
Facultad de Ingeniería
Universidad de la República

Montevideo, Uruguay

MASTER THESIS
Thesis submitted in fulfillment of the requirements for the degree of

Magister en Informática by

Adrián Gerardo SILVEIRA LAPENNE
June 2022

A Formal Analysis of the
Mimblewimble Cryptocurrency Protocol

with a Security Approach

Directors: Dr. Carlos Luna and Dr. Gustavo Betarte

Abstract

A cryptocurrency is a digital currency that can be exchanged online for goods
and services. Cryptocurrencies are deployed over public blockchains which have the
transactions duplicated and distributed across the nodes of a computer network.
This decentralized mechanism is devised in order to achieve reliability in a network
consisting of unreliable nodes. Privacy, anonymity and security have become crucial
in this context. For that reason, formal and mathematical approaches are gaining
popularity in order to guarantee the correctness of the cryptocurrency implementa-
tions. Mimblewimble is a privacy-oriented cryptocurrency technology which provides
security and scalability properties that distinguish it from other protocols of its
kind. It was proposed by an anonymous developer, who posted a link to a text file
on the IRC channel by the name Tom Elvis Jedusor (french name for Voldemort)
in mid-2016. Mimblewimble’s cryptographic approach is based on Elliptic Curve
Cryptography which allows to verify a transaction without revealing any information
about the transactional amount or the parties involved. Mimblewimble combines
Confidential transactions, CoinJoin and cut-through to achieve a higher level of
privacy and security, as well as, scalability. In this thesis, we present and discuss these
security properties and outline the basis of a model-driven verification approach
to address the certification of the correctness of the protocol implementations. In
particular, we propose an idealized model that is key in the described verification
process. The main components of our idealized model are transactions, blocks and
chain. Then, we identify and precisely state the conditions for our model to ensure
the verification of relevant security properties of Mimblewimble. In addition, we
analyze the Grin and Beam implementations of Mimblewimble in their current state
of development. We present detailed connections between our model and their
implementations regarding the Mimblewimble structure and its security properties.

Keywords: cryptocurrency, mimblewimble, idealized model, formal verification,
security.

I

List of publications

The following publications have been generated in the context of the thesis:

1. Gustavo Betarte, Maximiliano Cristiá, Carlos Daniel Luna, Adrián Silveira,
and Dante Zanarini. Towards a formally verified implementation of the Mim-
blewimble cryptocurrency protocol. Applied Cryptography and Network Security
Workshops - ACNS 2020 Satellite Workshops, AIBlock. Rome, Italy, October
19-22, 2020, Proceedings, volume 12418 of Lecture Notes in Computer Science,
pages 3–23. Springer, 2020. [BCL+20]

2. Adrián Silveira, Gustavo Betarte, Maximiliano Cristiá, and Carlos Luna. A for-
mal analysis of the Mimblewimble cryptocurrency protocol. Special Issue “Secu-
rity, Trust and Privacy in New Computing Environments”, Sensors, 21(17):5951,
2021. [SBCL21a]

3. Adrián Silveira, Gustavo Betarte, Maximiliano Cristiá, and Carlos Luna. A
range proof scheme analysis for the Mimblewimble cryptocurrency protocol.
IEEE UruCon 2021. [SBCL21b]

I

II

Contents

1 Introduction . 1
1.1 Cryptocurrency Security . 1
1.2 Related Work . 2
1.3 Aims and structure of the thesis . 4

2 The Mimblewimble Protocol . 5
2.1 Transactions . 5
2.2 Verification of transactions . 6
2.3 Authentication of transactions . 7

3 Schemes and Protocols . 9
3.1 Commitment Scheme . 9
3.2 Range Proof Scheme . 10
3.3 Schnorr Signature Protocol . 11

4 Idealized Model . 13
4.1 Transactions . 13
4.2 Transaction construction . 15
4.3 Aggregate Transactions . 17
4.4 Unconfirmed Transaction Pool . 20
4.5 Blocks and chains . 20
4.6 Validating a chain . 23

5 Properties . 25
5.1 Protocol Properties . 25
5.2 Privacy and Security Properties . 28

5.2.1 Security properties of Pedersen commitments 28
5.2.2 Switch commitments . 32
5.2.3 Security properties of range proofs . 32

5.3 Unlinkability and Untraceability . 35

6 Implementations . 39
6.1 Grin . 39

6.1.1 Blocks and Transactions . 39
6.1.2 Privacy and Security Properties . 40

6.2 Beam . 40

III

IV Contents

6.2.1 Blocks and Transactions . 41
6.2.2 Privacy and Security Properties . 41

6.3 Discussion . 41
6.3.1 Broadcasting Protocol . 41
6.3.2 Range proofs . 42
6.3.3 Some Design Decisions . 42

7 Conclusions and Future Work . 45
7.1 Final remarks . 45
7.2 Future work . 46

8 Appendix . 49
8.1 Math symbols and abbreviations . 49
8.2 Grin and Beam source code . 49

1
Introduction

A cryptocurrency is a digital currency that can be exchanged online for goods and
services. Through a cryptocurrency exchange it can be converted into cash and vice
versa. Many cryptocurrencies work using a technology called blockchain which is
a distributed ledger of transactions that is duplicated and distributed across the
nodes of a computer network. A defining feature of cryptocurrencies is that there is
no central trusted authority. The ledger is maintained by using a consensus-based
validation protocol where transactions are constructed in a peer-to-peer fashion and
broadcasted to the entire set of participants who work to validate them and construct
blocks. Therefore, the consensus algorithm is what decides which is the next block
to be appended to the blockchain. This decentralized mechanism is devised in order
to achieve reliability in a network consisting of unreliable nodes. Next, we present
relevant security aspects of the cryptocurrencies and the importance of applying
formal methods for the verification of their implementations. Then, we state the
aims and the structure of this thesis.

1.1 Cryptocurrency Security
Cryptocurrency protocols deal with virtual money. Thus, they are a valuable target
for highly skilled attackers. Several attacks have already been mounted against
cryptocurrency systems, causing irreparable losses of money and credibility (e.g.
[But]). Furthermore, it is necessary to understand virtual money in the context of a
global financial system which has been deteriorated due to the COVID-19 pandemic
[MV].

In this context, security and confidential properties have become even more cru-
cial. For this reason the cryptocurrency community is seeking approaches, methods,
techniques and development practices that can reduce the chances of successful
attacks. One such approach is the application of formal methods to software im-
plementation. In particular, interest in formal proofs and formally certified imple-
mentations has increased [Ros20, GKGG21]. Formal and mathematical approaches

1

2 Chapter 1. Introduction

are also gaining popularity in the field of service industries, where they are used
to analyze and propose solutions to problems. For instance, An et al. [AMJ21]
modeled a network revenue management problem and proposed a genetic algorithm
to maximize revenue providing computational experiments. Results demonstrated
the effectiveness of this approach.

Security (idealized) models have played an important role in the design and
evaluation of high assurance security systems. Their importance was already pointed
out in the Anderson report [And]. The paradigmatic Bell-LaPadula model [LBL],
conceived in 1973, constituted the first big effort to provide a formal setting to study
and reason on confidentiality properties of data in time-sharing mainframe systems.
In that work, the authors provide a general descriptive model of a computer system
involving formally precised security concepts like simple-security, discretionary-
security and the star-property over State machines. State machines can be employed
as the building block of a security model. The basic features of a state machine
model are the concepts of state and state change. A state is a representation of
the system under study at a given time, which should capture those aspects of the
system that are relevant to the analyzed problem. State changes are modeled by
a state transition function that defines the next state based on the current state
and input. If one wants to analyze a specific safety property of a system using a
state machine model, one must first specify what it means for a state to satisfy the
property, and then check if all state transitions preserve it. Thus, state machines
can be used to model the enforcement of a security policy.

Mimblewimble (MW) is a privacy-oriented cryptocurrency technology encompass-
ing security and scalability properties that distinguish it from other technologies of
its kind. MW was first proposed in 2016 [Jed]. The idea was then further developed
by Poelstra [Poe]. In MW, unlike Bitcoin [Nak], there is no such concept as an
address, and all the transactions are confidential. The approach of this thesis is based
on formal software verification aimed at formally verifying the basic mechanisms of
MW and its implementations [Grid, Fou]. Security issues that pertain to the realm
of critical mechanisms of the MW protocol are explored on an idealized model of this
system. Such model abstracts away the specifics of any particular implementation,
and yet provides a realistic setting. Verification should be then performed on more
concrete models, where low level mechanisms are specified. Finally the low level
model should be proved to be a correct implementation of the idealized model.

1.2 Related Work

Developers of cryptocurrency software have already shown interest in using mathe-
matics as a tool to describe software. In fact, both Nakamoto, in his seminal paper
on Bitcoin [Nak], and Wood, in his description of the Ethereum Virtual Machine
(EVM) [Woo], make use of mathematical constructs. In particular, in the latter
work it is explained the Ethereum blockchain as a transaction-based state machine
and the programs to be executed on the EVM are called smart contracts. However,

1.2. Related Work 3

those descriptions can not be understood as Formal Methods (FM) because they
are neither based on standardized notations nor on clear mathematical theories.

Sestrem et. al [SOASdM+20] have pointed out the importance of privacy and
security over Smart grid systems. They proposed a sidechain architecture which
is built up of three different blockchains. They claimed that their solution ensures
system privacy, security, and reliability. In particular, one of those blockchains is
responsible for ensuring such properties in the system, which are verified performing
several tests using the Loom Platform. In this kind of scenarios, a formal definition
of those security properties would help to understand what is required to be proved,
independently of any particular implementation.

In addition, the FM community has started to pay attention to cryptocurrency
software. Idelberger et al. [IGRS16] proposed to use defeasible logic frameworks
such as Formal Contract Logic for the description of smart contracts. However, in
that work the authors did not analyze cryptocurrency protocols nor the necessary
conditions to guarantee security properties that those protocols should satisfy.

Bhargavan et al. [BDLF+16] compiled Solidity programs into a verification-
oriented functional language where they can verify the source code. Although
the paper describes a framework to analyze and verify both the runtime security
and the functional correctness of blockchain systems, the work only focuses on
smart contracts. Luu et al. [LCO+16] used the Oyente tool to find and detect
vulnerabilities in smart contracts. Hirai [Hir17] used Lem to formally specify the
EVM; Grishchenko, Maffei and Schneidewind [GMS18] also formalized the EVM but
in F*; and Hildenbrandt et al. did the same but with the reachability logic system
known as K. Pîrlea and Sergey [PS18] presented a Coq [The, BC04] formalization
of a blockchain consensus protocol where some properties are formally verified.

More recently, Rosu [Ros20] presented academic and commercial results about
the development of blockchain languages and virtual machines that come directly
equipped with formal analysis and verification tools. Hajdu et al. [HJC20] developed a
source-level approach for the formal specification and verification of Solidity contracts
with the primary focus on events. Santos Reis et al. [RCdS20] introduced Tezla, an
intermediate representation of Michelson smart contracts that eases the design of
static smart contract analyzers. In [BGW20], Boyd et al. presented a blockchain
model in Tamarin, that is useful for analyzing certain blockchain based protocols.
On the other hand, Garfatta et al. [GKGG21] described a general overview of the
different axes investigated actually by researchers towards the (formal) verification
of Solidity smart contracts. Tolmach et al. [TLL+21] investigated formal models and
specifications of smart contracts and presented a systematic overview to understand
common trends, although they did not specifically consider security in cryptocurrency
protocols.

Additionally, Metere and Dong [MD17] presented a mechanized formal verifi-
cation of the Pedersen commitment protocol using EasyCrypt [BDG+13] and
Fuchsbaue et al. [FOS19] introduced an abstraction for the analysis of some security
properties of MW. Our work assumes some of these results to formalize and analyze
the MW protocol, to then propose a methodology to verify their implementations.

4 Chapter 1. Introduction

1.3 Aims and structure of the thesis

The goal of the present work was to identify and analyze the main components of the
MW protocol in order to build an idealized model and verify security properties. The
specific objectives were to i) identify and specify the based schemes and protocols
of MW, ii) identify and define the main components of our model, iii) define and
verify relevant security properties and iv) compare our model with the most popular
implementations of MW: Grin and Beam.

This thesis builds upon and extends previously published papers [BCL+20,
SBCL21a, SBCL21b]. In those papers, we have presented elements that comprise
the essential steps towards the development of an exhaustive formalization of the
MW cryptocurrency protocol and the analysis of some of its properties. In particular,
we have defined the main components of our idealized model and provided validity
conditions to guarantee the correctness of the blockchain. In addition, we have
identified and precisely stated the conditions for our model to ensure the verification
of relevant security properties of MW. We have studied the protocol and security
properties a MW blockchain should have as well as security properties of the Pedersen
commitment and range proofs schemes. The proposed idealized model constitutes
the main contribution together with the analysis of the essential properties it is
shown to verify. We have also introduced and discussed the basis of a model-driven
verification approach to address the certification of the correctness of a protocol’s
implementation. Finally, we have compared two MW implementations, Grin [Grid]
and Beam [Fou], with our model and we have discussed some features that set them
apart.

The work presented here closely follows the approach of [BCL+21] where we
have outlined some formal methods related techniques that we consider particularly
useful for cryptocurrency software.

My main contributions to this work were, firstly, to conceptualize and model the
main components of the MW protocol. Secondly, to define the schemes the model is
based on. Thirdly, to analyze some relevant security properties a cryptocurrency
protocol should have. Then, to define and prove these properties on the model.
Finally, to analyze and compare the main two MW implementations with our model.

The thesis is organized as follows. Chapter 2 provides a brief description of MW.
Chapter 3 defines the schemes and protocols our model is based on. Chapter 4
describes the building blocks of a formal idealized model (abstract state machine) of
the computational behavior of MW. Chapter 5 states the verification activities we
are putting in place in order to verify the protocol and its implementation. Then,
Chapter 6 analyzes the Grin and Beam implementations of MW in their current
state of development. Final remarks and directions for future work are presented in
Chapter 7.

Table 8.1 in Appendix 8.1 shows the list of abbreviations and acronyms. Table
8.2 provides the meaning of the math symbols used throughout this work.

