape ensembles are
meaningfully reproduced and their properties communicated.
Such a quantitative framework with the capacity to describe the
relevant aspects of shape ensembles might also link nanoparticle
shape statistics to biological function in new and hitherto
undiscovered ways. Thereby, arenas extending from the science of
immunological adjuvants to the biological and clinical impacts of
environmental dusts (currently phenomenological in approach,
lacking any substantive quantitative basis for development) may
be advanced.

While many disciplines will value a quantitative framework for
nanoscale shape, here we discuss the two interwoven arenas of
nanoscale shape statistics, nanoparticle synthetic control (framed
by quantitative measures of shape), and the resulting linkage of
those well-controlled shape ensembles to cellular read-outs. We
will use that discussion to raise the question of “biological shape
identity”.

We first introduce the concept of statistically defined nanoscale
geometries that go beyond the current practice of borrowing
“family” names from common objects (“nanoflowers”’ “nanos-
tars”, “urchin-like”, etc.)43–46. It should be stressed that the ideas
we describe do not replace conventional experimental nano-
particle fingerprints such as differential centrifugal sedimentation,
and spectroscopic methods (i.e. single-particle extinction and
scattering), all of which still give valuable basic information47–51.
However, by using digitized transmission electron microscopy-
derived images of shapes, combined with concepts of computa-
tional geometrical analysis, we are now able to capture particle
shape information that leads to a quantitative definition of shape
ensembles. Based on this approach we then define simplified
parameters that generalise familiar concepts of particle averages,
measures of heterogeneity, and correlation for nanoparticle shape
ensembles.

Those developments, when implemented, impose significant
discipline on particle preparation, even for well-established particle
shape syntheses (such as the gold particle system used here), and
lead to optimization of shape homogeneity and reproducibility.

We illustrate the overall approach by analysing whole tran-
scriptome readouts of cells that have been exposed to sufficiently
well-defined and homogeneous shape ensembles. We find that
distinct shapes (nominally composed of the same materials,
prepared under the same conditions) can elicit distinct and non-
overlapping biological responses, raising the possibility of shape-
targeted regulation of biological pathways. We finally discuss the
potential to isolate canonical nanoscale (structural) biological
control parameters.

Results
Nanoparticle population shape identity and shape groups. In
contrast to molecules, nanoparticle (NP) shapes do not have a
single well-defined and unique geometry. For fixed average
reaction conditions they are formed by largely irreversible
nucleation and growth processes, with particle-to-particle shape
fluctuations derived from local growth kinetics around a popu-
lation of initial seeds52–57. Progressive methodological improve-
ment of the synthetic method eliminates many factors (such as
mesoscopic mixing heterogeneities) ultimately leading to rela-
tively reproducible populations in which each particle, while
being slightly different, possesses an apparently recognizable
“typical” shape (see an illustrative selection of NPs in Fig. 1a–c).

Fig. 1 Nanoparticle shape groups. TEM micrographs illustrating a library of different gold NPs with a regular geometrical shapes and b branched shapes.
c Four representative NPs shapes used in this work. From the left: GNP1 (“nanospheres”), GNP2 (“nanorods”), GNP3 (“nanourchins”), and GNP4
(“nanostars”). Scale bars are 100 nm. d Schematic representation of the hyperspace geometrical identity and definition of shape groups (basins of
similarity).
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Transmission electron microscopy (TEM) allows the capture of
NP shapes that are appropriately (and homogenously) presented
on grids, followed by image digitization in three dimensions
(tomography) or two (contour) dimensions (see Supplementary
Figs. 1–4)58–60. Various mathematical representations of the
volume, surface or the contour of the NPs may then be used, but
given the typical length scales and organization of synthetic
surface features, we can efficiently capture information in a
Discrete Fourier Transform (DFT, see more details in “Methods”
and Supplementary Table 1)61–66. There is nothing unique about
such a representation, and in the future others will be found
useful. Still, it is noteworthy that (for the shape families studied
here, and likely many others) this representation allows contour
descriptions of shape using relatively few (two or three) para-
meters in a low dimensional setting, instead of the many hun-
dreds of points defining the original contour.

We first introduce the concept of shape probability distribu-
tions (along axes in the generalized hyperspace of shape
parameters) and discuss the idea of population shape distinctive-
ness (identity) and measures of shape difference (see Fig. 1d for a
schematic illustration of the concept).

In this picture, “similar” nanoparticles within a given ensemble
(possibly derived from identical syntheses, or other common
origins) are manifested as distinct probability maxima (or
“basins” in an equivalent entropic-free-energy description). If
sufficiently homogeneous, and well separated from others, such
ensembles may be considered as distinct pure “shape groups”. In
some cases, these probability maxima certainly map onto known
terms (e.g., the so-called “nanoflowers”, “nanostars” or “urchin-
like” particles)44,45,67 but there is no necessity that they do so, and
any ensemble can be statistically characterized leading to
nanoscale shape-substance definitions. Evidently, the specifics of
the geometrical description and presentation somewhat affects
the details of this picture, and different applications (from biology
to plasmonics) may require different conventions about what
constitutes a separate shape group. For instance, within the
Fourier representation, it is convenient to normalise with the first
(zeroth-order) coefficient, which (in the biological examples
discussed later) means that particles with similar features such as
“tip sizes”, inter-tip separations (tip density), are considered to be
from the same shape group, even if the particles are of different
overall average size. That appears to be an appropriate choice for
some of the biological readouts explored below.

