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Abstract

Two systems are modeled in this thesis. First, we consider a multi-component stochastic monotone
binary system, or SMBS for short. The reliability of an SMBS is the probability of correct operation.
A statistical approximation of the system reliability is provided for these systems, inspired in Monte
Carlo Methods. Then, we are focused on the diameter constrained reliability model (DCR), which was
originally developed for delay sensitive applications over the Internet infrastructure. The computational
complexity of the DCR is analyzed. Networks with an efficient (i.e., polynomial time) DCR computation
are offered, termed Weak graphs.

Second, we model the effect of a dynamic epidemic propagation. Our first approach is to develop a
SIR-based simulation, where unrealistic assumptions for SIR model (infinite, homogeneous, fully-mixed
population) are discarded.

Finally, we formalize a stochastic process that counts infected individuals, and further investigate
node-immunization strategies, subject to a budget constraint. A combinatorial optimization problem is
here introduced, called Graph Fragmentation Problem. There, the impact of a highly virulent epidemic
propagation is analyzed, and we mathematically prove that Greedy heuristic is suboptimal.

Keywords— Stochastic Binary System, Recursive Variance Reduction Method, Diameter Constrained
Reliability, Graph Theory, Complexity Theory, GRASP, SIR Model, Monte Carlo Methods, Epidemic
Model
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Chapter 1

Introduction

1.1 Systems

In this thesis we work with systems. A System is a set of interacting or interdependent components that
entail a complex/intricate whole. The importance of systems in today’s world is evident. Just consider
Power Distribution Networks, Transportation Networks in general, Internet, among others.

Leaving aside questions of efficiency, a system can be in two basic states: operating or not operating
(up/down, working/not working, one/zero, on/off, etc.), where the meaning of the term “operating”
depends on the context. The correct operation of a system (e.g., a car, a plane, a network, etc.) depends
on the correct operation and interactions of their components.

Usually, it is hard to know deterministically when a certain component will fail. Thus, a natural
way to model the system’s functioning is probabilistically. Sometimes, under certain hypothesis the
probability of system failure can be computed explicitly from the probability of failure of its components.
This occurs for instance when components fail at random and the failure of one component does not
affect the operation of the others. For each state or configuration, the system works or not. This measure
is timeless (in a sense that time is not an explicit variable). It depends only of the states of system
components, hence the term “static system”.

Therefore, if we know the configurations for which the system works and their probababilities or
weights, we can calculate the probability that the system works, whether explicitly or approximately.
In dependent systems, the failure of one component affects the others, which in turn affects system
performance. A natural way to model cascade failures is by means of dynamic systems. The spatial
structure of the system is the ground on which failures evolve.

The object in reliability analysis is to assign a number to each system. As a consequence, reliability
analysis falls within the scope of Metrology. Thus, reliability is a measure associated to static systems.
But in most of real-life situations, time plays an relevant role. System configurations change over time
and an adequate measure is the system Resilience. Resilience is the ability (of a system) to cope with
change. In computer networking this implies the ability to provide and maintain an acceptable level of
service in the face of faults and challenges to normal operation. Threats and challenges for services can
range from simple misconfiguration over large scale natural disasters to targeted attacks.

In order to represent a system, usually a point of departure is to draw a diagram, where nodes
represent components that perform a particular task or change in any way as a certain input or influence.
The links in turn can represent physical connections, stimuli, influences, interactions, inputs, or other
relation.



In this thesis, on/off systems are represented by graphs. Components can be either nodes or links.
Already at this stage components under failure are labeled or removed from the system. Therefore it
is not surprising the strong correlation between the correct operation of a system and certain properties
(such as connectivity) of the underlying graph used to represent it.



1.2

Terminology

The following terminology will be adopted in this thesis. It has been almost entirely taken from PhD
thesis of Dr. Claudio Risso.

1.

10.

Graph

A graph is an ordered pair G = (V,E) comprising a finite set V of vertices (or nodes) together
with a set E of edges (or lines), which are pairs of vertices of V. When E is a multiset of pairs
of vertices (not necessarily distinct), such a graph is called multigraph or pseudograph, otherwise
is called simple. Simple also requires graphs with no loops (edges connected at both ends to the
same vertex). When pairs of nodes in E are unsorted pairs, the graph is referred to as undirected.
To avoid ambiguity, if the type of the graph is not specified the graph is assumed to be undirected
and simple.

Adjacent vertices
Given a graph G and two vertices, if these vertices are connected by an edge they are called
adjacent, whereas the edge is called incident to the vertices.

Neighborhood
Let G = (V,E) be a graph. Given any node v € V, the neighborhood of v or N(v), is the set of
nodes adjacent to v.

Degree
Let G = (V,E) be a graph. Given any node v € V we denote as dg(v) to the number of nodes
adjacent to it (i.e. [N(v)|). This number is called degree of v.

Path

Let G be a graph. Given two vertices u and v, a path from u to v consists of a sequence of distinct
vertices starting at # and ending at v, such that each two consecutive vertices in the sequence are
adjacent to each other.

Connected vertices
Let G be an undirected graph. Two vertices u and v of G are called connected if G contains a path
from u to v. Otherwise, they are called disconnected.

Connected Graph
A graph G is said to be connected if every pair of vertices in the graph is connected.

. Articulation Point

Let G be a graph, an articulation point or cut-vertex is any vertex whose removal disconnects the
graph.

k-node Connectivity
Let G = (V,E) be an arbitrary undirected graph. If G’ = (V\Y,E) is connected for all ¥ C V where
|Y| < k, then G is k-vertex-connected (or simply k-connected).

Node Connectivity
Let k be the greatest integer for which G is k-node-connected. We call k(G) to such number, which
is referred to as node connectivity of G.
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k-edge Connectivity
Let G = (V, E) be an arbitrary undirected graph. If G’ = (V, E\X) is connected for all X C E where
|X| < k, then G is k-edge-connected.

Edge-Connectivity
Let m be the greatest integer for which G is m-edge-connected. We call A(G) to such number,
which is referred to as edge connectivity of G.

Contraction

Let e = xy be an edge of the graph G. By G/e we denote the graph obtained from G by contracting
the edge e into a new vertex v,, which becomes adjacent to all the former neighbors of x and y.
When this transformation relaxes the premiss regarding the existence of an edge between nodes is
called an identification.

Resilience
Resilience is the ability (of a system) to cope with change. That is, the ability to continue operating
in contexts where faults are dynamic.

Stochastic Binary System

A Stochastic Binary System (SBS) represents a system S that fails randomly as a function of the
random failure of its components. The states of any two components are statistically independent.
The state of element i in the element’s set 7 at some instant of interest is done by the outcome of
a binary random variable X;, where p; = P(X; = 1) and p = (p1,. .., p|r|). The state of the system
is done by the random vector X = (Xj,...,Xr|). The structure of the system is represented by a
function ¢ : {0, 17! — {0,1} such that ¢(X) = 1 if the system works under state X, and ¢(X) =0
otherwise. The triad (S, p,®) is called Stochastic Binary System.

Stochastic Monotone Binary System

If x,y € {0,1}/7], we consider the relation x <y whenever x; <y, foralli=1,...,|T|, and x < y if
x<yandx; <y;forsome j=1,...,|T|. According to this, the structure is monotone if ¢(x) < ¢(y)
whenever x < y. An SBS with monotone structure is called Sthochastic Monotone Binary System
or SMBS.

Source-Terminal Reliability
Let G = (V,E) be a simple graph, s and ¢ terminal nodes. The source-terminal reliability is the
probability to find a path that connects the terminal nodes s and ¢.

All-Terminal Reliability
Let G be a graph with perfect nodes. The all-terminal reliability is the probability that the resulting
subgraph is connected, where nodes are perfect but links fail independently and probabilistically.

Diameter Constrained Reliability

Let G be a graph with perfect nodes, K C V a set of distinguished nodes, and d a positive integer.
The diameter constrained reliability is the probability that for every pair of nodes in K x K there
exists in G at least one path having all its links operational and length not greater than d.

Stochastic Process
A stochastic process X is a collection {X; : t € T } where each X; is an F -valued random variable.
Usually & = R or F = Z. The parameter ¢ represents time. We use 7 =Z and ¥ = Z.
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Decision Problem
Is a problem 7 that takes as input some string ¢ over an alphabet X, and outputs “yes” or “no”.

Instance

Given a decision problem 7, we call an instance of it to a concrete set of parameters that can be
used to univocally feed an algorithm in order to find an answer (Yes or No). Any decision
problem 7 has an associated domain-set of instances Dy, where the problem makes sense. Let
Y: C Dy be that subset of instances for which the answer is Yes.

In the field of Computational Complexity and Analysis of Algorithms the following are basic
questions: when is an algorithm efficient? and when is a problem easy to be solved? The classical
definition for the efficiency of an algorithm relies upon time-complexity and is: “the amount of
time taken by an algorithm to run, as a function of the length of the string representing the input”.
As measuring translates into comparing, at this point we introduce some useful concept to
compare algorithms. The following definition allow us to compare the complexity of two
algorithms.

Order of Complexity

Let f(x) and g(x) be two real functions defined on some input string set, whose outputs (positive
reals) respectively represent the time expended by two algorithms -running upon the some
computer- to find a solution to an instance associated with each input string. We say that g is of
higher complexity order than f (denoted as f(x) = O(g(x)), if and only if, there is a positive
constant M such that for all sufficiently large strings x, f(x) is at most M multiplied by g(x). That
is, exists xp and M such that: f(x) < Mg(x), for all |x| > xo.

This definition focuses on the tendency of the algorithm as the input increases in size, so,
coefficients and lower order terms are usually excluded. For example, if the time required by an
algorithm on all inputs of size n is at most 5rn° + 3n, the asymptotic time complexity is O(n?).

Efficient Algorithm

An algorithm is referred to as efficient or tractable, if and only if, its asymptotic time complexity
is a monomial. In other words, for any input instance x of size n, the algorithm can find a solution
in polynomial time. Formally, there is a p € N such that the time required to the algorithm to find
a solution (f(x)) is of lower complexity order than n? (i.e. f(x) = O(nP)).

Let us suppose that computing power (in terms of computations per second) increases by a factor
of 1000 at decade, and we have to choose between four different algorithms to find solutions for a
critical application, which demands an answer within a day. As a baseline, performance for these
algorithms was computed on 2010 and the best all of them could do, was finding solutions within
a day for instances of size 100. Besides, it is known that complexity orders for these algorithms
are: n®, n'®, 10" and n! respectively. The table 1.1 shows the expected size for instances that
each algorithm can solve within a day, along decades, as computer performance evolves. We must

observe that the first algorithm is the most promising one in terms of scalability. Although worse
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in performance, the second algorithm shares a characteristic with the first one, decade after decade
the size of the achievable instance increases by a common factor: 1/1000 = 31.62 in the first case,
V1000 = 1.995 in the second.

year o(n*) | 0(n') | 0(10") | o(n!)
2010 100 100 100 100
2020 3,162 200 103 102
2030 100,000 398 106 104
2040 3,162,278 794 109 105
2050 | 100,000,000 | 1,585 112 106

Table 1.1: Affordable size of instances for algorithms of different complexity orders

Unlike polynomial time algorithms, third and fourth are respectively of exponential and
over-exponential complexity. When this happens the size of instances behaves as immutable to
evolution of computer’s performance. This is the practical consequence of intractability, that is,
we cannot rely on hardware efficiency improvements to find solutions for big instances. A
polynomial time algorithm is usually a reasonable option. Problem is that there are many
problems for which a polynomial time algorithm has never been found. Computational
complexity theory as a branch of the “theory of computation” in “theoretical computer science
and mathematics” is an abstract area. Outstanding contributors to this area were: Alan Turing,
Stephen Cook and Richard Karp. A detailed analysis on it is out of the scope of this document,
nevertheless we give here a descriptive/extendable set of concepts for decision problems, i.e.,
problems where the output limits to two values: Yes or No.

The Class of P-problems
We say a decision problem 7 is of class P, if and only if, there is an algorithm capable of finding
answers (solutions) in polynomial time as a function of the instance size.

The Class of A P-problems

We say a decision problem 7 is of class AP, if and only if, there is an algorithm capable of
checking a solutions (given by an external oracle) in polynomial time as a function of the instance
size.

It is pretty clear that whether a problem can be solved in polynomial time it also can be checked
in polynomial time, so P C A_P. Although the opposite inclusion looks unlikely, until today no
one has ever found a formal proof of it. In fact, the conjecture P # AP is probably the most
important open problem in computer science and we are not intending to search for an answer
here. Instead, we take the usual approach to establish the intrinsic complexity of our problems,
that is, we compare them to other well known complex problems.

Polynomical Reduction
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Given any two decision problems 7 and @/, and being Dy and Dy their respective sets of
instances, we call polynomial reduction of @ to m (&' < m) to any function f : Dy — Dy of
polynomial complexity, such that for all d € Dy, it fulfills that d € Yy if and only if f(d) € Yx.

The existence of a polynomial reduction from 7’ to (%' < ) means that if anyone develops an
efficient algorithm to find solutions to any instance of T, through the reduction process it can be
used as the kernel to construct an efficient algorithm to find solutions to any instance of 7’.

The Class of A\ P-Hard problems
Given a problem T we say that it is A P-Hard if and only if for all n’ € AP it holds ' < 7.

The Class of A\ P-Complete problems
Let wa A P-Hard problem. If in addition T € AP, we say that 7 is A_P-Complete or A P-C.

The Class of {P-Complete problems
The class §P is the set of the counting problems associated with the decision problems in the set

NP.

P=NP

Figure 1.1: Inclusion relationship amid complexity types

The inclusion relationship admit different complexity types of problems is represented in figure
1.1. The representation on the left corresponds to the case where P # AP, the right one to
P = NP. On 1971 Stephen Cook proved (Cook’s theorem) that the boolean Satisfiability (SAT)
problem is A_P-Complete, that is: the SAT is as hard as any other problem of A’P. An yet on
1972 Richard Karp started the construction of a list of polynomial reductions of SAT to other
AP problems, thereby showing that all of them are A'P-Complete (Karp’s 21 A P-Complete
problems). The standard procedure to prove that a problem T € A P is AP — Complete, consists
in finding a well known A P-Complete problem (1) and a polynomial reductions from 7’ to 7
(i.e. proving that @' < m). Hence, the transitivity of “<” guarantees that: SAT < 7.
Complementarily and since SAT is the hardest A_P problem (Cook’s theorem), both complexities
are equivalent and 7 is AP-Complete too. It is worth pointing out that the previous procedure



31.

32.

33.

guarantees T is AP — Hard, even if we cannot prove T € A P.

Optimization Problem

Given a domain X for a set of n variables (e.g. X =R", X = N" or X = {0,1}"), an objective
function f : X — R and a set of m constraints to be fulfilled g : X — R™, an Optimization Problem
consists in finding x € X, such that f(X) is the minimum (or maximum) value of f while g(x) < 0.

Combinatorial Optimization Problem
We call an Optimization Problem as a Combinatorial Optimization Problem (COP) when all
variables are of integer type.

For example, the surface in figure 1.2 represents a hypothetical instance for a two variables problem
of a generic (P) optimization problem. The goal is finding the points marked with blue dots in the
figure.

On 1984 Narendra Karmarkar proved that when X = R", g is a linear function and f is also linear
(or even quadratic), the problem (P) can be solved in polynomial time. So Linear Programming
(LP) problems are computationally easy to solve (i.e. they are in P class).

min f(x)
(P)q 8(x) <0
xeX

Figure 1.2: A generic optimization problem representation

However, when X C Z" the problem (P) is hard in general, even when f and g are linear.

GRASP

Greedy Randomized Adaptive Search Procedure (GRASP) is a multi-start or iterative process,
where feasible solutions are produced in a first phase, and neighbor solutions are explored in a
second phase. The best overall solution is returned as the result. The first implementation is due
to Tomas Feo and Mauricio Resende, were the authors address a hard set covering problem arising
for Steiner triple systems



1.3 Structure of the Thesis

This thesis follows the Swedish style, and is organized in three parts. These parts have been ordered
according to the logic of studying the reliability first, then resilience and finally the graph fragmentation
problem. Chapter 2 includes elementary contributions on the diameter constrained reliability model,
while Chapter 3 studies stochastic monotone binary systems. Chapters 4 and 5 deal with the second part,
while Chapter 6 focuses in the third part.

1. In Part I we study how to measure the probability of correct operation of a static system, known as
System Reliability. Chapter 2 focuses on the SBS, while Chapter 3 does in SMBS.

2. In Part I we study how to improve the Resilience of a dynamic system when failures propagate as
an epidemic. This issue is addressed in the Chapters 4 and 5.

3. In Part Il a combinatorial optimization problem is introduced. It is inspired in epidemic modeling,
and finds applications in firefighting and electric networks.

The goal is to protect (i.e., delete) specific nodes in a ground graph in order to minimize the
expected number of deads, where an atacker picks a node uniformly at random and attacks its
whole connected component. This problem is treated in Chapter 6.

Each chapter includes a corresponding peer-reviewed article. They are all accepted and published
(the article from Chapter 5 is to appear).

Preliminary results about resilience are published in the Proceedings of the International Workshop
in Machine learning, Optimization and big Data (MOD 2015), and presented in Chapter 4, while a more
in-depth analysis is included in Chapter 5. There, we provide evidence of major shortcomings of a
Greedy immunization heuristic to cope with an epidemic propagation.

In Chapter 6 we explore and go deeper into the ideas outlined above, now as a Graph Fragmentation
Problem or GFP. We prove mathematically certain desired properties of candidate solutions.

Using these properties we define a Greedy notion for the GFP. We develop a more sophisticated
GRASP heuristic enriched with a Path-Relinking post-optimization phase. Both heuristics are compared
on the lights of certain graphs inspired by real-world systems.