2
The Mimblewimble Protocol

In August 2016, someone called "Tom Elvis Jedusor” (french name for Voldemort
in Harry Potter) posted a link to a text file on the IRC Channel describing a
cryptocurrency protocol with a different approach from BitCoin. This article titled
‘Mimblewimble’ [Jed] addressed some privacy concerns and the ability of compressing
the transaction history of the chain without losing validity verification. Since this
document left some questions open, in October 2016 Andrew Poelstra published a
paper [Poe] where he described, in more detail, the design of a blockchain based on
MW. Next, we describe how money transfer is carried out on the MW protocol and
the schemes and protocols our model is based on.

2.1 Transactions

Suppose Alice and Bob agree on a money transfer. Alice wants to send v coins to
Bob. They communicate off-chain and create the MW transaction which includes
the transaction amount v.

Alice Bob

transaction

In MW, transactions are Confidential transactions [Maxb, Gib]. A transaction
allows a sender (Alice) to encrypt the amount v of bitcoins by using blinding factors.
In a confidential transaction only the two parties involved know the amount of
bitcoins being exchanged. However, for anyone observing the transaction it is possible
to verify its validity by comparing the number of inputs and outputs; if both are the
same, then the transaction will be considered valid. Such procedure ensures that
no money have been created from nothing and is key in preserving the integrity of

5

6 Chapter 2. The Mimblewimble Protocol

the system. In MW transactions, the recipient (Bob) randomly selects a range of
blinding factors provided by the sender, which are then used as proof of ownership
by the receiver.

The MW protocol aims at providing the following properties [Jed, Grid]:

• Verification of zero sums without revealing the actual amounts involved in a
transaction, which implies confidentiality.

• Authentication of transaction outputs without signing the transaction.
• Good scalability, while preserving security, by generating smaller blocks—or
better, reducing the size of old blocks, producing a blockchain whose size does
not grow in time as much as, for instance, Bitcoin’s.

The first two properties are achieved by relying on Elliptic Curves Cryptography
(ECC) operations and properties. The third one is a consequence of the first two.

2.2 Verification of transactions

If v is the value of a transaction (either input or output) and H is a point over an
elliptic curve, then v.H encrypts v because it is assumed to be computationally
hard to get v from v.H if we only know H . However, if w and z are other values
such that v +w = z , then if we only have the result of encrypting each of them with
H we are still able to verify that equation. Indeed:

v + w = z ⇔ v.H + w.H = z.H

due to simple properties of scalar multiplication over groups. Therefore, with this
simple operations, we can check sums of transactions amounts without knowing the
actual amounts.

Nevertheless, if we have previously encrypted v with H and now we see v.H , we
know that it is the result of encrypting v. In the context of blockchain transactions
this is a problem because once a block holding v.H is saved in the chain it will reveal
all the transactions of v coins. For such problems, MW encrypts v as r .G+v.H where
r is a scalar and G is another point in H ’s elliptic curve, r is called blinding factor
and r .G + v.H is called Pedersen commitment. By using Pedersen commitments,
MW allows the verification of expressions such as v + w = z providing more privacy
than the standard scheme. In effect, if v + w = z then we choose rv, rw and rz such
that rv.G + rw.G = rz .G and so the expression is recorded as:

v︷ ︸︸ ︷
(rvG + v.H)+

w︷ ︸︸ ︷
(rw.G + w.H) =

z︷ ︸︸ ︷
rz .G + z.H

making it possible for everyone to verify the transaction without knowing the true
values.

2.3. Authentication of transactions 7

2.3 Authentication of transactions

Consider that Alice has received v coins and this was recorded in the blockchain
as rA.G + v.H , where rA was chosen by her to keep it private. Now she wants to
transfer these v coins to Bob.

Alice: (rA, v) Bob

v coins

As a consequence, Alice looses v coins and Bob receives the very same amount,
which means that the transaction adds to zero: rA.G+v.H−(rA.G+v.H) = 0.G−0.H .
However, Alice now knows Bob’s blinding factor because it must be the same chosen
by her (so the transaction is balanced). In order to protect Bob from being stolen
by Alice, MW allows Bob to add his blinding factor, rB, in such a way that the
transaction is recorded as:

(rA + rB).G + v.H − (rA.G + v.H) = rB.G − 0.H

although now it does not sum zero.

Alice: (rA, v) Bob: (rB, v)

v coins

However, this excess value is used as part of an authentication scheme. Indeed,
Bob uses rB as a private key to sign the empty string (ε). This signed document is
attached to the transaction so in the blockchain we have:

• Input: I .
• Output: O.
• Bob’s signed document: S .

In this way, the transaction is valid if the result of decrypting S with I −O (in the
group generated by G) yields ε. If I −O does not yield something in the form of
rB.G − 0.H , then ε will not be recovered and so we know there is an attempt to
create money from thin air or there is an attempt to steal Bob’s money.

8 Chapter 2. The Mimblewimble Protocol

3
Schemes and Protocols

A commitment scheme is a cryptographic primitive that allows a player in a protocol
to choose a value and commit to his choice such that he can no longer change his mind.
The value is kept hidden to others with the ability to reveal the committed value
later. In MW transactions, the transaction amounts and blinding factors are hidden
in Pedersen commitments. It means that for someone observing the transaction,
it is hard (in terms of complexity) to know any of them. In addition, since the
transaction amounts are hidden, it should be possible to verify that the values are
positive without revealing any information about them. Range proofs should be
provided to guarantee the transactional amount lies in some range. Moreover, a
transaction contains a signature to guarantee it was honestly constructed. Next, we
define the schemes and protocols our model is based on.

3.1 Commitment Scheme

A commitment scheme [Cré11] is a two-phase cryptographic protocol between two
parties: a sender and a receiver. At the end of the commit phase the sender is
committed to a specific value that he cannot change later and the receiver should
have no information about the committed value.

A non-interactive commitment scheme [BBB+18] can be defined as follows:

Definition 3.1 (Non-interactive Commitment Scheme). A non-interactive
commitment scheme ζ(Setup,Com) consists of two probabilistic polynomial time
algorithms, Setup and Com, such that:

• Setup generates public parameters for the scheme depending on the security
parameter λ.

• Com is the commitment algorithm: Com : M ×R→ C, where M is the message
space, R the randomness space and C the commitment space. For a message
m ∈ M, the algorithm draws uniformly at random r ← R and computes the
commitment com ← Com(m, r).

9

10 Chapter 3. Schemes and Protocols

We have simplified the notation, but it is essential to remember that Com, M ,
R and C depend on the parameters generated by Setup.

The commitment scheme is homomorphic if:

∀m1,m2 ∈ M , r1, r2 ∈ R:

Com(x1, r1) + Com(x2, r2) = Com(x1 + x2, r1 + r2)

In other words, Com is additive in both parameters.
Transactions in MW are derived from Confidential transactions [Maxb], which

are enabled by Pedersen commitments with homomorphic properties over elliptic
curves. We define the non-interactive Pedersen commitment scheme we will use in
our model, based on Definition 3.1, as follows:

Definition 3.2 (Pedersen Commitment Scheme with Elliptic Curves). Let
M and R be the finite field Fn and let C be an elliptic curve of prime order n.

As in Definition 3.1, the probabilistic polynomial time algorithms are defined as:

• Setup generates the order n (dependent on the security parameter λ) and two
generator points G and H on the elliptic curve C of prime order n whose discrete
logarithms relative to each other are unknown.

• Com(v, r) = r .G + v.H, with v the transactional value and r the blinding factor
choosen randomly in Fn.

Security properties of this commitment scheme (for MW) will be analyzed in
Chapter 5.2.1.

Each MW transaction contains a list of range proofs of the transactional values.
Next, we define the range proof scheme we will analyze in our model.

3.2 Range Proof Scheme

Range proofs aim at proving that a secret value is in a certain range without
revealing the value. Transactions in MW contain a list of range proofs proving that
the transactional values are positive and less than a certain upper bound to avoid
overflow errors. We define a non-interactive zero-knowledge (NIZK) range proof
scheme from a commitment scheme as follows:

Definition 3.3 (NIZK Range Proof Scheme). Let ζ(Setup,Com) be a Pedersen
commitment scheme as in Definition 3.2. Let P be the range proof space for the
values v ∈ M such that v lies in some range [a, b]. A non-interactive zero-knowledge
range proof scheme η(Prove,Verify) consists of two probabilistic polynomial time
algorithms, Prove and Verify, such that:

• Prove : M × R × C → P, which receives a value v, the random value r and the
commitment c = Com(v, r) and computes the range proof for the value v; and

• Verify : C ×P → bool, that given a commitment value and a range proof, decides
if the value is in the range.

3.3. Schnorr Signature Protocol 11

Notice that, the Prove algorithm computes a zero-knowledge proof to the com-
mitment in order to verify that the committed value is in a certain range. In other
words, the proof enables a prover to convince a verifier that the statement holds
without revealing any information about the secret value.

3.3 Schnorr Signature Protocol

The construction of the MW transaction is made off-chain by the parties. For
simplicity, we will work with a signature protocol between two parties but this can
be generalized to multi-parties.

During the transaction construction, as we will see in Chapter 4.2, Alice needs
to verify Bob’s Schnorr signature. Schnorr signature protocols can be applied over
any group where discrete logarithm is hard, in our case, over an elliptic curve C.

Next, we define the Schnorr signature protocol used by them during the transac-
tion construction. The message m can be the empty string.

Definition 3.4 (Schnorr Signature Protocol). Let C be an elliptic curve of
prime order n with generator G. Let hash : {0, 1}∗ → Fn be a cryptographic hash
function over the finite field Fn. Alice secretly knows kA ∈ Fn whose public key is
KA = kA.G

Signing
The following steps are followed to create a signature on a message m ∈ {0, 1}∗:

1. Alice chooses nonce nA $← Fn
2. She computes public key NA = nA.G
3. She computes e = hash(NA | KA | m) and sA = nA + e.kA where | denotes

concatenation and NA,KA are represented as a bit string.
4. The signature σ is defined as follows:

σ = (sA,NA)

with public key KA

Validating
A signature σ = (sA,NA) is valid if the following holds:

sA.G = NA + e.KA

Each MW transaction contains a signature σ made by the parties during the
transaction construction which can be seen as a Schnorr multi-signature.

Next, a Schnorr signature protocol aggregation is defined according to our model.

Definition 3.5 (Schnorr Signature Protocol Aggregation). Let C be an el-
liptic curve of prime order n with generator G. Let hash : {0, 1}∗ → Fn be a
cryptographic hash function over the finite field Fn. Alice and Bob secretly know
kA, kB ∈ Fn whose public keys are KA = kA.G and KB = kB.G respectively.

12 Chapter 3. Schemes and Protocols

Signing
The following steps are followed to create a multisignature on a message m ∈

{0, 1}∗:

1. Alice and Bob choose nonces nA,nB $← Fn respectively
2. They compute public keys NA = nA.G and NB = nB.G
3. They compute e = hash(NA +NB | KA +KB | m) and respectively compute:

sA = nA + e.kA

sB = nB + e.kB

4. The agregate singature σ is defined as follows:

σ = (sa + sB,NA +NB)

with the aggregate public key KA +KB

Validating
A signature σ = (sa + sB,NA +NB) is valid if the following holds:

(sA + sB).G = NA +NB + e.(KA +KB) (3.1)

Next, we show that a signature σ honestly constructed will be valid.
If we consider the signing process, we know that: sA = nA + e.kA and sB =

nB + e.kB
By applying algebraic properties on elliptic curves, the left term on the equality

3.1 can be written as:

(sA + sB).G = (nA + e.kA).G + (nB + e.kB).G =

nA.G + e.kA.G + nB.G + e.kB.G = nA.G + nB.G + e.(kA.G + kB.G)

So, if we substitute the left term on the equality 3.1, we have:

nA.G + nB.G + e.(kA.G + kB.G) = NA +NB + e.(KA +KB)

The above equality holds because:

NA = nA.G, KA = kA.G and NB = nB.G, KB = kB.G

(NA,KA) are Alice’s public keys and (NB,KB) are Bob’s public keys. Since we are
working over the elliptic curve C where the discrete logarithm is hard, the only ones
who know the private keys (nA, kA) and (nB, kB) are Alice and Bob respectively.

4
Idealized Model

The basic elements of our model are transactions, blocks and chains. Each node in
the blockchain maintains a local state. The main components are the local copy of
the chain and the set of transactions waiting to be validated and added to a new
block. Moreover, each node keeps track of unspent transaction outputs (UTXOs).
Properties such as zero-sum and the absence of double spending in blocks and chains
must be proved for local states. The blockchain global state can be represented as a
mapping from nodes to local states. Next, we define all the elements which compose
our idealized model.

4.1 Transactions

Given two fixed generator points G and H on the elliptic curve C of prime order n
(whose discrete logarithms relative to each other are unknown), we define a single
transaction between two parties as follows:

Definition 4.1 (Transaction). A single transaction t is a tuple of type:

Transaction def
= {i : I

∗
, o : O

∗
, tk : TxKernel, tko : KOffset}

with X∗ representing the lists of elements of type X and where:

• i = [c1, ..., cn] and o = [o1, ..., om] are the lists of inputs and outputs. Each
input ci and output oi are points over the curve C and they are the result of
computing the Pedersen commitment r .G + v.H with r the blinding factor and v
the transactional value in the finite field Fn.

• tk = {rp, ke, σ} is the transaction kernel where:
– rp = [rp1, ..., rpm] is a list of range proofs of the outputs. The j − th item
rpj in rp corresponds to the j − th item oj in o

– ke is the transaction excess represented by (
∑m

1 r ′ −
∑n

1 r − tko).G

13

14 Chapter 4. Idealized Model

– σ is the kernel Schnorr signature (for simplicity, fees are left aside)
• tko ∈ Fn is the transaction kernel offset.

The transaction kernel offset will be used in the construction of a block to satisfy
security properties.

The ownership of a coin is given by the following definition:

Definition 4.2 (Ownership). Given a transaction t, we say S owns the output o
if S knows the opening (r , v) for the Pedersen commitment o = r .G + v.H.