We should also differentiate between complete 3D information
that must be captured to fully describe the shapes involved (see
Supplementary Figs. 3, 4 and Supplementary Methods), and
much more practicable reduced representations that may be
sufficient to classify and frame “shape identity”, and (possibly)
the biological identity of shape. Here we will show that to
statistically distinguish some shape groups, it is sufficient to
capture, digitise and analyse only the 2D projected contours from
particle populations. This approach essentially samples smaller
segments of correlated surface curvature via their statistically
presented contours. In general then, the aim is to create minimal
(low-dimensional) shape descriptors by progressive simplifica-
tions in both data collection and analysis, providing the outcome
still parameterises those differences (and similarities) between
shape ensembles that are relevant to the purpose.

Nevertheless, one has to be attentive to the choices made. For
some classes of structure specific over-simplifications of geome-
trical representation may subordinate (obscure) too much
biologically relevant information, and the underlying biological
control parameters may not be captured. Within that (under-
determined) representation, materials could then be (wrongly)
identified as similar while eliciting quite distinct biological read-
outs. In our current studies, this is not relevant, but in future one

should bear in mind the general concepts of shape definition
presented here, rather than only the specific choices made.

Distance in shape space and identification of groups. To
meaningfully attribute concepts of “shape ensemble difference”
one must choose appropriate definitions of “distance” between
particles in shape ensembles using the geometrical coefficients that
were used to capture and describe them. In the present case, a
generalized (complex coordinate) shape descriptor is defined using
tens or hundreds of Fourier coefficients obtained by a DFT (see
Supplementary Fig. 5, “Methods” and Supplementary Methods for
details) of the contours. The Fourier representation is of course
equivalent to the full spatial (discrete) contour itself, but for many
classes of shape a given representation may require only a few
coefficients (instead of hundreds of real-space points) to suffi-
ciently capture the key information. We, therefore, now define a
distance (so-called Lnnorm, see “Methods” and Supplementary
Fig. 6) based on differences between these Fourier coefficients.
Using this concept of “distance” between particle contours
(for example for the material ensembles of Fig. 1) “spatial proxi-
mity” becomes a proxy for geometrical similarity, and particles
visually identified as members of the same group indeed cluster
with each other. Those recognizably different populate other
separate clusters. Also, the same particle syntheses (when suffi-
ciently optimized) are reproducibly assigned to the same location
in shape space, and “spatial” proximity (in this space) maps well
onto shared particle group identity, as well as measures of
ensemble quality and reproducibility. This all now imposes some
conceptual order on nanoscale shape ensembles.

More striking is the a priori identification of shape groups
(Fig. 2a) starting only with a large contour database of different
shapes derived from numerous different syntheses but rando-
mized so that our visually based prejudices are eliminated. To
illustrate, we then apply an efficiently connected cluster algorithm
(see Supplementary Methods) in which this concept of distance
can be applied computationally to progressively identify all near
neighbors, neighbors of neighbors, and so forth, until the process
terminates, and there are no further unidentified neighbors. We
can then extract well-defined “connected clusters” (of identity),
each element of which is within some chosen threshold distance
from one or more other elements of the same cluster. One can
then check that the overall outcome is not highly sensitive to the
threshold (see “Methods” and Supplementary Figs. 7 and 8).
Several variants of the approach are discussed in Supplementary
Fig. 9, but the basic outcome is that when we apply the method
(Fig. 2a) to particle contour databases (from which all knowledge
of particle synthetic origin has been eliminated) shape families
(highlighted there with separate colors) readily re-emerge in a low
dimension space of principal components composed of the
Fourier coefficients.

Interestingly (by visual inspection) we see that for a priori
clustering, rare aberrant particles (arising from anomalous
synthetic events in a single batch) now appear to be more
correctly assigned to shape groups than by reliance only on their
synthetic origin. We can thereby fingerprint (to a level
appropriate to the given application) the geometrical variability
of the ensemble, batch-to-batch reproducibility, and detect
(within the limits of the contour sampling itself) “shape
impurities”, making contact with all of the familiar ideas of
particle “characteristics and quality” commonly applied for
spherical particle ensembles.