1.4 Main Contributions

1.4.1 Reliability

Framework

In Chapter 2, the object under study is the exact evaluation of the Diameter Constrained Reliability
(DCR). There, the hardness of an exact computation is established in an all-terminal scenario when the
diameter is equal to two. Additionally, a new family of graphs is presented, which accepts an exact and
efficient DCR evaluation.

The reliability of more abstract systems is studied in Chapter 3. There, we consider Stochastic
Binary Systems. Recursive Variance Reduction (RVR) method shows to be suitable for network
reliability analysis. Here, we show that RVR method preserves all their properties already known in
network reliability, provided the SBS is monotone. Also a new method called F-Monte Carlo (FMC) is
introduced.

Contributions

Chapter 2: Diameter-Constrained Reliability: Complexity, Factorization and Exact
computation in Weak Graphs

e We prove that the DCR evaluation belongs to the AP — Hard class in an all-terminal scenario
when the diameter is d = 2.

e A new family of graphs that accepts a polynomial-time DCR evaluation is introduced, called Weak
Graphs. As a corollary, closed formulas are provided for the DCR evaluation of specific sub-
families (i.e., trees, cycles, Monma graphs, graphs with free co-rank and planar graphs with a
number of faces independent of the order).

Chapter 3: Recursive Variance Recursion Method in Stochastic Monotone Binary Systems

e We prove here that the reliability computation of an arbitrary SMBS belongs to the class of A P-
Hard problems.

e Two Monte Carlo approaches are introduced for the SMBS: RVR and FMC.

e We show that RVR method preserves all their properties already known in network reliability,
provided the SBS is monotone.

e Methods are tested over different SMBS and compared with Crude Monte Carlo (CMC) method
for three different definitions of “system works”.



1.4.2 Resilience under epidemic propagation of failures

Framework

In Chapters 4 and 5, the network is exposed to an epidemic failure process. A singleton is initially
infected, and failures (i.e., the infection) is propagated through neighboring nodes. This dynamic system
is first empirically studied (Chapter 4) and then formalized as a stochastic process and combinatorial
problem (Chapter 5).

In this dynamic system a singleton node is initially infected. Then, it propagates the infection through
neighboring susceptible nodes, following a probabilistic infection rule. Some nodes are chosen for node-
immunization; they are not susceptible nodes (indeed, they fall in a third category, as in a traditional SIR
model). The number of infected individuals represents the stochastic process under study, and the goal
is to minimize the peak of infected nodes through time.

A Greedy immunization heuristic is presented, where nodes with the highest degree are immunized.
We show both mathematically and empirically that Greedy heuristic is suboptimal. Furthermore, a
Random heuristic outperforms Greedy in special scenarios. It is worth to observe that the class of
infected individuals can be considered as failure elements in a network. With this analogy in mind, an
epidemic process can adequately model cascade failures.

Contributions

Chapter 4: Node-Immunization Strategies in a Stochastic Epidemic Model

e A combinatorial optimization problem is formally presented. The goal is to minimize the infection
subject to a budget constraint, choosing a node-immunization strategy.

o A performance analysis is carried out. There, Greedy is compared with a Random immunization
heuristic.

e We empirically show that Greedy heuristic is not always the best choice.

Chapter 5: A counter-intuitive result on SIR-based Node-immunisation Heuristics
e We provide sufficient conditions for optimality.

e As a Corollary, we mathematically prove that Greedy is sub-optimal.

e The effect of the underlying network topology is empirically analyzed.



1.4.3 Graph Fragmentation Problem

Framework

In several real-world applications a malfunctioning of a single element is propagated through
neighboring interconnected elements. In Chapter 6, we propose a combinatorial problem that models
how to cope with an accident, choosing nodes for protection. We invite and challenge the operations
research community to model and understand firefighting and related real-world problems.

Contributions

Chapter 6: Graph Fragmentation Problem

The Graph Fragmentation Problem (GFP) is introduced. We are given a ground graph G and a
budget constraint B. The goal is to protect (remove) B nodes from a graph G, in such a way that a
random attack to an arbitrary node v affects the lowest expected number of nodes (where the whole
connected component from v is affected).

Elementary properties of the GFP were studied. Specifically, we prove that graph fragmentation
and balancing are good strategies. Together, they define a Greedy notion for the problem.

We mathematically prove that Greedy achieves an improvement in each additional protected node.

A more sophisticated GRASP suitably customized heuristic enriched with a Path Relinking post-
optimization scheme has been developed.

The effectiveness of our more sophisticated heuristic has been tested on real-life
telecommunication networks.
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Part 1

Reliability in Static Systems






Chapter 2

Diameter-Constrained Reliability:
Complexity, Factorization and
Exact computation in Weak Graphs

In classical reliability analysis, the all-terminal reliability is the connectedness probability of a random
graph. There, nodes are perfect but links fail with independent probabilities.

We consider a positive integer d and distinguished node-set K, called terminals. The diameter
constrained reliability (DCR) is the probability that every pair of terminals are connected by paths
composed by d links, or less. Since the DCR evaluation subsumes the classical reliability analysis, it
belongs to the class of AP-Hard problems as well.

Elementary properties of the DCR are studied in this paper. First, the intractability of the DCR
evaluation is established even if d = 2 in an all-terminal scenario. Additionally, a special family of
graphs is introduced, which accept a polynomial time evaluation.
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ABSTRACT

In this paper we address a problem from the field of network re-
liability, called diameter-constrained reliability. Specifically, we
are given a simple graph G = (V, E) with |[V| = n nodes and
|E| = m links, a subset K C V of rerminals, a vector p =
(p1,---,pm) € [0,1]™ and a positive integer d, called diame-
ter. We assume nodes are perfect but links fail stochastically and
independently, with probabilities ¢; = 1 — p;. The diameter-
constrained reliability (DCR for short), is the probability that the
terminals of the resulting subgraph remain connected by paths com-
posed by d links, or less. This number is denoted by R?(,G(p)-

The general DCR computation is inside the class of A“P-Hard
problems, since is subsumes the complexity that a random graph
is connected. In this paper the computational complexity of DCR-
subproblems is discussed in terms of the number of terminal nodes
k = |K| and diameter d. A factorization formula for exact DCR
computation is provided, that runs in exponential time in the worst
case. Finally, a revision of graph-classes that accept DCR compu-
tation in polynomial time is then included. In this class we have
graphs with bounded co-rank, graphs with bounded genus, planar
graphs, and, in particular, Monma graphs, which are relevant in
robust network design. We extend this class adding arborescence
graphs. A discussion of trends for future work is offered in the
conclusions.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Reliability, availability, and ser-
viceability; D.2.8 [Mathematical Software]: Reliability and Ro-
bustness—computational complexity, performance measures

General Terms
Network Reliability

Keywords

Computational Complexity, Network Reliability, Diameter-Constrained

Reliability

1. INTRODUCTION
The definition of DCR has been introduced in 2001 by Héctor Can-
cela and Louis Petingi, inspired in delay-sensitive applications over
the Internet infrastructure [10]. Nevertheless, its applications over
other fields of knowledge enriches the motivation of this problem
in the research community [12].

We wish to communicate special nodes in a network, called termi-
nals, by d hops or less, in a scenario where nodes are perfect but
links fail stochastically and independently. The all-terminal case
with d = n — 1 is precisely the probability that a random graph is
connected, or classical reliability problem (CLR for short). Arnon
Rosenthal proved that the CLR is inside the class of NP-Hard
problems [24]. As a corollary, the general DCR is A/P-Hard as
well, hence intractable unless P = N'P.

The focus of this paper is the computational complexity of DCR
subproblems in terms of the number of terminals k and diameter d,
and the efficient computation of the DCR for distinguished graph
topologies.

In Section 4, a formal definition of DCR is provided as a particular
instance of a coherent stochastic binary system. The computational
complexity of the DCR is discussed in terms of the diameter and
number of terminals in Section 3. The contributions of this paper
are two-fold. First, we close the complexity analysis of the DCR
problem in terms of k and d. Indeed, we prove in this section that
the DCR is in the computational class of A"P-Hard problems in the
all-terminal scenario (kK = n) with a given diameter d > 2. The
computational complexity for other possible pairs for k£ and d is
already available from prior literature from this area.

Then, we provide an exact DCR computation by means of a factor-



ization technique inspired in [20], in Section 4. Finally, we extend
the class of known graphs that permit an efficient (i.e. polynomial
time) computation for the DCR in Section 5. A particular but rele-
vant family of these graphs are Monma graphs, which plays a key
role in the design of robust network design [19, 23, 8]. Concluding
remarks and open problems are summarized in Section 6.

2. TERMINOLOGY

We are given a system with m components. These components
are either “up” or “down”, and the binary state is captured by a bi-
nary word & = (z1,...,Zm) € {0,1}™. Additionally, we have
a structure function ¢ : {0,1}™ — {0, 1} such that ¢(z) = 1 if
the system works under state z, and ¢(z) = 0 otherwise. When
the components work independently and stochastically with certain
probabilities of operation p = (p1, . . ., pm), the pair (¢, p) defines
a stochastic binary system, or SBS for short, following the termi-
nology from [1]. An SBS is coherent whenever z < y implies that
¢(z) < ¢(y), where the partial order set (<, {0,1}™) is bit-wise
(ie. z < yifandonlyif z; < y; foralli € {1,...,m}). If
{Xi}i=1,...,m is a set of independent binary random variables with
PX;=1)=p;and X = (X1,...,Xm), thenr = E(¢(X)) =
P(¢(X) = 1) is the reliability of the SBS.

Now, consider a simple graph G = (V, E), a subset K C V
and a positive integer d. A subgraph G, = (V,E;) C G is
d-K-connected if d,(u,v) < d,¥{u,v} C K, where d,(u,v)
is the distance between nodes w and v in the graph G,. Let us
choose an arbitrary order of the edge-set £ = {e1,...,em}, e; <
ei+1. For each subgraph G, = (V, E;) with E; C E, we iden-
tify a binary word z € {0,1}™, where z; = 1 if and only if
e; € FEg; this is clearly a bijection. Therefore, we define the
structure ¢ : {0,1}™ — {0,1} such that ¢(z) = 1if G, is d-
K-connected, and ¢(x) = 0 otherwise. If we assume nodes are
perfect but links fail stochastically and independently ruled by the
vector p = (p1,...,Pm), the pair (¢, p) is a coherent SBS. Its
reliability, denoted by R% ¢ (p), is called diameter constrained re-
liability, or DCR for short. A particular case is R”K_é (p), called
classical reliability, or CLR for short.

In a coherent SBS, a pathset is a state x such that ¢(z) = 1. A
minpath is a state x such that ¢(x) = 1 but ¢(y) =0 forally < x
(i.e. a minimal pathset). A cutset is a state = such that ¢(x) = 0,
while a mincut is a state = such that ¢(z) = 0 but ¢(y) = 1 if
y > x (i.e. a minimal cutset). We will denote OF (G) to the set of
all d- K -connected subgraphs of a ground graph G.

We recall a bit of terminology coming from graph theory, which
will be used throughout this treatment. A graph G = (V, E) is
bipartite if there exists a bipartition V' = V; U V5 such that £ C
{{z,y} : x € Vi,y € Va}. A vertex cover in a graph G = (V, E)
is a subset V' C V such that V/ meets all links in F.

Given two graphs (G1 and G2 with the same vertex set V, f : V —
V' is a K-isomorphism from G to G» if it is an isomorphism that
fixes the set K. In that case G1 and G2 are K-isomorphic. Given
a simple graph G = (V, E) and e = {z,y} € E, an elementary
division of e is a couple of edges ey = {z,z} and e2 = {z,y}
that replace e in G, where z ¢ V. Two graphs G and G2 are
homeomorphic if there exists a graph G such that G; and G2 can be
obtained from G by means of a sequence of elementary divisions.
If P = {Vi,...,V,} is a partition of V, the quotient graph is
G’ = (P,E’), where {V;,V;} € E’ if and only if i # j and there
exists an edge from a vertex of V; to a vertex of V; in E/. We say v;

is reachable from v; either when v; = v; or there is a path from v;
to v;. In a simple graph G, reachability is an equivalence relation,
and ¢, the number of classes in the quotient graph, is the number
of connected components. Given a simple graph G = (V, E') with
n = |V| vertices and m = |E| edges, its rank is r(G) = n — ¢,
while its co-rank is ¢(G) = m —n+ c. A connected graph verifies
c¢=1;thenr(G) = n — 1 and ¢(G) = m — n + 1. In topological
graph theory, the genus of a graph G is the least natural g such that
G can be drawn without crossing itself in a surface with genus g.
A planar graph verifies g = 0.

3. COMPUTATIONAL COMPLEXITY

The class NP is the set of problems polynomially solvable by a
non-deterministic Turing machine [15]. A problem is NP-Hard
if it is at least as hard as every problem in the set NP (formally,
if every problem in AP has a polynomial reduction to the for-
mer). It is widely believed that A"P-Hard problems are intractable
(i.e. there is no polynomial-time algorithm to solve them). An
N'P-Hard problem is N"P-Complete if it is inside the class N'P.
Stephen Cook proved that the joint satisfiability of an input set of
clauses in disjunctive form is an N/P-Complete decision problem;
in fact, the first known problem of this class [13]. In this way, he
provided a systematic procedure to prove that a certain problem is
NP-Complete. Specifically, it suffices to prove that the problem
is inside the class NP, and that it is at least as hard as an N'P-
Complete problem. Richard Karp followed this hint, and presented
the first 21 combinatorial problems inside this class [16]. Leslie
Valiant defines the class #P of counting problems, such that testing
whether an element should be counted or not can be accomplished
in polynomial time [26]. A problem is #P-Complete if it is in the
set #P and it is at least as hard as any problem of that class.

Recognition and counting minimum cardinality mincuts/minpaths
are at least as hard as computing the reliability of a coherent SBS [1].
Arnon Rosenthal proved the CLR is A'P-Hard [24], showing that
the minimum cardinality mincut recognition is precisely Steiner-
Tree problem, included in Richard Karp’s list. The CLR for both
two-terminal and all-terminal cases are still AP-Hard, as Michael
Ball and J. Scott Provan proved by reduction to counting minimum
cardinality s — ¢ cuts [22]. As a consequence, the general DCR
is N"P-Hard as well. Later effort has been focused to particular
cases of the DCR, in terms of the number of terminals k = |K | and
diameter d.

When d = 1 all terminals must have a direct link,
Rieo= [] plw),
{u,v}CK

where p(uv) denotes the probability of operation of link {u, v} €
E, and p(uv) = 0if {u,v} ¢ E. The problem is still simple when
k =d = 2. Infact,

R%u,v},G =1- (1 - p(uv)) H

weV —{u,v}

(1 = p(uw)p(wv)).

Héctor Cancela and Louis Petingi rigorously proved that the DCR
is N'P-Hard when d > 3 and k > 2 is a fixed input parameter [11],
in strong contrast with the case d = k = 2.

The literature offers two proofs that the DCR has a polynomial-
time algorithm when d = 2 and k is a fixed input parameter [25,
6]. Pablo Sartor et. al. present a recursive proof [25], while Ed-
uardo Canale et. al. present an explicit expression for R%,G that is
computed in a polynomial time of elementary operations [7].



Here, we will prove that the DCR is inside the class of NP-Hard
problems in the all-terminal case with diameter d > 2. The main
source of inspiration for the first result is the article authored by [11],
where they proved that the DCR is N"P-Hard when d > 3 and
k > 2 is a fixed input parameter. There, the authors prove first that
the result holds for k = 2, and they further generalize the result for
fixed k > 2. For our purpose it will suffice to revisit the first part.
Before, we state a technical result:

LEMMA 1. Counting the number of vertex covers of a bipartite
graph is #P-Complete [2].

PROPOSITION 1. The DCR is N'P-Hard when k = 2 and d >
3[11].

PROOF. Let d = d —3 > 0and P = (V(P),E(P)) a
simple path with node set V(P) = {s, s1,...,sqs } and edge set
E(P) = {{s,s1},{s1,82},.-.,{8a'—1, sa’ } }. For each bipartite
graph G = (V, E) with V. = AU Band E C A x B we build the
following auxiliary network:

G'=(AUBUV(P)U{t},EUE(P)UI}, )

where I = {{sar,a},a € A}U{{b,t},b € B}, and all links of G’
are perfect but links in 7, which fail independently with identical
probabilities p = 1/2. Consider the terminal set K = {s,t}. The
auxiliary graph G’ is illustrated in Fig. 1. The reduction from the
bipartite graph to the two-terminal instance is polynomial.

@ —®

D))
N

Figure 1: Example of auxiliary graph G” with terminal set
{s,t} and d = 6, for the bipartite instance Cs.

A vertex cover A’UB’ C AUB induces acutset I’ = {{sar,a},a €
A"YU{{b,t},b € B’} (i.e. if all links in I’ fail, the nodes {s, t} are
not connected). Reciprocally, that cutset determines a vertex cover.
Therefore, the number of cutsets |C| is precisely the number of ver-
tex covers of the bipartite graph |3|. When p = 1/2, all cutsets
are equally likely, and the source-terminal reliability evaluation at
p=1/2is:

4 IC|
Ri e (1/2) =1~ QTAIFIB]

Finally, using the fact that |B| = |C| and by substitution:
A d
18] = 2P - R, 6 (1/2).

Thus, the DCR for the two-terminal case is at least as hard as count-
ing vertex covers of bipartite graphs. & [

The result for d > 3 is a corollary of Proposition 1.

THEOREM 1. The DCR is N'P-Hard when k = n and d > 3.