The strength of this security definition is directly related to the difficulty of
solving the logarithm problem. If the elliptic curve discrete logarithm problem in
C is hard then given a multiple Q of G, it is computationally infeasible to find an
integer r such that Q = r .G.

It is important to notice that during the construction of the transaction the
sender and the receiver do not learn their respective blinding factors. Instead, they
build a Schnorr signature that is used to guarantee the authenticity of the transaction
excess value.

We say that a transaction is valid if the following property holds:

Property 4.3 (Valid Transaction). A transaction t is valid (valid transaction(t)) if t
satisfies:

i. The range proofs of all the outputs are valid.
ii. The transaction is balanced.
iii. The kernel signature σ is valid for the excess.

These three properties have a straightforward formalization in our model.
The first property we should guarantee is that all the range proofs of all the

outputs are valid.

Definition 4.4 (Valid Range Proof Outputs Transaction). Let t = {i, o, tk, tko}
be a transaction as in Definition 4.1 with transaction kernel tk = {rp, ke, σ} where
o = [o1, ..., om] is the list of outputs and rp = [rp1, ..., rpm] is the list of the range
proof outputs. Let η(Prove,Verify) be a NIZK scheme as in Definition 3.3 with P
the range proof space where rpj ∈ P proves that oj lies in the range [0, 2n] where
n is small enough to not cause overflow errors. We say all the range proof output
transactions are valid if: for all rpj ∈ rp, Verify(oj , rpj) = true.

The list of range proof outputs provide a proof that each transactional output is
positive, without revealing further information.

The second property is defined as follows:

Definition 4.5 (Balanced Transaction). A transaction t = {i, o, tk, tko}, with
transaction kernel tk = {rp, ke, σ}, is balanced if the following holds:∑

oj∈o
oj −

∑
cj∈i

cj = ke + tko.G

4.2. Transaction construction 15

A balanced transaction guarantees no money is created from thin air.
The kernel signature σ is a Schnorr signature aggregation with the kernel excess

ke as the public key.
Note that, for simplicity during the transaction construction, in Definition 3.5

we consider a Schnorr signature aggregation between two parties, however, once the
transaction is constructed it is not necessary to know the parties involved.

The third property is defined as follows:

Definition 4.6 (Valid Signature for the kernel excess). Let t = {i, o, tk, tko}
be a transaction as in Definition 4.1 with transaction kernel tk = {rp, ke, σ} where:

• rp is a list of range proofs of the outputs.
• ke is the transaction excess.
• σ = (s,N) is the kernel Schnorr signature aggregation as in Definition 3.5 on
the empty string m.

We say the kernel signature σ is valid with public key ke if the following holds:
s.G = N + e.ke such that e = hash(N | ke)

To illustrate the above definition, we detail the transaction construction between
two parties.

4.2 Transaction construction

Suppose Alice wants to send vB coins to Bob. They need to construct a transaction
tr , as in Definition 4.1, which contains:

• Alice’s Input Ain , such that she knows the opening (rA, vA) with rA the blinding
factor.

• Bob’s Output Bout such that he knows the opening (rB, vB) with rB the blinding
factor and Alice’s change Cout such that she knows the opening (rC , vC) with
rC the blinding factor. Let vC be vA − vB.

The following image illustrates the target transaction tr .

Alice Bob

tr(Ain,Bout || Cout , tk(rp, ke, σ), tko)

The symbol || is the list concatenation operator.

16 Chapter 4. Idealized Model

To construct the transaction, Alice and Bob will exchange the information using
a data structure called slate.

Step 1

• Alice adds Ain and the amount vB to the slate.
• Alice chooses rC $← Fn (blinding factor) and computes Cout = rC .G + vC .H
(Definition 3.2). Additionally, she computes the output range proof rpC =
Prove(vC , rC ,Cout) (Definition 3.3) which will be added to the transaction in
the step 3.

• Alice chooses the kernel offset tko $← Fn and computes Alice’s kernel excess
secret key as:

keA = rC − rA − tko (4.1)

• Alice adds to the slate: tko and Alice’s kernel excess as KEA = keA.G
• Alice chooses nonce nA $← Fn and adds the public key NA = nA.G to the slate.
• Alice sends the slate to Bob.

Alice Bob

slate(Ain, vB, tko,KEA,NA)

Step 2

• Bob chooses rB $← Fn (blinding factor) and computes Bout = rB.G + vB.H
Additionally, he computes the output range proof rpB = Prove(vB, rB,Bout). He
adds Bout to the slate.

• Bob computes Bob’s kernel excess as:

KEB = rB.G (4.2)

and adds it to the slate.
• Bob chooses nonce nB $← Fn and adds the public key NB = nB.G to the slate.
• Bob calculates the receiver Schnorr signature on the empty string as σB =
(sB,NB) where:
sB = nB + e.rB such that e = hash(NA +NB | KEA +KEB)

• Bob adds σB = (sB,NB) to the slate.
• Bob sends the slate to Alice.

Alice Bob

slate(Bout , rpB,KEB,NB, σB)

4.3. Aggregate Transactions 17

Step 3

• Alice verifies Bob’s signature σB = (sB,NB) as in Definition 3.4:
sB.G = NB + e.KEB such that e = hash(NA +NB | KEA +KEB)

• Alice computes the sender Schnorr signature on the empty string as σA =
(sA,NA) where:
sA = nA + e.keA such that e = hash(NA +NB | KEA +KEB)

• Alice sets the kernel excess ke := KEA +KEB.
• Alice sets the kernel signature σ := (sA + sB,NA +NB).

Finally, Alice and Bob have computed all the remaining fields of the transaction:

Alice Bob

tr(Ain,Bout || Cout , tk(rp, ke, σ), tko)

where

- rp := [rpA, rpB]
- ke := KEA +KEB
- σ := (sA + sB,NA +NB)

It is important to notice that the kernel excess ke is the same as in Definition
4.1 represented by (

∑m
1 r ′ −

∑n
1 r − tko).G as shown by the following equations:

- by Equation 4.1, KEA = keA.G = (rC − rA − tko).G
- by Equation 4.2, KEB = rB.G

Then, ke = KEA +KEB = (rC − rA − tko).G + rB.G = (rC + rB − rA − tko).G.
which is the sum of the output blinding factors minus the input blinding factor
minus the transaction kernel offset.

In addition, we can highlight that during the transaction construction:

• Alice does not learn Bob’s blinding factor rB.
• Bob does not learn Alice’s blinding factor rC .
• Bob does not learn Alice’s change amount vA − vB.

4.3 Aggregate Transactions

A single transaction can be seen as the sending of money between two parties. An
aggregate transaction represents transactions between multiple parties:

Definition 4.7 (Aggregate Transaction). An aggregate transaction tx is a tuple
of type:

TransacAgg def
= {i : I

∗
, o : O

∗
, tks : TxKernel

∗
, tko : KOffset}

18 Chapter 4. Idealized Model

A single transaction (Definition 4.1) can be seen as a particular case where the
transaction kernel list contains a single element. Besides, the ownership of the coins
is between two parties.

We say that an aggregate transaction is valid if the following property holds:

Property 4.8 (Valid Aggregate Transaction). Let tx = {i, o, tks, ko} be an aggregate
transaction with tks = [tk1, ..., tkt] the list of transaction kernels where the j-th item
in tks is of the form tkj = {rpj , kej , σj}. Then tx is valid if the following are satisfied:

i. all the range proofs rpj are valid.
ii. the transaction is balanced.
iii. all the kernel signatures σj are valid for the excess kej .

A balanced aggregate transaction is defined as follows:

Definition 4.9 (Balanced Aggregate Transaction). Let tx = {i, o, tks, ko} be
an aggregate transaction with tks = [tk1, ..., tkt] the list of transaction kernels and
where the j-th item in tks is of the form tkj = {rpj , kej , σj}. We say tx is balanced if
the following holds: ∑

oj∈o
oj −

∑
cj∈i

cj = ko.G +
∑

kej∈tks
kej

Transactions can be merged non-interactively to construct an aggregate trans-
action. This process can be applied recursively to add more transactions into one
aggregate transaction. The CoinJoin mechanism [Maxa] makes it possible. It com-
bines all inputs and outputs from separate transactions to form a single transaction,
and the signatures can be composed by the parties. A Transaction Join can be
understood as a simple way to perform CoinJoin with no composite signatures.

Definition 4.10 (Transaction Join). Given a valid transaction t0 and an aggre-
gate transaction tx:

t0 = {i0, o0, tk0, tko0} and tx = {i, o, tks, tko}

a new aggregate transaction can be constructed as:

tx = {i0 || i, o0 || o, tk0 || tks, tko0 + tko}

The validity of an aggregate transaction is guaranteed by the validity of the
transactional parties during the construction process.

Lemma 4.11 (Invariant: CoinJoin Validity). Given a valid transaction t0 and
a valid aggregate transaction tx.Let tx ′ be the result of aggregating t0 into tx as in
Definition 4.10. Then, tx ′ is valid.

4.3. Aggregate Transactions 19

Proof.

Let t0 = {i0, o0, tk0, tko0} be a transaction with tk0 = {rp0, ke0, σ0}. Let tx =
{i, o, tks, tko} be an aggregate transaction with tks = [tk1, ..., tkt], the list of transac-
tion kernels where each tki is tki = {rpi , kei , σi}.

Applying Definition 4.10, we have that the resulting tx ′ is of the form:

tx ′ = {i ′, o′, tks′, ko′}

with i ′ = i0 || i, o′ = o0 || o, tks′ = [tk0, tk1, ..., tkt], ko′ = tko0 + ko

According to Property 4.8, we need to show that:
i) the range proofs of all the transaction outputs are valid.

It means that, according to Definition 4.4, it is necessary to prove that:
for all rpj ∈ rp, Verify(oj , rpj) = true where rp = [rp0, rp1, ..., rpt]
Since, t0 and tx are valid transactions, in particular it holds that the range proofs

of all the transaction outputs are valid:

• transaction t0: Verify(o0, rp0) = true
• transaction tx : for all rpj ∈ rp, Verify(oj , rpj) = true where rp = [rp1, rp1, ..., rpt]

ii) the transaction tx ′ is balanced.
According to Definition 4.9, we need to prove the following equality holds for

the aggregate transaction tx ′:∑
oj∈o′

oj −
∑
cj∈i′

cj = ko′.G +
∑

kej∈tks′
kej

Each term can be written as follows:

(
∑

oj∈o0

oj +
∑
oj∈o

oj)− (
∑
cj∈i0

cj +
∑
cj∈i

cj) = (tko0 + ko).G + ke0 +
∑

kej∈tks
kej

Rearranging the equality and using algebraic properties on elliptic curves, we have:

(
∑

oj∈o0

oj −
∑
cj∈i0

cj) + (
∑
oj∈o

oj −
∑
cj∈i

cj) = (ke0 + tko0.G) + (ko.G +
∑

kej∈tks
kej)

(4.3)
Now, we apply the hypothesis concerning the validity of t0 and tx . In particular,

applying Definition 4.5 for t0 and Definition 4.9 for tx, we have the following
equalities are true: ∑

oj∈o0

oj −
∑
cj∈i0

cj = ke0 + tko0.G (4.4)

and ∑
oj∈o

oj −
∑
cj∈i

cj = ko.G +
∑

kej∈tks
kej (4.5)

20 Chapter 4. Idealized Model

Now, if we substitute the left part of Equation 4.3 with the right parts of Equation
4.4 and Equation 4.5, we have:

(ke0 + tko0.G) + (ko.G +
∑

kej∈tks
kej) = (ke0 + tko0.G) + (ko.G +

∑
kej∈tks

kej)

iii) all the kernel signatures are valid for the excess.
The list of transaction kernels of tx ′ is tks = [tk0, tk1, ..., tkt] where each tki is

tki = {rpi , kei , σi}.
We need to prove that, for each i ∈ {0, .., t}, σi is valid for the excess kei which

holds trivially:

• since t0 is a valid transaction, according to Property 4.3, σ0 is valid for the
excess ke0 .

• since tx is a valid aggregate transaction, according to Property 4.8, for each
i ∈ {1, .., t}, σi is valid for the excess kei .

ut
Although in our model aggregate transactions and blocks are essentially the

same, we are interested in distinguishing them. That is because the unconfirmed
transaction pool will contain aggregate transactions and the chain will contain
blocks. Since our idealized model is being built in an incremental iterative way, this
distinction allow us to identify and add components in a separate way. For instance,
we could add and analyze block headers to state validity conditions over the chain.
On the other hand, aspects of different security properties will be analyzed on
aggregate transactions and blocks. In an aggregate transaction, an adversary could
find out which input cancel which output. They could try all possible permutations
and verify if they summed to the transaction excess. The property of transaction
unlinkability will be proved over blocks, as we will see in Property 5.10.

4.4 Unconfirmed Transaction Pool

The unconfirmed transaction pool (mempool) contains the transactions which have
not been confirmed in a block yet.

Definition 4.12 (Mempool). A mempool mp is a list of type:

Mempool def
= AggregateTransaction

∗

4.5 Blocks and chains

The genesis block Gen is a special block since it is the first block ever recorded in
the chain. Transactions can be merged into a block. We can see a block as a big
transaction with aggregated inputs, outputs and transaction kernels.

4.5. Blocks and chains 21

Definition 4.13 (Block). A Block b is either the genesis block Gen, or a tuple of
type:

Block def
= {i : I

∗
, o : O

∗
, tks : TxKernel

∗
, ko : KOffset}

where:

• i = [c1, ..., cn] and o = [o1, ..., om] are the lists of inputs and outputs of the
transactions.

• tks = [tk1, ..., tkt] is the list of t transaction kernels.
• ko ∈ Fn is the block kernel offset which covers all the transactions of the block.

We can say a block is balanced if each aggregated transaction is balanced.

Definition 4.14 (Balanced Block). Let b = {i, o, tks, ko} be a block with tks =
[tk1, ..., tkt] the list of transaction kernels where the j-th item in tks is of the form
tkj = {rpj , kej , σj}. We say the block b is balanced if the following holds:∑

oj∈o
oj −

∑
cj∈i

cj = ko.G +
∑

kej∈tks
kej

We assume the genesis block Gen is valid. We define the notion of block validity
as follows:

Property 4.15 (Valid Block). A block b is valid (valid block(b)) if b is the genesis
block Gen or it satisfies:

i. The block is balanced.
ii. For every transaction kernel, the range proofs of all the outputs are valid and

the kernel signature σ is valid for the transaction excess.

