
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Articles School of Computer Sciences

2019

CS1: how will they do? How can we help? A decade of research CS1: how will they do? How can we help? A decade of research

and practice and practice

Keith Quille

Susan Bergin

Follow this and additional works at: https://arrow.tudublin.ie/scschcomart

 Part of the Computer Sciences Commons

This Article is brought to you for free and open access by
the School of Computer Sciences at ARROW@TU Dublin.
It has been accepted for inclusion in Articles by an
authorized administrator of ARROW@TU Dublin. For more
information, please contact arrow.admin@tudublin.ie,
aisling.coyne@tudublin.ie, gerard.connolly@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 4.0 License

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomart
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomart?utm_source=arrow.tudublin.ie%2Fscschcomart%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=arrow.tudublin.ie%2Fscschcomart%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ncse20

Computer Science Education

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ncse20

CS1: how will they do? How can we help? A decade
of research and practice

Keith Quille & Susan Bergin

To cite this article: Keith Quille & Susan Bergin (2019) CS1: how will they do? How can we
help? A decade of research and practice, Computer Science Education, 29:2-3, 254-282, DOI:
10.1080/08993408.2019.1612679

To link to this article: https://doi.org/10.1080/08993408.2019.1612679

Published online: 29 May 2019.

Submit your article to this journal

Article views: 543

View related articles

View Crossmark data

Citing articles: 14 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=ncse20
https://www.tandfonline.com/loi/ncse20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08993408.2019.1612679
https://doi.org/10.1080/08993408.2019.1612679
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08993408.2019.1612679
https://www.tandfonline.com/doi/mlt/10.1080/08993408.2019.1612679
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2019.1612679&domain=pdf&date_stamp=2019-05-29
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2019.1612679&domain=pdf&date_stamp=2019-05-29
https://www.tandfonline.com/doi/citedby/10.1080/08993408.2019.1612679#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08993408.2019.1612679#tabModule

ARTICLE

CS1: how will they do? How can we help? A decade of
research and practice
Keith Quille a,b and Susan Berginb

aTU Dublin, Tallaght Campus, Dublin, Ireland; bMaynooth University, Co. Kildare, Ireland

ABSTRACT
Background and Context: Computer Science attrition rates
(in the western world) are very concerning, with a large
number of students failing to progress each year. It is well
acknowledged that a significant factor of this attrition, is the
students’ difficulty to master the introductory programming
module, often referred to as CS1.
Objective: The objective of this article is to describe the
evolution of a prediction model named PreSS (Predict
Student Success) over a 13-year period (2005–2018).
Method: This article ties together, the PreSS prediction
model; pilot studies; a longitudinal, multi-institutional re-
validation and replication study; improvements to the
model since its inception; and interventions to reduce attri-
tion rates.
Findings: The outcome of this body of work is an end-to-
end real-time web-based tool (PreSS#), which can predict
student success early in an introductory programming mod-
ule (CS1), with an accuracy of 71%. This tool is enhanced
with interventions that were developed in conjunction with
PreSS#, which improved student performance in CS1.
Implications: This work contributes significantly to the com-
puter science education (CSEd) community and the ITiCSE
2015 working group’s call (in particular the second grand
challenge), by re-validating and developing further the ori-
ginal PreSS model, 13 years after it was developed, on
a modern, disparate, multi-institutional data set.

ARTICLE HISTORY
Received 6 August 2018
Accepted 25 April 2019

KEYWORDS
Introductory programming;
predicting programming
performance; interventions;
CS1; attrition rates;
programming performance;
programming self-efficacy;
machine learning; growth
mindset; artificial neural
networks

1. Introduction

Computer Science (CS) non-progression rates in Ireland are alarming, with
a large number of students failing to progress each year. Currently, non-
progression rates are 25% in CS, which is significantly higher than the national
average of 16%. In two recent reports (2010 and 2016 respectively), CS was
found to have one of the largest rates of non-progression across all National
Framework of Qualification (NFQ) levels in Ireland, from diploma to degree
level courses (Liston, Frawley, & Patterson, 2016; Mooney, Patterson, OConnor,
& Chantler, 2010). In addition, CS is one of only two fields of study, where the

CONTACT Keith Quille keith.quille@it-tallaght.ie TU Dublin, Tallaght Campus, Dublin, Ireland

COMPUTER SCIENCE EDUCATION
2019, VOL. 29, NOS. 2–3, 254–282
https://doi.org/10.1080/08993408.2019.1612679

© 2019 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0002-1414-5142
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2019.1612679&domain=pdf&date_stamp=2019-05-29

non-progression rate has increased since the first report in 2010. It is well
acknowledged that the main contributor is students struggle to succeed in
their initial programming module (CS1), a staple in most first-year CS courses.

Early identification of students who are at risk of non-progression is often
hindered by very high student-lecturer ratios. Lecturers may not be aware that
students are struggling until a considerable time has passed, and early proble-
matic threshold concepts have been encountered. At our institutions numer-
ous approaches have been trialled with varying degrees of success to improve
learning and assessment outcomes, for example Traynor, Bergin, and Gibson
(2006), Kelly et al. (2004) and Nolan and Bergin (2016). As computer science is
not currently a Leaving Certificate subject in Ireland (it is planned to be made
optional to schools in 2020, Quille, Faherty, Bergin, and Becker (2018)), there
are no formal indicators of a students previous performance available at an
early stage to enable the introduction of appropriate interventions. This often
renders interventions inadequate, as their introduction may be too late in the
course to make a significant difference.

Computer Science Education (CSEd) research is a relatively young field of
study (� 50 years, Becker and Quille (2019)). A number of models exists to
identify students at risk of dropping out or failing; however, most models are
only used for a brief period of time and are not developed further. This was
highlighted by a call from the ITiCSE 15 working group, which identifies several
grand challenges. They noted that while identifying students at risk of drop-
ping out or predicting performance has been investigated, the studies are
seldom revisited or tested for generalizability. In addition, the models have not
been employed in actual interventions. The working group also highlighted as
a separate grand challenge, the critical need for re-validation of educational
data mining models (Ihantola et al., 2015). Thus, the development of
a complete system that can predict struggling students in a timely manner
and act accordingly (using one or multiple interventions), would make
a significant contribution to the CSEd community.

2. Literature review

Over the years there has been a significant amount of research related to
predicting student success in CS1, using educational data mining techniques.
This literature review serves three objectives. The first objective is to identify
models to predict success on introductory programming courses. Second, is to
investigate how these models have been developed further/revalidated after
their initial use. The final objective is to compare the findings of the first two
objectives with a local prediction model named PreSS (Predict Student
Success).

COMPUTER SCIENCE EDUCATION 255

2.1. Methodology

A robust approach that would ensure the identification of relevant research,
given the large quantity available, was required (some searches returned hits
in excess of 70,000 results). Search terms were identified that included one or
more of predicting, predict, CS1, introductory programming, factors, ability,
performance, success, failure and student. Combinations of these terms were
then searched in the ACM and IEEE databases with additional searching in
Google Scholar. The search terms were examined in the title, abstract and the
body of publications. In the case of large search returns, the first 200 results
were reviewed, where results were filtered on relevance to the search term.
Where the search returned less than 200 results, all the results were reviewed.
In total 1,884 articles were reviewed based on search terms appearing in the
title, abstract and/or body. From there, articles were shortlisted, based on their
relevance to CS, factors and prediction models. This resulted in 94 articles
(when repeating articles returned in multiple searches were removed).
Following this, a detailed analysis of each article and its relevance to intro-
ductory programming courses were conducted, resulting in 47 articles that
were included in this literature review. This process ensured that the articles
were concerned with factors that influence performance or models to predict
performance on introductory programming courses. Ideally, models to predict
student’s performance, would satisfy some or ideally all of the following
criteria: conducted across multiple institutions, longitudinal in nature, of
good sample size, and resulted in a high level of performance at an early
stage in a CS1 course. Such criteria were also highlighted by an ITiCSE working
group report (Ihantola et al., 2015).

Almost all of the 47 articles examined, exhibited one or several (but not all)
of these criteria (where three of the articles did not satisfy any of the criteria:
Evans and Simkin (1989); Pioro (2004); Porter and Zingaro (2014)). The articles
have been grouped and presented under each criterion as headings below.
Under the headings, the articles are referenced with a key (not the full citation
as some headings have up to 36 citations), which is then indexed in Table 1,
with the articles full citation. Table 1 also summarizes which of the criteria/
criterion that each article met.

2.2. Multi-institutional

Ideally, to create a generalizable prediction model, it would need to be tested
over several institutions, preferably in diverse districts or countries. From the
47 articles examined, only two studies were conducted in more than a single
institution [10, 38]. Simon et al. [38] conducted a study across 11 institutions
(n ¼ 177), exploring issues that influence success in learning to program, using
four diagnostic tasks. Although the study was carried out at 11 institutions, the

256 K. QUILLE AND S. BERGIN

Table 1. Summary of literature review references.