PROOF. Consider the auxiliary graph G’ = (V' E') from Fig. 1.
Extend G’ furthermore, and consider G” = (V" E"), where V"' =
V'and E” = E' U {{a,a'},a # d’,a,a’ € A} U {{b,b'},b #
b',b,b" € B}. In words, just add links in order to connect all nodes
from A, and all nodes from B. We keep the same probabilities of
operation that in G’, and the new links are perfect.

Consider now the all-terminal case K = V" for G”, and given
diameter d > 3. The key is to observe that the cutsets in the all-
terminal scenario for G’ are precisely the s — t cutsets in G’, and
they have the same probability.

Indeed, each pair of terminals from the set A are directly connected
by perfect links; the same holds in B. The distance between s and
sqis d = d — 3 < d, so these nodes (and all the intermediate
ones) respect the diameter constraint. Finally, if there were an s —¢
path (i.e. a path from s to t), the diameter of G’' would be exactly
d. Therefore, R?s,t},G’ = R“i//,yc,/, and again:

B| = 2414111 — RY, 43 o (1/2))
= 2AHBI(1 — R o (1/2)).

Thus, the DCR for the all-terminal case is at least as hard as count-
ing vertex covers of bipartite graphs. & [

THEOREM 2. The DCR is N'P-Hard when k = n and d = 2.

PROOF. Given a graph G = (V, E), consider G' = (V U
{a,b}, E U {{z,a},{z,b},Vz € V}). By its definition, G’ has
diameter d = 2. All links are perfect, except the ones incident to
a, with p(ax) = 1/2. Consider the DCR for G'. We will show
that the number of minimum cardinality pathsets in G is precisely
the number of vertex covers in G’. Since counting minimum car-
dinality pathsets is at least as hard as computing the reliability of a
coherent SBS [1], the result will follow.

A minimum cardinality pathset in G’ contains all perfect links,
and {a,z1},...,{a,z,} for certain nodes z; € V. Since H is
a minimum cardinality pathset, the graph Gy = (V, H) has diam-
eter 2, but the diameter is increased under any link deletion. Let
No = {z : {a,z} € H} the set of neighbor vertices for the termi-
nal node a. The key is to observe that vertex a reaches every node
in two steps if and only if N, is a vertex cover.

Indeed, suppose a reaches every node in two steps. Then, for any
x € V' \ N, there exists a path xya, so y € N, and thus N, is a
vertex cover. Conversely, if N, covers V, let x € V. Then, either
z € N, and z is adjacent with a, or z € V' \ N, and there exists
y € Ng N Ny, so xya is a path of two hops between z and a.

The minimality of N, as a cover follows from the minimality of H
as a pathset. [

The whole picture of DCR complexity is provided in Fig. 2, which
closes the complexity analysis for different independent pairs (&, d).

4. FACTORIZATION IN DCR

Let us consider a network G = (V, E) with perfect nodes and
identical probabilities of operation p. = pVe € E. Denote n =



k (fixed) k = n or free

2 3..

2 |0O(n) O(n) N'P-Hard

3
d: NP-Hard

N'P-Hard

n—2
n—1

. NP-Hard NP-Hard

Figure 2: DCR Complexity in terms of the diameter d and num-
ber of terminals k = | K|

|V | and m = |E| the respective number of nodes and links in the
network. Totaling exhaustive and mutually disjoint events, Michael
Ball and Scott Provan observed that [2]

Ry.a(p) = Fp" '(1-p), @)
=0

being F; the number of connected subgraphs H = (V, E’) for G
such that |E’| = m — i. Therefore, the problem can be reduced to
counting subgraphs. In particular, if ¢ denotes the minimum cardi-
nality cutset (mincut) then F},,_. is the number of those cutsets.

The classical reliability problem, CLR, is A"P-Hard (see Section 3
for a discussion of computational complexity). Since DCR is an ex-
tension of CLR, it is A"P-Hard as well. Once these classical prob-
lems are known to be computationally hard, the research commu-
nity delved into the development of exact exponential algorithms,
close approximations and polynomially solvable subclasses of the
CLR.

The literature is vast, and we are forced to choose inspirational
and most cited works. Remarkably, Moskowitz [21] proposed se-
ries parallel reductions and deletion of irrelevant edges, as well
as the deletion-contraction principle (or Factoring Theorem): let
e = {z,y} € E be an arbitrary edge, G — e = (V, E — e) repre-
sents edge-deletion, G * e is an edge contraction (the nodes {z, y}
are both identified with x, and the graph G * e has possibly mul-
tiple edges), and K" is the new terminal-set after the identification
of nodes x and y. Then:

RK,G - (1 - pe)RK,Gfe +peRK’,G*e~ (3)

A notorious computational method for rough estimations of Rx ¢
is Crude Monte Carlo (CMC) and its enhancements [14]. The key
idea is to pick IV independent random graphs G1, ..., Gy that re-
spect the correct probability law for the links, and set a binary ran-
dom variable X; to 1 if the desired condition is met or X; = 0
otherwise. By Kolmogorov’s strong law, the average random vari-
able X converges almost surely to P(X = 1), precisely the tar-
get probability (K -connectedness in the CLR, for instance). This
estimation is unbiased, and its error can be reduced linearly with
the sample size N. Unbiased estimations for Ry ¢ are usually
compared with respect to efficiency, which considers both expected
square error (i.e., variance) and computational effort. Héctor Can-
cela and Mohammed El Khadiri developed a Recursive Variance
Reduction (RVR) estimation for Rk ¢, with clearly winning ef-
ficiency with respect to CMC [9]. Other valuable approximation
methods are cross-entropy [18], antithetic variables and uniform

bounds [5]. Here we just touched on the surface of CLR. The curi-
ous reader can find a recent survey in [4].

The DCR additionally requires the terminals to be connected by
path composed not more that d hops. The new parameter d is called
the diameter, and the target probability is denoted by R%G, fol-
lowing the terminology of Héctor Cancela and Louis Petingi [10].
An analogous expression of (2) for the case of homogeneous links
holds:

Rica(p) =Y FUp™ (1 - p), @)
=0

where now Fi(K’d) is the number of d- K -connected subgraphs H =
(V, E') for G such that | E'| = m — i, and the terminals are linked
by paths with d hops or less. Since DCR is a generalization of CLR
(the CLR occurs when d > |V| — 1), the general DCR problem is
N'P-Hard as well. Special care is needed to adapt Expression 3 for
the diameter constrained measure, since the node-contraction oper-
ation does not preserve distances. The reader can find an adaptation
of factorization the diameter-constrained measure in [10]. There,
the authors need to identify all paths that include the selected link.

Observe that if a link e € E fails, the DCR event corresponds to
network G — e, where all link reliabilities are kept the same (but
pe = 0). On the other hand, if e operates, we should find the
DCR of network G°, that is precisely G but p. = 1. A similar
factorization formula for the DCR is the following:

R ¢ = peRic.ge + (1 — pe)Ric.a—e (5)

It is worth to notice that the recursion provided by Equation (5)
iteratively deletes or consolidate links. As a consequence, the it-
erative procedure finishes in non-connected instances, or, on the
other hand, in “strong” networks, where all links are perfect. In the
latter, the network is either d- K -connected (and the DCR equals
1) or not (where the DCR equals 0). Future work is required to
test exact DCR computations in polynomial time using this novel
factorization technique.

S. DCRIN SPECIAL GRAPHS

So far, an efficient (polynomial-time) computation of the DCR is
available only for special graphs, to know, paths, cycles, ladders,
generalized ladders and spanish fans [25]. The reader can appreci-
ate from Figure 2 that an efficient computation is also feasible for
diameter d = 2 and a fixed number of input terminals k [6]. An
explicit expression for R% (p) is provided by [7].

In this article, we will extend the previous list, adding Weak graphs,
Monma graphs, Tree graphs and Arborescence graphs.

DEFINITION 1. Let G = (V, E) a simple graph, K C V and
d a positive integer. The graph G is d-K-r weak if G — U is d-K
disconnected, for every set U C E with |U| > r.

In words, “r-weakness” states the network fails (i.e. is not d-K
connected) whenever we remove an arbitrary set of r links (or
more).

THEOREM 3. Let G = (V, E) a d-K-r weak graph, for some r
independent of n. Then, the DCR can be found in polynomial time
inn.



PROOF. Given an arbitrary configuration G’ = (V, H) C G,
we can decide in polynomial time whether G’ is d- K -connected or
not. Let us denote O to the set of all configurations (V, H), with
|H| > m —r, where m = |E|. Since G’ is d-K-r weak, summing
the probability of disjoint events with positive probability we get
that

R o= Z Lareok )y H p(e) H (1 —p(e)),
)

a'eor e€E(G! e E(GY)
(6)

where 1(,) = 1if x is true, and 1, = O otherwise. It suffices
to show that the number of terms in the sum is polynomial with
respect to n. In fact, by Sum-rule, the cardinality |O"| is precisely:

T — m r—1
O|—;<mi>~m : (7)
where the symbol ~ means that both real sequences are equivalent
when m tends to infinity. Observe that m < n? holds for all con-
nected graphs. Therefore, |O"| ~ m™ ' < n?"~2, and the num-
ber of terms from Expression (7) is bounded by a polynomial in n.
Thus, R?(,G can be found in a polynomial number of elementary
operations inn. & [

COROLLARY 1. The DCR in connected graphs G = (V, E)
with bounded co-rank ¢(G) = m — n + 1 can be found in polyno-
mial time in n.

PROOF. Consider a simple graph G = (V, E), with bounded
co-rank ¢(G), a terminal set X C V and diameter d. If we delete
an arbitrary link set U C F of cardinality ¢(G) + 1, the resulting
subgraph has less links than a tree. Then, G — U us disconnected,
and G is d-K-(¢(G)+1) weak. Since ¢(G)+1 is a constant bound,
Theorem 3 applies, and the DCR can be found in polynomial time

inn.& O

COROLLARY 2. [fthe number of faces of a connected graph G
of genus g has a constant bound, the diameter-constrained reliabil-
ity can be computed in polynomial time.

PROOF. Follows from the fact that the number of faces f of a
graphof genus gis f = m—n+2—2g = ¢(G) — (2g—1). Then,
the co-rank ¢(G) = f 4 2¢ — 1 has a constant bound. & []

COROLLARY 3. Consider a graph G with genus g and a con-
stant bound on its faces. Then, if we consider an arbitrary arbores-
cence for G, its diameter-constrained reliability can be computed
in polynomial time.

PROOF. Trees do not add faces, and Corollary 2 holds for any
arborescence of G. & [

The relevance of the following corollary comes from the fact that
most telecommunication networks are planar.

COROLLARY 4. If the number of faces of a planar graph G
has a constant bound, the diameter-constrained reliability can be
computed in polynomial time.

PROOF. A planar graph has genus 0. & [

The property is unaffected by elementary subdivisions of a graph:

COROLLARY 5. If a family of graphs F has all its elements
homeomorphic to a fixed graph, its diameter-constrained reliability
can be computed in polynomial time with respect to its order.

PROOF. Homeomorphic graphs have the same co-rank. & []

Now we focus on a distinguished family of graphs coming from
robust network design. Specifically, Clyde Monma et. al. studied
the minimum cost two-connected network design problem, for the
metric case spanning all nodes in the set V' [19]. There, the authors
prove that there exists a solution G’ = (V, H) C G such that ev-
ery vertex in G’ has degree 2 or 3, and the deletion of one or two
links from G’ leaves one bridge in one of the resultant connected
components. Moreover, those graphs are either a Hamiltonian cy-
cle in G or contain a Monma graph as an induced subgraph. The
term Monma graph was introduced in later works with this family
of graphs [8]. Figure 3 sketches a general Monma graph.

Figure 3: Monma’s graph structure.

The following corollary provides the dimension of reliability in the
study of Monma graphs:

COROLLARY 6. The diameter-constrained reliability of Monma
graphs can be computed in polynomial time respect to its order:

PROOF. Monma graphs are those homeomorphic to the gen-
eral graph consisting in two vertices and three edges joining them.

6 [

Observe that Monma graphs are 3-K-weak for every selection of
the terminal set K. Therefore, Theorem 3 also proves Corollary 6.
All sub-trees in a Monma graph are obtained removing two links
from different u-v-paths (see Figure 3). If we delete more than
three links, the resulting subgraph is disconnected. In Appendix A
we count the number of spanning trees in an arbitrary Monma
graph. Also, trees are 1-K-weak for every subset of terminals K,
and Theorem 3 states that the DCR computation in trees is feasible
in polynomial time. Indeed, we show in Appendix B that it is linear
in the order of the tree.

6. CONCLUSIONS

In this paper we address the diameter-constrained reliability. This
measure joints is the probability that all distinguished terminals
K C V in a network G = (V, E) remain connected by d hops
or less, where links e € E may fail with certain probabilities

qe = 1 — pe.



The DCR is A'P-Hard, since it subsume the probability that a ran-
dom graph is connected. We summarize the computational com-
plexity of DCR sub-problems in terms of the number of terminals
k = |K| and diameter d. It remains NP-Hard in all cases but
d < 2 and k finite.

Deletion-contraction formulas are available for the classical relia-
bility problem (CLR). However, contractions modify the diameter.
Therefore, we adapted this recursive technique with the introduc-
tion of a different factorization methodology.

An efficient (polynomial time) DCR computation is possible in spe-
cial graphs. Indeed, from prior literature we know that the DCR in
paths, cycles, ladders, generalized ladders and spanish fans can be
found efficiently [25].

In this paper we extended the previous list, including weak and
strong graphs, some graphs with bounded genus, arborescences,
graphs with bounded co-rank and special classes, to know, Monma
graphs and trees.

The best design (minimum cost) 2-node-connected metric network
must be either Hamiltonian or it has a Monma graph a an induced
subgraph. Then, this work connects reliability aspects of network
design in a probabilistic context with robust network design.

As a future work, we wish to find the DCR in Halin graphs, which
play a key role in robust network design (specially in 3-connected
minimum cost network design). Furthermore, we will analyze local
properties of the DCR (node contraction, link deletion and other lo-
cal movements) that will enrich our understanding in this measure
that connects quality (in hop-constrained applications) with relia-
bility. A hint for this study is DCR factorization.
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APPENDIX
A

The complexity of a simple graph G is its number of spanning trees,
denoted by (G). Gustav Kirchhoff provided an efficient way to
count x(G), by means of a determinant [17]. Indeed, x(G) is an
arbitrary minor of the Laplacian matrix L = Ag — A, being Ag
de adjacency matrix of G (i.e. A = (a;,;) : ai,; = 1if {3, j} € E}
or 0 otherwise) and A¢ a diagonal matrix with the degrees of the
vertices. The result is known as “Matrix-Tree Theorem”, and it is a
seminar result in the field called Algebraic Graph Theory [3].

In this appendix, we will study the complexity of Monma graphs,
k(M 15,15). To the best of our knowledge, even its simplicity
this is the first place where a closed expression for k(M i,,14) is
available.

We invite the reader to see Figure 3. All Monma graphs have co-
rank 2. As a consequence, in order to find spanning trees it is re-
quired to delete precisely two links. If both links are removed from
the same independent path between nodes v and v, the resulting
subgraph is disconnected. On the other hand, if two links from dif-
ferent paths are removed, a tree is obtained. Then, the complexity
of Mll,12713 is:

k(M 1g,05) = Lila + Lils + lals ()

Expression (8) has the following combinatorial interpretation: it is
the number of ways to remove two balls from different bins, where
we have exactly I; balls in bin ¢, where ¢ € {1, 2, 3}.

It is clear that {1 + l> + [3 = m, the number of links from Monma
graph, and that (M, 1,,1;) < ('), since some deletion of pairs of
links result in a tree. Now, we will find a tighter bound for the com-
plexity of Monma graphs. For that purpose, we will study the struc-
ture of Monma graphs with m links that maximize the complexity.
Consider the following combinatorial optimization problem:
max f(ll, lz, l3) =lils + 1113 + I3
l1,l2,l3
s.t.
h4+lb+lz=m

l1,l2,l3 €N

By the symmetry of function f, we will assume that [ > lo >
I3 without loss of generality. We will prove that the maximum is
attained when l; = I = I3 if m = 3k forsome k > 1,11 = I3 =
Is—1if m = 3k—2, forsome k > 1, orl3 = lo = I1+1 otherwise.
In the combinatorial interpretation is the following: “the number of
ways to remove two balls from different bins is maximized when
the number of balls in each bin is balanced”.

Indeed, if 1 > I — 2 then f(ll - 17 lo + 1, ld) = f(l17 lg, l&) +
{1 — lo. Therefore, we subtract a unit from /; and it to l2, and
the objective is increased, respecting the constraint [1 + Iz + [3 =
m. Therefore, the integers [1, l2 and I3 that achieve the maximum
cannot differ in more than one unit. The reader can appreciate that
if we choose (w.l.o.g.) I1 > la > Ilsthenly =1y = [l3if misa
multiple of 3, or they differ in one unit, as mentioned before.

A graph reading is the following: “the complexity of Monma graphs
with a fixed size is maximized when the three independent paths

have roughly the same length”. This maximum is roughly 3( % )2 =

2

= < (') In this case, roughly two-thirds of all pair deletion of

links are trees.

B

We already know that trees are 1-weak (i.e. an arbitrary link dele-
tion disconnects them). In this paragraph, we will reinforce this
result:

PROPOSITION 2. The DCR of a tree can be computed in linear
time with its order.

