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Bottom-Up versus Top-Down Strategies for Morphology
Control in Polymer-Based Biomedical Materials

Alexander B. Cook* and Tristan D. Clemons*

1. Introduction

The range of nano- or microengineered materials used in bio-
logical applications has increased dramatically over recent dec-
ades.[1–4] This increase in diversity of materials driven by
synthetic chemistry advances and manufacturing insights,
has led to the development of biomaterials and drug delivery
formulations with precise size and shapes.[5,6] Many natural
spherical and nonspherical anisotropic systems such as

platelets, tubulin, various viruses, mito-
chondria, and exosomes, all have certain
physiochemical characteristics which
facilitate function and the undertaking
of unique biological tasks. Taking inspira-
tion from these natural systems, research-
ers have identified size and shape
parameters of critical importance in the
engineering of new synthetic nanopar-
ticles and materials to mimic these func-
tions including, altered biodistribution
to favour accumulation in certain organs,
increase uptake into cells, and modulate
response from the immune system among
many others.[5,7,8]

The rational design of material morphol-
ogy for biomedical applications can be
achieved through the broad definitions of
top-down or bottom-up synthetic strategies.

In top-down fabrication methods, researchers aim to target mate-
rial properties required for anticipated biological function such
as overcoming certain intra or extra cellular biological barriers.
Harnessing engineering techniques such as template lithogra-
phy, flow lithography techniques, or precise stereolithographic
3D printing methods then allow for the replication of these mate-
rial parameters.[9] One benefit of top-down design is that the
materials produced have easily interchangeable variables,
including: polymer composition used in particle fabrication,
size and shape of the formed particles, and the active drug
or imaging agents encapsulated. This allows for the straightfor-
ward study of particle structure–activity relationships, or target-
ing of different pathologies and diseases. However, top-down
particle fabrication technologies can be difficult to scale to
larger production without considerable process development
expertise. Bottom-up particles can be engineered through
self-assembly of amphiphilic lipids or macromolecules, into
nano-objects of various morphologies primarily governed by
the volume fractions of the component amphiphiles, as origi-
nally described by Israelachvili et al.[10–13] These self-assembly
methods can be simple to scale up, can achieve control over par-
ticle internal structure, but can have limitations with regards to
the range of shapes or morphologies accessible and can be
highly susceptible to processing conditions (pH, solvent, tem-
perature, and salt).

The basis for the emphasis on particle size and shape, is due to
it being established as a key factor in several interactions which
determine biological efficacy (highlighted graphically in
Figure 1). Researchers have demonstrated that circulation time
and biodistribution is greatly affected by particle morphol-
ogy.[14,15] Cell uptake kinetics and also mechanisms are both
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The size and shape of polymer materials is becoming an increasingly important
property in accessing new functions and applications of nano-/microparticles in
many scientific fields. New synthetic methods have allowed unprecedented
capability for the facile fabrication of anisotropic and shape-defined nanomate-
rials. Bottom-up approaches including: emulsion polymerization techniques,
amphiphile self-assembly, and polymerization-induced self-assembly, can lead to
polymer particles with precise dimensions in the nanoscale. Top-down methods
such as lithographic templating, and 3D printing, have increased the access to
unique particle shapes. In this review, these recent developments are appraised
and contrasted, with future research directions providing that focus on bio-
medical applications. Finally, the opportunity available for synergistic combi-
nations of top-down and bottom-up fabrication approaches in realizing previously
unattainable architectures and material properties is highlighted.
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dependent on nanoparticle shape.[16,17] Additional effects such as
vasculature margination of intravenously injected particles also
play a role in the efficacy of nanomedicines.[18]

This review will focus on recent advances in the methods uti-
lized to produce nanomaterials with tailored size and shapes for
biomedical applications. First, the review will focus on bottom-up
approaches, including emulsions and emulsion polymerization
methods, the self-assembly of amphiphiles under specific tem-
perature/pH/solvent/salt conditions to give nano- and micropar-
ticles with controlled morphologies, and biomedical applications
of polymerization-induced self-assembly (PISA). Contrasting
top-down approaches to the fabrication of materials with
precise morphologies will then be presented, such as
template-based lithography techniques, flow lithography meth-
ods, and recent 3D-printing-based advances. We believe, signifi-
cant opportunity exists for multicomponent systems resulting
from the combination of bottom-up and top-down strategies
in the synthesis of hierarchical multicomponent systems with
unique morphologies. In conclusion, we provide an insight into
the challenges and opportunities possible through combining

these synthetic approaches, while providing a glimpse of future
directions for the application of precise size- and shape-defined
materials in biological contexts.

2. Bottom-Up Fabrication Approaches

Synthesis of anisotropic nanoparticles and biomaterials from the
bottom-up assembly of lipids, peptide amphiphiles (PAs), or
block copolymers, can allow access to smaller nanoscale dimen-
sions and control of internal particle structure. Combining these
self-assembly approaches with multiple immiscible phases can
also allow access to intriguing morphologies of hierarchical drop-
lets/particles, or janus particles with distinct patches of different
functionalities. This section discusses recent advances in bottom-
up self-assembly approaches, and the opportunities these provide
for biomedical applications including therapeutic delivery and
regenerative medicine. A summary of the bottom-up synthetic
strategies covered in this review are shown in Figure 2.