Besides the overview provided by scatter plots along principal
component axes (Fig. 2a) we can also define simpler analogs to
familiar experimental “probability distribution indices” (Fig. 2b).
There the “PDI” widths no longer represent the dispersion in
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Fig. 2 Shape group assignment. a Clustering using center of gravity method (CGCM—see “Methods”) represented as scatter plots for the first three
principal components (PCs). Each dot represents one individual NP. Shape group colors are GNP1 (blue), GNP2 (orange), GNP3 (green), GNP4 (red). The
first three PCs with magnitude and phase are represented in the expanded space (variance= 88%); b normalized probability distribution function (PDF) of
shape variability for each shape group. c Graphical representation of the contours of 5 particles from the center (red) and 5 particles from the periphery
(black) of the cluster of GNP1 and GNP2. On top of each GNP1 particle, the relative values of compactness (1 for a perfect sphere) and on top of each GNP2
particle the relative values of aspect ratio. d Distribution of aspect ratio for GNP2 and compactness for GNP1. e Clustering and f normalized PDF histogram
for a “poorly controlled batch” of GNP3. g Clustering and h normalized PDF histogram for a “good synthetic batch” of GNP3. Green bars/dots define the
particles belonging to GNP3 shape group and purple bars/dots define the particles that are at the edge of the basin of similarity (the cut-off distance is
calculated as the half height of the distribution). The inset in e illustrates three representative contours from the center of the cluster (green) and three
representative contours outside the cluster (purple), related to the dots highlighted with a black border in the scatter plot.
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radius (as for spheres) but the ensemble spread of important
shape related properties, ranked within the principal component
analysis, or important in the specific application. Since that
“width” (Fig. 2b) of such shape distributions is not a familiar
concept we use a specific example to illustrate the physical
meaning of geometrical fluctuations (or dispersity) along a
geometrical principal component axis. Thus, we use connected
cluster analysis to identify the vicinities of the clusters (“basins”)
of spheres (GNP1) and rods (GNP2). In Fig. 2c we show
representative particles from the center (red) and outliers at the
periphery (black) of each cluster (GNP1-blue and GNP2-orange).
As expected, the actual structures derived from the center of each
cluster are (respectively) nearly ideal rods and spheres, while the
fluctuations from these shapes are localized outside the two main
clusters. Moreover, these fluctuations represent the tails of the
distributions of aspect ratio and sphericity (compactness),
respectively for GNP2 and GNP1 (Fig. 2d). Further detailed
insights into the nature of sub-ensemble shape fluctuations could
be obtained by calculating an average shape of these objects (see
“Methods” and Supplementary Fig. 10). This could be very useful
for small groups of outliers having some specific biological action
(absent in the larger ensemble) as one searches for the conceptual
(shape) equivalent of “impurity” classifications.

We now also apply these ideas (Fig. 2e–h) to more disordered
particle ensembles that could, for instance, model environmen-
tally derived or process derived nanoscale dusts. As an example,
we show a poorly controlled synthesis of the same type (GNP3)
as used throughout the paper, in which many of the resulting
particles have no discernible “group name” such as those
commonly used in particle synthesis. Applying the same
methods used in Fig. 2a, with appropriate principal component
analysis (PCA, see Fig. 2e, g) and probability functions (PDF—
Fig. 2f, h), we detect a well-defined sub-population cluster
sharing similar properties to GNP3 admixed with many
separated more isolated and apparently random structures.
Interestingly, for comparison (Fig. 2f, h), we can restore the
synthetic conditions closer to those for “good” batches of
GNP3, and again see emerging the strong representation of
those particle types. These results are quite typical and illustrate
how well-defined sub-populations often occur against a
significant background of (un-noticed) “broad-band shape
noise”. One should be aware that many syntheses are carried
out without the benefit of these analyses and, from our typical
experience, the results can be quite heterogenous, when
analyzed by the measures described here.

Other characteristic phenomena can be observed in synthesis of
nanoparticle shapes that extend beyond population dispersity or
“impurity”, and touch on the question of how many shapes groups
may arise from a given class of material syntheses. For instance,
efforts to tune some reaction conditions between well-defined
shape groups appears to form a type of macroscopic distinct shape
group coexistence (often regarded as undesirable), rather than a
smooth evolution to new shape groups. These effects have not been
systematically investigated, but it is possible that they arise from
constraints on specific seed faceting that, along with fixed reaction
parameters and concentrations, lead to a “reaction-induced shape
phase-separation”, and thereby essentially “shape transitions”
between some shape groups. As systematic shape studies become
more quantitative, we may expect such phenomena to be classified
in reaction mixtures, and described as mixtures derived from “pure
shape” basins (see Fig. 1a), mirroring aspects of traditional
macroscopic phase behavior.

Biological functional responses derived from distinct basins.
We stress one aim in this work is to establish a conceptual and

practicable framework to enable shape identity to play a role in
different arenas, including biology. The biological results we
describe below are intended to illustrate the idea that ensemble
geometry can be meaningfully fixed and causally linked to bio-
logical outcomes. We are therefore using high-dimensional cel-
lular (transcriptomic) read-outs as measures of “material identity”
rather than performing an exhaustive biological study that claims
downstream consequences. There is a great deal of detailed
exhaustive biological, surface, and materials science to be done
before such claims, carefully made, would be appropriate. How-
ever, we hope the present work will frame such studies, and help
ensure that they become a durable contribution to the science of
shape in biology.

To link biological outcomes to nanoscale geometry there are
several key issues that should be addressed. Firstly, particle shape
heterogeneity is potentially of such variety and complexity that
(using methods of the type described here) we should capture and
report on the reproducibility of shape samples including “average
shape”, shape dispersity and potentially levels of “shape
impurity”. Obviously, these new issues do not lessen the
importance of conventional requirements such as maintaining
chemically and immunologically clean conditions (Supplemen-
tary Fig. 11), quality and stability of protein (or other) particle
dispersion method (Supplementary Figs. 12 and 13), nor the
numerous other physiochemical methods in use. However, alone,
those are insufficient to prescribe the material properties, in the
biological context.