PROOF. Let T = (V, E) be atree and K C E the terminal set.
Since 7T is a tree, given two terminals u,v € K there is precisely
one path P,, that connects them. All those links must be opera-
tional, and the length of P,, must be smaller than d. The links
not included the set P = Uy, vc K Pyo are irrelevant. Let d’ be the
diameter of P. Therefore:

R?(,T = 1{d’§d} H DPe, )

ecP

being pe the probability of operation of link e, 1;,} equals one if =
is true and 0 otherwise. The set P can be found linearly in |V'| using
breadth first search (BFS) with an arbitrary terminal u € K as the
root node (the process finishes when all terminals are reached). Let
x € K be the terminal that is farthest away from u during the BFS
process. If we apply BFS again starting from « as the root node
and y is farthest away we get d’ = d(z, y). So, the diameter d’ can
be obtained in linear time with |V|. Since the number of products
in Expression (9) is |P| < |E| < |V, the whole computation of
R%T be obtained in order | V| elementary operations. & [




Chapter 3

Recursive Variance Recursion Method in
Stochastic Monotone Binary Systems

The reliability analysis is described in more abstract structures. We consider stochastic binary systems,
where its components either fail or operate with independent probabilities, and a rule determines whether
the whole system works or not.

If the rule is monotonous with respect to failures, a stochastic monotone binary system (SMBS)
is obtained as a particular case. The reliability evaluation of arbitrary SMBS belongs to the class of
A[P-Hard computational problems. Therefore, we develop approximation methods for the reliability.

In a first stage, an outstanding method for network reliability analysis called Recursive Variance
Reduction (RVR) is extended to general SMBS. Again, RVR method presents lower variance than Crude
Monte Carlo (CMC). Finally, RVR is tested over three different SMBS, and compared with two Monte
Carlo methods (based on statistical and counting methods).
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Abstract—A multi-component system is usually defined over
a ground set S with m = |S| components that work (or fail)
stochastically and independently, ruled by the probability vector
p € [0,1]™, where p; is the probability that component i works.
We study systems which can be either in “up” or “down” state,

according to their ability to comply with their stated mission
given the subset of components under operation, through a
function ¢ : P(S) — {0, 1}, called structure. A stochastic binary
system (SBS) is the triad (S,p,¢), and the reliability » of an
SBS is the probability that the system is up. The reliability
evaluation of an arbitrary SBS belongs to the class of INIP-Hard
computational problems. Therefore, there is no polynomial time
algorithm to find r for every SBS, unless [P = INP.

The goal of this paper is to study approximation algorithms

to accurately estimate the reliability of a stochastic monotone
binary system, or SMBS, where its structure is monotonous. First,
two Monte Carlo approaches are discussed. Then, the Recursive
Variance Reduction (RVR) method (designed originally for the
particular case of network reliability) is generalized to estimate
the reliability of an SBMS.
The performance of these algorithms under different SMBS
(inspired mainly in network design and k-out-of-m structures)
is illustrated numerically. Hints and challenges for future work
are discussed in the conclusions.

Index Terms—Stochastic Binary System, Recursive Variance
Reduction, Network Reliability, Monte Carlo.

I. INTRODUCTION

In real-life, the correct operation of a complex system (e.g.,
a car, a train, a plane, a bridge) depends on the operation of
its components. Usually, it is hard to know deterministically
when a certain component will fail. Thus, a natural way to
model the system is probabilistically, where the probability of
operation of each component can be estimated by historical
information.

This paper is structured in the following manner. Section II
formally presents the problem and its related terminology. The
computational complexity is analyzed in Section III. There, it
is proved that the reliability evaluation of an SMBS belongs
to the class of NIP-Hard computational problems. Therefore,
it seems natural to define efficient approximation algorithms
for the reliability of an SMBS. Consequently, two straight-
forward Monte Carlo approaches and a generalization of the
Recursive Variance Recursion (RVR) method are described in
Section IV. In Section V, the behavior of these algorithms
is explored on different SMBS, related to network reliability
and k-out-of-m systems. Finally, Section VI contains the main
conclusions and ideas for future research.

II. PROBLEM AND TERMINOLOGY
A. Stochastic Monotone Binary Systems

In this section, we will follow the terminology in Ball [1].
Consider a system composed of m components arbitrarily
ordered. The set of components is S = {1,...,m}. For
convenience, we translate every subset 7' C S into a binary
word, using the indicator vector ¢(T") = 11 € {0,1}™, such
that 1r(i) = 1 if and only if ¢ € T. Its inverse function
e 1:{0,1}™ — P(S) is denoted by p~1(z) =S, C S.

We will use equivalently subsets of S or binary words, using
the translation . A stochastic binary system (SBS for short) is
a triad (S, p, ¢), where p € [0, 1]™ is a probability vector and
¢ :{0,1}"™ — {0,1} a structure function, such that ¢(z) =
1 (¢(x) = 0) means that when S, operates and the other
components fail, the system is up (respectively, down). We
have p, = P(component ¢ is up), and ¢; = 1 —p;. If z,y €
{0,1}"™, we consider the relation z < y whenever z; < y;
for all 4, and z < y when z < y and x; < y; for some



j. A stochastic monotone binary system (SMBS) is an SBS
such that the structure function is monotonous, that is, when
¢(x) < ¢(y) whenever z < y.

A set T C S is a pathset if ¢(1r) = 1. A minpath is
a minimal pathset under inclusion. A subset 7' C S is a
cutset if the system is down whenever all the components
from 7' fail. Formally, T is a cutset when ¢(lg_7) = 0.
A mincut is a minimal cutset under inclusion. The number
of failed components is a function f : {0,1}"* — N such
that f(z) = m — /", ;. A minimum cardinality cutset is
a cutset T C S such that f(1r) is a global minima of f.
Consider a random binary vector X = (Xi,...,X,,) such
that X1, ..., X,, are independent Bernoulli random variables
with P(X;) = p;. The reliability of an SBS is the probability
that the system is up:

r=P@X)=1) = E(o(X)). (1
B. Computational Complexity

The class INIP is the set of problems polynomially solvable
by a non-deterministic Turing machine [2]. A problem is INIP-
Hard if it is at least as hard as every problem in the set INIP
(formally, if every problem in INIP has a polynomial reduction
to the former). It is widely believed that INIP-Hard problems
are intractable (i.e., there is no polynomial-time algorithm to
solve them). An INIP-Hard problem is INIP-Complete if it
is inside the class INIP. Stephen Cook proved that the joint
satisfiability of an input set of clauses in disjunctive form is an
NTP-Complete decision problem; in fact, this is the first known
problem of this class [3]. In this way, he provided a systematic
procedure to prove that a certain problem is IN[P-Complete.
Specifically, it suffices to prove that the problem is inside the
class NP, and that it is at least as hard as an INIP-Complete
problem. Richard Karp followed this idea and presented the
first 21 combinatorial problems inside this class [4]. Leslie
Valiant defines the class #IP of counting problems, such that
testing whether an element should be counted or not can
be accomplished in polynomial time [5]. A problem is #P-
Complete if it is in the set #IP and it is at least as hard as
any problem of that class.

III. RELIABILITY EVALUATION OF AN SMBS:
COMPUTATIONAL COMPLEXITY

In this section we outline the computational complexity
aspect of the problem of computing r for any SBS. The
intractability is a trivial corollary of two classical results.

Proposition 1: Recognition and counting minimum cardi-
nality mincuts/minpaths are at least as hard as computing the
reliability of a SMBS.

Proof: See [1]. [ |

Proposition 2: The reliability computation of an arbitrary
SMBS belongs to the class of NIP-Hard problems.

Proof: Tt suffices to prove that computing the reliability
of class of SMBS belongs to the class INIP-Hard. The result
follows by inclusion.

Given an arbitrary connected graph G = (V, E) with |V| > 1,
|[E| > 1, and a subset K C V, we define the structure

¢ : P(E) — {0,1} such that ¢(H) = 1 if and only if the
nodes in the set K are connected by paths in the subgraph
(V,H) (and ¢(H) = 0 otherwise). Let p. € [0,1] where p,
is an arbitrary probability of operation for link e € E. Arnon
Rosenthal proved that the reliability computation of the SMBS
(¢, E, (pe)eck) is NIP-Hard [6], showing that the minimum
cardinality mincut recognition is precisely the Steiner-Tree
problem, included in Richard Karp’s list. Therefore, the com-
putation of the reliability of this particular family of SMBS,
called K -terminal reliability, belongs to the class of NIP-Hard
problems. The conclusion then follows. ]

By means of an exhaustive enumeration of cutsets (or
pathsets), exact expressions for the reliability of an SMBS
can be obtained:

>

z€{0,1}m:¢p(x)=1

=1— Z

z€{0,1}™:¢(x)=0

P(X =x).

However, the cardinality of the set of all cutsets (pathsets) is
in general exponential in the size m, which is computationally
prohibitive. Furthermore, Lemma 2 supports the development
of Monte Carlo algorithms, which usually trade accuracy for
computational effort. This is the main reason that lead us to
study statistical approximation for the reliability of arbitrary
SMBS.

Lemma 1 is in contrast with Proposition 2, and will be used
in Section IV in order to define a generalization of Recursive
Variance Reduction (RVR).

Lemma 1: Given an arbitrary SMBS (S, p, ¢), we can find
a mincut S C S in a quadratic order of evaluations with
respect to m = |S].

Proof: Without loss of generality, we assume .S is a cutset
(otherwise, by monotonicity we get that ¢ = 1 and there are
no mincuts in this system). We look for the first component
such that S— {4} is not a cutset. If there is no such component,
S is itself a mincut (found applying m structure evaluations),
and S is the evidence of the truth of the statement. Otherwise,
a new stage of the same process takes place for the cutset
S; = S — {i}. Since m is finite, each stage requires less
than m evaluations, and there are at most m stages, the whole
process requires not more than m? evaluations. ]

Lemma 2 formally states that monotonicity is preserved
under conditional failure and/or operation of some components
in an arbitrary SMBS:

Lemma 2: Consider an SMBS (S,p,¢) and an arbitrary
subset of components C, where some components in C' fail
and others operate, arbitrarily. Then, the sub-system (S —
C,p',¢') is an SMBS, where p’ is the original vector with the
corresponding indices from C being deleted, and ¢’ = ¢|s_¢
is the sub-structure that sets the bits from C' correspondingly
(i.e., setting to 1 components under operation and to O the
ones under failure).

Proof: Monotonicity is inherited from the original SMBS,
since the partially ordered set ({0,1}™,<) holds for an
arbitrary subset of {0,1}™. |



Definition 1: Under the conditions of Lemma 2, the sub-
structure of ¢ associated to the subset C' is denoted by ¢¢.
The recursive aspect of RVR method is strongly based on the
efficient computation of a cutset (Lemma 1) and the analysis
of smaller subsystems (inspired in Lemma 2 and Definition 1).

IV. ALGORITHMS

Monte Carlo simulation is a noteworthy computational tool
for approximating measures whose exact evaluation is not
feasible. In a macroscopic point of view, the idea is to
represent the behavior of a complex system (or a part of it),
and consider IV independent realizations of that simulation, in
order to statistically estimate the performance of the system
(or subsystem) and assist decision making.

Monte Carlo has been widely applied to a great diversity of
problems, including counting, numerical integration, discrete-
event (and rare event) simulation. The reader can find a
generous variety of applications in [7], and a thorough analysis
of rare event simulation using Monte-Carlo methods in [8].

We are also inspired by a method originally designed
for network reliability evaluation, called Recursive Variance
Reduction or RVR for short [9]. There, the authors introduce a
statistical method to estimate the K -terminal reliability, which
is more efficient than Crude Monte Carlo (CMC) when the
quantity to estimate is small. In this section, we present Monte
Carlo approaches and a generalization of RVR to find the
reliability of an arbitrary SMBS.

A. Crude Monte Carlo (CMC)

In the simplest Monte Carlo method (sometimes called
Crude Monte Carlo, CMC), N independent replicas
X1 ..., XN of arandom variable with finite mean E(X) are
carried out. By Kolmogorov’s strong law, the unbiased average
Xy converges almost surely to F(X). Its variance (and
therefore its mean square error) is Var(Xy) = Var(X)/N.

In this context, we need to pick N independent copies
X1, ..., XN of the random vector X = (X1,...,X,,), such
that P(X; = 1) = p;. Then, the CMC estimation is

1o o
remMe = > o(X0). 2)
=1

It is unbiased, with variance Var(reyme) =
Observe that CMC can be used in general SBS.

r(1 —r)/N.

B. F-Monte Carlo (FMC) in the homogeneous case

The reliability computation of an SMBS with identical
probabilities of operation p; = p is a combinatorial problem.
Consider the following partition of {0, 1}™:

S; ={x €{0,1}": f(z) =i,¢(x) =1}, Vi=0,...,m.

Consider the numbers F; = |.S;|. If we find the F-vector F =
(Fo, F1, ..., F,,), then we can deduce the reliability of the

Algorithm 1 ropy e = CMC (¢, S, p)
1: Sum <0
2: for i =1to N do
3 X0

4. for j =1tomdo

5: if Rand < p; then
6: X+ X; U {.13]}
7: end if

8:  end for

9:  Sum + Sum + $(X;)
10: end for

11: return 7cpc = Sum/N

Fig. 1. Pseudocode for CMC method.

SMBS. In fact:

>

TeP(S):¢(T)=1

=YY PX=T)

i=0TeS;

=3 pmid-p)

i=0TeS;

=Y " [Silp™ (1 = p)’

=0

= Z Fp™ (1 — p)".
i=0

P(X =T)

T =

In this case (under identical probabilities), the reliability r» =
r(p) is a polynomial in the here scalar variable p € [0, 1]. The
function r(p) is called reliability polynomial of the SMBS.
Therefore, the reliability polynomial computation is a counting
problem.

The key idea of F-Monte Carlo (FMC) is to pick random
states « € {0, 1} such that f(z) = 4. Then, we count the ones
that belong to the set .S; in order to estimate F;. Let us consider
independent, identically distributed samples X}, ..., XN with
exactly m — ¢ elements up, and take the mean sample:

. 1 X .
Jj=t

There are ("7') states with m — i elements up. Therefore, F, =
(7?) ¢; is an unbiased estimation for F;. Finally, an unbiased
estimation for the reliability polynomial r(p) is:

remc(p) = Y Fip™ (1 - p)'.
i=0
This method has been designed first in network reliability

analysis. The reader is invited to see [10] for its performance
in a network reliability context.



Algorithm 2 rpyc(p) = FMC(¢,S)

Algorithm 3 Q = RVR(¢, S, p)

1: for i =0 to m do
Sum; < 0
for j =1to N do
X7 « Subset(m —1i,5)
Sum; + Sum; + ¢(X7])
end for
8: end for R ‘ _
9: reyme(p) = 2y Fip™ (1 = p)*
10: return gy o

A A S

Fig. 2. Pseudocode for FMC method.

C. Recursive Variance Reduction (RVR)

This method has been widely applied in network reliability
problems, with good results [9], [11]. The key idea is to work
with conditional probability measures, using the presence or
absence of a specific cutset.

The probability of ocurrence of the cutset event (all the
components in the cutset are down) is included as a term to
be added to the unreliability estimator. Additionally, using an
arbitrary ordering of the components of the cutset in each
replication it is possible to sample the first component that
is up (conditional to the absence of this specific cutset).
Applying a recursion over the corresponding sybsytems (and
using conditional probabilities), we can sample the system and
compute an estimator of its reliability (or unreliability). The
sampling respects the probability of the events that correspond
to those subsystems, weighting the relevance of those subsys-
tems according to the probability of the conditional event.

More specifically, consider a random vector X =
(X1,...,Xym) such that Xi,...,X,, are independent
Bernoulli variables and P(X; = 1) = p;. We will stick to the
original notation from Cancela and El Khadiri [9], adapted to
this context of general SMBS.

1) A mincut C = (ay,...,a)¢) is found using Lemma 1.

2) Ac denotes the event “all the components in C fail”.

3) qc = P(Ac) = [I;ec(1 = pj).

4) Az = {al,...,ai}

5) B; is the event “a; is up but a; fails for all j < ¢”.

6) P(Bi) =pill;<;(1 —pj)

7) V is a discrete random variable such that

P(V = i) = P(Bi|4c) = P(Bi)/(1 - qc),
where A¢ is the complement of Ac.
8) Y; =1 — ¢p, is the unreliability of the system, condi-
tional on the event B;.
Consider now the following random variable:
IC]
Z=qc+(1—-qc) Z L= Vi 3)
i=1

By Lemma 2, the subsystems ¢p, are SMBS as well. By direct

1: if =1 then

2 return qryr =0

3: end if

4: if ¢ =0 then

5 return gryr =1

6: end if

7: C < MinCut(o,S)

8: go < [1/2,(1—p;)

9: (V, B;, Ay, p') < SampleCut(C, p)

10: return Q = gc + (1 — g¢) X RVR(¢p,, S — Ai,p')

Fig. 3. Pseudocode for RVR method.

calculation, we can check that Z is an unbiased estimator of
the unreliability ¢ = 1 —r. What is more, a mean sample of Z
has smaller variance than CMC, therefore it is more accurate
(since both are unbiased estimators). The proofs are similar to
the ones offered in the paper [9], substituting SMBS instead
of networks. We invite the reader to observe that they do not
exploit any specificity of the particular K-terminal structure
other than monotonicity.

Without any loss of generality, our target is ¢ = 1—7, known
as the unreliability of an SMBS. Expression (3) suggests the
following recursive operator () as the unreliability estimator:

, if o = 0;
ifp=1, or 4
gog +(1=q0y) 55 1 v=nQn,(X).

where the mincut C's/ is recursively found for each subsystem
using Lemma 1 over the whole component-set S’. Observe
that the recursion fixes some elements that are down from
the cutset and the first element ¢ that is up as well. In
other words, the historical information during the recursion
is recorded in the conditional measure. It is worth to remark
that the successive subsystems have less components, and the
termination is guaranteed.
An unbiased estimator for ¢ is:

| X
IRVR = 7 ; Q;, )

being {Q1,...,Qn} and independent and identically dis-
tributed sample of Q(X).