Key Reference
Multi-

Institutional Longitudinal
Large
Sample

High
Accuracy

Early
Timing

Sen
and
Spec Revalidated

1 Bergin (2006) – PreSS ✓ ✓ ✓ ✓ ✓ ✓ ✓
2 Ahadi, Lister, Haapala, and

Vihavainen (2015)
✓ ✓ ✓ ✓

3 Allert (2004) ✓ ✓
4 R. J. Barker and Unger

(1983)
✓ ✓

5 L. J. Barker, Mcdowell, and
Kalahar (2009)

✓

6 Bennedsen and Caspersen
(2005)

✓ ✓

7 Bennedsen and Caspersen
(2006)

✓

8 Bennedsen and Caspersen
(2008)

✓

9 Boetticher, Ding, Moen,
and Yue (2005)

✓ ✓

10 Bornat et al. (2008) ✓ ✓ ✓
11 Butcher and Muth (1985) ✓ ✓ ✓
12 Campbell, Horton, and

Craig (2016)
✓ ✓

13 Capstick, Gordon, and
Salvadori (1975)

✓

14 Caspersen et al. (2007) ✓ ✓ ✓
15 Cukierman (2015) ✓
16 Dehnadi (2006) ✓ ✓ ✓
17 Denny, Luxton-Reilly,

Hamer, Dahlstrom, and
Purchase (2010)

✓ ✓

18 Estey and Coady (2016) ✓ ✓ ✓
19 Evans and Simkin (1989)
20 Fowler and Glorfeld (1981) ✓ ✓ ✓ ✓ ✓
21 Glorfeld and Fowler (1982) ✓ ✓ ✓ ✓ ✓ ✓
22 Golding, Facey-Shaw, and

Tennant (2006)
✓

23 Hostetler (1983) ✓ ✓
24 Konvalina, Wileman, and

Stephens (1983)
✓ ✓

25 Lambert (2015) ✓ ✓
26 Leeper and Silver (1982) ✓
27 Leinonen, Leppänen,

Ihantola, and Hellas
(2017)

✓

28 Liao, Zingaro, Laurenzano,
Griswold, and Porter
(2016)

✓ ✓ ✓ ✓ ✓

29 Lishinski, Yadav, Good,
and Enbody (2016)

✓ ✓

30 Lishinski, Yadav, Enbody,
and Good (2016)

✓ ✓

31 Newsted (1975) ✓
32 Pioro (2004)
33 Porter, Zingaro, and Lister

(2014)
✓

34 Porter and Zingaro (2014)
35 Rountree, Rountree, and

Robins (2002)
✓ ✓

36 Rountree, Rountree,
Robins, and Hannah
(2004)

✓ ✓

(Continued)

COMPUTER SCIENCE EDUCATION 257

small sample size (,16 students per institution) makes it difficult to assess how
generalizable the model is. A study by Bornat et al. [10] revisited a predictor of
CS1 success, developed by Dehnadi [16]. Bornat et al. conducted this revalida-
tion study of Dehnadi’s predictor of programming success across six institu-
tions. The study reported that the predictor failed to produce a strong
prediction when validated across six institutions.

2.3. Longitudinal

Studies are often conducted once, on a single cohort. Given that CS is con-
stantly evolving, studies should be repeated over several years, to examine if
they continue to hold valid results. The literature review found that only seven
studies were conducted over more than one year or semester [2, 11, 18, 21, 28,
40, 45]. No study that was longitudinal involved more than one institution.

2.4. Generalizable sample size

To test a prediction model, reasonable sample size is required. Small sample
size can be acceptable if it represents the entire population. As the goal of this
model is to generalize across institutions and countries (large populations
n> 5000 (Conroy, 2016)), a 10% acceptable margin of error was selected as
the boundary value for the minimum generalizable sample size (Conroy, 2016;
Naing, Winn, & Rusli, 2006). This resulted in a minimum sample size of 96
students. Several studies involved relatively small samples sizes (n< 96), where
some did not include the sample size at all. This may pose problems with over-
fitting. In several studies that had a large sample size, there was no model, just

Table 1. (Continued).

Key Reference
Multi-

Institutional Longitudinal
Large
Sample

High
Accuracy

Early
Timing

Sen
and
Spec Revalidated

37 Shell, Soh, Flanigan, and
Peteranetz (2016)

✓ ✓

38 Simon et al. (2006) ✓ ✓ ✓
39 Tarimo, Deeb, and Hickey

(2016)
✓ ✓

40 Ventura (2005) ✓ ✓ ✓
41 Vihavainen (2013) ✓ ✓
42 Watson, Li, and Godwin

(2013)
✓ ✓

43 Werth (1986) ✓ ✓
44 Wiedenbeck (2007) ✓
45 Wiig (1989) ✓ ✓ ✓ ✓
46 Wileman, Konvalina, and

Stephens (1981)
✓

47 Wilson and Shrock (2001) ✓ ✓

258 K. QUILLE AND S. BERGIN

correlations reported. These have value, but unless they are developed into
a final model, may not serve practitioners in a useful immediate way. We found
that 36 of the articles reported a sample size greater than 96 students [2–8,
10–12, 14, 15, 17, 18, 20, 21, 23–25, 27–31, 35–41, 43–47]. A positive note from
this was that all studies that were longitudinal also included a generalizable
sample size.

2.5. Prediction timing

Prediction timing is the point in the course the prediction could be made,
ideally the earlier the better and with a prediction accuracy higher than that of
chance, thus allowing educators to implement interventions in a timely man-
ner. Thirty-one articles reported that they could predict performance before
a quarter of the module was completed [1–3, 6, 10–14, 16–25, 28–30, 33,
35–40, 42, 43, 45]. A very positive finding in the literature is that some models
were able to predict before the commencement of CS1 [11, 20, 21, 24]. In
addition, 26 articles that satisfied the prediction timing criteria, also satisfied
the generalizable sample size criteria.

2.6. Prediction accuracy

Several of the articles reported no significant prediction accuracies or correla-
tions. A prediction slightly higher than that of chance was selected as search
criteria. A similar correlation coefficient was selected so not to rule out this
research. Twelve articles reported significant prediction accuracies, although
some did not predict early in CS1 [2, 9, 16, 20, 21, 26, 28, 41, 42, 44, 45, 47]. The
three studies that met all of the criteria (longitudinal, generalisable sample
size, early prediction, excluding multi-institutional) that could predict with
significant accuracy are [2, 21, 28].

2.7. Prediction sensitivity & specificity

Prediction models are often presented with high accuracy, but accuracy alone
does not highlight outcome per class, for example how well it can predict
strong or weak students. Measures such as sensitivity (the ability to predict
weak students) and specificity (the ability to predict strong students) are also
important measures. Sensitivity and specificity were only reported in four
studies (in some cases indirectly, but it could be calculated) [9, 20, 21, 28].
Only three studies thus remained that met all of the criteria (excluding multi-
institutional) that also reported sensitivity and specificity: Glorfeld (two con-
secutive studies) [20, 21] and Liao [28].

COMPUTER SCIENCE EDUCATION 259

2.8. Revalidation of prediction models

From the literature, it appears that models are rarely revisited. In all of the
literature reviewed, only two instances where the work was revisited were
found:

Dehnadi (2006) [16] developed a prediction model in the UK that reported
a 100% accuracy (100% sensitivity and specificity (n = 60 students)). This work
seemed to have made a breakthrough. It was disclosed at the PPIG
(Psychology of Programming Interest Group) workshop in 2006. Based on
this reported accuracy, two follow up studies were completed [10, 14].
Caspersen, Larsen, and Bennedsen (2007) [14] repeated the study using
approximately 142 students in Denmark. The findings of Caspersen’s work
are best described in the abstract: “We have repeated their test in our local
context in order to verify and perhaps generalise their findings, but we could
not show that the test predicts students success in our introductory program-
ming course”. Subsequently, a study by Bornat [10] in the following year (2008,
co-authored by Dehnadi) examined six experiments, with more than 500
students, across six institutions and three countries (Bornat et al., 2008).
Bornat reported that “the predictive effect of our test has failed to live up to
that early promise” with performance, just higher than chance.

Fowler and Glorfeld (1981), developed a predictive model using a sample
size of 151 students in a CS1 course [20]. A logistic discrimination model was
developed from personal, academic and aptitude data. The model produced
an accuracy of 80.8% and could identify weaker students with 76.6% accuracy.
A year later Glorfeld and Fowler (1982), revisited the study with a new cohort
[21]. From the 1040 students enrolled in the CS1 course, 150 were randomly
selected. The model still performed well, although the accuracy decreased
(,6%). This is perhaps to be expected when models are exposed to new
data sets and being tested for generalizability.

2.9. The original press study and model

Bergin (2006) [1] developed a prediction model named PreSS (Predict Student
Success). PreSS was able to identify at an early stage (10% into an introductory
programming module), in CS1, students that may be at risk of failing or
dropping out. The model was developed in a longitudinal study between
2002 and 2006. The study used a sample size of 102 students (in the main
study and 184 in total). The study was multi-institutional consisting of
a University, two Institutes of Technology (comparable in academic level to
colleges in the US), and a Community College. The PreSS model used three
factors to predict student success, specifically, programming self-efficacy,
mathematical ability and number of hours per week a student plays computer
games. This body of work is well regarded, having the 43rd highest cited

260 K. QUILLE AND S. BERGIN

publication in any of the ACM SIGCSE sponsored proceedings or publications,
from a total of 13,389 (Bergin & Reilly, 2005). Detailed information on the
factors, factor selection, data processing and the machine learning algorithm
can be found in the references (Bergin & Reilly, 2005). Six machine learning
algorithms were examined in the development of PreSS and naïve Bayes was
selected as it was found to have the highest prediction accuracy (Bergin, 2006;
Bergin, Mooney, Ghent, & Quille, 2015a). Prediction success was significant
with a prediction accuracy of 77%, but more importantly, had a sensitivity
of 85%.

The selection process to label programming performance as weak (sensitiv-
ity value) or strong (specificity value), was developed using the following
criteria: (i) each institutions marks and standards (ii) progression rates (after
CS1 into CS2 or Semester 3) considering student grades from each institution
such as Grade Point Average (GPA) requirements for progression (iii) discussion
with instructors at each level/institution determining a minimum grade for
progression or success and finally (iv) in the case of the community college,
the minimum requirements to enter an institute of technology or a university.
Boundary value testing (� 10%) was implemented to investigate the con-
fidence of these values, where the differences found in the accuracy were
statistically insignificant, with minimal changes in sensitivity and specificity.
Thus, providing confidence in the selected border values used to identify
strong and weak students. The equations for accuracy, sensitivity and specifi-
city are presented as:

Accuracy ¼ ðTP þ TNÞ
ðTP þ TN þ FP þ FNÞ (1)

Sensitivity ¼ TP
TP þ FN

Specificity ¼ TN
TNþ FP

(2)

where TP = True Positive, TN = True Negative, FP = False Positive and FN = False
Negative.