We present data (Figs. 3, 4) for three characteristic shape
groups (GNP1, 3, 4) that illustrate their structural properties,
basic global biological read-outs, and the link between them. The
(occasional) use of legacy “family” names may temporarily assist
the reader to make connections to previous literature, but in
reality their structural and biological identity lies in the
geometrical parameterization, presented in the PC scatter plots,
Fig. 3b, c. Nanospheres (GNP1) are included as a conventional
reference point, as well as two types of shape ensemble with
similar architectures (many tips protruding from a central core
but with different overall sizes; “large nano-urchins”—GNP3a
and “small nano-urchins”—GNP3b), and another branched
shape family (“nanostar”—GNP4) with far fewer and much
more developed tips, though of comparable overall size to
GNP3b. The principal component scatter plots (Fig. 3b, c) for the
different optimized particle ensembles reproducibly lead to
probability distributions that are well separated. Recall that (since
Fourier coefficients were normalized by the zeroth order-roughly
speaking a mean radius) GNP3a and GNP3b, ensembles in this
representation overlap, implying they have nearly identical
architectures, with different overall (average) sizes. Conventional
characterization of these shape ensembles were performed using
differential centrifugation measurements (Fig. 3e) and UV-Vis-
NIR absorption spectroscopy, showing the typical localized
plasmon resonance peaks (Fig. 3f) that “fingerprints” the size
and some aspects of architecture of the nanomaterials.

It is worth stressing that the discipline and constraints imposed
by these quantitative probability distribution analyses bring shape
syntheses to a new level of reproducibility that is suitable for
biological study. This occurs in part because the syntheses, even
when already known in general outline, are now optimized with
an approach (more reminiscent of conventional synthetic organic
chemistry) in which we seek to reproduce the shape statistics,
rather than conventional macroscopic physiochemical measure-
ment. This guides the nature of the optimizations, but also
presents a much stronger reproducibility constraint than merely
overlapping of macroscopic measurements. Thus, (Fig. 3h, i)
principal component shape scatter plots of three independent
preparations of GNP3b-type particles have no discernible
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structural differences, nor any measurable difference in conven-
tional physiochemical characterization. Other results (Supple-
mentary Figs. 12 and 13) show a high level of time-dependent
stability in different protein-stabilized dispersions used in
biological studies. Such considerations allow us to design studies
with the expectation that biological experiments should attain
their intrinsic level of reproducibility. Then the reproducible

biological read-outs can legitimately be causally connected to (the
equally reproducible) nanoscale shape ensembles.

Shape ensembles differentiate biological responses at cell level.
For illustration, we screen high-dimensional biological read-outs
using the transcriptome of a murine dendritic cell line (JAWS II)

Fig. 3 Full characterization for the GNPs used in the biological study. a Representative TEM images and cartoon for GNP1, 3a, 3b, and 4 (scale bars are
50 nm). b 3D and c 2D scatter plot of the principal components, d intra-batch probability density distribution, e differential centrifugal sedimentation (DCS)
analysis expressed as relative number, f normalized UV–Vis-IR absorption spectra. Qualitatively, GNP3a and GNP3b have 15–20 tips (GNP3a tip length=
15–25 nm, GNP3b tip length= 10–15 nm) while GNP4 have 3–5 tips (tip length= 15–25 nm). g Representative TEM images for three independent batches
of GNP3b (scale bars are 50 nm), h 3D and i 2D scatter plot of the principal components, j intra-batch probability density distribution, k DCS analysis
expressed as relative number, and l normalized UV–Vis–IR absorption spectra.
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exposed to quantified shape distributions. We use highly repro-
ducible shape ensembles (Fig. 3) of fixed particle number, pos-
sessing narrow shape distribution, stably dispersed in ovalbumin,
prior to presentation in the relevant mouse dendritic cell medium
(see Supplementary Fig. 13). The whole cell transcriptomes for

the three shape families (Fig. 4) have a high level of biological
reproducibility in entirely independent experiments (Fig. 4a) and
reveal considerable differentiation in the transcriptome between
the particle shapes and the relevant controls. From the heatmap
the particle ensembles exhibit three distinct profiles (Fig. 4a). The

Fig. 4 Transcriptome analysis for shape-dependent biological responses in murine dendritic cell line JAWS II. The cells were treated with GNPs for 24 h.
a Heatmap of genes identified in the microarray. Z-score hierarchical clustering based on Euclidean distance and average linkage. b Principal coordinate analysis
(PCoA) illustrating the difference in transcriptome between treatment groups. The PCoA was conducted using Bray-Curtis dissimilarity matrices. c, d Volcano
plot showing differentially expressed genes in comparison to untreated cells after incubation with GNP1 (c, in blue) and GNP3b (d, in green). e Gene ontology
(GO) enrichment analysis for differentially expressed genes by Metascape. Bar graph showing top ten GO terms (biological process aspect) for GNP1 and
GNP3b. f Network enrichment analysis by Metascape. Each term represents a node and colored by its cluster. Terms with similarity score >0.3 are linked by an
edge, and the thickness of the edge represents the similarity score. The immunological response-related clusters impacted by GNP3b are highlighted.
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shape groups GNP1, GNP3a, and GNP3b result in significant
overall changes in the cellular transcriptomes, but even with the
more pronounced “tip” features, GNP4 has relatively few
detectable impacts. Strikingly, despite their difference in overall
size, the particle ensembles of GNP3a and GNP3b elicited similar
cellular responses, suggesting that they may be considered (as
they were defined structurally) to have similar biological identity.
Principal coordinate analysis (PCoA) graphically illustrates the
relationships between the transcriptomic profiles induced by the
particle ensembles (Fig. 4b). Again, we see the high level of bio-
logical reproducibility (reflected in the repeat triangles) and
separation (in the major principal component sub-space) in their
biological profiling. Significantly, the near-orthogonality of reg-
ulation induced by groups GNP1 and GNP3 points towards a
qualitatively different biological outcome. Volcano plots
further highlight the differentially expressed genes (DEGs) in
comparison to the untreated cells (Fig. 4c and d). With the
thresholds of p-value <0.05 and fold-change of 1.5, the DEGs
(colored dots) for GNP1 and GNP3b are 561 and 2725, respec-
tively. Furthermore, when Metascape is used to infer enriched
biological pathways and networks of the DEGs (Fig. 4e and f) the
top ten gene ontology (biological process) enrichment terms show
no overlap between the two shape groups, and these results
together suggest quite distinct (orthogonal) biological shape-
dependent outcomes.