Blocks can be constructed by aggregating transactions as follows:

Definition 4.16 (Block Aggregation). Given a valid transaction t0 and a valid
block b as follows:

t0 = {i0, o0, tk0, tko0} and b = {i, o, tks, ko}

a new block can be constructed as:

b′ = {i0 || i, o0 || o, tk0 || tks, tko0 + ko}

Block aggregation preserves the validity of blocks; i.e. block validity is invariant
with respect to block aggregation.

Lemma 4.17 (Invariant: Block Validity). Given a valid transaction t0 and a
valid block b as in Definition 4.16. Let b′ be the result of aggregating t0 into b. Then,
b′ is valid.

22 Chapter 4. Idealized Model

Proof.

Let t0 = {i0, o0, tk0, tko0} be a transaction with tk0 = {rp0, ke0, σ0}. Let b =
{i, o, tks, ko} be a block with tks = (tk1, ..., tkt), the list of transaction kernels.

Applying Definition 4.16, we have that the resulting b′ is of the form:

b′ = {i ′, o′, tks′, ko′}
with i ′ = i0 || i, o′ = o0 || o, tks′ = (tk0, tk1, ..., tkt), ko′ = tko0 + ko

According to Property 4.15, we need to prove:
i) the block b′ is balanced.

According to Definition 4.14, we need to prove the following equality holds for
the block b′: ∑

oj∈o′
oj −

∑
cj∈i′

cj = ko′.G +
∑

kej∈tks′
kej

Each term can be written as follows:

(
∑

oj∈o0

oj +
∑
oj∈o

oj)− (
∑
cj∈i0

cj +
∑
cj∈i

cj) = (tko0 + ko).G + ke0 +
∑

kej∈tks
kej

Rearranging the equality and using algebraic properties on elliptic curves, we have:

(
∑

oj∈o0

oj −
∑
cj∈i0

cj) + (
∑
oj∈o

oj −
∑
cj∈i

cj) = (ke0 + tko0.G) + (ko.G +
∑

kej∈tks
kej)

Now, we apply the hypothesis concerning the validity of t0 and b. In particular,
applying Definition 4.5 for t0 and Definition 4.14 for b, we have the following
equalities are true: ∑

oj∈o0

oj −
∑
cj∈i0

cj = ke0 + tko0.G

and ∑
oj∈o

oj −
∑
cj∈i

cj = ko.G +
∑

kej∈tks
kej

ii) for every transaction kernel in b′, the range proofs of all the outputs are valid
and the kernel signature is valid for the transaction excess.

Since t0 is a valid transaction and b is a valid block it holds trivially as we have
shown in Lemma 4.11. ut

In our model, a chain is defined as a list of blocks.

Definition 4.18 (Chain). A chain is a non-empty list of blocks:

Chain
def
= Block

∗

For a chain c and a valid block b, we can define a predicate validate(c, b)
representing the fact that is correct to add b to c. This relation must verify, for
example, that all the inputs in b are present as outputs in c, in other words, they
are UTXOs.

4.6. Validating a chain 23

4.6 Validating a chain

The model formalizes a notion of valid state that captures several well-formedness
conditions. In particular, every block in the blockchain must be valid. A predicate
validChain can be defined for a chain c = (b0, b1, . . . bn) by checking that:

• b0 is a valid genesis block
• For every i ∈ {1, . . .n}, validate((b0, . . . , bi−1), bi)

The axiomatic semantics of the system are modeled by defining a set of transac-
tions, and providing their semantics as state transformers. The behavior of transac-
tions is specified by a precondition Pre and by a postcondition Post:

Pre ⊆ State × Transaction

Post ⊆ State × Transaction × State

This approach is valid when considering local (nodes) or global (blockchain) states
(of type State) and transactions (of type Transaction). Different sets of transactions,
pre and postcondition are defined to cover local or global state transformations. At
a general level, State is Chain.

24 Chapter 4. Idealized Model

5
Properties

Since we are dealing with virtual money, we should guarantee privacy and security
properties on our idealized model. In particular, the property of ownership ensures
that only the owner of the coins can spend them. Furthermore, we should prevent an
attacker from spending a coin more than once and creating virtual money from thin
air. Next, we detail some relevant properties that can be verified in our model. In
addition to some of the properties mentioned in previous chapters, we have included
other properties such as those formulated in [PS18], and various security properties
considered in [GKL15, KRDO17, FOS19].

5.1 Protocol Properties

The property of no coin inflation or zero-sum guarantees that no new funds are
produced from thin air in a valid transaction. The property can be stated as follows.

Lemma 5.1 (No Coin Inflation). Given a valid transaction t = {i, o, tk, tko}
with transaction kernel tk = {rp, ke, σ}, then the transaction excess only contains
the blinding factor and the kernel offset.

Proof.

We know the transaction t is valid, in particular, the transaction is balanced.
Applying Definition 4.5, we know that:∑

oj∈o
oj −

∑
cj∈i

cj = ke + tko.G

Using Definition 4.1, we start to unfold the terms in the equality:
m∑
1

r ′.G + v′.H −
n∑
1

r .G + v.H = (

m∑
1

r ′ −
n∑
1

r − tko).G + tko.G

25

26 Chapter 5. Properties

Applying algebraic properties on elliptic curves, we have:
m∑
1

v′.H −
n∑
1

v.H = (

m∑
1

r ′.G−
n∑
1

r .G)−(

m∑
1

r ′.G−
n∑
1

r .G)− tko.G+ tko.G = 0

Therefore,

(v′1 + ...+ v′m).H − (v1 + ...+ vn).H = (v′1 + ...+ v′m − v1 − ...− vn).H = 0.H = 0

It means that all the inputs and outputs add to zero. In other words, they summed
to the commitment to the kernel offset plus the commitment to the excess blinding
factor. ut

Thus, we have proved that no coins are being created or destroyed in the
transaction. In addition, we have seen that a valid transaction guarantees that all
the range proof outputs are valid, which means that every transactional output is
positive.

An important feature of MW is the cut-through process. The purpose of this
process is to erase redundant outputs that are used as inputs within the same
block. Let C be a list of coins that appear as an output in the block b. If the
same coins appear as an input within the block, then C can be removed from the
list of inputs and outputs after applying the cut-through process. In this way, the
only remaining data are the block headers, transaction kernels and UTXOs. After
applying cut-through to a valid block b it is important to ensure that the resulting
block b′ is still valid. We can say that the validity of a block should be invariant
with respect to the cut-through process.

Lemma 5.2 (Invariant: Cut-through Block Validity). Let b = {i, o, tks, ko}
be a block with i and o the list of inputs and outputs, tks = [tk1, ..., tkt] the list of
transaction kernels and ko the block kernel offset. Let b′ = {i ′, o′, tks, ko} be the
resulting block after applying the cut-through process to b where:

• i ′ = i \ (i ∩ o)
• o′ = o \ (i ∩ o)

Hence, if b is a valid block, then b′ is valid too.

Proof.

Let b = {i, o, tks, ko} be a block with tks = [tk1, ..., tkt] the list of transaction kernels,
where the j-th item in tks is of the form tkj = {rpj , kej , σj}.

Let r be r = i ∩ o = {r0, r1, ..., rn} where we assume r 6= ∅ because otherwise
the lemma holds trivially as b′ = b.

Let b′ = {i ′, o′, tks, ko} be a block with tks = [tk1, ..., tkt], the list of transaction
kernels, i ′ = i \ r and o′ = o \ r .

We need to prove that b′ is valid. According to Property 4.15, we need to show
that:
i) The block b′ is balanced.

5.1. Protocol Properties 27

According to Definition 4.14, we need to prove:∑
oj∈o′

oj −
∑
cj∈i′

cj = ko.G +
∑

kej∈tks
kej

By hypothesis, we know that b is a valid block. Applying Property 4.15, we know
that b is balanced. According to Definition 4.14, the following equality holds for
block b: ∑

oj∈o
oj −

∑
cj∈i

cj = ko.G +
∑

kej∈tks
kej

Applying the definition of r , we can rewrite the above equality as follows:

(
∑

oj∈o\r

oj +
∑
oj∈r

oj)− (
∑

cj∈i\r

cj +
∑
cj∈r

cj) = ko.G +
∑

kej∈tks
kej

Rearranging the equality, we have:

(
∑

oj∈o\r

oj −
∑

cj∈i\r

cj) + (
∑
oj∈r

oj −
∑
cj∈r

cj) = ko.G +
∑

kej∈tks
kej

Now, we can observe that we are subtracting the sum of all the elements belonging
to the same set r . Thus, the term is equal to zero.

Then, if we remove the term we have:∑
oj∈o\r

oj −
∑

cj∈i\r

cj = ko.G +
∑

kej∈tks
kej

By hypothesis, we know that i ′ = i \ r and o′ = o \ r ; therefore we can rewrite
the above equality as: ∑

oj∈o′
oj −

∑
cj∈i′

cj = ko.G +
∑

kej∈tks
kej

ii) For every transaction kernel, the range proofs of all the outputs are valid, and
the kernel signature σ is valid for the transaction excess.

Since the range proofs of the remaining outputs are the same, they remain valid.
According to definition 4.6, a valid signature for the kernel excess is defined in
terms of the list of range proofs of the outputs rp, transaction excess ke, and the
kernel signature σ. Notice that these three elements remain unchanged during the
cut-through process. Since b is a valid block, it holds trivially.

ut

28 Chapter 5. Properties

5.2 Privacy and Security Properties

In blockchain systems the notion of privacy is crucial: sensitive data should not be
revealed over the network. In particular, it is desirable to ensure properties such as
confidentiality, anonymity and unlinkability of transactions. Confidentiality refers to
the property of preventing other participants from knowing certain information about
the transaction, such as the amounts and addresses of the owners. Anonymity refers
to the property of hiding the real identity of the parties involved in a transaction.
In contrast, unlinkability refers to the inability of linking different transactions of
the same user within the blockchain.

In the case of MW no addresses or public keys are used; there are only encrypted
inputs and outputs. Privacy concerns rely on confidential transactions, cut-through
and CoinJoin. As we have seen, CoinJoin combines inputs and outputs from different
transactions into a single aggregated transaction and cut-through removes outputs
and inputs spent within the same block. We have shown in Lemma 4.11 and Lemma
5.2 that the validity of transaction and block is guaranteed after applying both
processes.

The security problem of double spending refers to spending a coin more than
once. All the nodes keep track of the UTXO set, so before confirming a block to the
chain, the node checks that the inputs come from it. If we refer to our model, that
validation is performed in the predicate validate mentioned in Chapter 4.5.

5.2.1 Security properties of Pedersen commitments

In MW transactions, input and output amounts are hidden in Pedersen commitments.
In Chapter 3.1 we have introduced the definition of a commitment scheme (Definition
3.1).

A commitment scheme is expected to satisfy the following two security properties:

• Hiding: the receiver, who received the commitment, does not learn anything
about the original value.

• Binding: after the commit stage, there is at most one value that the sender can
successfully open.

In the cryptocurrencies world, these two properties should be understood this
way:

• Hiding: a commitment scheme is used to keep the transactions secure. The
sender commits to an amount of coins and this should remain private for the
rest of the network over time.

• Binding: senders cannot change their commitments to a different transaction
amount. If that were possible, it would mean that an adversary could spend
coins which have already been committed to an UTXO, what would allow to
create coins out of thin air.

5.2. Privacy and Security Properties 29

There are two possible specifications for these properties. Computational hiding
or binding is when all adversaries, running in polynomial time, can break the security
property with negligible probability. This asymptotic security is parameterized by a
security parameter λ and adversaries run in polynomial time in λ and their other
inputs. On the other hand, we talk about perfectly hiding or binding, when even with
infinite computing power it would be not possible to break the security property.

Notice that a commitment scheme cannot be perfectly hiding and binding at
the same time:

i. If the scheme is perfectly hiding, there must exist several inputs committing
to the same value. Otherwise, an adversary with infinite computing power
attempting to find out which input committed to a certain output, could try
all possible inputs finding out the corresponding output. This shows that this
scheme cannot be perfectly binding.

ii. If the scheme is perfectly binding, it means that there is at most one input that
committed to an output. Imagine an adversary with infinite computing power
attempting to find out which input committed to a target output. It would be
possible to try all inputs and find which one verifies the commitment. Thus, this
scheme cannot be perfectly hiding.

So, for cryptocurrencies systems is better to provide stronger security in order
to guarantee the hiding property. In other words, we prefer a commitment scheme
with computational binding and perfectly hiding. We can understand this by first
assuming adversaries break the binding property. It means that they could create
money from thin air from a certain point in time but this would not affect the
blockchain history. On the other hand, if the adversary breaks the hiding property,
history could be inspected and all the transactions revealed which breaks one of the
main principles of a privacy-oriented cryptocurrency.

Pedersen commitments are computational binding

This property relies on the discrete logarithm assumption. In provable security,
security is proved to hold against any probabilistic time adversary by showing
an efficient way to break the cryptography protocol implies a way to break the
underlying mathematical problem which is supposed to be hard (security reduction).
The adversary is modeled as a procedure.

Definition 5.3 (Computational Binding Commitment).
Let ζ(Setup,Com) be a Pedersen commitment scheme as in Definition 3.2. Let

ABinding be a polynomial probabilistic time adversary against the binding property
running in the context of the game GBinding as in Figure 5.1. We say that the
Pedersen commitment scheme ζ is computational binding if the success probability
of ABinding winning game GBinding is negligible.

In game GBinding, the scheme is first set up by choosing two generator points, G
and H , over the elliptic curve C of prime order n. All these parameters are public.

30 Chapter 5. Properties

Secondly, the adversary ABinding performs the attack attempting to find out two
different transactional values v1 and v2 that commit to the same commitment. Once
the adversary finishes the attack, two pair of different opening values are returned.
The adversary succeeds if both pairs commit to the same value and v1 6= v2.