2.10. Summary

In summary, the literature review revealed that while many of the 47 articles
contribute to the CSEd community, the process confirmed several of the ITiCSE
working group concerns (Ihantola et al., 2015). One of the most prominent issues
is that the CSEd community finds repeatability a challenge, replication studies are
rare, and that theymay still be as rare a decade fromnow. It is also concerning that
not only do the studies fall short of acquiring all of the desired model criterion,
they struggle to attain multiple criteria, as presented in Table 1. Glorfeld in 1981
and in 1982 [20, 21] developed a strong prediction model, employing statistical
techniques for generalization (ten-fold cross-validation) and confusion matrices,

COMPUTER SCIENCE EDUCATION 261

allowing specificity and sensitivity to be calculated. The paper concluded with
a call for models in other institutions, and comparisons to be investigated. In
addition, the paper promised to run this research on a yearly basis, but the work
was never repeated.

The original PreSS model shared some factors with the Glorfeld model,
namely age and mathematical ability. While the model had a strong predic-
tion accuracy and was able to predict at an early stage in the CS1 module,
the initial study and the re-validation were conducted in consecutive years,
in the same institution. Thus, it is difficult to assess how this model would
perform 35 years after its development and generalize to other institutions,
different academic levels and countries. The original PreSS model predicted
with marginal increases over the Glorfeld model, but the original PreSS
model was validated across multiple institutions, over 3 years. Thus, the
PreSS model remains the starting point for this body of work, but factors
identified by Glorfeld will be considered in the further development of the
PreSS model.

3. Justification study

A justification study consisting of two consecutive independent studies was
carried out in the academic years of 2013–14 and 2014–15, respectively. The
goal was to revalidate the PreSS model, given the considerable passage of
time. The justification study took place in a Community College, this is a similar
institution to one of the institutions investigated in the PreSS main study. The
participants were studying on a Level 6 (diploma level) Computer Science
course where all students completed the same “Introduction to Computer
Programming” CS1 module. The language used was C# and this was the first
time that this language was used with PreSS. It also appears to be the first time
it was used in any documented study to predict programming performance.
The grading criteria in the CS1 course consisted of two programming assign-
ments worth a total of 600-grade points and a written examination worth 400-
grade points. Each student also completed an online survey of questions on
factors that potentially influence success including self-efficacy, prior maths
performance and game playing (Quille & Bergin, 2016b).

The first study consisted of 34 students (all students in the class partici-
pated). There was no missing data entries, thus no student was excluded from
the final sample. The overall final results showed the ratio of weak to strong
students was 16:18, respectively. The second study consisted of 26 students (all
students in the class participated). Again, there was no missing data entries so
no student was excluded from the final sample. The overall final results
showed the ratio of weak to strong students was 9:17.

262 K. QUILLE AND S. BERGIN

3.1. Results

The original PreSS data samples (n ¼ 102, from the main study of the original
PreSS study) were used as training data to determine if PreSS could predict
performance at a comparable level to the original studies. The process was
identical to the process used in the development of the original PreSS model,
using the same machine learning toolbox and methods to compute prediction.
The results of the two justification studies were independently compared to
the original PreSS model accuracy. Statistical t-tests (using a Welchs t-test and
a binomial distribution to calculate the variance) indicated there was no
statistically significant difference between the accuracy achieved on the origi-
nal PreSS study and either of the justification studies (first justification study:
Accuracy ¼ 76:5%; p ¼ 0:86, second justification study:
Accuracy ¼ 77%; p ¼ 0:57, where the sensitivity was significantly higher than
that of PreSS, p< 0:001). This is a significant result as both studies consisted of
very different student profiles (community colleges represented less than 7%
of students in the original PreSS study, and have lower entry requirements
than institutes of technology and universities). Even though the original PreSS
model was developed over a decade previous, the findings here suggest that
similar levels of accuracy may be achievable in a considerably changed land-
scape and further research of the Press model is justified.

4. Research goals

Following the positive preliminary findings of the Justification study, this body
of work aims to revalidate and extend the previous PreSS studies. The research
goals are the following (with Figure 1 as a visual representation):

4.1. The research goals

RG-1: Develop a web-based real time implementation of PreSS – PreSS#

RG-2: Revalidate the PreSS model on a large multi-institutional data set

RG-3: Investigate new factors that may improve the performance of the
PreSS model

RG-4: Investigate additional algorithms that may improve the perfor-
mance of the PreSS model

RG-5: Develop interventions based on the findings of the previous
research goals

COMPUTER SCIENCE EDUCATION 263

5. PreSS#: RG-1

Research goal (RG-1) was to eliminate the labour-intensive paper-based
data collection, manual processing and computation that the original
PreSS model required, thus allowing PreSS to be used on significantly larger
student cohorts across multiple institutions. This section provides a high-
level outline of the PreSS# system, a detailed description of the software
development process can be found in the references (Quille, Bergin, &
Mooney, 2015). PreSS# (Predict Student Success Sharpe) is a web-based
educational system that was completed in 2015 (Quille et al., 2015).
PreSS# accurately replicates the performance of PreSS, is fully functional
and can compute predictions in real time with cross-browser (mobile and
desktop) compatibility. PreSS# was developed using a modular approach,
and used the same process as PreSS, with the same data processing
techniques and prediction algorithm, with the ability to include/remove
factors and exchange prediction algorithms.

The system was developed using a Software as a Service (SaaS) model
incorporating Model, View Controller (MVC) architecture. Security and scal-
ability were key components. The user interface and institution/instructor
interaction were further developed into a visualisation engine and analyser
thus adding to PreSS# a streamlined user interface, an easy acquisition
process, automatic modelling and reporting tools (Culligan, Quille, &
Bergin, 2016; Quille et al., 2015). The PreSS# system was investigated to
examine if it could accurately replicate the results of the original PreSS
study using the same techniques as the original PreSS study and the 2006
main study dataset, n ¼ 102. Bergin used Java implementations of the
machine learning algorithms from the Waikato Environment for
Knowledge Analysis toolbox, WEKA (Witten, Frank, Hall, & Pal, 2016), when
developing models and for the final PreSS model. Thus, PreSS# was bench-
marked against the WEKA toolbox, as it was developed using a C# .NET
implementation. The investigation found that PreSS# had an accuracy iden-
tical to the accuracy of WEKA. A two-tailed t-test for a binomial distribution
was run that confirmed that the prediction accuracies of each model were
not statistically different (p ¼ 1:0).

Figure 1. Timeline and overview of the body of research and corresponding research goals.

264 K. QUILLE AND S. BERGIN

6. Main study: RG-2

Given the positive findings from the justification study, a large-scale revalida-
tion was undertaken to determine if PreSS generalized on a substantially larger
data set (the ease of collection and analysis of the study were facilitated
through the development of PreSS#). This section contributes significantly to
the computer science education (CSEd) community and the ITiCSE 2015 work-
ing group’s call (in particular the second grand challenge), by revalidating the
original PreSS model, 12 years after it was developed, on a modern, disparate,
multi-institutional dataset.

During the academic year, 2015–16, a large-scale multi-institutional study
(Quille, Culligan, & Bergin, 2017; Quille& Bergin 2018) took place in Ireland (10
institutions) and Denmark (one institution). This included: two universities, five
institutes of technology and four community colleges. The data collected (using
PreSS#) was classified under two categories. The first category captured student
data, including background, institution, course and psychological data. This data
was captured at approximately 4–6 hours into CS1 (this is when students are ,
10% of the way through the module). The second category captured final CS1
performance data, such as grade. In total, 692 complete student data sets were
used in the study. Six programming languages were used which included: Java (n
= 553), C# (n = 75), Python (n = 33), Processing (n = 24), Visual Basic (n = 4) and C+
+ (n = 3). The main study while addressing RG 2 also collected a multitude of
additional factors and data so that RG 3 (further development of the factors of the
original PreSS model) could be addressed. In total 17 factors were collected using
the online survey (after data reduction techniques were applied), and are pre-
sented in Table 2. The same three factors from the original PreSS study were used

Table 2. The 17 factors included in the main study (after data reduction).
Factor Name Factor Details

Institution type University, Institute of Technology, Community College
Time to complete the survey Seconds
Age Years as an integer
Mature Student Dichotomous, under or over 23 years of age
Gender Dichotomous, male of female
Social Media Average time in hours per day spent on social media
Part Time Job Average time in hours per week spent working in a part time job
Expected end of year result Percentage Grade {0 − 100%}
Concepts, Design and Completion of
a program

Likert Scale – Normalized

Intrinsic Goal Orientation Likert Scale – Normalized
Intrinsic Questioning Categorized based on Intrinsic goal Orientation {1, 2, 3}
Control of Learning Beliefs Likert Scale – Normalized
Test Anxiety Likert Scale – Normalized
Mathematical Grade Normalized, accounting for various exam types/levels
Playing Games During Average time in hours per day spent playing computer games during

the course
Playing Games Before Average time in hours per day spent playing computer games before

taking the course
Programming Self-Efficacy Ten questions reduced to one value using principle component

analysis

COMPUTER SCIENCE EDUCATION 265

for prediction: programming self-efficacy, mathematical ability based on a high
school mathematics exit examination and number of hours per week a student
plays computer games (Bergin & Reilly, 2005). The results and comparison
between the original study and this study are presented in Table 3.