We note carefully the stipulation that the purpose of such
studies is to establish causal relationships between shape
ensembles and cellular read-outs, and not to draw general
conclusions for the biology. However, it is noted that four of the
unique gene ontology (GO) terms in the dendritic cells response
to GNP3b treatment are strongly associated with immunological
processes. In Fig. 4f the intra- and inter-cluster interactions are
further visualized by network enrichment analysis where GO
terms are represented as nodes (colors based on their clusters)
and their interactions represented by the strength of the links
between the nodes. The results suggest that GNP3 ensembles
stimulated three distinct immunological processes. Thus, while
the two clusters of “inflammatory response” and “positive
regulation of innate immune response” form a compact local
large cluster, the other two enrichments of “response to
interferon-gamma” and “adaptive immune response” are not
linked, suggesting separate regulated processes of GNP3.

Whatever their broader biological implications, such results
clearly suggest the potential for differentiated causal shape-
dependent impact on sub-groups of biological pathways. It
might be argued that, since the particles are nominally of the
same material (gold), with same initial stabilizing protein
(ovalbumin) and exchangeable cell culture medium dispersant,
the results shed light also on the mechanism. However, to
ensure clarity, and cast light on future investigations, we
suggest such interpretations are premature, and the results do
not even establish the level at which the causal linkage occurs.
While one can speculate that aspects of the shape directly
induce biological differentiation (via receptor clustering or local
cytoskeleton stressing) it is also feasible that the shape is
causally linked to other (for instance material surface) or
surface corona organization aspects. Indeed, the fact that group
GNP3 has a high density of features (and gaps between them) of
the same size scale as the proteins adsorbed to them, may lead
to an in situ corona not previously envisaged, and not presently
understood. These are therefore complex questions that require
significant efforts to unravel them, and in-depth in vivo
investigation to understand the broader significance. Hopefully,
the investment in such studies will be justified by the well-
defined conceptual framework, and highly reproducible causal
link between shape and biology.

Discussion
Since the work here represents quite new and possibly unfamiliar
concepts in the quantitative linkage of nanoscale shape to bio-
logical (and potentially other) outcomes it is also worth con-
sidering thoughtfully and critically the issues that will frame the
future. We see the absence of any such framework as currently
limiting the fields capacity to create (meaningful) “reproducible”
scientific research, to protect intellectual property or advance
towards regulation as medical products.

However, it is fair to ask what level of detail we need to “define”
material shapes (say for biological applications) beyond existing
experimental approaches such as plasmonics, differential cen-
trifugation times, and various forms of scattering. Evidently, such
methods, currently used to minimally fingerprint materials in an
effort to make them reproducible, are not useful proxies for
population shape differences (especially subtle ones). They
instead pick up generic particle differences (mostly quite unre-
lated to shape) and while it is reassuring if material batches have
overlapping spectra, they cannot describe shape, capture its bio-
logically relevant characteristics nor track evolution of shape
distributions that correlate to biological outcomes. We, therefore,
propose that shape features on this scale, if they are control
factors in biological function, must now be captured by structural
information that goes beyond such experimental measurements,
or the “visual impressions” of electron microscope images.

Succinctly put, currently published results that cite “names of
shapes” may (even unknowingly to the authors) refer in detail to
complex and irreproducible mixtures, or label as “identical” quite
different shape distributions that significantly and differentially
affect the biology. That could confound the future development of
the field.

That situation is very evident for crude heterogeneities. They,
and their biological impacts, can be identified, eliminated, and
those facts communicated within the framework presented here.
For instance, a simple mixtures of quite distinct structures (an
extreme example would be GNP1, GNP3b) can be quantified by
(multiple peaks or anomalous line shapes) in even the simplest
representation of the present method and limits of detection are
set by (controllable) image capture statistics rather than resolu-
tion or representation limitations. Heterogenous populations
composed of distinct sub-populations, each with different func-
tional biological outcomes (for example GNP1,3b mixtures) when
correlated with macroscopic averages of the biological endpoints
(such as whole transcriptomes, proteomes, etc.) will be con-
founded by appearing as multiple additive pathway activation, or
worse, interpreted in bioinformatics as non-existent connected
pathways and should be eliminated. That much is clear.