V. PERFORMANCE ANALYSIS ON DIFFERENT SMBS

The number of SBS with m components is 22" If we
further reduce the space, the number of SMBS is called
Dedekind number D(m) (i.e., the number of nondecreasing
boolean functions {0,1}"™ — {0,1}). The sequence respects
the asymptotic behavior loga D(n) ~ (7:}2), and, to the best
of our knowledge, it is only known for values of m < 8 [12].



Therefore, a statistically meaningful selection of SMBS is
not feasible. Instead, we choose a sample of three outstanding
SMBS that showed to have relevant applications in network
reliability and survivability. Consider a simple graph G =
(V,E), terminal set K C V, p. € [0,1] for each e € FE
and a positive integer d.

1 K-Terminal Reliability: S = E, p = (pe)ecr, ¢(H) =1
if and only if all pairs in K are reachable in the partial
graph (V, H).

2 Diameter-Constrained Reliability: S = E, p = (pe)eck»
¢(H) = 1 iff all pairs u,v € K satisfy d(u,v) < d in
the partial graph (V, H).

3 k-out-of-m: S ={1,...,m}, p= (p1,...
¢(x) =1 if and only if Y ;" x; > k.

We invite the reader to verify that these three models are
examples of SMBS. In order to highlight the effectiveness
of the different algorithms, we apply CMC, FMC and RVR
(defined in Section IV) to the selected examples of SMBS.
Since FMC estimates the reliability polynomial, it is only
suitable for homogeneous scenarios (i.e., with identical
probabilities of operation p in all components). Finding this
polynomial is trivial for k-out-of-m systems; F; = 0 for all
i>m—kand F; = () forall i < k.

\Pm)»

Observe that CMC, FMC and RVR return unbiased estima-
tors of the reliability. Therefore, a fair comparison should con-
sider both mean square error (i.e, variance) and computational
effort. Suppose we have two methods A and B that provide an
unbiased estimation of the reliability. The relative efficiency
of A with respect to B is the ratio t gV (B)/(taV (A)), where
t4 and tp are the respective mean computational times (in
the same units), and V' (A) and V(B) the variances (or mean
square error) of the estimators of the respective methods A
and B.

We carried out the following three tests, using the Dodeca-
hedron graph depicted in Figure 4:

1 K-Terminal Reliability with K = {0,11,13,15}, p. =

0,99 (homogeneous system).
2 DCR with All-Terminal, d = 5 and p. = 0,999
(homogeneous system).
3 3-out-of-29 with p; = 0.1 — 0.8 x (i — 1)/29
(heterogeneous system).
The three algorithms are useful for the first two structures.
However, as said before, FMC is not defined for heterogeneous
systems, and the third instance just compares CMC versus
RVR.

The exact reliability of the first two tests is not available.
However, we will see that the discrepancy between the cur-
rent estimations is vanishingly small. Let us look more in
depth at the third case. The number of components under
operation in a k-out-of-m system is a sum of independent
Bernoulli variables with different success probabilities. This
is a Poisson-Binomial distribution, and a closed formula is
provided in [13]. If p = (p1,...,pm) denotes the probability
of operation for each component, p(h) = P(}.7", X; = h)

Fig. 4. Dodecahedron network

represents the probability mass function of the number of
components under operation and Q(z) = Y7 p(j) is the
cumulative probability of the tail, then the exact reliability of

a k-out-of-m system is precisely [13]:

k 1 m 1— efj27rik/(m+1)

m4+1 m—l—lz 1= e—s2ni/tm+1)

H [phej27ri/(m+1) 1 *ph},
h=1

r= Q) =1~

with j2 = —1.

In Tests 1 and 2 we set high values for p (0.99 and 0.999)
since in real networks links are usually highly reliable, and
the unreliability is thus a rare event. The application of Monte
Carlo methods in rare-event contexts has been extensively
studied [8]. Variance-reduction methods like RVR outperform
CMC as network failures become rarer.

In our first test, an average among one-hundred independent
runs of both CMC and RVR are carried out, using sample
sizes N = 10% and N = 10? respectively. An average over
thirty independent runs of FMC is also considered (using
N = 10° as the CMC sample size for estimating each F).
The same runs take place for Test 2, setting p = 0.999.
Finally, CMC versus RVR under equal conditions of N = 10°
samples are studied in Test 3.

Tables I, II and III present the average reliability, computing
time, sampling variance and relative efficiency (using RVR
as algorithm A and CMC as algorithm B) respectively, in
different rows.

Metric CMC RVR Ratio FMC
Reliability 0.9999956 0.9999958 1 0.9999944
Variance 4.9070E-12  1.1400E-13  43.043  5.28841E-11
Avg. Time (ms) 6509 6480 1.004 17586
Rel. Efficiency B A 43.233
TABLE I

TEST 1: RESULTS



Metric CMC RVR Ratio FMC
Reliability 0.999949 0.999941 1 0.999940
Variance 5.3525E-09  7.5224E-11  71.154  2.57166E-13
Avg. Time (ms) 591 42677 0.014 17586
Rel. Efficiency B A 0.985
TABLE II
TEST 2: RESULTS
Metric CMC RVR Ratio
Reliability 0.99999995  0.999999971 1
Variance 4.7980E-14 2.2243E-16  215.708
Avg. Time (ms) 291 3161 0.092
Rel. Efficiency B A 19.877
TABLE III

TEST 3: RESULTS

It can be appreciated from Tables I and II that RVR has
lower variance than CMC, as predicted from the classical
literature [9], [8]. This variance reduction is even better when
the unreliability becomes rarer (Test 2). In terms of relative
efficiency, RVR clearly outperforms CMC in Test 1, while they
present similar relative efficiency for Test 2, due to the more
complex processing that RVR performs for each sample.

Further analysis is required to choose mincuts during
the RVR process in a general SMBS, in order to improve
its computational effort. On the other hand, FMC provides
accurate reliability estimations. However, it typically takes
longer times since it performs several CMC estimations to
return a polynomial (it requires computing and averaging N
CMC calls for each coefficient F;). It showed poor relative
efficiency in Test 1, but surprisingly its relative efficiency
is approximately 320 versus RVR and CMC for Test 2.
The causes of this outstanding performance of FMC under a
rare event scenario should be explored as a part of future work.

In Test 3, RVR again outperforms CMC in terms of relative
efficiency; its gain is close to 20. CMC presents lower com-
putational time, but higher variance. They are both accurate
estimators in this scenario. We remark that this is the first
test where RVR has been carried out in a context other than
network reliability.

VI. CONCLUSIONS

The object under study is the reliability computation of
stochastic monotone binary systems (SMBS). The exact com-
putation of the associated metrics belongs to the class of NIP-
Hard computational problems. As a corollary, the literature
offers exact algorithms for reliability computations in expo-
nential time (for instance, based on a summation of all possible
pathsets), and approximation techniques.

When the system failure is a rare event, Recursive Vari-
ance Reduction method (RVR) presents excellent performance
studying connectivity properties in graphs. This paper explains
why RVR can be used to find the reliability of arbitrary SMBS.
The key point is to show how to build mincuts in these

systems. The termination and application of RVR is guaranteed
by monotonicity.

RVR provides an unbiased estimator for the reliability, and
has lower variance than Crude Monte Carlo (CMC). The
performance of RVR and CMC has been compared to an
alternative approach called F-Monte Carlo (FMC), when the
model is homogeneous, that is, when its components have
identical probabilities of operation.

The performance analysis was carried out choosing three
different SMBS: two coming from network reliability and
one from survivability under redundancy, specifically, a k-out-
of-m system. As expected, RVR outperforms CMC in non-
network contexts as well, at least for special structures. On
the other hand, the counting technique called F'-Monte Carlo
(FMC) provides accurate estimations of the whole reliability
polynomial r(p) for homogeneous SMBS.

Several aspects not considered here should be covered in
future work. The selection of mincuts in arbitrary SMBS for
the RVR process should be studied. A thorough comparison of
the presented methods should be considered. Some trade-offs
have to be evaluated. E.g., even in cases where the relative
efficiency favors RVR or CMC versus FMC, once known
r(p), it can be effortless applied to estimate the reliability
of any homogeneous system. What is the subset A C [0, 1]
of probability values for which the estimation r(p) offered
by FMC outperforms both RVR and CMC? Furthermore, we
would like to perform an in-depth analysis of rare events in
SMBS, using RVR, FMC and Importance Sampling as well,
which presented outstanding results in network reliability [14].

ACKNOWLEDGEMENTS

This work has been partially supported by the Stic AmSud
project “AMMA” 2013-2014.

REFERENCES

[1] M. O. Ball, “Computational complexity of network reliability analysis:
An overview,” IEEE Transactions on Reliability, vol. 35, no. 3, pp. 230
—239, aug. 1986.

[2] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman and Company, 1979.

[3] S. A. Cook, “The complexity of theorem-proving procedures,” in Pro-
ceedings of the third annual ACM symposium on Theory of computing.
New York, NY, USA: ACM, 1971, pp. 151-158.

[4] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of Computer Computations, R. E. Miller and J. W. Thatcher, Eds.
Plenum Press, 1972, pp. 85-103.

[5] L. Valiant, “The complexity of enumeration and reliability problems,”
SIAM Journal on Computing, vol. 8, no. 3, pp. 410421, 1979.

[6] A. Rosenthal, “Computing the reliability of complex networks,” SIAM
Journal on Applied Mathematics, vol. 32, no. 2, pp. 384-393, 1977.

[7]1 G. Fishman, Monte Carlo:. Springer Series in Operations Research
and Financial Engineering, 1996.

[8] G. Rubino and B. Tuffin, Rare event simulation using Monte Carlo
methods. Wiley, 2009.

[9]1 H. Cancela and M. El Khadiri, “A recursive variance-reduction algorithm

for estimating communication-network reliability,” IEEE Transactions

on Reliability, vol. 44, no. 4, pp. 595-602, 1995.

E. Canale, F. Robledo, P. Romero, and P. Sartor, “Monte carlo methods

in diameter-constrained reliability,” Optical Switching and Networking,

vol. 14, no. 2, pp. 134 — 148, 2014.

[10]



[11]

[12]

[13]

[14]

H. Cancela, M. E. Khadiri, and G. Rubino, “A new simulation method
based on the rvr principle for the rare event network reliability problem,”
Annals OR, vol. 196, no. 1, pp. 111-136, 2012.

D. Wiedemann, “A computation of the eighth dedekind number,” Order,
vol. 8, no. 1, pp. 5-6, 1991.

M. Fernandez and S. Williams, “Closed-form expression for the poisson-
binomial probability density function,” Aerospace and Electronic Sys-
tems, IEEE Transactions on, vol. 46, no. 2, pp. 803-817, April 2010.
P. L’Ecuyer, G. Rubino, S. Saggadi, and B. Tuffin, “Approximate zero-
variance importance sampling for static network reliability estimation,”
IEEE Transactions on Reliability, vol. 60, no. 3, pp. 590-604, 2011.



Part 11

Resilence in Dynamic Systems






Chapter 4

Node-Immunization Strategies in a
Stochastic Epidemic Model

A great source of inspiration in epidemic modeling is classical SIR (Susceptible - Infected - Removed)
model. However, the major shortcomings in SIR model are its assumptions (random contacts in a fully-
mixed population).

In this paper we consider an epidemic propagation as a dynamic multiclass system in an underlying
graph topology. A stochastic process counts the number of infected individuals. Then, a Node
Immunization Problem (NIP) is presented, where the goal is to minimize the epidemic outbreak by a
correct choice of nodes for immunization.

By numerical simulation, we show that a Greedy node immunization heuristic is not optimal.
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Abstract. The object under study is an epidemic spread of a disease
through individuals. A stochastic process is first introduced, inspired in
classical Susceptible, Infected and Removed (SIR) model. In order to
jeopardize the epidemic spread, two different immunization strategies
are proposed. A combinatorial optimization problem is further formal-
ized. The goal is to minimize the effect of the disease spread, choosing
a correct immunization strategy, subject to a budget constraint. We are
witness of a counter-intuitive result: in non-virulent scenarios, it is bet-
ter to immunize common individuals rather than communicative ones.
A discussion is provided, together with open problems and trends for
future work.

Keywords: Epidemic Model, Susceptible, Infected and Removed Model,
Stochastic Process, Combinatorial Optimization Problem

1 Introduction

Ironically, a cornerstone in the mathematical analysis of epidemiology has not
been published in the scientific literature. The work by Lowell Reed and Wade
Frost on Susceptible, Infected and Removed (SIR) model was considered by its
authors as too slight a contribution [4]. The most valuable aspects of SIR model
is its simplicity: closed formulas are met, an epidemic spread can easily be car-
ried out on a computer, and it connects deterministic and stochastic models in
an elegant fashion. For those reasons, SIR model is the starting point in teaching
and understanding epidemic propagation. However, it assumes a full-mixed pop-
ulation with random contacts. Several subsequent authors in the field believe a
more realistic model is inspired by networks, where nodes represent individuals,
and the epidemic spread takes places in the links [14]. The interest of the topic
is increased with the current threaten of bioterrorism as a letal weapon over an
induced pandemia [13]. The reader can find other authoritative works about SIR
epidemics on graphs in the related literature [12, 10, 11]. Simulations carried-out
on small-world networks confirm that there exists an extinction threshold [12, 10,
11,15]. There, the epidemic propagation is carried out through graphs with ei-
ther potential or exponential degree distribution as distinguished characteristics.
However, for social network applications an asymmetric right-tailed distribution
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shows to be more suitable. Specifically, if nodes represent people and links are
contacts, most individuals have a reduced number of neighbors, that keep in
contact daily. Aspects such as network awareness and node-ageing has been sug-
gested by Barabasi in order to define realistic evolutionary network models [1].
Explicit characterizations of extinction and probability distribution of the epi-
demic outbreak are currently available by means of percolation theory. Kena
and Robins use percolation techniques and random mixing using classical SIR
model [7]). An empirical study using SIR model is performed by Macdonald and
Shakarian. They find centrality measures and detect main spreaders of a dis-
ease [9]. The goal of this work is to develop immunization methods to cope with
an epidemic propagation. As a mathematical framework, a realistic stochastic
process for epidemic propagation is here introduced, together with a score for
different immunization strategies. This process is more realistic than classical
SIR model.
This article is organized in the following manner. In Section 2, classical SIR
model is described as a reference to study epidemic propagation. In order to
introduce a more realistic model for disease propagation, a stochastic process
is introduced in Section 3. A combinatorial problem is formally presented in
Section 4. There, the goal is to choose among a set of feasible immunization
strategies, in order to minimize the peak of the epidemic spread. There, the
precise meaning of “peak”will be formalized in terms of the underlying stochas-
tic process. Two extremal immunization strategies are proposed. On one hand,
we consider a greedy immunization notion, were nodes with the highest degree
are immunized first, called HighDegree. On the other, we pick nodes with low
degree uniformly at random, called LowF'irst. Section 5 introduces classical
random graphs as opposite to lattices, as well as efficiency measures for sim-
ple graphs. Two random graphs are generated in this work as a case study for
disease propagation. Section 6 introduces two massive random graphs used in
the simulation of the stochastic process. Then, the performance of strategies
HighDegree and LowDegree is analyzed on the lights of these graphs. Finally,
Section 7 contains concluding remarks and trends for future work.

The main contributions of this article are summarized in the following items:

— We propose a realistic stochastic process to simulate and understand the
evolution of an disease spread.

— A combinatorial optimization problem is formally presented, where the de-
cision variable involves a set of immunization strategies, and the goal is to
minimize the infection in the population subject to a budget constraint.

— A greedy notion for the previous combinatorial problem is introduced, where
nodes with high degree are immunized first.

— We explicitly show that greedy is not the best option; indeed, a better result
is achieved when nodes with low degree are immunized in some scenarios
(precisely, in two graphs with 2000 nodes). We will discuss how this counter-
intuitive result is possible, in terms of the underlying topology and different
virus-types.

— Open problems are presented, arising from the stochastic process and the
global optimum for the combinatorial problem.
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2 SIR Model

Probably the most-studied class of epidemic models is classical SIR model.
There, individuals are Susceptible (S), Infected (I), or Removed (R). The last
category represents those individuals that are immune after being recovered of
the disease. linfected individuals have random contacts with others (from any
of the three states) at a mean rate 8. They are removed (recovered) at a mean
rate . If a susceptible receives a contact, it turns infected.

If we consider a big population of n individuals, SIR epidemic model can be
described by the following system of non-linear differential equations:

% = —Bis,% = Bis — i, % = i,

being s(t) = S(t)/n,i(t) = I(t)/n,r(t) = R(t)/n the respective proportions of
classes at time t. The last equation can be omitted, since s + 4 +r =1 [5]. The
model assumes standard incidence and recover (I-output) at a rate vI/n. This
represents a waiting time (or residence time in class I) of e time units, with
mean 1/7. Since such period is small, the model lacks of a vital dynamics (i.e.,
natural death and birth). Therefore, it is suitable just to describe diseases with
fast propagation and conclusion. Furthermore, they provide immunity to infected
individuals, for instance, influenza. In computer viruses, we can interpret this as
an antivirus program that, once updated, infection is no longer allowed.