The studywas able topredictwithhigh accuracy (67%– for twoout of every three
students, weak or strong, n =692), from 11 institutions with diverse academic levels
in two different countries. Although the accuracy reduced by 10% given that the
study was conducted 12 years after the original model was developed, this result is
significant, especially given the changing landscape in CS education (student
profiles, technologies, etc.) and given that previous revalidation attempts on other
models (Section 2) have seen the model rejected or an accuracy reduction of 6% in
the span of a single year, within in a single institution. More importantly, PreSS was
able to identify weak students (the main goal of PreSS) with a sensitivity of 78%. In
addition, the size of the study was significantly larger than the original PreSS study,
so perhaps the difference with a comparable number of students and institutions
may be smaller. From the literature, it appears that no other model for predicting
programming performance has been revisited over 10 years after its creation (multi-
institutional and longitudinal). The results here can provide a benchmark for future
revalidation studies for predicting student success in CS1. This works satisfy-
the second research goal of this article and furthermore contributes significantly
to the call of the ITiCSE 15 working group for revalidation studies.

7. Investigating new factors: RG-3

This section documents three pieces of work. The first piece of work (referred
to as Factor Selection 1) is an investigation on factors collected during the
original PreSS study, but not used in the PreSS model. This is important as
several factors were found to be significant at the time but were excluded as
their associated sample size was small.

The second piece of work (referred to as Factor Selection 2) is an investiga-
tion of additional factors collected during the justification study, as presented
in Section 3. This was to determine if incorporating some or all of these newly
identified factors could improve the accuracy of PreSS.

The third piece of work incorporates the most predictive factors from Factor
selection 1 and Factor Selection 2. The objective is to determine if a higher
performing model can be achieved using some or all of these factors.

Table 3. The original PreSS study compared to the main study, using the original PreSS
model.
Data Set N Accuracy Sensitivity Specificity

2005 102 77% 85% 66%
Main Large Scale Study 692 67% 78% 53%

266 K. QUILLE AND S. BERGIN

7.1. Factor selection 1: from the original press study

This section investigates factors collected during the original PreSS study, but not
used in the PreSS model. As noted a paper-based collected data collection method
was used in the original study and thus missing data was an issue with some
instances (student data points) not having any data collected for some factors,
thus reducing sample size (initially 123 students took part, with 102 students having
all threeof theoriginal PreSS Factors). In somecases, the small sample sizeprecluded
factors for selection in the final model. Two-factor selection algorithms were used:
correlation evaluation and information gain (Witten et al., 2016), where the top three
models are presented in Table 4. For comparison purposes and to ensure an
unbiased statistical comparison, the original PreSS model was re-run using samples
with complete data sets for eachof the factors under investigation. A Student’s t-test
was used to examine if a significant difference was found in accuracy between the
baseline and the updatedmodel. Model 2 is particularly noteworthywith almost 8%
of an increase in accuracy. In all cases, the new model factors showed potential.

7.2. Factor selection 2: from the justification study

This section examines additional factors collected during the justification study
(the second of the two justification studies with further details in Quille & Bergin
(2015, 2016b)). From the additional factors, several newmodelsweredeveloped and
investigated. With the use of PreSS# for data collection, there was no missing data,
so all students were included in each experiment.

When age was added as a factor (as identified as potentially valuable by Fowler
andGlorfeld (1981)), represented in years, or dichotomously, it produced statistically
significant increases in accuracy over the original PreSS model. The addition of
gender (in dichotomous form), yielded a statistically significant increase in accuracy
at , 4% on the justification study dataset. The time spent on social media when
added to the PreSSmodel did not increase the accuracy; however, it did produce an

Table 4. The 3 models that resulted in a significant gain in accuracy over the original PreSS
model.

ID New Model Attributes
Sample
Size (N)

Accuracy
Increase % P value

1 Mathematical grade, hours spent playing computer games and
what a student believed their final overall grade would be at
the beginning of the module.

56 8.93 < 0.001***

2 Mathematical grade, programming self-efficacy and the difference
in hours spent playing computer games before the
commencement of the course with that of the hours spent
playing computer games during the course.

107 7.5 < 0.001***

3 Mathematical grade, programming self-efficacy, hours spent
playing computer games and what a student believed their final
overall grade would be at the beginning of the module.

56 7.2 < 0.001***

* Significant at p < 0.05; ** Significant at p < 0.005; *** significant at p < 0.001;

COMPUTER SCIENCE EDUCATION 267

interesting outcome. The top three models incorporating the new factors are
presented in Table 5.

7.3. Investigating the new factors using the main study

The 17 factors collected in the main study, included factors identified as
important, from Factor Selection 1 and Factor Selection 2, along with addi-
tional factors that were hypothesised to add value to the model. Using the
main study dataset (n ¼ 692), two-factor selection algorithms were used:
correlation evaluation and information gain (as applied in Factor Selection 1).
Both of these algorithms were run on the data set, and combinations of the
highest ranked factors were examined. A multitude of models was investigated
with the top two presented in this section. These two models produced either
the strongest performance or added value to the model. The following models
are proposed as preferable to the original PreSS model.

7.3.1. Recommended model 1
Model 1 included: a student’s age in raw integer form, a student’s expected
end of module result, a student’s mathematical ability (normalized) and
a student’s programming self-efficacy. This model was selected as a primary
candidate for the updated PreSS model as it reported the highest accuracy
(71%) and one of the highest sensitivities (75%).

7.3.2. Recommended model 2
Model 2 included: Institution type (University, College or Community College),
mature student, over 23 years of age, in dichotomous form, a student’s end of
school mathematical result normalized and a student’s programming self-
efficacy. This model was also selected as a primary candidate for the updated
PreSS model. Its accuracy was among the highest recorded (69%) and the
model’s sensitivity was higher than model 1 (an increase of 2% at 80%).

The results presented in this Section are very positive. The increases in
performance show that PreSS may be able to produce further performance
gains. This satisfies RG-3, to examine additional factors for the PreSS model

Table 5. Justification study additional survey factors that may have shown to have value.

ID New Model Attributes
Sample
Size (N)

Accuracy
Increase % P value

1 Mathematical grade, programming self-efficacy, hours spent
playing computer games and age (actual age in years).

26 7.7 < 0.001***

2 Mathematical grade, programming self-efficacy and gender. 26 3.85 < 0.001***
3 Mathematical grade, programming self-efficacy, hours spent

playing computer games and age (dichotomous age value
for mature and non-mature students)

26 3.85 < 0.001***

* Significant at p < 0.05; ** Significant at p < 0.005; *** significant at p < 0.001;

268 K. QUILLE AND S. BERGIN

(further developing the PreSS model). Next, an evaluation of different types of
machine learning algorithms is explored (Section 8).

8. Machine learning algorithms: RG-4

Given the new models resulted in higher performance (recommended model 1
and recommended model 2), a different machine learning algorithm could
potentially improve the PreSS model’s performance even further. In addition,
as some algorithms were not readily accessible a decade previous (such as
deep learning), critiquing these algorithms, may improve the PreSS model
further again. This section is divided into two investigations, machine learning
algorithms and artificial neural networks.

8.1. Comparing machine learning algorithms

8.1.1. Original press study
In the original work by Bergin (2006) and revisited by Bergin, Mooney, Ghent,
and Quille (2015b), six machine learning algorithms were investigated for use
in the PreSS model. In both studies, the original PreSS dataset was used
(n ¼ 102). The results of this work are presented as an overview in Table 6.

8.1.2. Updated PreSS models
The algorithms were re-examined, but this time using the recommended
models as developed in Section 5. The models were examined on the main
large-scale study data set (n ¼ 692). For analysis of both models, a one-way
ANOVA was implemented.

Recommended model 1. Table 7 presents the performance of each machine
learning algorithm using model 1. There was a statistically significant differ-
ence between groups accuracies as determined by one-way ANOVA
(Fð5; 4146Þ ¼ 63:7321; p ¼ 0:0000). Table 8 presents further analysis using
a Tukey HSD post-hoc test, presenting the p values on the algorithm’s accura-
cies. The first three algorithms’ accuracy differences (Naïve Bayes, SVM and

Table 6. Performance of machine learning algorithms from the
original PreSS study, using the same factors and data processing
techniques and 10 fold cross-validation to examine performance,
n = 102.
Algorithm Acc % Sen % Spec %

Naïve Bayes 78.28 87 66
Logistic regression 76.47 84 65
Backpropagation 75.46 84 63
SVM 77.49 87 63
C4.5 74.49 85 63
K-nearest neighbour 74.49 85 63

COMPUTER SCIENCE EDUCATION 269

Logistic Regression) are not statistically significant. C4.5, Back propagation and
K-nearest neighbour produced results that were statistically significant (lower)
when compared to each of the first three algorithms.

The difference in sensitivity was not statistically significant between the
SVM and Logistic Regression algorithms as determined by one-way ANOVA
(Fð3; 2764Þ ¼ 1:5447; p ¼ 0:2009); however, when naïve Bayes was included,
the difference was statistically significant (Fð2; 2073Þ ¼ 24:7656; p ¼ 0:0000).
Thus concluding, that although the top three algorithms performed with
statistically similar accuracy, SVM and Logistic Regression outperform naïve
Bayes for sensitivity.

Recommended model 2. For Model 2, the difference in accuracy was not
statistically significant between the top four performing algorithms as deter-
mined by one-way ANOVA (Fð3; 2764Þ ¼ 1:5447; p ¼ 0:2009). When the top
five algorithms are investigated the difference is statistically significant
(Fð4; 3445Þ ¼ 3:2279; p ¼ 0:0118) and when all six are included the difference
is very statistically significant (Fð5; 4146Þ ¼ 66:3511; p ¼ 0:0000). Thus, con-
cluding that C4.5 and Back propagation perform significantly lower than the
top four algorithms for model 2. For sensitivity, naïve Bayes was statistically
significantly higher than the nearest performing algorithm, Logistic Regression
(using a Student’s t-test, p ¼ 0:0005). The results are presented in Table 9.