Figure 1. Material characteristics such as size, shape, surface charge, and chemical functionality can alter a wide range of interactions at the interface with
biological systems. Design parameters can affect circulation, immune system activation, specific cell surface, and internalization pathways, mucosal
transport, and biodistribution.
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2.1. Emulsions and Droplets

Emulsion polymerization is a facile and highly adopted synthetic
approach for the formation of particles on the nano- to microm-
eter length scales.[19] Particles can be formed with a range of
functional monomers, but the shape is often limited to
spheres.[20,21] However, spherical polymer particles can be
manipulated into anisotropic shapes such as ellipsoids with dif-
ferent aspect ratios, and disks, through careful control of temper-
ature and solvents combined with the shear forces of strong
stirring or film stretching.[22–24] These approaches to modify par-
ticle shape, pioneered byMitragotri, has led to many insights into
the impact nanoparticle shape has on cell phagocytosis, with local
tangential angles determining the complexity of the actin struc-
tures formed during phagocytosis and ultimately whether the
particle is internalized or not.[22] Another notable application
of these shape-defined particles has been in the field of
blood–brain barrier drug delivery.[25,26] The Mitragotri and co-
workers have found that for the treatment of brain diseases,
not only are the size and shape of formulations important factors
due to endothelium margination, but also the mechanical stiff-
ness of particles can greatly affect their interaction with the endo-
thelium and transport through a cell monolayer.[25]

Droplets of coacervates or other polymer-containing solutions
are being increasingly investigated as compartmentalized cell-
mimicking systems.[27,28] In addition, microfluidic devices have
been used as tools to create complex droplet in droplet morphol-
ogies, as shown in Figure 2.[29–31] Researchers can also form
patchy particle morphologies though including different propor-
tions of surfactants with phase separating polymer droplets, or
sequential emulsion polymerization steps.[32–35] This formation
of patchy particle morphologies can allow control over their

subsequent self-assembly into superstructures such as long fila-
ments of particles, and thus allow further mimicking of biologi-
cal processes and natural tissues.

2.2. Amphiphile Self-Assembly

The self-assembly of amphiphilic small molecules into larger
nano-objects or hierarchical materials has been a consistent
hallmark of bottom-up self-assembly methodologies. The self-
assembly of lipid amphiphiles are integral for life through the
assembly of phospholipids in our cell membranes regulating
many biological processes.Most recently, the self-assembly of lipid
nanoparticles were integral for the protection and packaging of
vaccines against SARS-CoV-2, the virus responsible for the
COVID19 global pandemic.[36,37] Through understanding the
self-assembly phenomena of lipid amphiphiles, researchers have
been able to design multicomponent systems, consisting of native
biomembrane components, that canmimic cellular structures and
processes.[38] Through precise control of lipid properties, pH, salt,
solvent, and processing conditions, it is possible to achieve a range
of architectures through lipid self-assembly including tubes,[39]

cones,[40] bicelles,[41] giant vesicles,[42] and cisternae stacks.[41]

Often the self-assembly of amphiphilic molecules results in
nanoassemblies which are inherently fragile resulting from their
noncovalent interactions allowing for molecular mobility within,
and exchange of molecules between assemblies.[43] Further,
because of this dynamic molecular exchange, these assemblies
often result in dissociation upon drying making them difficult
to utilize in dry or bulk macroscopic material applications.
Recent work from the Ortony lab aimed to address this with
the development of a kevlar inspired, aramid amphiphile.[44]

Due to strong anisotropic interactions among the aramid

Figure 2. Bottom-up approaches to the formation of size- and shape-defined nanoparticles and microparticles, A) Emulsions and emulsion polymer-
izations, in single phases and with immiscible phases, B) Self-assembly of molecularly distinct amphiphiles with controlled conditions leading to mor-
phologies of defined sizes and shapes. C) PISA of hydrophilic and hydrophobic monomers with reversible activation–deactivation radical polymerizations
or controlled ring opening polymerizations.
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amphiphiles, molecular exchange is significantly suppressed to
allow for the spontaneous formation of long nanoribbons, with
impressive mechanical properties (Young’s modulus of 1.7 GPa
and tensile strength of 1.9 GPa).[44] Further, the aramid amphi-
phile nanoribbons could be shear aligned and dried into threads
which could support two hundred times their weight, providing
an exciting example of the opportunity for the bottom-up synthe-
sis of high-strength macroscopic materials.