SIR model is suitable for a completely-mixed population, where the assump-
tion of uniformly random contact selection is plausible. All individuals have the
same number of contacts in a given time unit, and those contacts are equally
likely to propagate the disease. However, in real-life applications, we rarely meet
all the requirements that must be fulfilled to apply SIR model. Individuals do
not contact randomly, and full-mixtures should be replaced by networks [12, 10,
11]. Links represent those pair of individuals with a potential epidemic spread
between them. Neighboring nodes represent individuals that potentially contact
during the disease (i.e. in real life, partners, mates, friends, people that travel
together occasionally, among others). The approach from Percolation Theory
gives us information about asymptotic size of infected population, usually under
some assumptions such that random mixing or same types of mixing [7]. An
overview of mixing and its relation with percolation theory can be found at [6].

It is neither consistent nor realistic to assume the infection probability be-
tween pairs of nodes to be identical. It is possible to find some pairs that have
higher probability of infection than others. Furthermore, it is not realistic to
assume that an infectious-susceptible contact is equivalent to an infection. The
capacity of the infectious to spread susceptible with which it has contact may
vary over time. The existence of a link between infected and susceptible nodes
is not a guaranteed contagion of the susceptible one. The time-window during
which an infected node can spread has a non-deterministic (nor fixed) length. In
fact, an infected node does not have to contact all its susceptible neighbors at
a time. This is our motivation to propose a more realistic stochastic process for
disease propagation, in the sense that includes the previous concerns.
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3 Stochastic Process

We are given a simple graph G = (V, E), where nodes represent individuals
and links are relation between nodes (i.e., possible infection channels). Time is
slotted, and the starting point (¢ = 0) is defined as follows:

— Certain selected nodes V* C V, called immunized nodes, are removed, and
the process takes place in the subgraph induced by V' = V — V*, denoted
by G’. Observe that V* = () implies no immunization at all.

— A single infected node xg € V' is chosen uniformly at random (the zero case).
All nodes from V' but g are susceptible nodes.

Infected nodes might affect neighboring nodes from G’ over time, and then sus-
ceptible nodes may become infected ones. If a node is infected at time ¢;, it can
affect neighboring susceptible nodes during a random time-window [t;, t;]. It is
reasonable to assume that although this time-window is random and this length
varies from an infected node to another, it fluctuates around a mean value. There-
fore, we represent the time-window picking a normal distribution with parame-
ters (u, o), where p > 0 represents the mean length of the time-window and o
denotes its standard deviation. Time ¢} is then picked using the rule t; = ¢;+|X;],
being X; a normally distributed random variable, X; ~ N(u, o). The parameters
(u,0) are called the wvirus-type of the disease. Once t, is reached, that infected
node is in removed state. When an infected node contacts a susceptible one, the
probability of spread varies over time, depending on the state of the infected
node. An infected node will affect a susceptible neighboring node at ¢ € [t;, ;]

if and only if its infectivity profile f(t) > u, being f(t) = exp {—m a
bump function and u a random number in the compact set [0, 1]. Function f rep-
resents the capacity of the node to spread the disease. This is in agreement with
real life, where the infectivity is first monotonically increasing, then it presents
a maximum, and later it is monotonically dicreasing.

Definition 1 The number of infected nodes {X;}ien is the stochastic process
under study.

We want to minimize the overall effect of the disease spread. Formally:

Definition 2 The peak of the disease spread in graph G with immunization set
V* and virus-type (u, o) is the first moment of the mazimum achieved by the
process: p(G,V*, u,0) = E(maxien{Xt})
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4 Node Immunization Problem and Heuristics

In this paper, we formulate the performance of different immunization strategies
by means of a combinatorial optimization problem. Given a simple graph G =
(V, E) and virus-type (1, o), we want to minimize the peak of the epidemic spread
p(G,V*, u,o) among all feasible immunization sets V*. The Node Immunization
Problem is formulated as follows:

minp(G, V", p,0) (1)
s.t.
V<N (2)

The reasons leading to include Constraint (2) in the combinatorial problem are
twofold. The first reason is related with a real budget constraint. Even though the
desease is propagated through links, the protection takes place in the nodes. The
second is related with a requirements associated with immunization heuristics:
In order to fix the constraint N, let C' be the number of nodes that can be
immunized with the available resources.

The critical degree is the first degree g* such that an epidemic spread occurs
(the peak exceeds the 5% of total population), once we remove all nodes from
the set V* = {v € V : deg(v) > ¢g*}. Now, let us focus on the development of
naive immunization strategies suitable for the combinatorial problem. A small
number of individuals with a big link action will have a higher impact than a
highly populated group with a sparse number of links. If we immunized these
nodes, we would remove its edges of the graph. At first glance, the best nodes
to protect should be those with the highest degree.

Nevertheless, the link density is not the only matter, but the quality of those
links. This means that if a node-group has several links but they are mostly
locally defined (like a clique or quasi-clique), then the immunization of those
nodes will not mine the link structure, in the sense that it should be better
to immunize a set of nodes V* with large amount of external links. This sug-
gests another approach: instead of immunizing nodes of higher degree, immunize
randomly chosen nodes (those likely to have low degree, since these nodes are
the majority of the population). In order to have a strong contrast with the
greedy notion, we will choose nodes with low degree. Specifically, the following
immunization strategies will be considered in this article:

— HighDegree: the greedy notion, where nodes are sort in terms of degree
(nodes with the same degree are sort randomly). The immunization takes
place in nodes with the highest degree, meeting at the same time Con-
straint (2).

— LowDegree: analogously, but nodes with the lowest degree are selected first,
meeting Constraint (2).

— Raw: when no immunization takes place (V* = &), we have Raw immu-
nization strategy, which is the cheapest one in practice (but naturally, its
performance is low as we will see in Section 6).
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5 Random Graphs and Efficiency

Let G = (V,E) a graph with |V| = n, |E| = m. There are C},_;),, possible
spanning subgraphs with m edges in the complete graph K,. In Erdos-Rényi
rule for random graph generation, a number t < @ is fixed, and a subgraph
with ¢ edges is selected uniformly at random. This type of random graphs have
typically low diameter, since the random connection between nodes connects
every pair of nodes with the same probability [3]. Also, the number of clusters is
small, because if a is connected to b and b is connected to ¢, the probability of the
a—c connection is the same that for every pair of nodes. This kind of graph is the
example of networks with purely random connections, leading to homogeneous
Random Mixing. On the other hand we have Lattices: highly regular graphs
with high diameter where the connection a — ¢ has higher probability provided
a is connected to b and b is connected to c¢. From Lattices we can obtain other
kind of random graphs (by “rewiring ”pairs of nodes at random) that inherits
these properties. In order to measure the presence of clusters the concepts of
Global and Local Efficiency are introduced in [8]. Let us consider a simple graph
G = (V, E) with adjacency matrix A = (a; ;) and distance matrix D = (d; ;).

Definition 3 The efficiency between nodes v; and v; is e;; = dvl -
i,j

Definition 4 The mean efficiency E f f(G) is the normalized expected value over
all node pairs: Ef f(G) = m Zi# dilj,

The mean efficiency Ef f(G) is maximized when G = K, is the complete graph.

Definition 5 The global GEf f(G) is the ratio between the mean efficiency of
Eff(G)
G and K,,: GEff(G) = ———*.
I = B,

Note that 0 < GEff(G) < 1 and GEff(G) makes sense even if G is not
connected. An analogous notion is considered locally for single nodes.

Definition 6 Let v; be a node, N; its neighbor set and G; the subgraph induced
by N;. The Local Efficiency is the mean of GEff(G;),i=1,...,n:

LEfF(G)= - S GEFI(GY)

i=1

This concept measures the fault tolerance of the graph G. In other terms, it rep-
resents the efficiency of the communication between neighbors of a node ¢ when
it is removed. On one hand, random graphs present low diameters and then low
values of d; j. This implies high values of Global Efficiency. The low probability
of clusters implies low Local Efficiency. On the other, Lattices present low values
of Global Efficiency (high diameters) but high values of Local Efficiency.
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6 Performance Analysis

In order to test the effectiveness of different immunization strategies, two graphs
with 2000 nodes have been generated. These graphs were built choosing a prede-
termined node-degree distribution, and using Havel-Hakimi theorem. To avoid
the pure exponential or potential node-degree distributions, we use Gamma dis-
tribution (rounded to closest integer values). Let us consider the candidate de-
grees (di > da > -+ > daggo) of a graph. Havel-Hakimi theorem helps to deter-
mine whether such graph exists:

Theorem 1. the sequence di > do > -+ > dagoo s graphic if and only if the
sequence is graphic dy —1>ds —1--- > dg,41 — 1 > dg, 42 -+ > dp, is graphic.

Once we have a graphic sequence, a recursive method to produce the graph
is offered by the work from Bayati [2]. This method generates a graph chosen
uniformly at random from the set of all graphic graphs with 2000 nodes and
prescribed degrees. In this way, we generated two graphs with 2000 nodes, called
2000A and 2000B. These graphs present low values of Global Efficiency as Lat-
tices, and low values of Local Efficiency, as Random Graphs:

GEff(20004) = 0.2564,
LEf£(20004) = 0.0079,
GEff(2000B) = 0.2158
LEf#(2000B) = 0.0043.

Both graphs are sketched in Figure 1.

Fig.1: Left: Graph 2000A. Right: Graph 20008
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Simulations were carried-out for different virus-types (u,o) in both graphs.
In order to perform a faithful comparison of both strategies, one-hundred inde-
pendent simulations were considered with ¢ty = 100 time slots for each graph,
using Crude Monte Carlo. The time-window is generated using a normal distribu-
tion with parameters (u, o), with mean p € {3,5,10,20} and standard deviation
o = 1. Higher values for p imply that an infected individual will have more time
to infect contacted susceptible individuals. When g is extremely large, the exis-
tence of a link will practically guarantee a positive infection if the neighbor node
is susceptible. Figure 2 presents the temporal evolution of X; in a 100-run average
(or mean-epidemic), for HighDegree (red) and LowDegree (blue), with Raw as
a reference (green) for the set of virus types (i, o) € {(3,1), (5,1), (10, 1), (20,1)}
in Graph 2000A.

Cases

LN Y
5 0 B XN & N B WK

67570 15720 25 0 35 40 sy 25760 65 70 75 60 86 90 85 100 Tfﬁwegs O B

I i

L L L e L L L I L L Z L L L L L L L L L L L 1 L L L =
B0 25 W B W Hp0 5% 60 B 0 75 80 8 % % 100 510 15 0 %5 30 % 0 6 55 60 65 70 /5 80 & % 9 100
Tifhe Tifhe

Fig. 2: Performance in Graph 2000A for Virus Types (3,1), (5,1), (10,1) and
(20,1). HighDegree (red), LowDegree (blue), Raw (green).
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All simulations for HighDegree were carried out using the critical node set
V* for the set of removed nodes. Analogously, Low Degree is performed choosing
nodes whose degree is below the critical one g* (see Section refcop).

Curiously enough, Low Degree outperforms both HighDegree and Raw heuris-
tics for virus type (20, 1). Therefore, the graph connectivity has low sensibility
to a high-degree node-deletion via immunization. This fact suggests that nodes
with higher degree tend to connect each other. Therefore, the deletion of their
links do not undermine the link-structure of the graph as much if we eliminate
the links of the N low degree nodes. For virus-type (10,1),an epidemic spread
takes place in HighDegree if we remove all nodes with degree d > 7. With virus
type (5,1) the situation is similar to the previous case, as it could be expected
if the topology is in fact relevant. For less virulent diseases it is expected to get
a lower influence in the underlying network topology. As the disease is less vir-
ulent and the topological influence is decreased, HighDegree tends to be more
effective.

An analogous performance analysis is carried out in Graph 20005.

LY 3 R
S0 15 A B N K 0K % B0 65 M0 75 8 & W % 0
Tifhe

A N R T R R R s e I - DA S R S R S R R R N S S
510 15 20 25 N0 ¥ 0 Hp0 55 60 65 70 75 80 B % % 100 510 15 0 %5 30 % 0 6 55 60 65 70 /5 80 & % 9 100
Tifhe Tifhe

Fig. 3: Performance in Graph 2000B for Virus Types (3,1), (5,1), (10,1) and
(20,1). HighDegree (red), LowDegree (blue), Raw (green).
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Figures 3 presents the temporal evolution X; of infected individuals in a 100-
run average (or mean-epidemic). As in previous instances, the difference between
both strategies tends to vanish when the disease is less virulent (less influence
of the underlying topology). This points out a huge amount of internal links
between nodes with the highest degree.

7 Concluding Remarks

The effects of an epidemic propagation under two different immunization heuris-
tics has been discussed. For that purpose, we built two massive random graphs
(with Gamma degree distribution and using the strength of Havel-Hakimi theo-
rem), and develop a SIR-based model simulations with different virulence levels.

Two “opposite” heuristics have been proposed. On one hand a greedy notion,
called HighDegree heuristic, immunizes N nodes with the highest degree first.
The intuition here is that they could infect more neighbors in the same time-
window. On the other hand, LowDegree heuristic picks N nodes with lower
degree uniformly at random, and immunizes them. They are computationally
efficient, since the number of elementary operations is linear with the order
of the input graph. If we do not immunize nodes we have Raw heuristic. As
expected, both heuristics outperform Raw.

A counter-intuitive result is that LowDegree heuristic outperforms HighDegree
in some scenarios. A possible explanation would be the following: when we have
low values of u, the number of infected individuals from the neighbor-set N; is
small, and only infected nodes of high degree have a chance to spread disease,
since they have a number of contacts many times greater than low-degree nodes
and this compensate the low number of trials (time). So, deletion of high-degree
nodes is more effective and HighDegree is better.

On the other hand, when we have high values of u low degree nodes ended
by infecting all its neighbors further nodes of high degree, because they have
comparatively few neighbors and more time to each one. Graph with a low local
efficienct are highly sensible to node deletions, regardless of the degree (see Sec-
tion 5). The deletion of low-degree nodes disconnects the graph more effectively,
and LowDegree is better. As real social networks are adequately modeled by
random graphs, simulations will assist in order to study virtual versions of real
epidemics. This tool provides a systematic way to produce essays of control and
disease prevention, which is an essential element to design adequate strategies
to cope with epidemics.

As a future work, we will develop a greedy randomized heuristics in order
to find outstanding immunization strategies. More sophisticated ideas should
be considered in order to detect high-performance immunization strategies, un-
derstanding the underlying graph topology as an input of the heuristic. It is
worth to remark that the problem is purely combinatorial when the virus-type
is increased without bound, and can be expressed in terms of graph theory and
network connectivity. The complexity of this combinatorial problem is still open.
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Chapter 5

A counter-intuitive result on SIR-based
Node-immunisation Heuristics

Here we go one step further in epidemic modeling and node immunization strategies. The Node
Immunization Problem is revisited. We mathematically prove that Greedy heuristic is not optimal.
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A counter-intuitive result on SIR-based
Node-immunisation Heuristics

Abstract: We introduce a combinatorial optimisation problem whose
goal is to minimize the effect of an epidemic spread, by choosing
adequately a number of individuals (limited by external constraints) for
immunisation. The epidemic spread is governed by a stochastic process
and takes effect in a graph.

Surprisingly, immunisation applied to nodes with the highest degree
is not always the best practice. In addition, vaccinating more nodes
does not always guarantee a better result. These results are first
illustrated empirically through simulations carried-out over random
graphs, and finally a mathematical proof is provided.

Keywords: Epidemic Models, SIR, Random graphs.

Reference to this paper should be made as follows: < List of authors
> (xxxx) ‘A counter-intuitive result on SIR-based Node-immunisation
Heuristics’, Int. Journal of Metaheuristics, Vol. x, No. X, pp.XXX—XXX.

1 Introduction

Ironically, a cornerstone in the mathematical analysis of epidemiology has not been
published in the scientific literature. According Fine (1977), the work by Lowell
Reed and Wade Frost on Susceptible, Infected and Removed (SIR) model was
considered by its authors as too slight of a contribution.

The most valuable aspect of SIR model is its simplicity: closed formulas are
met, an epidemic spread can easily be carried out on a computer, and it connects
deterministic and stochastic models in an elegant manner. For those reasons, SIR
model is the starting point in teaching and understanding an epidemic process.
However, it assumes a full-mixed population with random contacts, identical
contagion probabilities for all individuals, etc.

Santhanam et al. (2011) propose a more realistic model inspired by networks,
where nodes represent individuals and the epidemic spread takes place across the
links. Newman et al. (2001); Newman (2002, 2003); Ball et al. (2010) reinforces
this idea, since individuals do not contact randomly, and full-mixtures should be
replaced by networks.

Andersson (1998) studied the spread of a disease under SIR model in large
closed homogeneous populations with fixed friendship circles for each individual.
Britton et al. (2007) studied random graphs with pre-specified degree distribution
assuming constant probability of contagion. In those articles, the authors studied
two different vaccination heuristics: random vaccination versus acquaintance
vaccination (the vaccination of all friends of a randomly chosen individual). Ball
and Sirl (2013) extended the above analysis considering imperfect vaccines and
nonconstant infectious period distributions. Ball et al. (2010) use SIR model for

Copyright (© 2009 Inderscience Enterprises Ltd.
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the spread of an epidemic among a population with a random network of social
contacts partitioned into households.

The approach from Percolation Theory gives us information about asymptotic
size of infected population, usually under some assumptions such as random mixing
or some types of mixing. Kenah and Robins (2007) use percolation techniques and
random mixing in the classical SIR model. Keeling and Eames (2005) includes an
overview of mixing and its relation with percolation theory.

Aspects such as network awareness and node-aging have been suggested by
Barabasi (2002) in order to define realistic evolutionary network models.

Newman et al. (2001); Newman (2002, 2003); Shirley and Rushton (2005)
show through simulations carried-out on small-world networks (graphs with either
potential or exponential degree distribution) that there exists an extinction
threshold. However, for social network applications, an asymmetric right-tailed
distribution shows to be more suitable. Specifically, if nodes represent people and
links are contacts, most individuals have a reduced number of neighbours which
whom they keep in contact daily. Ye Sun (2014) studies epidemic propagation
in weighted complex networks, using the edge weights to represent multi-role
relations. They perform detailed analysis of two representative metrics: outbreak
threshold and epidemic prevalence, on SIS and SIR models.