Using the updated models, and the main large-scale study dataset (Tables 7
and 9), this work concludes that naïve Bayes is still the most suitable machine
learning algorithm for PreSS. Other algorithms with similar levels of accuracy
and sensitivity could be used if preferred. In addition, for model 2, Back

Table 7. Performance of machine learning algorithms for Model
1, n = 692.
Algorithm Acc % Sen % Spec %

Naïve Bayes 71 75 66
SVM 70 79 57
Logistic regression 70 78 59
C4.5 68 72 62
Backpropagation 66 72 58
K-nearest neighbour 61 67 54

Table 8. Tukey HSD post-hoc p values of machine learning algorithms for Model 1, with
accuracy values from Table 7, and a confidence interval of 95%.

Naïve
Bayes SVM

Logistic
regression C4.5 Backpropagation

K-nearest
neighbour

Naïve Bayes - 0.6540 0.6540 0.0001 0.0000 0.0000
SVM 0.6504 - 1.0000 0.0293 0.0000 0.0000
Logistic regression 0.6540 1.0000 - 0.0293 0.0000 0.0000
C4. 0.0001 0.0293 0.0293 - 0.0293 0.0000
Backpropagation 0.0000 0.0000 0.0000 0.0293 - 0.0000
K-nearest
neighbour

0.0000 0.0000 0.0000 0.0000 0.0000 -

270 K. QUILLE AND S. BERGIN

propagation (a single layer artificial neural network) performed as well asnaïve
Bayes (accuracy), where Section 8.2 will investigate artificial neural networks
further.

8.2. Artificial neural networks

8.2.1. Environment and hyper-parameter tuning
An investigation of the use of artificial neural networks (ANN) to predict
introductory programming performance is presented in this section. The
machine learning library that was used to develop the neural networks was
TensorFlow (Abadi et al., 2015), using the Python programming environment
(Rossum, 1995). The Keras high-level neural networks API (Chollet et al., 2015),
was also used on top of TensorFlow, the standard in applied deep learning
frameworks (Brownlee, 2016).

ANN’s are reasonably simplistic to write in code (for example in Python with
the use of API’s and libraries, such as Keras and TensorFlow), but the difficulty
arises when ensuring strong performance while being able to stand over the
generalizability of the final model. An approach has been developed in this
body of work for developing educational data mining (EDM) ANN, which
usually consists of a significantly lower amount of instances and attributes
(compared, for example to image recognition). Thus, steps are included, which
are not common practice in the deep learning community due to this compu-
tation constraint but may add value to the EDM model. As work in this space is
only commencing and there is limited literature, especially in computer
science education, it is important to establish a white box approach for
repeatability and generalizability. The approach is as follows:

● First, set out the parameters that the network may use. This is in four
forms: optimizers, network initializers, the number of epochs and finally
the batch size. Use pre-defined acknowledged initializers for initial weight
selection, and optimizers as that reduces the complexity in selecting
learning rate, momentum and decay rates.

● Second, perform a grid search using the above parameters. This is very
time consuming, thus the network parameters should be carefully chosen.

Table 9. Performance of machine learning algorithms for Model
2, n = 692.
Algorithm Acc % Sen % Spec %

Naïve Bayes 69 80 54
Backpropagation 69 74 62
SVM 68 77 55
Logistic regression 68 78 55
C4.5 67 70 62
K-nearest neighbour 59 63 54

COMPUTER SCIENCE EDUCATION 271

The grid search is performed using the entire dataset. The results of the
grid search return an optimum set of parameters for the ANN.

● The third part of the approach is not usually conducted in deep learning
experiments due to the learning computation associated with significantly
large datasets. Ten fold-cross validation should be applied, which is the
gold standard for performance measurements on traditional machine
learning models (Witten et al., 2016).

● To add to the generalizability of the model, drop-out regularization will be
applied to both the visible and to the hidden layers of the network. This is
the fourth step of developing the EDM ANN.

For the following experiments, the ANN parameters are presented in Table 10. The
optimizers selected were based on their default parameters, such as learning rate
and momentum, provided by Keras (Chollet et al., 2015; Kingma & Ba, 2014;
Tieleman & Hinton, 2012). The initializers were selected based on distribution:
normal and uniform. The epoch selection was based on applied practices
(Brownlee, 2016). The batch sizes were selected from best practice (Brownlee,
2016), but as the instance size was comparably small (compared to image recogni-
tion), this batch size optionwas also included in the grid searchparameters (n= 692).

Once the grid search was completed, the strongest performing network was
selected and drop-out regularization was added (20% Brownlee (2017)), to each
layer of the network. Then, 10 fold-cross validation was used to obtain an accuracy
for the model.

8.2.2. Network topologies
There is a large amount of topologies to select from, thus for this initial investigation,
three fundamental network configurations were selected (Brownlee, 2016). This
sought to implement a blend of topologies to determine their effectiveness at
predicting performance in CS1. A simple single layer ANN, a deep ANN and
a convolutional ANN were selected. To present the topologies in detail, the Keras
environment allowed for the topologies to be visualized and these are presented in
Figure 2. In addition, the input and output dimensions are presented for each layer.
This is again to avoid the black box paradigm that is prevalent in machine learning
and artificial intelligence studies. The network topologies selected, is by no means
exhaustive and represents an initial starting point to examine if performance gains
are plausible using ANN’s.

Table 10. ANN grid search parameters.
Parameter Details

Optimizers rmsprop & adam & stochastic gradient descent
Initializers normal & uniform
Epochs [10, 50, 100, 150, 500, 1000]
Batch Size [5, 10, 20, 50, 100, 150, 250, 500, 692]

272 K. QUILLE AND S. BERGIN

8.2.3. Results
Tables 7, 9 and 11 reveal that the accuracies of the top performing algorithms are
very similar (with the exception of naïve Bayes in Table 7, where the difference in
naïve Bayes performance compared to the other algorithms was statistically
significantly higher). However, the deep neural network and the CNN both
achieve sensitivity levels that are statistically higher than the other algorithms.
As the main goal of PreSS is to predict students at risk of failing, both may
provide performance gains over the previous machine learning models. Future
research should involve a deeper grid search with multiple network topologies
and perhaps custom optimizers with learning rate schedules.

9. Developing interventions: RG-5

This section describes the development of two interventions (RG-5) based on
a body of previously related research (Bergin and Reilly (2005, 2006); Quille
and Bergin (2015, 2016b, 2018); Quille et al. (2017)). The main focus of both
interventions was to positively influence the main predictor of success,
programming self-efficacy, in the hope of improving programming
performance.

Figure 2. Network topology: single layer ANN, deep learning ANN and convolutional ANN.

Table 11. Performance of deep learning ANN’s, where all 17 factors from the main study were
inputs to the networks (n ¼ 692), using 20% drop-out regularization and 10 fold cross-
validation to obtain performance metrics.
Algorithm Acc % Sen % Spec %

Single layer ANN 67 80 51
Deep Learning Fully Connected ANN 69 83 51
Deep Learning Convolutional ANN 66 87 38

COMPUTER SCIENCE EDUCATION 273

9.1. Scratch alongside CS1

This intervention was developed using a study that was conducted in the
2015–2016 academic year while examining three previous years of data (Quille
and Bergin (2016a)). The study investigated when students learnt Scratch, at
the same time as their introductory programming module, would their pro-
gramming self-efficacy increase. Scratch was chosen as students do not need
to learn code syntax, rather it is a programming by discovery language.
Arguably it may help struggling novice programmers to comprehend coding
concepts (even threshold concepts) that they have not grasped in their main-
stream text-based language.

9.1.1. Methodology
The Scratch module was delivered in parallel to the staple introductory CS1
programming module. Programming in Scratch consists of dragging and
snapping blocks of code together to construct a program. The blocks are
predefined and available through a sorted visual display thus allowing
a programmer with no previous knowledge to explore and find and code
block required. This form of interaction alleviates syntax and compilation errors
or the requirement to know the code before a programmer may begin to
build. The additional Scratch module is in addition to the hours allocated to
the CS1 module.

9.1.2. Results and conclusions
The study first compared student programming self-efficacy and performance
of the previous cohorts to the intervention cohort. This was to examine if any
underlying population difference may account for any performance variance
identified (if any). The difference was not statistically significant between the
previous cohorts as determined by one-way ANOVA for programming self-
efficacy (Fð1; 58Þ ¼ 2:0506; p ¼ 0:1575) or for programming perfor-
mance (Fð2; 80Þ ¼ 0:1716; p ¼ 0:8426).

Next, a one-way ANOVA analysis was conducted on all four-year groups, to
examine if the intervention had a positive affect on programming self-efficacy
or performance. The difference was not statistically significant between all of
the groups for programming self-efficacy (Fð2; 85Þ ¼ 2:3914; p ¼ 0:0976) or for
programming performance (Fð3; 109Þ ¼ 0:48516; p ¼ 0:6932).