Game GBinding
def
=

(G,H ,n)← SetUp(1λ)
(v1, r1), (v2, r2)← ABinding(G,H ,n);
return Com(v1, r1) = Com(v2, r2) ∧ v1 6= v2

Fig. 5.1. Game Binding Commitment

As we mentioned before, the computational binding property is based on a
security reduction. In terms of Pedersen commitment, it means that if the adversary
ABinding could perform the attack in the context of game GBinding and could win
with non-negligible probability, an adversary EDlog attacking a game against the
discrete logarithm problem on the group C could use ABinding to win the game with
non-negligible probability.

Recall that MW uses Pedersen commitment with elliptic curves (Definition 3.2).
The discrete logarithm problem on this context means: given a point y over the
elliptic curve C with generator G, it is hard to find x such that y = x.G. In this
case, its security is shown against the discrete logarithm relation assumption which
is as hard as breaking the discrete logarithm problem. It means that an adversary
cannot find a non-trivial discrete logarithm relation between generators of a group
independently chosen. In our case, finding a non-trivial discrete logarithm relation
between G and H over the elliptic curve C.

The following lemma captures the semantics of that security reduction.

Lemma 5.4 (Computational Binding). Let ζ(Setup,Com) be a Pedersen com-
mitment scheme as in Definition 3.2. Let ABinding be an adversary against the
computational binding commitment (Definition 5.3) in the commitment scheme ζ.

Let us assume that ABinding succeeds in finding two distinct pair of opening
values that commit to the same commitment with ε probability. Therefore, there
exists an extractor EDlog which can find out a non-trivial discrete logarithm relation
between the generators G and H, independently chosen, on the elliptic curve C with
ε′ probability using the adversary ABinding.

Hence, if ε is non-negligible, ε′ is non-negligible too.

Proof.

The goal of the proof is to show how to transform the efficient adversary ABinding
that is able to break the computational binding commitment into an algorithm
that efficiently solves the discrete logarithm assumption. The extractor EDlog will

5.2. Privacy and Security Properties 31

provide a simulation context in which the adversary ABinding will perform its attack.
The attack of the extractor EDlog will be successful if ABinding is successful and the
simulation does not fail.

According to game GBinding, when the adversaryA succeeds we have two identical
commitments Com(v1, r1) = Com(v2, r2) and v1 6= v2 such that (Definition 3.2):

r1.G + v1.H = r2.G + v2.H

So we can compute:
H =

r1 − r2
v2 − v1

.G

which means that we have computed the discrete logarithm of H with respect to G.
Figure 5.2 shows the game GDlog which captures the semantic of the reduction.

The failure event captures when the adversary ABinding fails and therefore, the
adversary EDlog fails too.

The probability of success of EDlog is equal to the probability of success of
ABinding. ut

Game GDlog
def
=

(G,H ,n)← SetUp(1λ)
y ← EDlog(G,H ,n)
if y = failure then

return failure
else

return H = y.G

EDlog(G,H ,n) def
=

(v1, r1), (v2, r2)← ABinding(G,H ,n)
if Com(v1, r1) = Com(v2, r2) ∧ v1 6= v2 then

return r2 − r1
v2 − v1

else
return failure

Fig. 5.2. Game Extractor DLog

Pedersen commitments are perfectly hiding

Basically, it is because, given a commitment Com(v, r) = r .G+ v.H , there are many
combinations of (v′, r ′) that satisfies Com(v, r) = r ′.G+v′.H . Despite the adversary
have infinite computing power and could attempt all possible values, there would be
no way to know which opening values (v′, r ′) were the original ones. Furthermore, r
is a random value of the finite field Fn so r .G + v.H is a random element of C.

Definition 5.5 (Perfectly Hiding Commitment). Let ζ(Setup,Com) be a Ped-
ersen commitment scheme as in Definition 3.2. Let AHiding be a computationally
unbounded adversary against the hiding property running in the context of the game
GHiding as in Figure 5.3. We say that the Pedersen commitment scheme ζ is perfectly
binding if the success probability of AHiding winning game GHiding holds:

Pr(b = b′) = 1

2

32 Chapter 5. Properties

Game GHiding
def
=

(G,H ,n)← SetUp(1λ)
(v0, v1)← AHiding(G,H ,n)
b $← {0, 1}
r $← Fn
com = Com(vb, r)
b′ ← AHiding(com,G,H ,n)
return b = b′

Fig. 5.3. Game Hiding Commitment

In the game described in Figure 5.3, first the game is set up and then the adversary
chooses two distinct transactional values v0 and v1. Then, one of these values is
randomly chosen as vb, as well as with the blinding factor r . The commitment of
(vb, r) is computed and the adversary AHiding performs the attack attempting to
find out which one of the values was committed.

5.2.2 Switch commitments

As already mentioned, if an attacker succeeds in breaking the computational bind-
ing property of a commitment then money can be created from thin air. Switch
commitments [RM17] were introduced to enable the transition from computational
bindingness to statistical bindingness, specially to the commitments stored in the
blockchain. The notion of statistical security implies that a computationally un-
bounded adversary cannot violate the property except with negligible probability.

If in a certain moment we believe that the bindingness of the commitment
scheme gets broken, we could make a soft fork on the chain and switch existing
commitments to this new validation scheme which is backwards compatible.

Below, we show the changes that are needed for our model to also encompass
Switch commitments. In Pedersen commitment definition (Definition 3.2) we add a
third point generator J of the elliptic curve C whose discrete logarithm relative to
G and H is unknown. We define the new commitment algorithm as follows:

Com(v, r) = r ′.G + v.H ,with v the transactional value and
r ′ = r + hash(v.H + r .G, r .J),

where r is the blinding factor randomly chosen in the finite field Fn and J is the
third point generator.

Note that r is still randomly distributed and the hash value of ElGamal commit-
ment is computed which is the combination of ElGamal encryption [Gam84] and a
commitment scheme.

5.2.3 Security properties of range proofs

The goal of zero-knowledge proofs is to prove that a statement is true without
revealing any information beyond the verification of the statement. In MW we need

5.2. Privacy and Security Properties 33

to ensure that in every transaction the amount is positive so that users cannot
create coins. Here, the hard part is to prove that without revealing the amount. In
our model, the output amounts are hidden in the form of a Pedersen commitment,
and the transaction contains a list of range proofs of the outputs to prove that the
amount is positive. In our model, this verification is performed as the first step of
the validation of the transaction (Property 4.3).

In Chapter 3.2 we have defined a range proof scheme (Definition 3.3) where rp is
a range proof for a certain value v in some range [a, b]. Range proofs are generated
by the Prove algorithm and verified by the Verify algorithm.

The aim of the prover is to convince the verifier that the following statement
holds: the Pedersen commitment c = Com(v, r) = r .G+v.H contains a transactional
value v such that v ∈ [0, 2n]. We say that the range proof is an argument and v is
a witness. In other words, the prover should provide a zero-knowledge (ZK) proof
about the range of the output. Range proofs will commit to the range of [0, 2n]
where n is small enough to no cause overflow errors. The transaction kernel tk of
each transaction (Definition 4.1) has a list rp of range proofs of the outputs.

A range proof scheme is expected to satisfy the following three properties:

• Completeness: if the statement holds for a witness v, the argument provided by
the prover is able to convince the verifier;

• Soundness: if the statement does not hold for a witness v, the prover cannot
convince the verifier about the statement; and

• Zero-knowledge: the argument does not leak any information about the witness,
except for whether the statement is true or false.

In our model, a range proof scheme is expected to have perfect completeness
and computational soundness with negligible error εS . We define these properties as
follows:

Definition 5.6 (Perfect Completeness NIZK Scheme). Let ζ(Setup,Com) be
a Pedersen commitment as in Definition 3.2 where c = Com(v, r) is the commitment
to the transactional value v and the blinding factor r. Let η(Prove,Verify) be a
NIZK scheme as in Definition 3.3. We say η(Prove,Verify) has perfect completeness
if for every v in the range [a, b], exists a range proof rp such that rp = Prove(v, r , c)
and Verify(c, rp) = true.

Definition 5.7 (Computational Soundness NIZK Scheme). Let ζ(Setup,Com)
be a Pedersen commitment as in Definition 3.2 where c = Com(v, r) is the commit-
ment to the transactional value v and the blinding factor r. Let η(Prove,Verify) be a
NIZK scheme as in Definition 3.3. We say η(Prove,Verify) has εS− soundness if for
every v 6∈ [a, b] and rp = Prove(v, r , c), it holds that Pr(Verify(c, rp) = true) ≤ εS .

Recall that, the Prove algorithm computes a non-interactive zero-knowledge
proof to the commitment in order to verify that the committed value is in certain
range. We need to ensure that the proof does not leak any information about the
secret value, other than the fact it lies in a certain range.

34 Chapter 5. Properties

Definition 5.8 (Perfect ZK Range Proof). Let ζ(Setup,Com) be a Pedersen
commitment as in Definition 3.2, where c = Com(v, r) is the commitment to the
transactional value v and the blinding factor r. Let η(Prove,Verify) be a NIZK
scheme as in Definition 3.3 where rp is a range proof such that rp = Prove(v, r , c).
Let AZKw be a computationally unbounded adversary running in the context of the
game GZKw as in Figure 5.4. We say that the range proof rp is perfect zero-knowledge
if the success probability of AZKw winning game GZKw is Pr(b = b′) = 0.5. In other
words, the adversary cannot learn anything about the opening value v from rp.

Fig. 5.4. Game Zero-knowledge range proof
Game GZKw

def
=

(G, H ,n)← SetUp(1λ)
(v0, v1)← AZKw(G, H , n)

b $← {0, 1}
r0 $← Fn
r1 $← Fn
com0 = Com(v0, r0)
com1 = Com(v1, r1)
rp = Prove(vb, rb, comb)
b′ ← AZKw(rp, com0, com1,G, H ,n)
return b = b′

In Figure 5.4, first the game is set up and then the adversary chooses two distinct
transactional values v0 and v1. Then, one of these values is randomly chosen as vb,
as well as with the blinding factors r0 and r1. Both commitments of (v0, r0) and
(v1, r1) are computed. Then, a zero-knowledge proof rp is generated for the value
vb. Finally, the adversary AZKw performs the attack attempting to find out which
value {v0, v1} corresponds to the range proof rp; in other words, for which value
holds Verify(comb, rp) = true.

Bulletproofs [BBB+18] is a non-interactive zero-knowledge proof protocol. A
bulletproof is a short proof (logarithmic in the witness size) with the aim of proving
that the committed value is in a certain range without reveling it. Proof generation
and verification times are linear in the length of the range. Moreover, aggregation
of range proofs is supported which enables the parties to generate a single proof,
without revealing their inputs to each other. They do not require a trusted setup
and are non-interactive applying the Fiat-Shamir heuristic [BR93] [FS87] which
replaces the verifier’s random challenge by a hash. MW uses Bulletproofs, which
helps to maintain its size more compact than other Bitcoin blockchains as it uses a
compact version of the inner product argument (rp in Definition 3.3). Bulletproofs
are computational soundness and rely on the discrete logarithm assumption. In
this case, its security is shown against the discrete logarithm relation assumption
which means that an adversary cannot find a non-trivial discrete logarithm relation
between generators of a group independently chosen. In our model, it means to
be proved over the elliptic curve C and it could be finding a non-trivial discrete

5.3. Unlinkability and Untraceability 35

logarithm relation between G and H (Definition 4.1). Solving this is as hard as
breaking the discrete logarithm problem. We could say that the discrete logarithm
relation problem can be reduced to the computational soundness security property.

Lemma 5.9 (Computational Soundness Bulletproofs). Let ζ(Setup,Com) be
a Pedersen commitment scheme as in Definition 3.2. Let η(Prove,Verify) be a
NIZK scheme as in Definition 3.3. Let AZK Soundness be a ppt adversary against
the computational soundness bulletproofs in the NIZK scheme η. Let us assume
that AZK Soundness succeeds in finding a range proof rp′ for a transactional value
v′ 6∈ [a, b] and c′ = Com(v′, r ′) such that Verify(c′, rp′) = true with ε probability.
Therefore, there exists an adversary EDlog which can find out a non-trivial discrete
logarithm relation between the generators G and H, independently chosen, on the
elliptic curve C with ε′ probability using the adversary AZK Soundness. Hence, if ε is
non-negligible, ε′ is non-negligible too.

This proof is discussed for an arithmetic circuit protocol over a group G in
Theorem 5 of the Bulletproof paper [BBB+18]. The protocol shown has a knowledge
extractor which either extracts a discrete logarithm relation or a valid witness.
However, if the generators were independently generated, then finding a discrete
logarithm relation between them is as hard as breaking the discrete log problem.

Hence, it follows that if breaking computational soundness is easy, then so is
breaking the logarithm discrete problem which is supposed to be hard. In other
words, the computational soundness property is secure against the stated attack.

So far we have analyzed that Pedersen commitments are computational binding
and perfectly hiding [SBCL21a]. On the other hand, Bulletproofs are perfect zero-
knowledge and computational soundness. Let us suppose we have a commitment c
such that c = Com(r , v) = r .G + v.H and the Prover computes the range proof rp
for the value v as in the range proof scheme Definition 3.3. Now, we need to pass c
and rp to the Verifier in order to verify whether rp the argument is valid. Since
we know the property of perfect completeness holds, the Verifier will accept rp. In
other words, an honest Prover succeed in convincing the Verifier . Moreover, since
the commitment is perfectly hiding we have not revealed any information about the
commitment by passing it to the Verifier .

5.3 Unlinkability and Untraceability

As we specified in our model, each node has a pool of unconfirmed transactions in the
mempool. This transactions are waiting for the miners in order to be included in a
block. We can distinguish two security properties of the transactions. Untraceability
refers to the transactions in the mempool and unlinkability to the transactions in
the block. In our model, this two notions are formalized as follows.

Property 5.10 (Transaction Unlinkability). Given a valid block b, it is computation-
ally infeasible to know which input cancels which output.

36 Chapter 5. Properties

The following lemma captures the semantics of this property. Moreover, the
operations cut-through and CoinJoin, which were described above, also contribute
to this property.