There are, however, more subtle questions on which the
broader future of the biological study of shape will depend. Thus,
given the type of information captured here, to what level can
quasi-homogenous (single shape group) but well spread shape
distributions (parameterized by some median or average and
principal component widths) be structurally distinguished from a
“nearby” distribution with comparable widths, and how relevant
will that resolution be in the exploration of shape-dependent
biology. The answer to the first question is already relatively clear
within the current paper, and populations that look “similar” can
be definitively (and reproducibly) made, captured and recorded as
distinct by virtue of the methods outlined here. Indeed, that is the
power of high dimensional (e.g., Fourier) representations con-
densed (e.g., via principal components) to reduced representa-
tional dimensions for they have the capacity to capture, detect
and quantify complex population differences that are otherwise
hard to describe, or even observe.

The second question is whether that capacity to recognise
multiple subtle, and (qualitatively) difficult-to-define changes will
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materially affect the destiny of nanoscale-shape-dependent biol-
ogy. The answer to that question resides partly in understanding
whether nanoscale shape-dependent biology will itself allow quite
new and independent biological interventions. For example, if
overall changes in shape are found to differentially and specifi-
cally target distinct biological outcomes (pathways, systems) then
rather narrow and well-controlled (shape-surface) populations
will amount to active agents (“drugs”), in a background of rather
similar but less interesting nanostructures of the same chemical
identity. We believe that is indeed the paradigm to expect, and
that in the absence of methods such as those presented here we
face the impossible task of searching for, identifying, and
reporting on an “active agent” in a shape landscape by qualitative
visual inspection. Evidently, the causal assignment linking those
structural changes to biological (e.g., immunological or other)
outcomes would also be challenging, and it would be impossible
in a synthesis to recover identical shape populations. More fun-
damental (and with more profound long-term significance) the
lack of a low dimensional quantitative structural “order para-
meter” that can be correlated with the biological outcome cur-
rently inhibits the development of “structure-function”
hypotheses in which specific (low dimensional) aspects of the
structure can be (meaningfully) associated with the biology, and
act as the basis for further improvement on design.

Besides these specific interests, we may also credibly hypo-
thesize a significant (if still poorly understood) role for particle
shape in other important arenas. This includes environmental
pollution, and the many associated (and growing) mysteries of
human health (including immune regulation) involved there.
Durable advances throughout will require the same quantitative
approach to environmental dusts in terms of “substance defini-
tion” to help frame the strategy of investigations and reliably
report the outcomes.

We believe, in time, these points will be established with growing
clarity, as future research develops along more quantitative lines.

Methods
NPs contour extraction. All the TEM images were analyzed using the Open
Source Computer Vision Library (https://opencv.org/). In particular, for the con-
tour extraction the function cv2.findContours was employed. This function is an
implementation of the algorithm for contour extraction proposed by Suzuki et al.68

Before extracting the contours, the original TEM grayscale images were trans-
formed to binary and filtered (using again OpenCV). A threshold of 160 was used
for the binary transformation and to smooth the image contours a blurring low-
pass filter kernel was applied using a blur size of 16. Care was taken to manually
confirm that all the contours extracted corresponded to NPs. Objects that were not
NPs (e.g., the scalebars, see Supplementary Fig. 1) were manually removed from the
database. The contours extracted, considering the resolution of the TEM images
contain on average between 500 and 800 points. An example of an image and the
resulting contour extraction is shown in Supplementary Figs. 1 and 2.

Contour normalization and resampling. The contours obtained are closed curves
in 2D with coordinates ordered counter-clockwise. The coordinates are integer
numbers (corresponding to the position of the pixels that make the contour in the
image) connected horizontally, vertically or diagonally. Each shape was centered so
that its center of mass lies on the origin, and the contours were transformed so that
each pair of consecutive points were one-unit distance apart. This required adding
a point between two diagonally connected points to form an L-shaped connection
of three equally spaced points.

Discrete Fourier Transform (DFT) calculations. Each contour is made of N
points. The njh point of the curve has coordinates xn, yn which are used to define
the complex coordinate as zn=xn+ iyn (where i is imaginary number). We then
use the complex coordinates to perform a Discrete Fourier Transform (DFT) of a
contour defined as:

ẑ ¼ F zf g
ẑk ¼

PN
j¼1 zje

�2πi j�1ð Þ k�1ð Þ
N

ð1Þ

where ẑk is kth Fourier coefficient and 1<k<N.

Average shape calculation. For each contour, the N Fourier coefficients calcu-
lated by using Eq. 1 were normalized for unitary L1norm. Also, a global phase was
applied to all coefficients to make the first non-zero coefficient a pure real number.
The number of coefficients thus obtained is the same as the number of points on
the original contours. Since this number was not constant, the number of coeffi-
cients was decreased or increased by eliminating or adding zero-valued coefficients
on the high frequency part of the Fourier transform, around the position N/2 and
renormalizing to unity. If not stated otherwise, 1024 Fourier coefficients were used
to describe the shapes.

For a set of N shapes belonging to a single group, a representation of the average
shape of this group was extracted by finding a Fourier representation for each one
that minimizes the sum over the whole set of the L1norm distance to the average
(see Eq. 3). There are three operations that do not alter the shape itself but affect
the phases of the Fourier coefficients: rotation, starting point, and mirroring. Any
rotation in real space is equivalent to multiplying all the coefficients in Fourier
space by a single imaginary number of unit norm, which affects the phase of each
coefficient equally. This global phase was fixed by requiring, on the normalization
procedure, that z2 is real.