The lively dynamics of molecules in amphiphile self-assembly
also provides opportunities for unique material properties unat-
tainable with covalent counterparts. PAs, consisting of an alkyl
tail attached to charged peptide residues to provide molecular
amphilicity, provide an ideal platform for exploring the opportu-
nities molecular dynamic exchange can provide.[45,46] In an aque-
ous environment, aggregation of the aliphatic alkyl tails coupled
with intermolecular hydrogen bonding among the peptide seg-
ments drive these molecules to form anisotropic architectures
which can extend to many micrometer in length.[47] Recent work
from the Stupp laboratory has demonstrated the ability to tune
the molecular exchange of PA molecules in assemblies to drive
the spontaneous assembly of hierarchical superstructures for

dynamic material properties.[48–50] In fact, it has been demon-
strated by both coarse-grained simulation and through recent
experimentation that as long as the strength of noncovalent inter-
actions among monomers in the PA self-assembly is low enough
to allow monomers to escape from their original assemblies
(dynamic molecular exchange), then there is potential for the for-
mation of hierarchical superstructures.[49]

In a study by Edelbrock et al., PA molecules were designed to
contain β-cyclodextrin and adamantyl moieties on the surface of
PA nanoribbon assemblies that could form noncovalent host–
guest inclusion complexes between molecules. When these host-
and guest-functionalized nanoribbons were mixed, even at low
concentrations of the functionalized molecules (10mol% in their
respective nanoribbons with 90mol% unfunctionalized PA mol-
ecules), bundled superstructures of nanoribbons were observed.
This superstructure was driven by the formation of host–guest
inclusion complexes, and more importantly, the ability for these
molecules to escape their original assemblies and enrich in the
superstructure bundles (Figure 3A–C).[48] When the intermolec-
ular cohesive energy of the PA molecules was increased, through
the addition of hydrophobic amino acids that favor

Figure 3. Harnessing dynamic molecular exchange in PA self-assembling nanoribbons for hierarchical superstructure formation. A) Schematic represen-
tation of the formation of host and guest inclusion complexes between functional groups in PA nanoribbons. B) Scanning electron microscopy (SEM)
micrograph of the bundled superstructure formation. C) Confocal microscopy micrograph of the bundled superstructure formation between nanoribbons
labeled with fluorescent dyes for visualization (guest PA (Cy3, red) and host PA (Cy5 dye, green)) coassembled with an unfunctionalized diluent PA (DyLight
405 dye, blue). Note the distinct yellow in the superstructured bundle resulting from enrichment of the host- (red) and guest- (green) functionalized mol-
ecules. D)Wide-field fluorescence microscopy micrograph of a 3D-printed concentric circle architecture as a demonstration of the ability to print well-defined
brain mimetic architectures with the superstructured hydrogel. E) Depth coded z-stack reconstructions showing neuron infiltration on the superstructure, the
BDNF mimetic PA, and the BDNF PA combined with the superstructure after 7 days in vitro. Neurons demonstrated the greatest infiltration when the
bioactive BDNF mimetic peptide sequence was combined with the increased porosity resulting from the superstructure self-assembly. Reproduced under
the terms and conditions of the Creative Commons Attribution license 4.0.[48] Copyright 2021, The Authors, published by Wiley-VCH.
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intermolecular hydrogen bonding within the nanoribbons,
molecular exchange was suppressed and superstructure forma-
tion was not observed. The formation of this bundled nanoribbon
superstructure drastically increased the mechanical capabilities
of the hydrogel, resulting in a highly porous architecture that
was amenable to 3D bioprinting (Figure 3D). Further, function-
alization of the porous superstructured material with a biological
signal designed to mimic the important neuronal growth factor
brain-derived neurotrophic factor (BDNF) produced a matrix
with significant in vitro bioactivity. Neuron maturation and pen-
etration into the hydrogel was enhanced as a result of this bioac-
tive BDNF mimetic signal being coupled with the increased
hydrogel porosity resulting from the self-assembly-driven super-
structure formation (Figure 3E).[48] This work provides an exam-
ple of the beneficial role dynamic molecular exchange in
assemblies can play in the design of novel biomaterials, an oppor-
tunity unique to self-assembling systems and bottom-up syn-
thetic pathways.

Extending from the self-assembly of lipid- and peptide-based
amphiphiles, amphiphilic block copolymers can similarly assem-
ble into multiple distinct morphologies. One advantage of using
synthetic polymers here, is the ability to easily change the func-
tionality of the monomers, or the length of the corresponding
polymer blocks to alter the self-assembly properties. Shapes
can range from spherical micelles and elongated tubular micelles
of different lengths,[51,52] to larger diameter spherical polymer-
somes and the corresponding anisotropic tubular polymer-
somes.[16,53] One of the first examples demonstrating different
biological effects of self-assembled polymer shape came from
Discher and co-workers, who studied spherical micelles and tubu-
lar micelles of lengths from 2 to 18 μm.[51] The flexible tubular
micelles had long circulation times in rodents of �1 week, com-
pared with spheres of similar composition with circulation times
an order of magnitude lower. Paclitaxel-loaded tubular micelles of
8 μm in length also demonstrated greater tumor growth inhibition
when compared with the shorter 1 μm tubular micelles.
A similar effect was seen by Larnaudie et al., with self-assembled
nanotube structures formed from peptide polymer conjugates,
where the anisotropic tubular nanostructures had longer
circulation half-life compared with the individual polymer
conjugates.[54]