Lemma 5.11 (Transaction Unlinkability). For any valid block b and for any
polynomial probabilistic time adversary A, the probability of A in finding a balanced
transaction within b is negligible.

Proof.

Let b = {i, o, tks, ko} be a valid block with tks = (tk1, ..., tkt) the list of transaction
kernels. The j-th item in tks is of the form tkj = {rpj , kej , σj}.

The goal of the adversary A is to find a tuple of the form {i ′, o′, ke′} where the
list of inputs i ′ is a subset of i and the list of outputs o′ is a subset of o, satisfying
Definition 4.5 of a balanced transaction. It means that, the following equality must
be true for the tuple: ∑

oj∈o′
oj −

∑
cj∈i′

cj = ke′ + tko′.G

where ke′ is the transaction excess and tko′ the transaction kernel offset.
If we refer to the construction process in Definition 4.16, the transaction kernel

offsets were added to generate a single aggregate offset ko to cover all transactions
in the block. It means that we do not store the individual kernel offset tko′ of the
transaction in b once the transaction is aggregated to the block.

The challenge is trying to solve the adversary A could be seen as the subset sum
problem (NP-complete) but, in this case, tko′ is unrecoverable. So, although many
transactions have few inputs and outputs, it is computationally infeasible, without
knowing that value, to find the tuple. ut

Then, we can define:

Definition 5.12 (Transaction Unlinkable). We say block b is transaction-
unlinkable, if the probability of any polynomial probabilistic time adversary A in
finding a balanced transaction within b is negligible.

Hence, due to Lemma 5.11 we conclude that in MW all blocks are transaction-
unlinkeable.

Property 5.13 (Transaction Untraceability). For every transaction in the mempool,
it is not possible to relate the transaction to the IP address of the node which
originated it.

Regarding this property, we should refer mainly, to the broadcast of the trans-
actions. Once the transactions are created, they are broadcasted to the network
and they are included in the mempool. Each node could track the IP address from
the node which received the transaction. At that point nodes could record the
transactions, allowing them to build a transaction graph.

5.3. Unlinkability and Untraceability 37

We define that the broadcast of a transaction can be performed with or without
confusion. Without confusion means that, once the transactions are created, they are
broadcasted immediately to all the network. However, if someone controls enough
nodes on the network and discovers how the transaction moves, he could find out
the IP address node from which the transaction comes from.

On the other hand, we define the broadcast with confusion as a way to obscure
the IP address node.

Definition 5.14 (Broadcast with confusion). Let’s say node A sends a trans-
action to node B. We say B receives the transaction with confusion if given the IP
address of node A, the node B does not know if the transaction was originated by
the node A or not.

In other words, it can be said that if some malicious nodes, working together,
construct a graph of the pairs (transaction, IP address node), the IP address node
will not convey information about what node originated the transaction. Therefore,
in our model, we require Property 5.14 to hold before the broadcast takes place. In
order to achieve this, we can establish that the node broadcasting the transaction
should be far enough from the one which originated it. Moreover, CoinJoin could be
performed before the broadcast.

Dandelion, proposed by Bojja et al. [BVFV17], is a protocol for transaction
broadcasting intended to resist that deanonymization attack. Dandelion is not part
of the MW protocol, however this kind of protocols should be implemented by each
node to lower the risk of creating the transaction graph. In Dandelion, broadcasting
is performed in two phases: the “steam” phase and the “fluff” phase. In the “steam”
phase the transaction is broadcasted randomly to one node, which then randomly
sends it to another, and so on. This process finishes when the “fluff” phase is reached,
and the transaction is broadcasted to the network using a gossip protocol.

Next, we define the following routines which capture the semantic of the phases:

routine steam(tx : Transaction){
c $← {0, 1} (* random decision *)
if c == 0 then
node ← select random node()
node.steam(tx)

else
this.fluff (tx)
}

routine fluff (tx : Transaction){
broadcast(tx)
}

Each node, besides having the local state, should implement these two routines.
Once the transaction is created and is ready to be included in the mempool, its

38 Chapter 5. Properties

broadcasting start in the “steam” phase. When it reaches the “fluff” phase, it is
broadcasted to the network and added in the mempool.

Dandelion relies on the following three rules: all nodes obey the protocol, each
node generates exactly one transaction, and all nodes on the network run Dandelion.
The problem is that an adversary can violate them. For that reason, Grin implements
a more advanced protocol called Dandelion++ [FVB+18] which intends to prevent
that [Gria]. However, it is believed that Dandelion++ is not good enough to
guarantee the privacy of a virtual coin [Grie]. For instance, the flashlight attack
[Mie] is an open problem still under investigation [Grif]. The scenario here is when
an ‘activist’ want to accept donations but he cannot reveal his identity. At some
point, he will deposit those payments to an exchange and his identity would be
compromised. The adversary injects ‘tainted coins’ and could build a ‘taint tree’
looking through all deposits to the exchange. This way, he could link those deposits
to the ‘activist’.

The combined use of the MW protocol with a Zerocash-style commitment-nullifier
schema has been put forward in [Lim] as a countermeasure to the above attack. In
the case of Zcash, every shielded transaction has a large anonymity set, namely, a
set of transactions form which it is indistinguishable from. In the case of Spectrecoin
(now Alias) [KMS] the main idea is the use, only once, of public addresses (XSPEC)
to receive the payments combined with an anonymous staking protocol.

6
Implementations

Because of the its robust security, privacy and scalability, there are several imple-
mentations of Mimblewimble. In 2019, the first two practical implementations were
launched: Grin and Beam. Although, there are some design and technical differences
in both projects, they implement and extend the core of the MW protocol. Next, we
first describe the main features of their design and compare them with our model.
Then, we discuss features that set apart Grin from Beam.

6.1 Grin

Grin [Grid] is an open source software project with a simple approach to MW. As
we will see below, its design is a straightforward interpretation of our model.

6.1.1 Blocks and Transactions

In order to provide privacy and confidentiality guarantees, Grin transactions are
based on confidential transactions. In Figure 8.1 (Appendix 8.2), we can observe
that each transaction contains a list of inputs and outputs. Each input and output is
in the form of a Pedersen commitment, i.e, a linear combination of the value of the
transaction and a blinding factor. For instance, in the input structure (Appendix
8.2, Figure 8.2, line 1729), there is a field that stores the commitment pointing to
the output being spent.

In addition, the transaction structure has a list of transaction kernels (of type
TxKernel) with the transaction excess and the kernel signature. All this data has a
straightforward relation to our definition of transaction (Definition 4.1).

However, it is important to notice that the transaction kernel structure differs
from our model since it does not contain the list of range proofs of the outputs. In
Grin, it is part of the output structure (Appendix 8.2, Figure 8.3, line 2045).

39

40 Chapter 6. Implementations

Moreover, a Grin transaction also includes the block number at which the
transaction becomes valid. We have not added this data to the transaction structure
yet and we also should include it in the signature process. In Grin, not only the
transaction fee is signed, the signing process also takes into account the absolute
position of the blocks in the chain. In this way, if a kernel block points to a height
greater than the current one, it is rejected. If the relative position points to a specific
kernel commitment, Grin has the same behavior.

Grin Blocks also stores a kernel offset which is the sum of all the transaction
kernel offsets added to the block. In our model, the kernel offset is defined within
a block (Definition 4.13) and the notion of adding a transaction into a block is
formalized on the block aggregation (Definition 4.16). Besides, the single aggregate
offset allows to prove Lemma 5.11 as part of the Transaction Unlinkability property
(Property 5.10).

6.1.2 Privacy and Security Properties

The cut-through process, as explained in Chapter 5.1, provides scalability and
further anonymity. Grin performs this process in the transaction pool, which we
formalized as mempool (Definition 4.12). Outputs which have already been spent as
new inputs are removed from the mempool, using the fact that every transaction in
a block should sum to zero.

CoinJoin, as we have mentioned in Chapter 5.2, combines inputs and outputs
from multiple transactions into a single transaction in order to obfuscate them. In
Grin, every block is a CoinJoin of all other transactions in the block.

In addition, Grin supports a pruning process. This process could be applied to
past blocks. Outputs that have been spent in a previous block are removed from
the block. Block validity (Property 4.15) should be invariant w.r.t. the pruning
process. Each node maintains a local state with a local copy of the chain. The
pruning process can be applied recursively to the chain and keep it as compact as
possible. Pruning is useful to free space. As a consequence, when a new node wants
to join the network, it can receive just a pruned (i.e. partial) chain and the node
needs to validate it, which makes the synchronization process faster. In Chapter 4.6,
validChain should be modified to guarantee the validity of a partial chain.

As we have mentioned in Chapter 5.2, Switch commitments provides perfect
hiddenness and statistical bindingness. Grin implements a switch commitment [Gric]
as part of a transaction output in order to provide more security than computational
bindingness (Definition 5.3), which is crucial for the age of quantum adversaries.

6.2 Beam

Beam [Bead] was the other Mimblewimble project launched on January 2019. This
open source system has a founding model and a dedicated development team.

6.3. Discussion 41

6.2.1 Blocks and Transactions

Beam transactions are confidential transactions implemented by the Pedersen com-
mitment scheme. This follows the same approach as our model.

Figure 8.4 in Appendix 8.2 shows (line 439) how Beam’s input stores the com-
mitment, i.e, a point over the elliptic curve (class of ECC::Point).

In Chapter 4 we have described how each node maintains a local state. The state
keeps track of the UTXO set. Beam extends the behavior of that set, supporting the
incubation period on a UTXO. This means that Beam sets the minimum number
of blocks created after the UTXO entered the blockchain, before it can be spent
in a transaction. This number is included in the transaction signature. Figure 8.5
in Appendix 8.2 shows (line 510) how Beam’s output stores the number of blocks
corresponding to the incubation period.

If we specify this functionality in our model, the predicate validChain (Chapter
4.6) should check that every output with certain incubation period on a block was
‘lawfully’ spent for the entire blockchain (global state). In other words, if we have
an output transaction o with an incubation period d on a confirmed block b over
the chain and a later confirmed block b′ containing o as an input, then b′ should be,
at least, d blocks away from b on the blockchain.

6.2.2 Privacy and Security Properties

Beam supports cut-through as we described above. In addition, Beam adds a scalable
feature to eliminate all intermediate transaction kernels [Beaa] in order to keep the
blockchain as compact as possible. It would be important to prove that the resulting
transaction is still valid in Property 4.3.

6.3 Discussion

Both Grin and Beam implementations address the main features of the MW protocol,
namely the properties of confidentiality, anonymity and unlinkability comprised in
our work.

6.3.1 Broadcasting Protocol

Both Grin and Beam use the Dandelion scheme as broadcasting protocol [BVFV17].
We have formalized that a broadcasting protocol should hold Property 5.13 of
Transaction Untraceability. It should not be possible to link transactions and
their originating IP addresses, in other words, to deanonymize users. Broadcast
with confusion, as we describe in Property 5.14, should be carried out to satisfy
Transaction Untraceability. We have also described the steam and fluff phases of
the Dandelion scheme.

42 Chapter 6. Implementations

Grin’s implementation, in the steam phase, allows for transaction aggregation
(CoinJoin) and cut-through, which provides greater anonymity to the transactions
before they are broadcasted to the entire network.

In addition, in order to improve privacy, Beam’s implementation adds dummy
transaction outputs at the steam phase. Each output has a value of zero and it is
indistinguishable from regular outputs. Later, after a random number of blocks, the
UTXOs are added as inputs to new transactions, i.e., they are spent and removed
from the blockchain.

In Chapter 5.3 we have specified the steam routine. Following, we extend the
routine to capture Beam’s behavior:

subroutine steam(tx : Transaction){
i $← {min, ..,max} (* incubation period random choice *)
(* create zero value output with incubation period i *)
zeroOut ← createZeroValueOutput(i)
addOutputTransactionUTXO(zeroOut)
addOutputTransaction(zeroOut, tx)
...
}

To capture that semantic, we have combined two Beam’s features: incubation
period on UTXO and aggregation of zero value transaction outputs. Firstly, we
randomly choose i as an incubation period. Then, we create a zero value transaction
output (zeroOut) with incubation period i. The incubation period will ensure not
to spend the dummy output before i blocks are confirmed on the chain. After that,
zeroOut is added to the UTXO set (which is maintained in the local state of the
node) and to the transaction tx that is being broadcasted. Finally, the routine
continues as we specified in Chapter 5.3.

6.3.2 Range proofs

Grin and Beam implement range proofs using Bulletproofs [BBB+18]. Bulletproofs
are a non-interactive zero-knowledge proof protocol. They are short proofs (loga-
rithmic in the witness size) with the aim of proving that the committed value is
in a certain (positive) range without reveling it. Proof generation and verification
times are linear in the length of the range. Regarding our model, it is the first
property a transaction should satisfy to be valid (Property 4.3). Furthermore, for
every transaction in a bock, the range proofs of all the outputs should be valid too
(Property 4.15).

6.3.3 Some Design Decisions

Emission Scheme

It is known that BitCoin has a limited and finite supply of coins. Nowadays, new
coins come from the process called “mining” where miners are paid because of their

6.3. Discussion 43

work of aggregating new blocks to the chain besides of the transaction fees. However,
once the maximum amount of coins in circulation is reached, there will not be new
coins and the miners will be paid only with the transaction fees.

Grin has a different approach. It has a static emission rate, where a fixed number
of coins is released as a reward for aggregating a new block to the chain. This
algorithm has no upper bound for new coins. However, Beam has a capped total
supply standing at 262M. The reward algorithm is decreasing over the years [Beab].

Parties Negotiation

Mimblewimble establishes that communication between the parties to construct a
new transaction is made off-chain. Parties should collaborate in order to choose
blinding factors and construct a valid transaction, in particular, a balanced transac-
tion as in Definition 4.5. Grin offers this process synchronously. Both parties are
connected directly to one another and they should be online simultaneously.

On the other hand, in order to construct a new transaction, Beam offers a non-
interactive negotiation between the parties. The Secure Bulletin Board System
(SBBS) [Beae] runs on the nodes and it allows the parties to communicate off-line.
Moreover, Beam also presents a one-side payment scheme. This scheme allows senders
to pay a specified value to a particular receiver, without any interaction from the
receiver side. The key here is not revealing blinding factors. It is addressed with a
process called kernel fusion. Basically, both parties construct a half kernel and both
kernels should be present in the transaction.