The second operation, changing the starting point, results in a cyclical
permutation of the ordered set {zn} which affects the phases of ẑnf g in the
following manner.

Let Tm be the operator that changes the starting point from z1 to zm then the
new set of Fourier coefficient is given by:

Tm zf g ¼ zm; zmþ1; ¼ ::zN ; z1; ¼ ::zm�1

� �

F Tm zf gf gk¼ e
�2πi
N k�1ð Þ m�1ð Þ ẑk

ð2Þ

Which only differ from the original set by their phase.
Finally, mirroring is equivalent to taking the complex conjugate of the

coefficients. For these last two operations (mirroring and starting point), we
iteratively tried every combination to obtain the desired coefficients, by minimizing
the sum of the distances between each particle in the known (or training) set to the
average shape of its group.

Average shape classification method (ASCM). After calculating the average
shape for each group, we compare the distance from the unknown shape’s Fourier
coefficients to each average shape using the complex-valued coordinates of the
Fourier space. The same restriction of real-valued ẑN (z2) was applied for rotation,
and the distance was calculated for every combination of mirroring plus starting
point permutation of the unknown particle. The particles were classified as
belonging to the group with the minimum distance to its average shape.

In order to classify an unknown shape, we compare its L1norm distance to the
center of each basin and assign it to the closest group. The L1norm on the complex

coefficients is defined as usual. Let ânf g and b̂n
n o

be the N Fourier coefficients

representing two different shapes, A and B. The L1norm distance between them is
given by:

A� B1k k ¼
XN

n¼1

ân � b̂n

�
�
�

�
�
�

 !

¼
XN

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

< ân � b̂n
� �2

þ= ân � b̂n
� �2

r

ð3Þ

where < zð Þ and = zð Þ are the real and imaginary parts of the complex number z.

Nearest neighbor classification method (NNCM). The Fourier coefficients
obtained by using Eq. 1 are not directly useful for classification as they are scale,
rotational and starting point dependent as pointed out before. One way to avoid
this limitation is by the alignment explained above. Another option is to perform a
normalization as the one reported by Sokic et al.64 This normalization first starts by
calculating the normalization factor γ,

γ ¼
XN

i¼2

ẑij j ð4Þ

Then the normalized Fourier coefficients are:

ĉi ¼
ẑij j
γ

; 2<i<N ð5Þ

Notice that the normalized coefficients ĉi are now real numbers and that the
element n= 1 is not used. This shape signature was chosen as it is invariant under
translation, under rotation and it does not depend on which point of the contour is
selected as the initial point. In addition, the coefficients are also scale invariant.

Similar to the ASCM, to compare two contours using the normalized
coefficients defined in Eq. 5, the L1norm distance between their set of ĉi was
calculated. Considering two different shapes labeled as 1 and 2 and described by
their set of normalized Fourier coefficients c1i and c2i where i= 2….N, the L1norm
between them is calculated as follow:

D ¼
XN

i¼2

cai � cbi
�
�

�
� ð6Þ

From the experimental procedure and the image analysis developed, we
obtained a number of contours for each type of NP studied (4 types in total). With
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the obtained contours a database for each NP type is generated by randomly
selecting K contours of each type. Then an unknown NP is classified based on the
following procedure: (1) The distances D (Eq. 6) between the unknown NP and
each of the elements of the database are calculated. This will give 4K distances. (2)
The unknown NP is then classified as the type for which the D is minimum.

Center of gravity classification method (CGCM). We will call type A a database
of any type of GNPs. This database is composed of M contours. We calculate the
average normalized Fourier coefficient ĉi as:

ĉih iA¼
1
M

XM

j¼1

ĉji ð7Þ

The set of ĉih i i ¼ 2¼ :Nð Þ correspond to the Fourier coefficients’ Center of
Gravity (CG) for the NP type A. Then the distance of any contour, say contour j, to
the CG of the NPs of type A is given by:

DA ¼
XN

i¼2

ĉji � ĉih iA
�
�
�

�
�
� ð8Þ

Similar to the NNCM, a database of K contours for each NP type is generated.
Then for each type of NP, the average normalized Fourier coefficient (Eq. 7) are
calculated. Then an unknown NP is assigned to a shape group as follow: (1) The
distances DA (Eq. 8) between the unknown NP and the average normalized Fourier
coefficient for the 4 types of NPs are calculated. This gives 4 distances. (2) The
unknown NP is then classified as the shape group for which the DA is minimum.

Principal component analysis (PCA). In order to evaluate the particle classifi-
cation methods, we performed a principal component analysis (PCA) on the space
of the Fourier coefficients. In this way we can measure which coefficients contained
more of the information necessary for the classification of the shapes. With the
particles represented by complete Fourier coefficients in the way done for the
calculation of the average shapes, in a 1024-dimensional space with complex
coordinates, PCA is able to find a suitable base set of axes in this multidimensional
space ranked in order of projections containing most of the statistical variance
between samples, which in other words means the most information.

For example, one particular coefficient that has the same value for all particles
obviously is of no help when trying to distinguish between them, and can safely be
ignored, whereas a coefficient that has a wide range of values over all the particles
may have a particular range of values associated with each particle group, and be
instrumental in separating them. We are also interested in measuring how much
information is lost by using only the magnitude of the Fourier coefficients (see
above for details) as real-valued coordinates for the particles.