The literature in epidemic models and simulation is vast, ranging from node
aging to outstanding spreaders, transmission rates and underlying topological
network. Here we just scratch the surface of literature in epidemic propagation.

The goal of this work is to investigate and explain some counter-intuitive
results. They arise when comparing (through simulations) the effectiveness of two
different vaccination heuristics in networks with right-tailed degree distributions.
We will use the terms immunisation or vaccination indistinctly. The main
contributions of this article are summarized in the following items:

1. A combinatorial optimisation problem is presented. Two counter-intutive
results arise from it.

2. The first is that Random outperforms Greedy in some scenarios. We discuss
how this is possible, providing mathematical proof and an example. This
implies that the belief about it is better to focus on vaccinating high degree
nodes is not necessarily true.

3. The second result is that vaccinating more nodes does not always guarantee
a better result. We provide a mathematical proof and an example.
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This article is organized in the following manner.

e In Section 2 we describe the classical SIR model as a reference to study
epidemic propagation.

e In Section 3 we define a SIR-based stochastic process, where contacts do
not necessarily mean transmission of the disease, allowing the probability
of contagion and the number of contacts between an infected node and its
neighbours change over time. We define the underlying optimisation problem,
to minimize the peak of the curve cases vs. time, under certain restrictions.

e In Section 4 we introduce two well-known immunisation heuristics. On one
hand, we consider the Greedy immunisation notion, where nodes with the
highest degree are immunised. We contrast this greedy heuristic against
Random, where the same number of nodes to immunise are (uniformly)
chosen at random. We build random graphs and right-tailed graphs with two
thousand nodes. These graphs will serve as the underlying network topology.

e In Section 5 we analise the performance of both heuristics on the light of the
previous graphs.

e In Section 6 we theoretically prove that Greedy is suboptimal, and the
counterintuitive result that sometimes it is better not to immunize more
individuals.

e Section 7 contains concluding remarks and trends for future work.

2 SIR Model

Probably the most-studied class of epidemic models is classical SIR model. There,
individuals are Susceptible (S), Infected (I), or Removed (R). The last category
represents those individuals that are immune after being recovered from the
disease.

Infected individuals have random contacts with others (from any of the three
states) at a mean rate 5. They are removed (recovered) at a mean rate -.
If a susceptible has contact with an infected, the susceptible becomes infected.

If we consider a big population of n individuals, SIR epidemic model can be
described by the following system of non-linear differential equations:

% = —fis, % = Pis — i, % = i, (1)
being s(t) = S(t)/n,i(t) = 1(t)/n,r(t) = R(t)/n the respective proportions of
classes at time t.
Following Hethcote (2000), the last equation in (1) can be omitted, since

s+ i+ r=1. The model assumes standard incidence and recovery (I-output) at
a rate vI/n. This represents a waiting time (or residence time in class I) of e
time units, with mean 1/v. Since such period is small, the model lacks of a vital
dynamic (i.e., natural death and birth).
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Therefore, it is suitable just to describe diseases with fast propagation and
conclusion. Furthermore, they provide immunity to infected individuals, for
instance, influenza. In computer viruses, we can interpret this as an anti-virus
program in which, once updated, infection is no longer allowed.

SIR model is suitable for a completely-mixed population, where the assumption
of uniformly random contact selection is plausible. All individuals have the same
number of contacts in a given time unit, and those contacts are equally likely to
propagate the disease.

However, as Newman et al. (2001); Newman (2002, 2003); Ball et al. (2010)
remark, in real-life applications we rarely meet all the requirements that must
be fulfilled to apply SIR model. Individuals do not contact randomly, and full-
mixtures should be replaced by networks.

The links represent pairs of individuals through which an epidemic may spread.
neighbour nodes represent individuals who can potentially contact during illness
(partners, colleagues, friends, people who travel together occasionally, etc.).

As Fromont et al. (1996) points, in real populations the graph structure is
strongly heterogeneous. Andersson (1997) shows that even small heterogeneous
levels (both social and spacial) can have huge effects in epidemic propagation.

Indeed, in real-life we find constraints that regulate networks. Each link has
a cost; then, it is progressively harder to add links to a given node. This in turn
leads to the fact that each node has a maximum degree. The resulting networks
are neither random nor fully-regular.

Furthermore, it is not realistic to assume that an infectious-susceptible contact
is equivalent to an infection. The spread capacity varies dynamically with time and
may differ from one node to another. The time-window during which an infected
node can spread has a stochastic length. The number of potential contacts from
an infected node during this period is stochastic as well.

3 Stochastic Process

Let G = (V, E) be a simple graph where nodes represent individuals, and links the
relations between nodes (i.e., possible infection channels). Time is slotted , and at
start (¢t = 0) we have:

e Certain selected nodes V* C V, called immunised nodes, are removed, and
the process takes place in the subgraph induced by V/ =V — V*, denoted by
G’. Observe that V* = () implies no immunisation at all.

e A single infected node xo € V' is chosen uniformly at random (the case zero).
All nodes from V' but g are susceptible nodes.

Infected nodes might affect a random number of neighbouring nodes from G’
through time, and then susceptible nodes may become infected ones with a certain
time-varying probability. If a node is infected at time t¢;, it can affect a random
number of neighbouring susceptible nodes during a random time-window [t;, t}].

It is reasonable to assume that although this time-window is random and
its length varies from an infected node to another, it fluctuates around a mean
value. Therefore, we represent the time-window picking a suitable non-negative
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Figure 1 : Typical infectivity profile

distribution F' with parameters (u, o), where p > 0 represents the mean length of
the time-window and o denotes its standard deviation.

Time t; is then picked using the rule ¢} = ¢; + X;, being X; a random variable,
Xi ~ F(,,5)- The parameters (i, o) are called the virus-type of the disease. Once t;
is reached, that infected node is in removed state.

When a susceptible-infected contact occurs, the probability of contagion
depends on the state of the infected node at this time: An infected node will affect
a susceptible neighbouring node at ¢ € [¢;,t}] if and only if its infectivity profile
f(t) > u, being f(t) a trapezoidal function and u a random number in the compact
set [0, 1].

Function f represents the capacity of the node to spread the disease.

Figure 1 shows an example with a; = 2 and b; = 11.

Definition 1 The stochastic process under study is the number of infected nodes
{Xi}een.

We want to minimize the overall effect of the spread of the disease. Formally:
Definition 2 The peak of the spread of the disease in graph G with immunisation

set V* and virus-type (p,0) is the first moment of the mazimum achieved by the
process: p(G, V™, 1, 0) = E(maxien{ X })

We want to minimize the peak of the spread of the epidemic p(G,V*, u, o) among
all feasible immunisation sets V*, subject to a budget constraint V.
The Node immunisation Problem is formulated as follows:

minp(G, V", 1, )

s.t.

V¥ <N
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4 Heuristics

Let us focus on two naive immunisation heuristics suitable for the combinatorial
problem. From a structural viewpoint, a way to protect nodes is to eliminate a
certain amount of their links.

Following Britton et al. (2007), the best nodes to protect seem to be those with
the highest link contribution in the graph. It seems reasonable to assume that a
small number of individuals with a large link action will have a higher impact than
a highly populated group with a sparse number of links.

As Britton et al. (2007) said, in practice this implies knowledge of the degree-
distribution of the network. Alternatively, the same authors analysed a different
heuristic (acquaintance vaccination): chose random individuals and vaccinated
them and their friends.

As Ball and Sirl (2013) notes, this heuristic has the effect that vaccinated
individuals tend to have a higher degree and this targeting of well-connected
individuals increases the efectiveness of vaccination. Specifically, the following
immunisation heuristics will be considered in the simulations:

e Greedy: the immunisation takes place in N nodes with the highest degree.
e Random: N nodes are selected uniformly at random.
e Raw: no immunisation takes place (V* = ®).

Let us define:

Definition 3 The critical degree is the first degree d such that an epidemic spread
occurs when V* = {v € V : deg(v) > d}.

First, given a graph G we found the critical degree d and N = |V*|. For this,
let D be the highest degree of G. Then for d=D —1,D —2,...,1 take the
corresponding V* and run several times the SIR-based simulation over G, V*.

For each run we have a curve of cases vs. time. If the peak of the mean curve
is less than Threshold, repeat using next value of d until an epidemic occurs
(in the mean sense).

Once we found the critical degree d and let N = |V*|, the Greedy heuristics
immunise the N nodes with degree > d, while Random immunise N nodes chosen
at random.

About the graphs in which heuristics will be tested: Let us consider a social
network G = (V, E) with m = |E| contacts and |V| = n individuals.

In the complete graph K, all contacts are possible, and m = n(n —1)/2.

This graph represents the closest case to a fully mixed population. Gilbert
(1959) propose a link selection rule for random graphs.

In this rule, each link (contact) belongs to the graph with identical probability
p € [0,1].

These graphs are suitable to model Homogeneous Random Mixing.

The diameter of Gilbert graphs is d = 2 almost surely when the size tends to
infinity for every fixed probability p < 1.
The reader can find a proof in the classical book authored by Bollobds (1985).
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The intuition behind this small diameter of random graphs is that random links
connect all parts of the network with equal probability.

We build ten random graphs called G1,...,Gyo following Gilbert model with
different choices for 0 < p < 1.

Also, we design ten graphs called Ri,...,Rjo with right-tailed degree
distribution. These graphs represent a model where there are few nodes with high
degree, several nodes with low degree and the distribution is not monotonically
decreasing. All these graphs were generated using the IGraph package developed
by Csardi and Nepusz (2006). Figures 2 and 3 show the node-degree distributions
of both graph sets.

5 Performance Analysis

In this section we study the performance of both heuristics, on the lights of graphs
Ry,...,Ri9 and G1,...,G1p. In order to develop a faithful comparison, we run
Function Per formance.

It receives a graph G, number of iterations iter, virus-type parameters (u,o),
number of slots T in SirBased simulation and a Threshold, that allows to
determine whether STRBased simulation is declared an epidemic case or not. Runs
iter times a SIR-based simulation and test if the peak of the mean curve is less
than Threshold.

It returns all the parameters required to understand the performance of both
heuristics, to know, Greedy and Random. Specifically, G¢ and ng = |V*| represent
the output network in Greedy and the number of immunised nodes following this
heuristic.

Additionally, a “Raw” heuristic is defined with no node-immunisation, in order
to have a comprehensive understanding of the advantages of both Random and
Greedy heuristics.

We call Function Per formance for graphs Ry, ..., Ri9,G1, ..., G,
iter = 200, Threshold = 0,05, T'= 120 time slots and two different virus-types
(u,0): (5,1) and (10,2).

The heuristics induce a subgraph in which the epidemic process takes place.
A measure of the process strength is the proportion of infected nodes at the
subgraph in the worst moment (the peak of cases vs time in the mean curve).
Some of the results from simulations seem to run contrary to expectations.

Figure 4 shows the percentage of infected nodes as a function of time for the
heuristics Raw, Random(G,d + 1) and Greedy(G,d + 1) for virus-types (5,1) and
(10,2) in the right-tailed graph Rsg.

Note that the confidence interval for Random contains the zero. This means
that in several of the runs epidemics did not happen. Even though the average is
shifted toward positive values, Random becomes competitive with Greedy, being
comparable or even better than Greedy in some cases.

Figures 5 and 6 show the results for the heuristics Raw, Random(G,d + 1) and
Greedy(G,d + 1) for virus-types (5,1) and (10,2) in the Gilbert graphs G5 and
Gy4. Random is again competitive or better than Greedy. This counter-intuitive
fact will be explained in Subsection 6.1.



8 Juan Piccini, Franco Robledo, Pablo Romero
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Figure 2 : Degree-Distribution for graphs Ri,..., Rio
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Mean and IC 90 for Graph R8, Parameters (10,2)
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Figure 4 Raw, Greedy(d + 1) and Random(d + 1) in graph Rg, parameters (5,1)
and (10, 2)
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Figure 5 Raw, Greedy(d+ 1) and Random(d + 1) in graph Gs, virus-types (5,1)
and (10,2)
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Figure 6 Raw, Greedy(d+ 1) and Random(d + 1) in graph G4, virus-types (5,1)
and (10,2)
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This suggests that the graph connectivity has low sensitivity to the elimination
of the highest degree nodes. Their immunisation does not sufficiently undermine
the link structure of the graph, and the immunisation of a set of nodes with a lot of
external links can be competitive, and presumably is what occurs under Random
removal.

In all heuristics the fraction of infected nodes at the worst moment (peak)
grows when g is increased. The more the degree-distribution shifts to the right,
the greater the impact of the epidemic, no matter the virus-type.

6 Main Results

6.1 Greedy is sub-optimal

If we consider p — oo, a pandemia is spread over the whole component that
corresponds to . Consider a set V* such that V -V*=V'= Ulev;- is a
partition into connected components from G’. The event g € V; has probability
ll‘\iill’ and the number of infections in that case equals |V;]. In this extremal
situation, the objective function is the expected number of infected nodes or

expected loss, and it can be found analytically:

k
|V;|?
FE = 2
2] )

Consider M >> N > 2, and a ground graph G that consists of two complete
graphs K, linked by a single node v with degree 2. Specifically, some nodes v,
and vg from each K, are connected to v. Since M >> 2, Greedy heuristic removes
N/2 nodes in each complete graph.

The graph is connected, and all nodes will be affected. The score under Greedy
heuristic is F = M + 1 — N the worst possible, do to the fact that an extinction
takes place. Nevertheless, if only v is immunised, the score is better, as the reader
can verify.

6.2 Vaccinating more is not always better

Suppose we have vaccinated ¢ — 1 nodes, being V' = Ule V; (disjoint union) with
k 2

> i1 Vil

VI—c+1

Let us vaccinate another node, the c-th. We have two cases:

expected loss F. 1 =

1. The removal of ¢ -th node maintains the number of connected components.
2. The removal of ¢ -th node increases the number of connected components.

For our purposes, it is enough to prove the first case. Let V; be the component
from which the c-th node is removed. The expected loss is

k
Vil (vl =1)?
E. = = A.+ B,
;|V|—c+ Ve +
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Write E._; following the same criteria, then

Vi V|2
Z V| | Vsl =Ac 1+ By

—c+1 |V|—c—|—1

So, E. < E._; if and only if B..y — B.>A.— A._1 or

Ac—l
B..1—B.> 3
1 Vi—e (3)

Let X =V} and uw=|V]|—c Equation (3) turns  into
X2 (X —1)2 _ A
- >
u+1 u u

PX)=X?-2u+1)X+(u+1)(1+A._1)<0 (4)

L. After some algebra, we obtain

It can be proved that P has positive real roots in the interval
[(w+1) = V/(u+1)(u— Acr)]

This tells us that if we remove a node when we have already removed c — 1
nodes and this extra node does not break the component V;, the expected loss F,
will be less than E._; if and only if

Vil > [VI=ct+1=/([VI=ct+ 1)([V] - c— Acy) ()

As an example where equation 5 does not hold7 consider a graph G = C5 U Cs.
Then the expected loss for G is E 6‘11 + 11 = ﬁ = 6.36. If we vaccinate one
node from C3, then E = % + 1% = ﬁ = 6.8, which is worse than before.

7 Concluding Remarks

In this paper, an epidemic spread is modeled by a SIR-based stochastic process.
Then, a combinatorial optimisation problem is formalized. The goal is to minimize
the overall impact of the epidemic spread, by means of node-immunisation.

A Greedy notion is to immunise nodes with the highest degree. On the other
hand, Random heuristic picks nodes at random, and immunises them. Both
heuristics are computationally efficient, since the number of elementary operations
is linear with the order of the input graph. We provide both mathematical proofs
and examples of two counterintuitive results:

e Random heuristic outperforms Greedy in some specific scenarios. This
means that vaccinating the nodes with highest degree is not always better
than a random vaccination heuristic.

e Vaccinating more nodes is not necessarily the best choice.

The network topology should be considered in the selection of node resilience
heuristics. Currently, we are working in order to develop a topology-aware GRASP
heuristic for the combinatorial problem here presented. As future work, we also
aim to study the interplay between epidemic propagation models and network
reliability analysis under scenarios of dependent failures.
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Part I11

Combinatorics in Epidemic Models






Chapter 6

Graph Fragmentation Problem

A new combinatorial problem is intoduced, called Graph Fragmentation Problem (GFP). The GFP can
be seen as a particular case of the Node Immunization Problem (NIP) when the level of virulence is
infinite. A sufficient condition for the optimality in the GFP is provided. As a corollary, we again derive
the fact that Greedy is suboptimal.

It is worth to remark the fact that the GFP is at least as hard as the NIP. We suspect that the GFP
belongs to the class of A’P-Hard computational problems.
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A combinatorial optimization problem called Graph Fragmentation Problem (GFP) is introduced. The decision

variable is a set of protected nodes, which are deleted from the graph. An attacker picks a non-protected
node uniformly at random from the resulting subgraph, and it completely affects the corresponding connected
component. The goal is to minimize the expected number of affected nodes or Score S. The GFP finds
applications in fire fighting, epidemiology and robust network design among others. A Greedy notion for the
GFP is presented. Then, we develop a GRASP heuristic enriched with a Path-Relinking post-optimization
phase. Both heuristics are compared on the lights of graphs inspired by a real-world fire fighting application.