Chain Synchronization

Grin allows partial history synchronization. When a new node wants to enter the
network, it is not necessary to download the full history of the chain but it will
query the block header at a horizon. The node can increase this limit as necessary.
Then, it will download the full UTXO set of the horizon block.

Beam improves node synchronization using macroblocks. A macroblock is a
compressed version of blockchain history after applying the cut-through process.
Each node stores macroblocks locally. When a new node connects to the network, it
will download the latest macroblock and will start working from that point.

44 Chapter 6. Implementations

7
Conclusions and Future Work

7.1 Final remarks

MW constitutes an important step forward in the protection of anonymity and
privacy in the domain of cryptocurrencies. Since it facilitates traceability and the
validation process, both Grin and Beam have adopted the MW protocol for their
implementations.

We have highlighted elements that constitute essential steps towards the develop-
ment of an exhaustive formalization of the MW cryptocurrency protocol, the analysis
of its properties and the verification of its implementations. The proposed idealized
model is key in the described verification process. First of all, we have defined the
main components of our idealized model: transactions, blocks and chain. Then, we
have provided validity conditions to guarantee the correctness of the blockchain. We
have stated precise conditions for a valid transaction and a valid block. Furthermore,
we have defined and proved that the validity of a block is invariant with respect to
the cut-through process and CoinJoin.

The main difficulty we have faced during that process was the lack of “official”
documentation, so we have made an exhaustive literature review in order to analyze
and conceptualize the main components of MW. Furthermore, even when Grin and
Beam have documentation available on-line, the main challenge was to build a model
which abstracts away the specifics of their implementations.

We have also identified and precisely stated the conditions for our model to
ensure the verification of relevant security properties of MW which is an important
contribution of this work. Firstly, we have proved that no new funds are produced
from thin air in a valid transaction. Secondly, since MW transactions are in the form
of Pedersen commitments, we have analyzed the strength of the scheme regarding
the main security properties a cryptocurrency protocol must have. In particular, we
have defined the computational binding commitment property and we have shown
a security reduction using a game-based cryptographic proof approach. Thirdly,
we have discussed zero-knowledge proofs to prove that the transaction output is

45

46 Chapter 7. Conclusions and Future Work

positive without revealing the amount. Furthermore, we have described some security
properties a range proof scheme should satisfy.

Then, we have defined and analyzed two important security properties: unlink-
ability and untraceability. In particular, we have proved that the probability in
finding a balanced transaction within a valid block is negligible. Moreover, we have
defined what broadcast with confusion is in order to obscure the IP address from
which the transaction comes from.

Finally, we have analyzed and compared the Grin and Beam implementations
in their current state of development, considering our model and its properties
as a reference base. We have presented detailed connections between our model
and their implementations regarding the MW structure and its security properties.
In particular, we have extended our steam routine abstraction to capture Beam’s
behavior combining dummy transactions and incubation period in order to improve
privacy.

The main challenge we have faced to address the comparison between our model
and the implementations was reading the source code of Grin and Beam to identify
the components of our model and analyze how they implement them.

The present work is not free of limitations. First, transaction construction is
made off-chain between the parties so the protocol construction should be analyzed
in order to guarantee security and privacy properties during the communication.
In addition, some of the security properties rely on an underlying hard problem
in terms of provable security. On the other hand, the consensus protocol plays
an important role to ensure the integrity of the recorded information. In order to
validate blocks and add them to the chain, the network must agree on a consensus
algorithm. Two of the more commonly used are Proof of Work and Proof of Stake.
Weaknesses in the protocol could result in various attack and security should be
studied.

7.2 Future work

Since cryptographic proofs are becoming increasingly error-prone and difficult to
check, we plan to carry out a specification of our MW model using an interactive
prover, in order to provide an automated verification of the model. Security goals
and hardness assumptions shall be modeled in order to verify the security properties
we have stated. Firstly, we plan to evaluate tools for the verification of crypto-
graphic protocols and implementations, such as EasyCrypt [BDG+13], ProVerif
[Bla01], CryptoVerif [Bla18] and Tamarin [Tam]. In particular, we are especially
interested in using EasyCrypt, an interactive framework for verifying the security of
cryptographic constructions in the computational model. Secondly, we will specify
our model using the tool, according to all definitions we have stated in this work.
Then, all the properties we have presented and proved should be verified using the
interactive prover. Furthermore, we shall specify and verify the security properties.
In particular, the game-based cryptographic proof in Lemma 5.4 where the goal is
to construct a security reduction as a sequence of games proving that any attack

7.2. Future work 47

against the security of the system would lead to an efficient way to solve the discrete
logarithm problem.

The results presented in this work constitute a relevant contribution in order
to analyze the correctness of the MW protocol and its security properties over an
idealized model beyond any particular implementation. Directions for future research
are to verify that Grin and Beam are a correct implementation of the idealized
model in order to guarantee security properties with a formal approach. Indeed, Guy
Corem, part of the beam.mw foundation and one of Beam’s founders, contacted us
and showed interest in our work. He spread it by his personal Twitter account and
Beam’s Twitter account. In addition, our paper is mentioned on Beam’s website 1.

1 https://beam.mw/resources

https://beam.mw/resources

48 Chapter 7. Conclusions and Future Work

8
Appendix

8.1 Math symbols and abbreviations

Table 8.1 shows the meaning of the abbreviations and acronyms used throughout
this work. Table 8.2 describes the significance of the math symbols used throughout
this work.

8.2 Grin and Beam source code

Figures 8.1, 8.2 and 8.3 show a part of the Grin transaction source code where
each transaction contains a list of inputs and outputs in the form of a Pedersen
commitment.

Fig. 8.1. Grin transaction body source code [Grib]

Figure 8.4 exhibits a part of the Beam transaction source code where it stores
the commitment i.e, a point over the elliptic curve (class of ECC::Point). In addition,
Figure 8.5 shows how Beam’s output stores the number of blocks corresponding to
the incubation period.

49

50 Chapter 8. Appendix

Fig. 8.2. Grin input source code [Grib]

Fig. 8.3. Grin output source code [Grib]

Fig. 8.4. Beam input source code [Beac]

Fig. 8.5. Output incubation period source code [Beac]

8.2. Grin and Beam source code 51

Abbreviation Meaning
MW mimblewimble
EVM ethereum virtual machine
FM formal methods
ECC elliptic curves cryptography
UTXO unspent transaction output
NIZK non-interactive zero-knowledge
IP internet protocol
ZK zero-knowledge
Pr probability
XSPEC SpectreCoin
IRC internet relay chat
ECC elliptic-curve cryptography
SBBS secure bulletin board system

Table 8.1. Abbreviations

Math symbol Meaning
+ addition
− subtraction
. multiplication
⇔ if and only if
∈ set membership
X∗ list of elements of type X∑

summation - sum of all values in range of series
≤ less than equal
x $← X x is drawn uniformly at random from X
|| list concatenation
| bitstring concatenation
∀ for all

Table 8.2. Math symbols

References 53

References

[AMJ21] Jaehyung An, Alexey Mikhaylov, and Sang-Uk Jung. A linear
programming approach for robust network revenue management
in the airline industry. Journal of Air Transport Management,
91:101979, 2021.

[And] James P. Anderson. Computer Security Technology Planning Study,
u.s. air force electronic systems division, 1972. Available online:
https://apps.dtic.mil/sti/citations/AD0758206 (accessed on
February 23, 2022).

[BBB+18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In
2018 IEEE Symposium on Security and Privacy (SP), pages 315–334,
May 2018.

[BC04] Yves Bertot and P. Castéran. Interactive Theorem Proving and
Program Development : Coq’Art : The Calculus of Inductive Con-
structions. Texts in Theoretical Computer Science. Springer, Isbn:
3540208542, 2004 edition, May 2004.

[BCL+20] Gustavo Betarte, Maximiliano Cristiá, Carlos Daniel Luna, Adrián
Silveira, and Dante Zanarini. Towards a formally verified implementa-
tion of the mimblewimble cryptocurrency protocol. In Jianying Zhou
et al, editor, Applied Cryptography and Network Security Workshops
- ACNS 2020 Satellite Workshops, AIBlock, AIHWS, AIoTS, Cloud
S&P, SCI, SecMT, and SiMLA, Rome, Italy, October 19-22, 2020,
Proceedings, volume 12418 of Lecture Notes in Computer Science,
pages 3–23. Springer, 2020.

[BCL+21] Gustavo Betarte, Maximiliano Cristiá, Carlos Luna, Adrián Silveira,
and Dante Zanarini. Set-based models for cryptocurrency software.
Clei-electronic-journal, abs/1908.00591, 2021.

[BDG+13] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and
P. Strub. Easycrypt: A tutorial. In Alessandro Aldini, Javier López,
and Fabio Martinelli, editors, Foundations of Security Analysis and
Design VII - FOSAD 2012/2013 Tutorial Lectures, volume 8604 of
Lecture Notes in Computer Science, pages 146–166. Springer, 2013.

[BDLF+16] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy, and S. Zanella-Béguelin. Formal verification of smart
contracts: Short paper. In Proceedings of the 2016 ACM Workshop
on Programming Languages and Analysis for Security, PLAS ’16,
pages 91–96, New York, NY, USA, 2016. ACM.

[Beaa] Beam. Beam description. Comparison with classical MW, 2018.
Available online: https://docs.beam.mw/BEAM_Comparison_with_
classical_MW.pdf (accessed on February 23, 2022).

https://apps.dtic.mil/sti/citations/AD0758206
https://docs.beam.mw/BEAM_Comparison_with_classical_MW.pdf
https://docs.beam.mw/BEAM_Comparison_with_classical_MW.pdf

54 References

[Beab] Beam. Beam emission schedule. Available online: https://docs.
beam.mw/BEAM_Position_Paper_v0.2.2.pdf (accessed on Febru-
ary 23, 2022).

[Beac] Beam. Beam project github. Available online: https://github.
com/BeamMW/beam (accessed on February 23, 2022).

[Bead] Beam. Beam the scalable confidential cryptocurrency. Available on-
line: https://docs.beam.mw/BEAM_Position_Paper_0.3.pdf (ac-
cessed on February 23, 2022).

[Beae] Beam. Secure bulletin board system (sbbs). Avail-
able online: https://github.com/BeamMW/beam/wiki/
Secure-bulletin-board-system-(SBBS) (accessed on February
23, 2022).

[BGW20] C. Boyd, K. Gjøsteen, and S. Wu. A Blockchain Model in Tamarin
and Formal Analysis of Hash Time Lock Contract. In Bruno
Bernardo and Diego Marmsoler, editors, 2nd Workshop on Formal
Methods for Blockchains (FMBC 2020), volume 84 of OpenAccess
Series in Informatics (OASIcs), pages 5:1–5:13, Dagstuhl, Germany,
2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[Bla01] Bruno Blanchet. An efficient cryptographic protocol verifier based
on prolog rules. In 14th IEEE Computer Security Foundations
Workshop (CSFW-14 2001), 11-13 June 2001, Cape Breton, Nova
Scotia, Canada, pages 82–96. IEEE Computer Society, 2001.

[Bla18] Bruno Blanchet. Composition theorems for cryptoverif and appli-
cation to TLS 1.3. In 31st IEEE Computer Security Foundations
Symposium, CSF 2018, Oxford, United Kingdom, July 9-12, 2018,
pages 16–30. IEEE Computer Society, 2018.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical:
A paradigm for designing efficient protocols. In ACM Conference
on Computer and Communications Security, pages 62–73, 1993.

[But] Vitalik Buterin. Critical update re: Dao vulnerability,
2017. Available online: https://blog.ethereum.org/2016/06/17/
critical-update-re-dao-vulnerability (accessed on February
23, 2022).

[BVFV17] Shaileshh Bojja Venkatakrishnan, Giulia Fanti, and Pramod
Viswanath. Dandelion: Redesigning the bitcoin network for
anonymity. Proc. ACM Meas. Anal. Comput. Syst., 1(1), June
2017.

[Cré11] Claude Crépeau. Commitment. In Henk C. A. van Tilborg and
Sushil Jajodia, editors, Encyclopedia of Cryptography and Security,
2nd Ed, pages 224–227. Springer, 2011.

[FOS19] G. Fuchsbauer, M. Orrù, and Y. Seurin. Aggregate cash systems: A
cryptographic investigation of mimblewimble. In Y. Ishai and V. Ri-
jmen, editors, Advances in Cryptology - EUROCRYPT 2019 - 38th
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019,

https://docs.beam.mw/BEAM_Position_Paper_v0.2.2.pdf
https://docs.beam.mw/BEAM_Position_Paper_v0.2.2.pdf
https://github.com/BeamMW/beam
https://github.com/BeamMW/beam
https://docs.beam.mw/BEAM_Position_Paper_0.3.pdf
https://github.com/BeamMW/beam/wiki/Secure-bulletin-board-system-(SBBS)
https://github.com/BeamMW/beam/wiki/Secure-bulletin-board-system-(SBBS)
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability

References 55

Proceedings, Part I, volume 11476 of Lecture Notes in Computer
Science, pages 657–689. Springer, 2019.

[Fou] Beam Foundation. Beam confidential cryptocurrency, 2020. Available
online: https://beam.mw/ (accessed on February 23, 2022).

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions
to identification and signature problems. In Proceedings on Advances
in cryptology—CRYPTO ’86, pages 186–194, London, UK, 1987.
Springer-Verlag.

[FVB+18] Giulia Fanti, Shaileshh Bojja Venkatakrishnan, Surya Bakshi,
Bradley Denby, Shruti Bhargava, Andrew Miller, and Pramod
Viswanath. Dandelion++: Lightweight cryptocurrency network-
ing with formal anonymity guarantees. Proc. ACM Meas. Anal.
Comput. Syst., 2(2), June 2018.

[Gam84] Taher El Gamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. In Advances in Cryptology, Proceedings
of CRYPTO ’84, Santa Barbara, California, USA, August 19-22,
1984, Proceedings, volume 196 of Lecture Notes in Computer Science,
pages 10–18. Springer, 1984.