Williams and co-workers have extensively studied tubular
micelles and tubular polymersomes in biological systems.[55–57]

Small micellular spheres and tube morphologies can be formed
from block copolymers of poly(ethylene glycol) and poly(caprolac-
tone-gradient-trimethylenecarbonate), PEG-b-p(CL-g-TMC),
whereas larger polymersome spheres and tubes can be formed
from block copolymers of PEG and poly(D,L-lactide),
PEG-b-PDLLA.[55] With both polymer compositions, the tubular
assemblies were found to have greater cell uptake compared with
their corresponding sphere morphologies, for both sizes. While
dexamethasone release was observed to be slower for the tubular
structures. An ex vivo porcine eye model was used to assess the
impact of shape on particle diffusion in biological media;
increased mobility was observed for smaller and higher aspect
ratio particles. This increase inmobility, resulting from controlling
particle size and shape, will result in an increased number of par-
ticle–cell interactions and in turn supports the increased cellular
uptake observed in vitro.[55,58] It has been found that block

copolymer-based wormlike micelles have benefits for passively tar-
geting inflamed mucosal tissue, in an ex vivo model of inflamma-
tory bowel disease, due to their unique size and geometry.[59]

Micelles penetrated both healthy and diseased tissue, whereas pol-
ymersomes penetrated neither due to their large diameters, and
tubular micelles showed low up take in healthy colonic biopsies
but increased ability to enter diseased human mucosa, demon-
strating colocalization with immune cells.[59] These studies clearly
demonstrate both the importance and opportunity possible with
controlling polymer self-assembly morphology, especially with
respect to anisotropic architectures in biology, for drug delivery
and particle penetration.

2.3. Polymerization-Induced Self-Assembly

The polymer self-assembly of nanomaterials into a number of
morphologies has attracted great attention due to their applica-
tions in many disciplines ranging from drug/gene delivery
agents,[60] imaging contrast enhancers,[61] nanoreactors,[62] and
surface coatings and catalysis.[63] However, traditional methods
for self-assembly of polymeric nanomaterials are often con-
ducted at low polymer concentrations (<1%) and regularly
require some form of “triggering” for assembly such as pHmod-
ification or solvent exchange.[64] Resulting from these drawbacks,
PISA has recently become a useful method to synthesize block
copolymer nanomaterials in varying morphologies at high poly-
mer concentrations (up to 50%).[64,65] In aqueous PISA, a water-
soluble macromolecular initiator is used to polymerize relatively
hydrophobic monomers to form amphiphilic diblock copolymers
that self-assemble in situ, producing a range of morphologies
and structures which evolve during the course of the polymeri-
zation (Figure 2C).[66,67] Recent progress in aqueous PISA is par-
ticularly exciting due to the synthesis of structures suitable for
biological applications as well as the environmental and eco-
nomic benefits of using green chemistry techniques through
high atom efficiency, the use of aqueous media, and reduced
purification requirements.[66,68]

A key requirement of the PISA process is the utilization of a
controlled/living polymerization method to allow for efficient
and predictable chain extension of the core-forming block.
Reversible addition–fragmentation chain transfer (RAFT) poly-
merization, with the ability to produce precise molecular weight
polymers, with low polydispersity, superb utility in aqueous sys-
tems, and suitability for a large range of monomer classes has
been the polymerization method of choice for PISA sys-
tems.[64–67,69–71] In stating this, other controlled polymerization
methods have also successfully been used to produce PISA
nanoparticles including atom transfer radical polymerization
(ATRP),[72–74] nitroxide-mediated radical polymerization
(NMP),[75–78] living anionic polymerisation,[79] and ring opening
metathesis polymerization (ROMP).[18,19,68,80,81] The main
prerequisite is the ability to polymerize an insoluble polymer
block from soluble monomers utilizing a macroinitiator in a
specific antisolvent.[74] PISA is an exciting method for the
production of polymeric nanomaterials at high solid content
and has been utilized to realize a vast array of different morphol-
ogies (Figure 4),[67] however, typically micelles, rods, worms, and
vesicles are observed.[82]
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The utility of PISA for controlling nanomaterial size and shape
for biomedical applications was thoroughly reviewed by Davis
and co-workers, in 2018,[11] hence in this section, we will provide
a highlight of recent works making use of PISA for the synthesis
of biomedical materials. PISA nanoparticles hold great promise
as drug delivery vehicles; however, it is important to recognize
the role incorporation of hydrophobic therapeutics may play
in influencing the morphology of PISA assemblies. Recent work
by Stenzel and co-workers investigated the influence of drug
loading on the morphology of PISA nanomaterials and more
importantly how this impacted biological function.[83] This work
demonstrated that the inclusion of the model therapeutic curcu-
min during the PISA process, resulted in a shift in the phase
diagram of expected morphologies. This change in observed
morphologies, in turn impacted on nanoparticle cellular uptake
and transport when assessed in multicellular spheroid models of
cancerous solid tumours.[83] Gianneschi and co-workers utilized
an aqueous, one-pot ring opening metathesis PISA (ROMPISA)
synthesis for the development of a library of polymeric nanopar-
ticles as cancer therapeutics.[84] This study investigated the role
nanoparticle size, surface charge, and platinum loading had on
the in vitro cytotoxicity of these nanoparticles with both human
ovarian and cervical cancer cell lines. The same group also dem-
onstrated the utility of the ROMPISA approach in the “open to
air” synthesis of stimuli-responsive peptide polymer nanopar-
ticles, which were able to spontaneously aggregate as a result

of treatments with a proteolytic enzyme.[85] These recent works
demonstrates the utility of ROMPISA as a suitable method for
achieving therapeutic nanoparticles, at high yields, in a one-step
synthesis method.