9.1.3. Scratch intervention conclusions
The intervention initially concluded that Scratch delivered in parallel to CS1 did
not increase student performance. Upon further investigation, a very signifi-
cant finding showed a substantial variance in the average module pass rates
between the first three-year groups and the final year group which was
examined in this study. The average module pass rate is calculated across all

274 K. QUILLE AND S. BERGIN

modules delivered in the academic year (ten in 2015–2016 which included the
additional Scratch module and nine in the three previous years 2013 2015
where Scratch was not included). The average module pass rates for each year
group is presented in Table 12. The difference was not statistically significant
between the previous cohorts (pre-intervention) as determined by one-way
ANOVA (Fð2; 80Þ ¼ 2:7884; p ¼ 0:0675). Further ANOVA analysis between all
cohorts (including the intervention) indicated a significant difference in the
average module pass rates with the 2015–16 group compared to the previous
cohorts (Fð3; 109Þ ¼ 22:8345; p ¼ 0:0000). A Tukey HSD post-hoc test con-
firmed that for the intervention groups’ performance (2015–16), the difference
was statistically significant compared to the three pre-intervention group’s
(p ¼ 0:0000 in each case). This suggests that the 2015–2016 student cohort
was overall, significantly weaker than the previous three cohorts. Given that,
the CS1 performance results were statistically similar to that of the previous 3
years, it could reasonably be hypothesised that the comparable performance
on CS1 was due to the additional Scratch module. Further research is war-
ranted to evaluate the efficacy of this intervention.

9.2. Promoting a growth mindset

This section describes an intervention conducted in the academic year of
2016–2017. The intervention was based on the work of Dweck, to promote
a growth mindset in an effort to increase performance in introductory pro-
gramming courses. As described programming self-efficacy is the most sig-
nificant (positive) factor in predicting performance, this study investigates if
self-efficacy and therefore performance can be improved by promoting
a growth mindset. This study also considers performance data from a -
previous year (as a pre-intervention group) to compare results.

9.2.1. Data collection
During the academic year 2016–17, two institutions participated in this study
(with a total n = 46 participants). Both institutions also participated in a study
outlined in Section 6, which allowed for the comparison with a previous student
population (with no intervention) to examine the effectiveness of the interven-
tion. The two populations were also compared (pre-intervention) to investigate
if any differences existed that may account for variance (if any) in the affect of
the intervention. The two institutions consisted of a community college and an
institute of technology. A mindset survey adopted from the work of Dweck was

Table 12. Average overall module pass rates from each year group.
2012–13 2013–14 2014–15 2015–16

N 24 31 28 30
Average pass rate over all modules in the course 81.51% 77.83% 70.45% 46.37%

COMPUTER SCIENCE EDUCATION 275

used (Dweck (2008)), by D’Anca (D’Anca (2017)). The only difference to the
previous studies (other than the mindset survey), was that the surveys were
conducted at three stages through out the academic year. Initially before the
intervention was deployed (stage one, at approximately 10% into the delivery of
CS1), at the end of CS1 (stage two, in semester 1 before the examinations) and
at the end of the academic year (stage three, at the end of CS2 in semester 2,
before the examinations). This is useful to track changes in attributes such as
mindset and programming self-efficacy over the entire academic year and is
planned for future research, as this intervention is ongoing.

9.2.2. Methodology
The intervention was applied, from stage one to stage two. This consisted of
several approaches to promote a growth mindset. The methodology was
developed from previous work (Cutts, Cutts, Draper, O’Donnell, and Saffrey
(2010); Dweck (2008); Lovell (2014); Murphy and Thomas (2008)). The
approaches fall under three headings:

Lecture: This was delivered at the start of each session (4 hour session) and
lasted generally for five to ten minutes. This approach promoted the funda-
mentals of growth mindsets, and it’s a success story, with respect to increases
in performance in other domains (such as kindergarten and at the second
level). The lecturer used their own personal experiences and relayed the
correlation between work ethic (grit) and attainment of ability. The lecturer
also presented testimonials from students who had completed the course,
especially students who initially struggled. This was conducted for all 12 weeks
from stage one to stage two.

Research: Research was presented formally (approximately at each quarter
of the course delivery), from that of Dweck, the related literature and neu-
roscience. This was to identify measurable changes that growth mindset has,
and the successful outcomes it has produced. For example in brain activity,
where time on task showed an increase in activity, thus the brain was chan-
ging to adopt to the new ability.

Feedback: Feedback was delivered regularly during the programming labs,
but also formally after assessment. The main goal of the feedback was to praise
the process, not the person. In addition, if the feedback was on a poor result, it
was delivered in a constructive manor identifying the processes that the
student needed to do, to achieve a stronger result.

9.2.3. Student background
Before the intervention data results were analysed, the previous cohort of
students from 2015–16 were compared to the intervention cohort. This was
conducted at stage one before the intervention was applied. This was to
examine if any affects of the intervention could be attributed to underlying
population differences, for example a particular group may have had higher

276 K. QUILLE AND S. BERGIN

initial self-efficacy. Both institutions were delivering the same course, teacher
and syllabus both years, with no additional interventions or teaching meth-
odologies applied. The results reported that other than gender balance
(2015–16 = 4% female students (n ¼ 2) compared to this study which had 13%
female representation (n ¼ 6)), no statistically significant differences existed
between the two cohorts for any measured attribute.

9.2.4. Results and conclusions
The 2015–16 cohort had an average CS1 grade of 66.71%, where the interven-
tion group (2016–17), reported an average grade in CS1 of 75.39%. There was
a statistically significant difference between groups as determined by a Welch’s
t-test (p ¼ 0:0194). This increase in performance was also significant, given the
only underlying population difference, was the increase in the ratio of female
students in the intervention cohort. Given the very small number of female
students (n ¼ 2 and n ¼ 6 respectively) it is reasonable to suggest that the
significant differences in performance is not due to the gender balance
increase, but perhaps due to the intervention. Future work will involve an
investigation on different sub cohorts (such as gender and on performance)
and re-running the study on a significantly larger cohort.

10. Conclusions

Over a decade after its conception, validation, and presentation at SIGCSE’05,
PreSS was once again been put under the microscope. It is believed that seldom
before has a prediction model been subjected to such longitudinal rigour and
developmental processes. Thus, making a valuable contribution to the CSEd
community and hopefully encouraging future revalidation and replication stu-
dies. PreSS is able to predict with an accuracy of � 70%, 13 years after it was
first developed and validated. More importantly, PreSS was able to identify weak
students (the main goal of PreSS) with a sensitivity of 80–89%. The 13 years of
research and development have examined factors and algorithms ensuring the
model is generalizable while answering a call from the ITiCSE 2015 working
group (Ihantola et al., 2015). In addition to the PreSS computational model,
PreSS is now integrated into an online toolbox ready to use. With PreSS# fully
developed and deployed, CSEd educators, can start using this tool, to try and
address attrition rates in introductory programming courses.

The objective of this article is to provide an overview (along with additional
novel research) to CSEd educators and researchers, in the shape of the com-
plete journey thus far. This not only links the research together, but presents
follow up research (revalidation, research improvements) allowing researchers
to examine the complete suite of tools and research, to enable them to use the
tools in the classroom, and inform the foundations of future research in this
space. It is our hope that by bringing this large body of work together, it will

COMPUTER SCIENCE EDUCATION 277

encourage others to do the same, accelerating the progression of future
research in this space. We welcome opportunities to share and corroborate
with interested researchers as we continue this work.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Keith Quille http://orcid.org/0000-0002-1414-5142

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . Zheng, X. (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems. Retrieved from
https://www.tensorflow.org/(Software available from tensorflow.org)

Ahadi, A., Lister, R., Haapala, H., & Vihavainen, A. (2015). Exploring machine learning
methods to automatically identify students in need of assistance. In Proceedings of the
eleventh annual international conference on international computing education research
(pp. 121–130). New York, NY: ACM. doi: 10.1145/2787622.2787717

Allert, J. (2004). Learning style and factors contributing to success in an introductory
computer science course. IEEE International Conference on Advanced Learning
Technologies 2004 Proceedings, 33(1), 184–188. Retrieved from http://portal.acm.org/cita
tion.cfm?id=364581

Barker, L. J., Mcdowell, C., & Kalahar, K. (2009). Exploring factors that influence computer
science introductory course students to persist in the major. ACM SIGCSE Bulletin, 41(2),
282–286.

Barker, R. J., & Unger, E. A. (1983). A predictor for success in an introductory programming
class based upon abstract reasoning development. In Proceedings of the fourteenth sigcse
technical symposium on computer science education (pp. 154–158). New York, NY: ACM.
doi: 10.1145/800038.801037

Becker, B. A., & Quille, K. (2019). 50 years of cs1 at sigcse: A review of the evolution of
introductory programming education research. In Proceedings of the 50th acm technical
symposium on computer science education (pp. 338–344). New York, NY: ACM. doi:
10.1145/3287324.3287432

Bennedsen, J., & Caspersen, M. E. (2005). An investigation of potential success factors for an
introductory model-driven programming course. Proceedings of the First International
Workshop on Computing Education Research, 155–163. doi: 10.1145/1089786.1089801

Bennedsen, J., & Caspersen, M. E. (2006). Abstraction ability as an indicator of success for
learning object-oriented programming? SIGCSE Bulletin, 38(2), 39–43.

Bennedsen, J., & Caspersen, M. E. (2008). Optimists have more fun, but do they learn better?
On the influence of emotional and social factors on learning introductory computer
science. Computer Science Education, 18(1), 1–16.

Bergin, S. (2006). A computational model to predict programming performance (Unpublished
doctoral dissertation). Department of Computer Science, Maynooth University.

278 K. QUILLE AND S. BERGIN

https://www.tensorflow.org/
https://doi.org/10.1145/2787622.2787717
http://portal.acm.org/citation.cfm?id=364581
http://portal.acm.org/citation.cfm?id=364581
https://doi.org/10.1145/800038.801037
https://doi.org/10.1145/3287324.3287432
https://doi.org/10.1145/3287324.3287432
https://doi.org/10.1145/1089786.1089801

Bergin, S., Mooney, A., Ghent, J., & Quille, K. (2015a). Using machine learning techniques to
predict introductory programming performance. International Journal of Computer
Science and Software Engineering, 4(12), 323–328.