By interpreting each particle as a sample, and each Fourier coefficient as an
independent variable, first, we subtract the center of mass of the whole set of
particles in order to make them distributed around the origin with zero mean, then
we calculate the covariance matrix of the entire population and find its eigenvectors
which will be the principal components, in decreasing order of eigenvalue.
Principal components are always orthogonal and normalized. In order to facilitate
the comparisons and plotting between the different geometrical spaces, the full
complex Fourier coefficients versus real-valued magnitudes, we treated each part of

the complex number for the full coefficients as different variables ζ̂n

n o
by

separating each Fourier coefficient into its real and imaginary parts, which doubles
the number of coordinates but now both spaces have a similar range of values, and
the same scale, so their variances are directly comparable for further analysis.

ζ̂n ¼ < ẑnð Þ; 1≤ n≤ 1024 ð9Þ

ζ̂n ¼ = ẑn�1024ð Þ; 1025≤ n≤ 20148 ð10Þ
where < zð Þ and = zð Þ are the real and imaginary parts of the complex number z.

It is remarkable that a small number of principal components are able to
accurately separate the particles into groups, even if in the analysis we considered
the whole set of particles as “database” for classification. Because the phase of the
Fourier coefficients of the particles have been aligned explicitly to calculate the
representation with the minimal spread around the center of gravity for each
group, the number of misclassified particles is very small, and composed of some
malformed particles that are not very good representatives of their respective
groups. It is also noticeable (see Supplementary Table 2) that the principal
components are almost entirely aligned with just two Fourier coefficients,
suggesting that these two coefficients would be enough to classify an unknown
particle in a computationally cheap way that involves very little calculation.

The first two principal components (Fig. 2a) for the ζ̂ add up to 95% of their
respective magnitudes:

PC1 ζ̂
� �

¼ 0:97~ζ1024 � 0:13~ζ4 þ~ϵ ð11Þ

PC2 ζ̂
� �

¼ 0:93~ζ2 � 0:28~ζ1022 � 0:13~ζ4 þ~ϵ ð12Þ

where~ζ is to be interpreted as a unitary vector in the direction of this coefficient,

and ϵ is a small contribution from other coefficients. Likewise, for the ẑj j space (real
normalized coefficients), the first 2 principal components are:

PC1 ẑj jð Þ ¼ 0:97~z1024 � 0:11~z2 þ~ϵ ð13Þ

PC2 ẑj jð Þ ¼ 0:93~z2 � 0:28~z1022 � 0:13~z4 þ~ϵ ð14Þ
As we can see, they are practically the same, and furthermore they are

practically aligned with the coefficients ẑ2j j and ẑ1024j j that we labeled 1st PC and
2nd PC in Fig. 2a, which shows that we can achieve a good separation in clusters
without losing much information by using only these two descriptors for each
particle.

Transcriptome analysis. A mouse dendritic cell line, JAWS II, was purchased
from ATCC (ATCC® CRL-11904™). The cells were maintained in complete
culture medium consisting of Alpha MEM with ribonucleotides, deoxyr-
ibonucleosides (Gibco) with 10% heated-inactivated fetal bovine serum (FBS)
(Gibco), 4 mM l-glutamine (Gibco), 10 U mL−1 penicillin and 100 μg mL−1

streptomycin (Gibco), 1 mM sodium pyruvate (Gibco), and 5 ng mL−1 murine
GM-CSF (pre-Protech).

For treatment with GNPs, 1.5 × 105 cells were seeded in 12-well plates in the
complete culture media for 48 h prior to the treatment. 3 × 1010 OVA-coated GNPs
were dispersed in 1 mL of serum free mouse dendritic cell culture media
(Celprogen), added to each well, and incubated with the cells for 24 h. The GNP
treatment was performed in replicates and repeated independently 2 or 3 times.
Subsequently, the cells were washed with 500 µL of PBS once, and total RNA was
extracted according to the manufactory instructions of InviTrap® Spin Universal
RNA Mini Kit. The concentration and purity of extracted RNA were confirmed by
Bioanalyzer. The samples were then transferred to RNA stable tubes (Sigma
Aldrich), dried out in a vacuum, and ready for Whole-Mouse Genome One-Color
Microarray (Agilent) analysis.

After correcting background and filtering low intensity signals, 16418 probes
were identified. Data are expressed in the mean of replicates in log2 scale. p-value
was calculated by one sample T-Test. Differentially Expressed Genes (DEGs) in
comparison to untreated were determined by fold-change >= 1.5 and p-value <
0.05. The heatmap was generated by Morpheus (https://software.broadinstitute.
org/morpheus). The Gene ontology (GO) enrichment analysis was performed by
Metascape (http://metascape.org/gp/index.html#/main/step1).

Data availability
The datasets generated and analyzed during the current study are available in the
Figshare repository, https://doi.org/10.6084/m9.figshare.11948886. The deposit is
entitled: Supplementary dataset for “Classification and Biological Identity of Complex
Nano Shapes”—a submission to Communications Materials.

Code availability
The code used to generate the data produced in this study is available in the Figshare
repository, https://doi.org/10.6084/m9.figshare.11948886. The deposit is entitled:
Supplementary dataset for “Classification and Biological Identity of Complex Nano
Shapes”—a submission to Communications Materials.
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