The incorporation of peptides and PISA has garnered recent
interest resulting from the opportunity peptides provide in both
biorecognition and their propensity to drive self-assembly in
attempts at influencing a wider array of morphologies available
through PISA. Sun et al. successfully incorporated a proapoptotic
peptide sequence (KLAKLAKKLAKLAK), previously demon-
strated to induce rapid apoptosis of cancer cells through mito-
chondrial membrane disruption,[86] to display on the surface
of PISA nanoparticles.[87] The one-pot synthetic approach
allowed for facile tunability of both the therapeutic peptide load-
ing on the surface of the nanoparticles as well as the nanoparticle
size.[87] Interestingly, incorporation of this peptide on the surface
of a polymeric nanoparticle resulted in increased proteolytic
resistance of the therapeutic peptide and a significantly enhanced
cellular uptake of the therapeutic nanoparticles resulting from
the multivalent presentation of the KLA peptide. The group
of Semsarilar and co-workers have also investigated several
peptide–PISA-based systems aimed at incorporating self-
assembling peptide motifs to support the formation of higher-
order PISA morphologies driven by peptide self-assembly. In
the first of these studies, a diphenylalanine peptide motif was
copolymerized with glycerol monomethacrylate to create a

Figure 4. Transmission electronmicrographs of PISA a) spheres, b) worms, c) vesicles, d) lamellae, e) framboidal vesicles, f ) oligolamellar vesicles, g) jellyfish,
and h) yolk/shell particles. Reproduced under the terms and conditions of the Creative Commons Attribution CC-BY license.[67] Copyright 2016, American
Chemical Society. Individual panels: a) Reproduced with permission.[132] Copyright 2013, American Chemical Society. b,c,g) Reproduced with permission.[133]

Copyright 2011, American Chemical Society. d) Reproduced with permission.[134] Copyright 2013, American Chemical Society. e) Reproduced under the terms
and conditions of the Creative Commons Attribution CC-BY license.[67] Copyright 2016, American Chemical Society. f ) Reproduced with permission.[135]

Copyright 2014, American Chemical Society. h) Reproduced with permission.[136] Copyright 2014, American Chemical Society.
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macro-CTA suitable for aqueous PISA with poly(2-hydroxypropyl
methacrylate) as the core forming polymer.[88] In characterizing
the subsequent nano-objects resulting from this approach, it was
found that long anisotropic morphologies were observed, a result
likely to have been achieved through the contributions of the pep-
tide self-assembly to the PISA process.[88] In a follow up study, the
same group assessed the effect that the incorporation of pendant
hydrophobic self-assembling tripeptide sequences would have on
the PISA process when incorporated into the core forming poly-
mer block.[89] Again, it was observed that differences in the hydro-
phobicity of these pendant peptide units along with their self-
assembling propensity resulted in morphological differences in
the observed nano-objects resulting from the PISA process.[89]

Finally, the application of PISA to create well-defined nanopar-
ticles for investigating biological interactions in model systems is
also an important consideration for the translation of PISA nano-
particles to clinically relevant biomaterials. Vu et al. demon-
strated the ability to compare PISA synthesized nanospheres,
ranging from 40 to 150 nm with low dispersity’s and a negative
surface charge, in a microfluidic system aimed at modeling
human blood flow in a microvasculature network
(Figure 5).[90] In this work, they demonstrate that large PISA
nanoparticles exhibited higher associations to B cells, monocytes,
and neutrophils compared with their smaller counterparts.[90]

Further, this work provides direct insight into the role nanopar-
ticle size can play on potential application with small anionic
PISA nanoparticles (�40 nm) suitable for cancer drug delivery
due to their minimal interactions with immune cells, whereas
large PISA nanoparticles (�150 nm) may be useful for vaccine
delivery targeting B cells.[90]