Bergin, S., Mooney, A., Ghent, J., & Quille, K. (2015b). Using machine learning techniques to
predict introductory programming performance. International Journal of Computer
Science and Software Engineering, 4(12), 323–328.

Bergin, S., & Reilly, R. (2005, February). Programming: Factors that influence success. SIGCSE
Bulletin, 37(1), 411–415.

Bergin, S., & Reilly, R. (2006). Predicting introductory programming performance: A multi-
institutional multivariate study. Computer Science Education, 16(4), 303–323.

Boetticher, G. D., Ding, W., Moen, C., & Yue, K.-B. (2005). Using a pre- assessment exam to
construct an effective concept-based genetic program for predicting course success. In
Proceedings of the 36th sigcse technical symposium on computer science education (pp.
500–504). New York, NY, USA: ACM. doi: 10.1145/1047344.1047503

Bornat, R., Dehnadi, S., & Simon. (2008). Mental models, consistency and programming
aptitude. In Proceedings of the tenth conference on australasian computing education -
volume 78 (pp. 53–61). Darlinghurst, Australia: Australian Computer Society, Inc. Retrieved
from http://dl.acm.org/citation.cfm?id=1379249.1379253

Brownlee, J. (2016). Deep learning with python: Develop deep learning models on theano and
tensorflow using keras. Melbourne: Machine Learning Mastery.

Brownlee, J. (2017). Deep learning with python. Retrieved from https://machinelearningmas
tery.com/deep-learning-with-python/.

Butcher, D. F., & Muth, W. A. (1985, March). Predicting performance in an introductory
computer science course. Communications ACM, 28(3), 263–268.

Campbell, J., Horton, D., & Craig, M. (2016). Factors for success in online cs1. In Proceedings
of the 2016 acm conference on innovation and technology in computer science education
(pp. 320–325). New York, NY: ACM. doi: 10.1145/2899415.2899457

Capstick, C. K., Gordon, J. D., & Salvadori, A. (1975, September). Predicting performance by
university students in introductory computing courses. SIGCSE Bulletin, 7(3), 21–29.

Caspersen, M. E., Larsen, K. D., & Bennedsen, J. (2007). Mental models and programming
aptitude. In Proceedings of the 12th annual sigcse conference on innovation and technology
in computer science education (pp. 206–210). New York, NY, USA: ACM. doi: 10.1145/
1268784.1268845

Chollet, F., et al. (2015). Keras. Retrieved from https://keras.io.
Conroy, R. (2016). Sample Size: Introduction 1 Sample size A rough guide How to use this

guide (Tech. Rep.). Retrieved from https://beaumontethics.ie/docs/application/samplesize
calculation.pdf

Cukierman, D. (2015). Predicting success in university first year computing science courses:
The role of student participation in reflective learning activities and in i-clicker activities.
In Proceedings of the 2015 acm conference on innovation and technology in computer
science education (pp. 248–253). New York, NY: ACM. doi: 10.1145/2729094.2742623

Culligan, N., Quille, K., & Bergin, S. (2016). Veap: A visualisation engine and analyzer for
press#. In Proceedings of the 16th koli calling international conference on computing
education research (pp. 130–134). New York, NY: ACM. doi: 10.1145/2999541.2999553

Cutts, Q., Cutts, E., Draper, S., O’Donnell, P., & Saffrey, P. (2010). Manipulating mindset to
positively influence introductory programming performance. Proceedings of the 41st ACM
technical symposium on Computer science education - SIGCSE ’10, 431. Retrieved from
http://portal.acm.org/citation.cfm?doid=1734263.1734409

D’Anca, J.-A. (2017). MINDSET AND RESILIENCE: AN ANALYSIS AND INTERVENTION FOR SCHOOL
ADMINISTRATORS (Unpublished doctoral dissertation).

COMPUTER SCIENCE EDUCATION 279

https://doi.org/10.1145/1047344.1047503
http://dl.acm.org/citation.cfm?id=1379249.1379253
https://machinelearningmastery.com/deep-learning-with-python/
https://machinelearningmastery.com/deep-learning-with-python/
https://doi.org/10.1145/2899415.2899457
https://doi.org/10.1145/1268784.1268845
https://doi.org/10.1145/1268784.1268845
https://keras.io
https://beaumontethics.ie/docs/application/samplesizecalculation.pdf
https://beaumontethics.ie/docs/application/samplesizecalculation.pdf
https://doi.org/10.1145/2729094.2742623
https://doi.org/10.1145/2999541.2999553
http://portal.acm.org/citation.cfm?doid=1734263.1734409

Dehnadi, S. (2006). Testing programming aptitude. In Proceedings of the 18th annual work-
shop of the psychology of programming interest group (pp. 22–37).

Denny, P., Luxton-Reilly, A., Hamer, J., Dahlstrom, D. B., & Purchase, H. C. (2010). Self-
predicted and actual performance in an introductory programming course. In
Proceedings of the fifteenth annual conference on innovation and technology in computer
science education (pp. 118–122). New York, NY: ACM. doi: 10.1145/1822090.1822124

Dweck, C. S. (2008). Mindset: The new psychology of success. Random House Digital, Inc.
Estey, A., & Coady, Y. (2016). Can interaction patterns with supplemental study tools predict

outcomes in cs1? In Proceedings of the 2016 acm conference on innovation and technology
in computer science education (pp. 236–241). New York, NY, USA: ACM. doi: 10.1145/
2899415.2899428

Evans, G. E., & Simkin, M. G. (1989). What best predicts computer proficiency?
Communications of the ACM, 32(11), 1322–1327. Retrieved from http://portal.acm.org/
citation.cfm?doid=68814.68817

Fowler, G. C., & Glorfeld, L. W. (1981). Predicting aptitude in introductory computing:
A classification model. AEDS Journal, 14(2), 96–109.

Glorfeld, L. W., & Fowler, G. C. (1982). Validation of a model for predicting aptitude for
introductory computing. In Proceedings of the thirteenth sigcse technical symposium on
computer science education (pp. 140–143). New York, NY: ACM. doi: 10.1145/
800066.801355

Golding, P., Facey-Shaw, L., & Tennant, V. (2006). Effects of peer tutoring, attitude and
personality on academic performance of first year introductory programming students.
Proceedings - Frontiers in Education Conference, FIE, 7–12.

Hostetler, T. R. (1983, September). Predicting student success in an introductory program-
ming course. SIGCSE Bulletin, 15(3), 40–43.

Ihantola, P., Vihavainen, A., Ahadi, A., Butler, M., Börstler, J., Edwards, S. H., . . . Toll, D. (2015).
Educational data mining and learning analytics in programming: Literature review and
case studies. In Proceedings of the 2015 iticse on working group reports (pp. 41–63).
New York, NY: ACM. doi: 10.1145/2858796.2858798

Kelly, J. O., Mooney, A., Ghent, J., Gaughran, P., Dunne, S., & Bergin, S. (2004). An overview of
the integration of problem based learning into an existing computer science program-
ming module 2 overview of our PBL implementation. Problem-Based Learning
International Conference 2004: Pleasure by Learning.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization, 1–15. Retrieved
from http://arxiv.org/abs/1412.6980

Konvalina, J., Wileman, S. A., & Stephens, L. J. (1983, May). Math proficiency: A key to success
for computer science students. Communications ACM, 26(5), 377–382.

Lambert, L. (2015, December). Factors that predict success in cs1. Journal of Computing
Sciences in Colleges, 31(2), 165–171. Retrieved from http://dl.acm.org/citation.cfm?id=
2831432.2831458

Leeper, R. R., & Silver, J. L. (1982). Predicting success in a first programming course. In
Proceedings of the thirteenth sigcse technical symposium on computer science education
(pp. 147–150). New York, NY: ACM. doi: 10.1145/800066.801357

Leinonen, J., Leppänen, L., Ihantola, P., & Hellas, A. (2017). Comparison of time metrics in
programming. In Proceedings of the 2017 acm conference on international computing
education research (pp. 200–208). New York, NY: ACM. doi: 10.1145/3105726.3106181

Liao, S. N., Zingaro, D., Laurenzano, M. A., Griswold, W. G., & Porter, L. (2016). Lightweight,
early identification of at-risk cs1 students. In Proceedings of the 2016 acm conference on
international computing education research (pp. 123–131). New York, NY: ACM. doi:
10.1145/2960310.2960315

280 K. QUILLE AND S. BERGIN

https://doi.org/10.1145/1822090.1822124
https://doi.org/10.1145/2899415.2899428
https://doi.org/10.1145/2899415.2899428
http://portal.acm.org/citation.cfm?doid=68814.68817
http://portal.acm.org/citation.cfm?doid=68814.68817
https://doi.org/10.1145/800066.801355
https://doi.org/10.1145/800066.801355
https://doi.org/10.1145/2858796.2858798
http://arxiv.org/abs/1412.6980
http://dl.acm.org/citation.cfm?id=2831432.2831458
http://dl.acm.org/citation.cfm?id=2831432.2831458
https://doi.org/10.1145/800066.801357
https://doi.org/10.1145/3105726.3106181
https://doi.org/10.1145/2960310.2960315
https://doi.org/10.1145/2960310.2960315

Lishinski, A., Yadav, A., Enbody, R., & Good, J. (2016). The influence of problem solving
abilities on students’ performance on different assessment tasks in cs1. In Proceedings of
the 47th acm technical symposium on computing science education (pp. 329–334).
New York, NY: ACM. doi: 10.1145/2839509.2844596

Lishinski, A., Yadav, A., Good, J., & Enbody, R. (2016). Learning to program: Gender differences
and interactive effects of students ’ motivation, goals and self-efficacy on performance.
Proceedings of the 12th International Computing Education Research Conference, 211–220.