[Gib] A. Gibson. An investigation into confidential transactions,
2018. Available online: https://github.com/AdamISZ/
ConfidentialTransactionsDoc/blob/master/essayonCT.pdf
(accessed on February 23, 2022).

[GKGG21] Ikram Garfatta, Kais Klai, Walid Gaaloul, and Mohamed Graiet. A
survey on formal verification for solidity smart contracts. In 2021
Australasian Computer Science Week Multiconference, ACSW ’21,
New York, NY, USA, 2021. Association for Computing Machinery.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin
backbone protocol: Analysis and applications. In Elisabeth Oswald
and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part II, volume 9057 of Lecture Notes in
Computer Science, pages 281–310. Springer, 2015.

[GMS18] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. A seman-
tic framework for the security analysis of ethereum smart contracts.
In Lujo Bauer and Ralf Küsters, editors, Principles of Security and
Trust - 7th International Conference, POST 2018, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings,
volume 10804 of Lecture Notes in Computer Science, pages 243–269.
Springer, 2018.

[Gria] Grin. Dandelion++ in grin: Privacy-preserving transac-
tion aggregation and propagation, 2019. Available online:
https://github.com/mimblewimble/grin/blob/master/doc/
dandelion/dandelion.md (accessed on February 23, 2022).

https://beam.mw/
https://github.com/AdamISZ/ConfidentialTransactionsDoc/blob/master/essayonCT.pdf
https://github.com/AdamISZ/ConfidentialTransactionsDoc/blob/master/essayonCT.pdf
https://github.com/mimblewimble/grin/blob/master/doc/dandelion/dandelion.md
https://github.com/mimblewimble/grin/blob/master/doc/dandelion/dandelion.md

56 References

[Grib] Grin. Grin project github. Available online: https://github.com/
mimblewimble/grin (accessed on February 23, 2022).

[Gric] Grin. Grin source code switch commitments. Available on-
line: https://github.com/mimblewimble/secp256k1-zkp/blob/
73617d0fcc4f51896cce4f9a1a6977a6958297f8/src/modules/
commitment/main_impl.h#L267 (accessed on February 23, 2022).

[Grid] Grin. Introduction to MimbleWimble and Grin, 2016. Available
online: https://github.com/mimblewimble/grin/blob/master/
doc/intro.md (accessed on February 23, 2022).

[Grie] Grin. Privacy primer, 2018. Available online: https://github.
com/mimblewimble/docs/wiki/Grin-Privacy-Primer (accessed
on February 23, 2022).

[Grif] Grin Community. Grin: Open research problems, 2020. Available
online: https://grin.mw/open-research-problems (accessed on
February 23, 2022).

[Hir17] Yoichi Hirai. Defining the ethereum virtual machine for interactive
theorem provers. In Michael Brenner, K. Rohloff, J. Bonneau,
A. Miller, P. Ryan, V. Teague, A. Bracciali, M. Sala, F. Pintore, and
M. Jakobsson, editors, Financial Cryptography and Data Security -
FC 2017 International Workshops, WAHC, BITCOIN, VOTING,
WTSC, and TA, Sliema, Malta, April 7, 2017, Revised Selected
Papers, volume 10323 of LNCS, pages 520–535. Springer, 2017.

[HJC20] Ákos Hajdu, Dejan Jovanovic, and Gabriela F. Ciocarlie. Formal
specification and verification of solidity contracts with events (short
paper). In Bruno Bernardo and Diego Marmsoler, editors, 2nd
Workshop on Formal Methods for Blockchains, FMBC@CAV 2020,
July 20-21, 2020, Los Angeles, California, USA (Virtual Conference),
volume 84 of OASIcs, pages 2:1–2:9. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020.

[IGRS16] F. Idelberger, G. Governatori, R. Riveret, and G. Sartor. Evaluation
of logic-based smart contracts for blockchain systems. In J. Alferes,
L. Bertossi, G. Governatori, P. Fodor, and D. Roman, editors, Rule
Technologies. Research, Tools, and Applications - 10th International
Symposium, RuleML 2016, Stony Brook, NY, USA, July 6-9, 2016.
Proceedings, volume 9718 of LNCS, pages 167–183. Springer, 2016.

[Jed] T. Jedusor. Mimblewimble, 2016. Available online: https:
//scalingbitcoin.org/papers/mimblewimble.txt (accessed on
February 23, 2022).

[KMS] Eirik Korsell, Philip Mueller, and Yves Schumann. Alias, white-
paper, february 9, 2021. Available online: https://alias.cash/
wp-content/uploads/2021/02/Alias-Whitepaper.pdf (accessed
on February 23, 2022).

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman
Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain
protocol. In Jonathan Katz and Hovav Shacham, editors, Advances

https://github.com/mimblewimble/grin
https://github.com/mimblewimble/grin
https://github.com/mimblewimble/secp256k1-zkp/blob/73617d0fcc4f51896cce4f9a1a6977a6958297f8/src/modules/commitment/main_impl.h#L267
https://github.com/mimblewimble/secp256k1-zkp/blob/73617d0fcc4f51896cce4f9a1a6977a6958297f8/src/modules/commitment/main_impl.h#L267
https://github.com/mimblewimble/secp256k1-zkp/blob/73617d0fcc4f51896cce4f9a1a6977a6958297f8/src/modules/commitment/main_impl.h#L267
https://github.com/mimblewimble/grin/blob/master/doc/intro.md
https://github.com/mimblewimble/grin/blob/master/doc/intro.md
https://github.com/mimblewimble/docs/wiki/Grin-Privacy-Primer
https://github.com/mimblewimble/docs/wiki/Grin-Privacy-Primer
https://grin.mw/open-research-problems
https://scalingbitcoin.org/papers/mimblewimble.txt
https://scalingbitcoin.org/papers/mimblewimble.txt
https://alias.cash/wp-content/uploads/2021/02/Alias-Whitepaper.pdf
https://alias.cash/wp-content/uploads/2021/02/Alias-Whitepaper.pdf

References 57

in Cryptology - CRYPTO 2017 - 37th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 20-24, 2017,
Proceedings, Part I, volume 10401 of Lecture Notes in Computer
Science, pages 357–388. Springer, 2017.

[LBL] Len LaPadula, D Elliott Bell, and Leonard J LaPadula. Secure
computer systems: Mathematical foundations, draft mtr, the mitre
corporation, 1973. Available online: http://www-personal.umich.
edu/~cja/LPS12b/refs/belllapadula1.pdf (accessed on Febru-
ary 23, 2022).

[LCO+16] L. Luu, D. Chu, H. Olickel, P. Saxena, and A. Hobor. Making
smart contracts smarter. In E. Weippl, S. Katzenbeisser, C. Kruegel,
A. Myers, and S. Halevi, editors, Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, pages 254–269. ACM, 2016.

[Lim] Wanseob Lim. Ethereum 9 3/4: Send erc20
privately using mimblewimble and zk-snarks,
2019. Available online: https://ethresear.ch/t/
ethereum-9-send-erc20-privately-using-mimblewimble-and-zk-snarks/
6217 (accessed on February 23, 2022).

[Maxa] G. Maxwell. Coinjoin: Bitcoin privacy for the real world, 2013.
Available online: https://bitcointalk.org/index.php?topic=
279249.0 (accessed on February 23, 2022).

[Maxb] G. Maxwell. Confidential transactions write up, 2020. Available on-
line: https://web.archive.org/web/20200502151159/https://
people.xiph.org/~greg/confidential_values.txt (accessed on
February 23, 2022).

[MD17] Roberto Metere and Changyu Dong. Automated cryptographic
analysis of the pedersen commitment scheme. In Jacek Rak, John
Bay, Igor V. Kotenko, Leonard J. Popyack, Victor A. Skormin, and
Krzysztof Szczypiorski, editors, Computer Network Security - 7th
International Conference on Mathematical Methods, Models, and
Architectures for Computer Network Security, MMM-ACNS 2017,
Warsaw, Poland, August 28-30, 2017, Proceedings, volume 10446 of
Lecture Notes in Computer Science, pages 275–287. Springer, 2017.

[Mie] Ian Miers. Blockchain privacy: Equal parts theory and prac-
tice, 2019. Available online: https://www.zfnd.org/blog/
blockchain-privacy/#flashlight (accessed on February 23,
2022).

[MV] Khomyakova l.I. Mishina V.Yu. Dedollarization and settlements in
national currencies: Eurasian and latin american experience. Voprosy
Ekonomiki. 2020;(9):61-79 (In Russian).

[Nak] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash sys-
tem, 2008. Available online: https://bitcoin.org/bitcoin.pdf
(accessed on February 23, 2022).

http://www-personal.umich.edu/~cja/LPS12b/refs/belllapadula1.pdf
http://www-personal.umich.edu/~cja/LPS12b/refs/belllapadula1.pdf
https://ethresear.ch/t/ethereum-9-send-erc20-privately-using-mimblewimble-and-zk-snarks/6217
https://ethresear.ch/t/ethereum-9-send-erc20-privately-using-mimblewimble-and-zk-snarks/6217
https://ethresear.ch/t/ethereum-9-send-erc20-privately-using-mimblewimble-and-zk-snarks/6217
https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=279249.0
https://web.archive.org/web/20200502151159/https://people.xiph.org/~greg/confidential_values.txt
https://web.archive.org/web/20200502151159/https://people.xiph.org/~greg/confidential_values.txt
https://www.zfnd.org/blog/blockchain-privacy/#flashlight
https://www.zfnd.org/blog/blockchain-privacy/#flashlight
https://bitcoin.org/bitcoin.pdf

58 References

[Poe] A. Poelstra. Mimblewimble, 2016. Available online:
https://download.wpsoftware.net/bitcoin/wizardry/
mimblewimble.pdf (accessed on February 23, 2022).

[PS18] George Pîrlea and Ilya Sergey. Mechanising blockchain consensus.
In June Andronick and Amy P. Felty, editors, Proceedings of the
7th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9, 2018,
pages 78–90. ACM, 2018.

[RCdS20] J. Santos Reis, P. Crocker, and S. Melo de Sousa. Tezla, an Intermedi-
ate Representation for Static Analysis of Michelson Smart Contracts.
In Bruno Bernardo and Diego Marmsoler, editors, 2nd Workshop on
Formal Methods for Blockchains (FMBC 2020), volume 84 of Ope-
nAccess Series in Informatics (OASIcs), pages 4:1–4:12, Dagstuhl,
Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[RM17] Tim Ruffing and Giulio Malavolta. Switch commitments: A safety
switch for confidential transactions. In Michael Brenner, Kurt
Rohloff, Joseph Bonneau, Andrew Miller, Peter Y. A. Ryan, Vanessa
Teague, Andrea Bracciali, Massimiliano Sala, Federico Pintore, and
Markus Jakobsson, editors, Financial Cryptography and Data Secu-
rity - FC 2017 International Workshops, WAHC, BITCOIN, VOT-
ING, WTSC, and TA, Sliema, Malta, April 7, 2017, Revised Selected
Papers, volume 10323 of Lecture Notes in Computer Science, pages
170–181. Springer, 2017.

[Ros20] Grigore Rosu. Formal Design, Implementation and Verification of
Blockchain Languages Using K (Invited Talk). In Bruno Bernardo
and Diego Marmsoler, editors, 2nd Workshop on Formal Methods
for Blockchains (FMBC 2020), volume 84 of OpenAccess Series
in Informatics (OASIcs), pages 1:1–1:1, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[SBCL21a] Adrián Silveira, Gustavo Betarte, Maximiliano Cristiá, and Car-
los Luna. A formal analysis of the mimblewimble cryptocurrency
protocol. Sensors, 21(17), 2021.

[SBCL21b] Adrián Silveira, Gustavo Betarte, Maximiliano Cristiá, and Car-
los Luna. A range proof scheme analysis for the mimblewimble
cryptocurrency protocol. In IEEE - UruCon, 2021.

[SOASdM+20] Iago Sestrem Ochôa, Luis Augusto Silva, Gabriel de Mello, Nuno M.
Garcia, Juan Francisco de Paz Santana, and Valderi Reis Quiet-
inho Leithardt. A cost analysis of implementing a blockchain archi-
tecture in a smart grid scenario using sidechains. Sensors, 20(3),
2020.

[Tam] Tamarin. Tamarin prover. Available online: https://
tamarin-prover.github.io (accessed on February 23, 2022).

[The] The Coq Team. The Coq proof assistant reference manual. Available
online: http://coq.inria.fr (accessed on February 23, 2022).

https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://tamarin-prover.github.io
https://tamarin-prover.github.io
http://coq.inria.fr

[TLL+21] Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu, and Zengxiang
Li. A survey of smart contract formal specification and verification.
ACM Comput. Surv., 54(7), July 2021.

[Woo] G. Wood. Ethereum: A secure decentralised generalised transaction
ledger eip-150 revision (759dccd - 2017-08-07), 2017. Available on-
line: https://ethereum.github.io/yellowpaper/paper.pdf (ac-
cessed on February 23, 2022).

https://ethereum.github.io/yellowpaper/paper.pdf

	Introduction
	Cryptocurrency Security
	Related Work
	Aims and structure of the thesis

	The Mimblewimble Protocol
	Transactions
	Verification of transactions
	Authentication of transactions

	Schemes and Protocols
	Commitment Scheme
	Range Proof Scheme
	Schnorr Signature Protocol

	Idealized Model
	Transactions
	Transaction construction
	Aggregate Transactions
	Unconfirmed Transaction Pool
	Blocks and chains
	Validating a chain

	Properties
	Protocol Properties
	Privacy and Security Properties
	Security properties of Pedersen commitments
	Switch commitments
	Security properties of range proofs

	Unlinkability and Untraceability

	Implementations
	Grin
	Blocks and Transactions
	Privacy and Security Properties

	Beam
	Blocks and Transactions
	Privacy and Security Properties

	Discussion
	Broadcasting Protocol
	Range proofs
	Some Design Decisions

	Conclusions and Future Work
	Final remarks
	Future work

	Appendix
	 Math symbols and abbreviations
	Grin and Beam source code