3. Top-down Fabrication Approaches

Fabrication of particles through top-down approaches offer the
benefits of more complex particle morphologies, but can come
at the expense of size limitations due to the lithographic pro-
cesses and substrates used (a summary of top-down synthetic
methods is shown in Figure 6). Templating lithographic methods
have been extensively used for patterning in electronics, and in
soft lithography for microfluidic chip preparation,[91] but were
adapted to be used as micrometer and submicrometer particle
fabrication techniques around 2005.[92] In general, template-
based methods involve preparation of a master template from
silica with etching (or other porous inorganic materials),[93,94]

and secondary templates formed from either polydimethylsilox-
ane (PDMS) or water-soluble sacrificial polyvinylalcohol tem-
plates, with particles being fabricated directly in the template
pattern and subsequently collected.[95,96] The particle replication
in nonwetting templates (PRINT) methodology was developed by
the DeSimone and co-workers, and has allowed synthesis of poly-
meric nanoparticles of well-defined geometries from tens of
nanometers to micrometers.[92] The group has investigated the
role of particle shape on biodistribution and cell uptake in vivo
with radio-labeled polyethylene glycol (PEG)-based particles of
�200 nm in diameter.[97] It was found that high aspect ratio cylin-
drical rod-shaped particles had significantly increased internali-
zation rates in HeLa cells compared with cylinders of the same
cross section but with lower aspect ratios.[98] Decuzzi and co-
workers have used imprint lithography to create a range of nano-
and microparticles with a variety of shapes from square micro-
plates, to disk-shaped particles, and have found that disk-shaped

Figure 5. A) Top: Schematic illustration of nanoparticles prepared by RAFT PISA of three different sizes of �40 nm (small particle—SP), �75 nm
(medium particle—MP), and �150 nm (large particle—LP); Middle: Chemical structure of diblock copolymers of the PISA nanoparticles; Bottom:
Representative TEM images of the PISA nanoparticles B) Top: A photo of the human blood flow microvasculature mimetic setup. Middle: A synthetic
microvascular network; Bottom: Schematic illustration of nanoparticle interactions with different cell types found in whole blood under flow conditions.
Reproduced with permission.[90] Copyright 2020, Wiley-VCH.
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particles offer advantages in vascular wall targeting similarly
to erythrocytes.[99] The size of square and cube microplates of
polylactic-co-glycolic acid (PLGA) was found to be a determining
factor in the release of anti-inflammatory therapeutics such
as curcumin and dexamethasone from the polymer carrier
particles.[100] Hydrogel microparticles with anisotropic shapes
have also been developed by De Laporte and co-workers, using
a perfluoropolymer mold-based soft lithography approach, and
ultraviolet (UV) light initiated crosslinking of PEG macromono-
mers.[101] By including superparamagnetic iron oxide nanopar-
ticles (SPIONs) in the PEG phase during crosslinking, the
anisotropic rod-shaped microgels can be aligned using an exter-
nal magnetic field. The alignment of shape-defined particles has
been used to help guide a variety of cells in 3D space and could
allow for more tunable cell cultures and multicellular tissue
constructs for regenerative medicine applications.

In contrast to mold-based templating lithographic methods,
flow lithography can produce particles with precise morphologies
at a potentially higher scalability, and were pioneered in micro-
fluidic chips by Doyle and co-workers (Figure 7).[102] Typically
researchers use UV light and a photomask engineered to let light
pass in the shape of the desired particle, which initiates polymer-
ization in a solution of particle precursors. The flowing solution
of particle precursor can be continuous, or polymerized in stop-
flow conditions.[102–104] Shapiro et al., used particle shape as a
parameter to enhance the signal of protein-based assays of thy-
roid-stimulating hormone (TSH).[105] The authors found that the
ratio of surface area to the 2D projection used for imaging, was
key to lowering the limit of detection of the desired biomarkers.
The increased surface area of ring-shaped and wheel-shaped

microparticles, compared with disk-shaped particles, increased
the fluorescent signal twofold and the TSH limit of detection six-
fold, respectively. Segmented illumination of flowing polymer
precursors has also been developed to produce particles of differing
sizes and shapes, in a high throughput manner.[106] The produced
PEG-based microgel particles had tunable Young’s moduli and
could also be fabricated with a cell adhesive arginine-glycine-
aspartic acid tripeptide (RGD) peptide-based acrylate incorporated
into the hydrogel allowing for optimal biocompatibility.

Stereolithography or 3D printing is being increasingly used
for the fabrication of biomedical materials with tailored shapes.
In this review, which is primarily focused on micro- and nano-
particles, we will not consider larger macroscale scaffolds or bio-
printing,[107] although 3D printing is widely used for these
applications.[108] Complex shapes like helical particles have been
used as microswimmers in nanomedicine applications, and
access to these particle shapes can only be provided by 3D print-
ing. Kraft and co-workers fabricated a range of particles, including
helical particles, from two photon polymerization of propylene gly-
col methylether acrylate and sputter-coated sections of the particles
to have catalytically active sites for self-propulsion.[109] The plati-
num/palladium coating could be applied to the end of the particles
or the side, which altered the axis of directional motion compared
with the main length axis of particles, but not the overall velocity.
Sitti and co-workers have also fabricated helical microparticles as
theranostic payload delivery systems (Figure 8).[110] The research-
ers used a rotating magnetic field to actuate the helices, and
included iron oxide nanoparticles in the gelatin methacroyloyl
hydrogel for this purpose. Enzymatically controlled drug release
from the microswimmers could be achieved in the presence of