Liston, M., Frawley, D., & Patterson, V. (2016). A study of progression in irish higher education.
Higher Education Authority. Retrieved from http://www.hea.ie/en/publications/2016

Lovell, E. (2014). Promoting constructive mindsets for overcoming failure in computer
science education. Proceedings of the tenth annual conference on International computing
education research - ICER ’14, 159–160. Retrieved from http://dl.acm.org/citation.cfm?
doid=2632320.2632331

Mooney, O., Patterson, V., OConnor, M., & Chantler, A. (2010). A study of progression in irish
higher education. Dublin: Higher Education Authority.

Murphy, L., & Thomas, L. (2008). Dangers of a fixed mindset: Implications of self-theories
research for computer science education. ACM SIGCSE Bulletin, (3), 271–275.

Naing, L., Winn, T., & Rusli, B. N. (2006). Practical issues in calculating the sample size for
prevalence studies. Archives of Orofacial Sciences, 1(Ci), 9–14.

Newsted, P. R. (1975). Grade and ability predictions in an introductory programming course.
ACM SIGCSE Bulletin, 7, 87–91.

Nolan, K., & Bergin, S. (2016). The role of anxiety when learning to program: A Systematic
review of the literature. In Proceedings of the 16th koli calling international conference on
computing education research (pp. 61–70). Koli, Finland: ACM.

Pioro, B. T. (2004). Estimated and actual performance scores on computer programming
tasks. SoutheastCon, 2004. Proceedings. IEEE, 3–7.

Porter, L., & Zingaro, D. (2014). Importance of early performance in CS1: Two conflicting
assessment stories. Sigcse ’14, 295–300.

Porter, L., Zingaro, D., & Lister, R. (2014). Predicting student success using fine grain clicker
data. In Proceedings of the tenth annual conference on international computing education
research (pp. 51–58). New York, NY, USA: ACM. doi: 10.1145/2632320.2632354

Quille, K., & Bergin, S. (2015). Programming: Factors that influence success revisited and
expanded. In Proceedings of the international conference on enguaging pedagogy (icep),
3rd and 4th december, college of computing technology, dublin, ireland.

Quille, K., & Bergin, S. (2016a). Does Scratch improve self-efficacy and performance when
learning to program in C#? An empirical study. In Proceedings of the international
conference on enguaging pedagogy (icep), maynooth university, Maynooth, ireland.

Quille, K., & Bergin, S. (2016b). Programming: Further factors that influence success. In
Proceedings of the psychology of programming interest group (ppig), 7th to 10th spetember,
University of Cambridge, United Kingdom.

Quille, K., & Bergin, S. (2018). Programming: predicting student success early in CS1. a re-
validation and replication study. In Proceedings of the 23rd annual ACM conference on
innovation and technology in computer science education (iticse'18). New York, NY, USA:
ACM. doi:10.1145/3197091

Quille, K., & Bergin, S. (2018). Programming: Predicting student success early in CS1. A
re-validation and replication study. In Proceedings of the 23rd annual acm conference on
innovation and technology in computer science education (iticse’18). New York, NY: ACM.

Quille, K., Bergin, S., & Mooney, A. (2015). Press#, a web-based educational system to predict
programming performance. International Journal of Computer Science and Software Engineering
(IJCSSE), 4(7), 178–189. Retrieved from http://eprints.maynoothuniversity.ie/6503/

COMPUTER SCIENCE EDUCATION 281

https://doi.org/10.1145/2839509.2844596
http://www.hea.ie/en/publications/2016
http://dl.acm.org/citation.cfm?doid=2632320.2632331
http://dl.acm.org/citation.cfm?doid=2632320.2632331
https://doi.org/10.1145/2632320.2632354
https://doi.org/10.1145/3197091
http://eprints.maynoothuniversity.ie/6503/

Quille, K., Culligan, N., & Bergin, S. (2017). Insights on gender differences in cs1: A multi-
institutional, multi-variate study. In Proceedings of the 2017 acm conference on innovation
and technology in computer science education (pp. 263–268). New York, NY: ACM. doi:
10.1145/3059009.3059048

Quille, K., Faherty, R., Bergin, S., & Becker, B. A. (2018). Second Level Computer Science: The
Irish K-12 Journey Begins. In Proceedings of the 18th koli calling international conference on
computing education research (koli calling ’18). Koli, Finland ACM.

Rossum, G. (1995). Python reference manual (Tech. Rep.). The Netherlands: Amsterdam.
Rountree, N., Rountree, J., & Robins, A. (2002, December). Predictors of success and failure in

a cs1 course. SIGCSE Bulletin, 34(4), 121–124.
Rountree, N., Rountree, J., Robins, A., & Hannah, R. (2004). Interacting factors that predict

success and failure in a CS1 course. ACM SIGCSE Bulletin, 36(4), 101.
Shell, D. F., Soh, L.-K., Flanigan, A. E., & Peteranetz, M. S. (2016). Students’ initial course

motivation and their achievement and retention in college cs1 courses. In Proceedings of
the 47th acm technical symposium on computing science education (pp. 639–644).
New York, NY: ACM doi: 10.1145/2839509.2844606

Simon, F., Robins, S., Baker, A., Box, B., Cutts, I., & Tutty, J. (2006). Predictors of success in
a first programming course. Proceedings of the 8th Austalian conference on Computing
education - Volume 52, 189–196.

Tarimo, W. T., Deeb, F. A., & Hickey, T. J. (2016, June). Early detection of at-risk students in cs1
using teachback/spinoza. Journal of Computing Sciences in Colleges, 31(6), 105–111.
Retrieved from http://dl.acm.org/citation.cfm?id=2904446.2904471

Tieleman, T., & Hinton, G. (2012). Lecture 6.5 - rmsprop, coursera: Neural networks for machine
learning.

Traynor, D., Bergin, S., & Gibson, J. P. (2006). Automated Assessment in CS1 (Ace ’06), 223–228.
Ventura, P. R. (2005). Identifying predictors of success for an objects- first CS1. Computer

Science Education, 15(3), 223–243.
Vihavainen, A. (2013). Predicting students’ performance in an introductory programming

course using data from students’ own programming process. In Proceedings of the 2013
IEEE 13th international conference on advanced learning technologies (pp. 498–499).
Washington, DC: IEEE Computer Society. doi: 10.1109/ICALT.2013.161

Watson, C., Li, F. W. B., & Godwin, J. L. (2013). Predicting performance in an introductory
programming course by logging and analyzing student programming behavior. In
Proceedings of the 2013 IEEE 13th international conference on advanced learning technologies
(pp. 319–323). Washington, DC, USA: IEEE Computer Society. doi: 10.1109/ICALT.2013.99

Werth, L. (1986). Predicting student performance in a beginning computer science class.
SIGCSE ’86 Proceedings of the Seventeenth SIGCSE Technical Symposium on Computer
Science Education, 138–143.

Wiedenbeck, S. (2007). Antecedents to end users’ success in learning to program in an
introductory programming course. Proceedings - IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC 2007, 163–170.

Wiig, D. M. (1989, February). A bayesian probability approach to predicting student perfor-
mance in introductory computer science courses. SIGSMALL/PC Notes, 15(1), 3–19.

Wileman, S., Konvalina, J., & Stephens, L. (1981). Factors influencing success in beginning
computer science courses. The Journal of Educational Research, (March), 223–226.

Wilson, B. C., & Shrock, S. (2001). Contributing to success in an introductory computer
science course: A study of twelve factors. ACM SIGCSE Bulletin, (1), 184–188.

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data mining: Practical machine learning
tools and techniques. Amsterdam: Morgan Kaufmann.

282 K. QUILLE AND S. BERGIN

https://doi.org/10.1145/3059009.3059048
https://doi.org/10.1145/3059009.3059048
https://doi.org/10.1145/2839509.2844606
http://dl.acm.org/citation.cfm?id=2904446.2904471
https://doi.org/10.1109/ICALT.2013.161
https://doi.org/10.1109/ICALT.2013.99

	CS1: how will they do? How can we help? A decade of research and practice
	Abstract
	1. Introduction
	2. Literature review
	2.1. Methodology
	2.2. Multi-institutional
	2.3. Longitudinal
	2.4. Generalizable sample size
	2.5. Prediction timing
	2.6. Prediction accuracy
	2.7. Prediction sensitivity & specificity
	2.8. Revalidation of prediction models
	2.9. The original press study and model
	2.10. Summary

	3. Justification study
	3.1. Results

	4. Research goals
	4.1. The research goals

	5. PreSS#: RG-1
	6. Main study: RG-2
	7. Investigating new factors: RG-3
	7.1. Factor selection 1: from the original press study
	7.2. Factor selection 2: from the justification study
	7.3. Investigating the new factors using the main study
	7.3.1. Recommended model 1
	7.3.2. Recommended model 2

	8. Machine learning algorithms: RG-4
	8.1. Comparing machine learning algorithms
	8.1.1. Original press study
	8.1.2. Updated PreSS models
	Recommended model 1
	Recommended model 2

	8.2. Artificial neural networks
	8.2.1. Environment and hyper-parameter tuning
	8.2.2. Network topologies
	8.2.3. Results

	9. Developing interventions: RG-5
	9.1. Scratch alongside CS1
	9.1.1. Methodology
	9.1.2. Results and conclusions
	9.1.3. Scratch intervention conclusions

	9.2. Promoting agrowth mindset
	9.2.1. Data collection
	9.2.2. Methodology
	9.2.3. Student background
	9.2.4. Results and conclusions

	10. Conclusions
	Disclosure statement
	ORCID
	References