Figure 6. Top-down approaches to the formation of size- and shape-defined nanoparticles and microparticles. A) Template-based and imprint litho-
graphic methods with either dissolvable sacrificial templates, or crosslinked reusable templates. B) Flow-based lithographic methods can incorporate UV
light with shaped defined photomasks, or two photon polymerization. C) Stereolithography or 3D printing can offer the most diverse range of accessible
morphologies of micro- and nanoparticles, however, is potentially less scalable.
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matrix metalloproteinase-2 (MMP-2), with enzyme-dependent
release rates achieved with varying concentrations of enzyme from
0.125 to 1 μgmL�1.[110] Targeted delivery of active agents using
microswimmers of precisely engineered size and shape could
be an impactful area of biomedical research in the future—
enabled by lithographic particle engineering. The size and shape
of particles can also have a large impact on the body’s immune
response to introduced nanoparticles. The Moeller and co-workers
investigated this with the 3D-printing of antigen nanoparticles for
vaccine formulations.[111] Protein photoresists at a concentration
of 40 wt% in buffer with photosensitizer (rose Bengal) were poly-
merized into various anisotropic particles withmultiphoton lithog-
raphy. Particles with the highest aspect ratio of 10, resulted in the
greatest stimulation of RAW264.7 macrophages, with an

approximately tenfold increase in tumor necrosis factor alpha
(TNF-α) secretion, relative to the particles with lower aspect ratios
of 1 and 3.

4. New Synergistic Approaches Combining Both
Bottom-Up and Top-Down Fabrication Methods

However, the general top-down and bottom-up strategies to fab-
ricate materials with interesting size and shape characteristics
have led to advances in our fundamental understanding of bio-
logical interactions with synthetic materials, both also have draw-
backs. Top-down methods can have limited scalability, whereas
bottom-up approaches have until recently had limited utility
beyond spherical morphologies (a comparison of bottom-up
and top-down fabrication methods advantages and disadvantages
is shown in Table 1). A relatively unexplored avenue lies in the
combination of techniques from both to form new structural
motifs with higher-order complexity, providing a significant area
for future research and discovery (Figure 9). A number of appli-
cations have already explored this idea, and will be highlighted
here, including hierarchical particle in particle systems,
Pickering emulsions with anisotropic particles, and the 3D print-
ing of shape-defined particles, fibers, or droplets.

One way to combine the benefits of both approaches is
through hierarchical particle in particle structures, where the car-
rier particle or loaded particles are fabricated from opposing top-
down or bottom-up methods. There are a number of examples of
this in the literature mostly involving spherical nanoparticles
encapsulating in top-down microstructured particles, such as
lithographically templated hydrogels, and 3D printed micropar-
ticles.[110,112,113] In another example, the Decuzzi and co-workers
synthesized square PLGA microparticles encapsulating

Figure 7. Images of microparticles fabricated using high throughput continuous flow lithography of monomer solution, including rings, triangles, cyl-
inders, and cuboid microparticles (differential interference contrast images). Reproduced with permission.[102] Copyright 2006, Springer Nature.

Figure 8. Images of 3D-printed biodegradable hydrogel microswimmers,
including optical microscope differential interference contrast image,
energy-dispersive X-ray spectroscopy iron elemental mapping, of the iron
oxide magnetic particle components. Reproduced under the terms and
conditions of the Creative Commons Attribution CC-BY license.[110]

Copyright 2019, American Chemical Society.
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dexamethasone containing 200 nm spherical polymeric nanopar-
ticles, and also free dexamethasone.[114] Both the molecular and
nanoparticle cargos were found to be distributed evenly through

the PLGA microparticles with confocal microscopy and electron
microscopy imaging. The multiscale hierarchical nature of this
drug delivery system proved to slow the burst release
and control the diffusion of dexamethasone from the PLGA
carrier.

Top-down and bottom-up approaches can be elegantly com-
bined in Pickering (or particle-stabilized) emulsions.
Anisotropic particles are less well explored in Pickering emul-
sions, mainly due to the difficulty in their synthesis, but can offer
new and unusual emulsion properties including polyhedral drop-
lets and stable larger millimeter-scale emulsions.[115–119] Kegel
and co-workers investigated emulsions stabilized by cubes and
peanut-shaped particles, and found that cubes arranged at the
interface of oil in water emulsions in monolayers with packing
densities of between 70 and 90% with domain packing inter-
mediates between cubic and hexagonal.[120] While the peanut-
shaped particles (aspect ratio 2.7) oriented parallel to their length
axis with packing densities of �80%. Lou et al. used silica rod-
shaped particles to investigate the anisotropic particle effect in
emulsions with aspect ratios ranging from 1 to 16.[121] The longer
particles adsorbed at the liquid/liquid interface more strongly,
providing higher steric hindrance to droplet coalescence, and
more stable emulsions. However, Koike et al. fabricated janus
disk particles with various shapes (circular, triangular, square,
pentagonal, and hexagonal) and found that they could form sta-
ble emulsions with droplet sizes in the region of 100 μm.[122]

Interestingly, with very small droplet sizes, the shape of the
Pickering emulsifier particles determined the shape of the drop-
let, due to the tessellation of the particles, and thus regular poly-
hedrals could be obtained.

Another recent research direction which combines both
approaches to material morphology control, involves the 3D
printing of droplets, fibers, or other bottom-up structures.
This is particularly innovative because it allows the forming of

Table 1. Comparison table of advantages and disadvantages of the discussed bottom-up and top-down materials fabrication methods.

Advantages Disadvantages

Bottom-up Emulsion-based Fast, scalable, low-cost, multiple compartments possible Limited to spheres (ellipsoids with film stretching)

Amphiphile assembly Mix and match components, functionality on surface, facile
synthesis

Limited to spheres/worms/fibers/vesicles, structure
and shape purity, optimization of assembly conditions

PISA Fast, scalable, low-cost, functionality on surface. Limited to spheres/worms/fibers/vesicles, structure
and shape purity, monomer and solvent limitations

Top-down Templating lithography Wide range of shapes, particle monodispersity Water-soluble materials challenging, scalability
challenging, nanoscale dimensions difficult

Flow lithography Potentially scalable with parallel devices, many shapes
possible, water solubility

Limited control over polymerization depth,
optimization of flow, and concentration parameters

3D printing Particle monodispersity, complex shapes and 3D networks
possible

Limited monomer functionality and scalability is
challenging

Combined methods Pickering emulsions Multiple compartments possible, multiple functionalities,
interfacial interactions tunable with size/shape

Multistep preparation procedures, droplet shape
limited to spheres (stabilizing particles tunable)

Hierarchical particles-in-particles Multiple compartments possible, multiple functionalities Challenging characterization and scalability

3D printing of particles Spatial confinement of self-assembled structures, functional
network formation, additional mechanical strength

of printed material

Limited monomer functionality and scalability is
challenging

Figure 9. Combining top-down and bottom-up techniques to form new
structural motifs with high complexity. A) Hierarchical particle in particle
systems, B) Pickering emulsions with anisotropic particles, and C) 3D
printing of shape-defined particles, fibers, or droplets. Inset images repro-
duced with permission.[122] Copyright 2018, American Chemical Society.
Reproduced with permission.[114] Copyright 2018, American Chemical
Society, and reproduced under the terms and conditions of the
Creative Commons Attribution license 4.0.[123] Copyright 2020, The
Authors, published by Springer Nature.
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patterns and structures with individual compartmentalized self-
assembled structures, which would not normally have long range
order. Use of top-down 3D printing can allow specific networks
to be formed, in a way that mimics naturally occurring networks
in biological tissues. Indeed, the Bayley group, and Mann group
have pioneered these methods by assembling protocells to form
synthetic tissues with complex multiscale networks capable of
signal transduction with electrical or biochemical cues.[123–125]

Hydrogel microparticles have also been assembled into respon-
sive networks, and 3D printed into tissue-like materials with
mechanical properties comparable with those of natural tis-
sues.[126,127] An elegant example discussed in Section 2 of this
review, involved the bottom-up assembly of PAs, combined with
3D printing of these peptide nanofiber hydrogels. Top-down
structure formation with the fibers allowed formation of different
regions of functionality and directed growth of neuronal cell net-
works in vitro.[48] Strategies toward hierarchical systems involv-
ing self-assembly and nanoscale morphology control have been
proposed by Ariga and co-workers.[128,129] In this case, the pro-
posed nanoarchitectonics concept aims to create a functional
material system from nanoscale units by integrating materials
fabrication and potentially also additional biological components.
There has been elegant uses of these nanoarchitected materials
in the regulation of cell behavior through their interfacial
contacts.[128,130]

5. Conclusions

Precise control over the size and shape of polymer materials is
important for the use of these systems in biomedical applica-
tions. Morphology can impact various aspects of the interaction
between synthetic materials and biological systems including:
biodistribution, vascular wall margination, and the modulation
of immune system response. This review has compared
bottom-up synthesis approaches, including emulsions and
emulsion polymerizations, the self-assembly of amphiphiles
under specific solvent/temperature/pH or salt conditions, and
biomedical applications of PISA. Top-down approaches, such
as template-based lithography techniques, flow lithography
methods, and 3D-printing-based methods have also been
summarized. A number of recent examples combining both
top-down and bottom-up methods to arrive at materials with
unique properties have been highlighted. Advances in synthetic
methods have allowed access to new anisotropic particles and has
helped drive this research. In the future, we believe there are
great opportunities to expand research combining these
approaches in new ways to access multicomponent or hierarchi-
cal systems. It is important to note however, successful transla-
tion of these materials into biological applications will require
improvements in current scalability and cost. In this regard,
3D-printing methods and lithographic methods could be more
difficult and expensive to scale-up, however, a few companies
are having success in this area including Liquidia.[131] While
bottom-up syntheses potentially have an easier path to translation
with scalable continuous flow methods already being applied to
emulsion polymerizations, PISA, and mRNA lipid nanoparticle
formation.
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