1 INTRODUCTION

In robust network design, the major cause of con-
cern is connectivity. The goal is to find a minimum
cost design, meeting high connectivity requirements.
Network connectivity is a rich field of knowledge,
and the related literature is vast (Monma et al., 1990;
Stoer, 1993). However, in several real-world applica-
tions a malfunctioning or affection of a single element
is immediately propagated to neighboring elements.
This is the case of fire fighting, electric shocks, epi-
demic propagations, etc., where an incorrect protec-
tion scheme might have catastrophic effects. In this
paper, an abstract setting of the previous problems is
presented as a combinatorial optimization problem.

The reader can find problems related with graph
partitioning, which are similar in nature to ours in
((Borgatti, 2006), (Ortiz-Arroyo, 2010)). In ((Bor-
gatti, 2006)), the author adress the combinatorial
problem of the identification of key players in a net-
work for the purpose of disrupting or fragmenting
the network by removing the key nodes. In ((Ortiz-
Arroyo, 2010)), an entropy-based method is proposed
to the same problem. The main difference with re-
spect to the problem covered in this article is that we
prove mathematically a set of desirable properties for
solutions. These properties are then used as part of
a GRASP heuristic. The document is organized in
the following manner. Section 2 formally presents
the Graph Fragmentation Problem. Desired proper-
ties of candidate solutions are included in Section 3.

A Greedy notion and a more sophisticated heuristic
for the GFP is developed in Section 4. Section 5
shows the results of both heuristics in a real-world
application, while Section 6 presents concluding re-
marks.

2 GRAPH FRAGMENTATION
PROBLEM

We are given a simple graph G = (V,E) and a
budget constraint B. The decision variable is a sub-
set V*, called protected nodes, which will be deleted
from the graph. The result is an induced subgraph
G =(V",EV')),withV =V —-V* AnodeveV'is
uniforlmy chosen at random, and the full component
from G’ that contains v is affected, this is, damaged
by an atacker or an accident that starts at v.

The goal is to choose the set V* : |[V*| < B in order
to minimize the expected value (or Score) of affected
nodes. If the resulting graph G’ is partitioned into
k connected components with orders ny,...,n; such
that n = |[V'|, then the Graph Fragmentation Prob-
lem (GFP) is the following combinatorial optimiza-
tion problem:

mm Sc G’

Zp,nl, (1)

s.t.|V*| < B, 2)



being p; = % the probability of the event v € V;, being
v the node uniformly chosen at random.

3 PROPERTIES

In this section, we study properties of the FGP.
Observe that the best case occurs when only a
singleton is affected, so Sc(G') > 1. The equality is
achieved if and only if G’ consists of isolated nodes.
Furthermore, if n,,, denotes the number of nodes
from the largest component, then Sc(G') < nyqe by
its definition.

Recall that the wunion between graphs
G = (V17E1) and G, = (Vz,Ez) is the graph
G = (ViUV,,E1UE)), and it is denoted G = G U G>.
A counterintuitive result is that a uniformly random
node protection strategy might lead to a worse
solution. In fact, let us consider G = K, U Ky, being
K, the complete graph with n nodes. The score is
Sc(G) = 2 x2+ ¢ x4 =1 However, if we pick
v € K then Sc(G —v) :%xl+%x4:%, )
Se(G —v) > Sc(G).

The intuition suggests that it is better to disconnect
the graph whenever possible, this is, to protect nodes
in such a way that the resulting subgraphs has as many
components as possible. Then, only few nodes will be
affected. This property explains the name of the prob-
lem. These results are mathematically formalized in
the following paragraphs.

Proposition 1 (Load Balancing). The best resulting
graph G' among all feasible graphs with k compo-
nents and identical order n should have balanced
components: n; =n/k,Vi=1,... k.

_ I3

[
x = (n1,...,n), ||x|]|2 and ||x||; the respective Eu-
clidean and 1-norm for vector x. We should minimize
the Euclidean distance in the hyperplane |x||; = n

Proof. The score is precisely Sc(G)

being

constant, whose normal vector is 1" € R¥, with all
unit coordinates. The optimum is found in the orthog-
onal projection of the null vector onto the polyhedra:
Gy T _Tn 0
X, = —_ = = 7.
o T T~ %

Now, let us determine whether it is better to pro-
tect an additional node. Let G be an arbitrary graph
with k components and cardinalities ny,...,n, and
n= 21;:1 n;. If we delete some node v from the first

component (observe that the labels are not relevant for
analysis), there are two cases:

a) The number of connected components is the
same.

b) The number of connected components is in-
creased.

First, assume that Condition [a] holds. Then:
L)1 (=1 (m)?

Sc(G—v) —8c(G) = —
( V) o ) 1122 n n71+ n—1 n
A
= + B, —B,
n—1

being A = 1/nY* ,(n;)%, B, = (n1 —1)?/(n—1) and
B =n?}/n. As a consequence, Sc(G —v) < Sc(G) if
and only if n| meets the following inequality:

P(ny) = (n)*> =2nm + (1+A)n <0 (3)

Observe that the minimum (or the highest score re-
duction) is achieved when n; = n, this is, when G is
connected. In that case Sc(G —v) — Sc(G) = 1. We
have proved the following

Proposition 2 (Best Singleton). If there is no cut-
node, the best node protection belongs to the highest
connected component.

Proof. The polynomial P is monotonically decreas-
ing with respect to n;. O

Let n,,4x be the size of the highest connected com-
ponent. Studying the sign of P(n,4y ), there is a posi-
tive score reduction if and only if:

Hmax > n—+/n(n—1—A). 4
We will see that this inequality always holds:

Proposition 3 (Single Balancing). If G does not
present a cut-node, then there exists v such that
Sc(G—v) < Sc(G).

Proof. Tnequality 4 occurs if and only if nA +n2,,. <
n(2npmay — 1). But nA 4 n2,, = Z,»n% = nSc(G), so

Inequality 4 holds if and only if Sc(G) < 2nmqc — 1.
But S¢(G) < gy < 2nmax — 1 always holds. O

Let us now focus our study to Condition [b], and
denote by v a cut-node in G. First of all, observe that a
node-protection in a balanced way always produces a
score reduction. However, in some cases, the deletion
of a cut node is not a good idea. Consider for instance
G = C9 U P, being Cy an cycle with 9 nodes and P;
an elementary path with 3 nodes, and v the central

node from P;. Then, we have that Sc(G) = % + % =

%:%,butSc(G—v):%i-l—Zx }—i :%:7—1-%,
0 Sc(G —v) > Sc(G). However, if we choose a cut-
node v from a component with n; nodes, such that
P(n;j) < 0, then the score is decreased. Furthermore,
the score reduction is even better than in the case of

no cut-node.



Proposition 4 (Fragmentation). If G presents a cut-
node v € V; where |Vj| = nj and P(nj) <0, then
Sc(G —v) < Sc(G). Furthermore, if V €V is not a
cut-node, then Sc(G —v) < Sc(G—V') < Sc(G).

Proof. It V; —{v} =V,UVj, ng +n, =n;— 1, then
(na)? + (np)* < (n; — 1)2. This implies that the score
reduction is even larger than in a non cut-node dele-
tion. A similar argument is met when the cut node
produces more than two components. As a conse-
quence, the score reduction is even larger than the
protection of a non-cut-node from V;. By Proposi-
tion 3, a score reduction is achieved if V' is not a cut-
node. O

Theorem 1 (Score Reduction). Consider an arbi-
trary graph G = (V,E). There is some v € V such
that Sc(G —v) < Sc(G), unless G consists of isolated
nodes.

Proof. This is a Corollary of Single Balancing and
Fragmentation. We always pick a node v from the
largest connected component with 7n,,,, nodes. If v
is not a cut node, by Proposition 4 we have Sc(G —
v) < Sc(G). Otherwise, by Proposition 3 the score
reduction is even larger, so S¢(G —v) < S¢(G) again.
In both cases a score reduction is produced. O

4 HEURISTICS

Combinatorial optimization problems arise in sev-
eral real-world problems (economics, telecommuni-
cation, transport, politics, industry), were human be-
ings have the opportunity to choose among several
options. Usually, that number of options cannot be
exhaustively analyzed, mainly because its number in-
creases exponentially with an input size of the system.
Much work has been done over the last six decades to
develop optimal seeking methods that do not explic-
itly require an examination of each alternative, giving
shape to the field of Combinatorial Optimization (Pa-
padimitriou and Steiglitz, 1982). Several combinato-
rial problems belong to the A/P-Hard class, or the
search space is sufficiently large to admit an exact
algorithm, and a smart search technique should be
considered exploiting the real structure of the prob-
lem via heuristics. Optimality is not guaranteed, but
compromised at the cost of computational efficiency.
Metaheuristics are an abstraction of search method-
ologies which are widely applicable to optimization
problems. The most promising are Simulated An-
nealing (Kirkpatrick, 1984), Tabu Search (Glover,
1989), Genetic Algorithms (Goldberg, 1989), Vari-
able Neighborhood Search (Hansen and Mladenovic,

2001), GRASP (Feo and Resende, 1989), Ant Colony
Optimization (Dorigo, 1992) and Particle Swarm Op-
timization (Kennedy and Eberhart, 1995), among oth-
ers. The interested reader can find a list of metaheuris-
tics and their details in the Handbook of Metaheuris-
tics (Gendreau and Potvin, 2010).

In this section, we develop a Greedy notion and
a Grasp heuristic enriched with a Path Reliking post-
optimization stage. First, we review basic elements of
Grasp and Path Relinking.

41 GRASP

Greedy Randomized Adaptive Search Procedure
(GRASP) is a multi-start or iterative process (Lin and
Kernighan, 1973), where feasible solutions are pro-
duced in a first phase, and neighbor solutions are
explored in a second phase. The best overall solu-
tion is returned as the result. The first implemen-
tation is due to Tomas Feo and Mauricio Resende,
were the authors address a hard set covering problem
arising for Steiner triple systems (Feo and Resende,
1989). They introduce adaptation and randomness
to the classical Greedy heuristic for the set covering
problem (where Py,..., P, cover the setJ ={1,...,m}
and the objective is to find the minimum cardinality
set I C {1,...,n} such that U;c;P; = J).

It is a powerful metaheuristic to address hard
combinatorial optimization problems, and has been
succesfully implemented in particular to several
telecommunications problems, such as Internet Tele-
phony (Srinivasan et al., 2000), Cellular Sys-
tems (Amaldi et al., 2003a; Amaldi et al., 2003b),
Cooperative Systems (Romero, 2012), Connectiv-
ity (Canuto et al., 2001) and Wide Area Network de-
sign (Robledo Amoza, 2005). Here we will sketch
the GRASP metaheuristic based on the work from
Mauricio Resende and Celso Ribeiro, which is use-
ful as a template to solve a wide family of combi-
natorial problems (Resende and Ribeiro, 2003; Re-
sende and Ribeiro, 2014). Consider a ground set
E={1,...,n}, afeasible set F C 2F for the optimiza-
tion problem minacg f(A), and an objective func-
tion f:2F — R. The Pseudo-code 1 illustrates the
main blocks of a GRASP procedure for minimiza-
tion, where Max_Iterations iterations are performed,
o € [0,1] is the quantity of randomness in the process
and A( is a neighborhood structure of solutions (basi-
cally, a rule that defines a neighbor of a certain solu-
tion). The cycle includes Lines 1 — 5, and the best so-
lution encountered during the cycle is finally returned
in Line 6. Lines 2 and 3 represent respectively the
Construction and Local Search phases, whereas the
partially best solution is updated in Line 4.



Algorithm 1 S = GRASP(Maxlterations, \])

1: for k=1 to Max_Iterations do
2: S« Greedy_Randomized(a.)
3: S+« Local_Search(S,N\)
4:  Update_Solution(S)
5
6

: end for
: return S

A general approach for the Greedy Randomized
Construction is specified in Pseudo-code 2. Solution
S is empty at the beginning, in Line 1, and an auxil-
iary set C has the potential elements to be added to
S. A carefully chosen element from C is picked up
during each iteration of the While loop (Lines 3 —9),
which is finished once a feasible solution is met. A
Greedy construction would choose ¢Mn_which is the
element with the lowest cost to be added to the par-
tial non-feasible solution (Line 4). On the other hand,
™™ is the most expensive element to be added (Line
5). The Restricted Candidate List RCL is defined in
Line 6, and has all the elements whose cost are be-
low a certain threshold (see Line 6). In Line 7, an
element from the RCL is uniformly picked at random
and added to the solution S. The process is repeated
until a feasible solution S is found. It is worth to no-
tice the effect of the input parameter o € [0, 1]. When
o = 0, the Greedy construction is retrieved. On the
contrary, 0. = 1 means a completely random construc-
tion. Therefore, the parameter o imposes a trade-off
between diversification and greediness.

Algorithm 2 S = Greedy_Randomized (o)

1: S0

2: C+E

3: while C # 0 do

4 MM mingec f(SU{c})

50 " +—maxeec f(SU{c})

6:  RCL<+ {ceC: f(SU{c}) < f(SU{c™"})+

o f(SU{e™}) = F(SU{e™})}

7: S < SURandom(RCL)

8:  Update(C)

9: end while
10: return S

The Greedy Randomized Construction does not
provide guarantee of local optimality. For that rea-
son, a Local Search phase is finally introduced, in or-
der to return a locally optimal solution (which could
be incidentally globally optimal). In order to define
this phase, a rule to define neighbors of a certain so-
lution is mandatory, called a neighborhood structure.
A better neighbor solution is iteratively picked until
no improvement is possible. A general local search

phase is presented in pseudo-code 3.

Algorithm 3 S = Local _Search(S, \)

H(S) = {X € A((S) : f(X) < £(S)}
while H(S) # 0 do

S <+ Chooseln(H)

H(S)={X € N(S): f(X) < f(5)}
end while
return S

S

The success of the local search phase strongly
depends on the quality of the starting solution, the
computational cost for finding a better local solution,
and naturally, on the richness of the neighborhood
structure. The interested reader can find valuable lit-
erature and GRASP enhancements in (Resende and
Ribeiro, 2003; Festa and Resende, 2002) and refer-
ences therein.

4.2 GREEDY FOR THE GFP

Usually, once we face a new combinatorial optimiza-
tion problem, a Greedy notion is developed. In spe-
cific combinatorial structures, Greedy produces the
globally optimum solution. Greedy heuristic builds
a solution in a stepwise manner. The best step is
chosen whenever possible. Therefore, Greedy tries
to build the global optimum by means of the best lo-
cal steps. Naturally, Greedy rarely produces the best
solution (see for instance its performance in the cele-
brated Traveling Salesman Problem).

In our problem, Greedy iteratively applies the best
node protection. Function ChooseBestNode finds v
such that v = argmin,, {Sc(G — w)}. Greedy is sup-
ported by Theorem 1, and the score reduction is guar-
anteed for the GFP.

Algorithm 4 G,,, = Greedy(G,B)

fori=1:Bdo
v <— ChooseBestNode(G)
G+—G—v

end for

Gouw — G

return G,

AN S

A linear search among all nodes w € V is de-
veloped in order to find the best node protection in
Greedy. Observe that if there is no cut node, a node
is picked uniformly at random from the largest con-
nected component, since they produce the same score
reduction. In order to trade computational effort, we
propose an alternative algorithm that always improves
the score. It is supported by Proposition 3.



Algorithm 5 G,,, = Balance(G,B)
:fori=1:Bdo
Vinax < LargestComponent (G, )
v <= ChooseRandom(V)
G+ G—{v}
end for
Gouw +— G
return G,

A A S ol e

Balance iteratively picks nodes from the largest
connected component. Observe that no score evalu-
ation is required, hence, the computational effort is
below that of Greedy.

4.3 GRASP FOR THE GFP

We already have a Greedy notion for the GFP, and a
Balance heuristic. Both reduce the score in each iter-
ation. A key point is to note that a fragmentation in
large components always improves the score. There-
fore, Separator function finds the node-connectivity
for a given connected graph. It returns a node separa-
tor set V,,,, of the largest component V4.

Algorithm 6 G,,, = Grasp(G,B, )

1: Gout — G

2: Counter < B

3: Locallmprove < True
4: while Counter > 0 do
5. if random < o then
6.
7
8

v = RandomNode(G)
G()ut — G()m‘ -V

. else

9: Vinax < LargestComponent (G o)
10: Vaux < Separator(G, Vipax)
11: if Counter > |V,,,,| then
12: Gour < Gour — Vaux
13: Counter < Counter — |V
14: end if
15:  endif

16: end while

17: while Improve(G) = True do

18:  (Gour,Locallmprove) < Swap(Gous,G)
19: end while

20: return G,

The construction phase is first applied (Lines 1-
15) and then, a Local Search phase takes place (Lines
16-18). The graph (G,,) and number of remaining
nodes to protect (Counter) are initialized in Lines 1-2.
Nodes are protected in a While loop (Lines 3-15). If a
uniform random variable over the compact set [0, 1] is
greater than the input o (Line 4), a random node v is

then picked and removed (Lines 5-6). Otherwise, the
largest component is selected (Line 8), and the node
separator in that component is found (Line 9). If it
is feasible, that node separator is removed from the
graph (Lines 10-12). Finally, a Local Search phase
takes place. It guarantees a local optimum solution.
The core is Swap function, explained in the following
lines.

Algorithm 7 (G, , Improve) = Swap(G1,G>)

{V] yeeey anB} — V(G[)
{vn*B+l PR ,Vn} — V(GZ) - V(Gl)
Improve < False
Gout — Gl
fori=1:Bdo
for j=1:n—Bdo
Gaux < (Gaut + V11—B+i) —Vj
reduction < E(G) — E(Ggyx)
if reduction > O then
G()ut — Gaux
Improve <— True
break
end if
end for
: end for
return (G, ,Improve)

A A A e
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Non-protected nodes are those from the first ar-
gument G (Line 1), while the remaining nodes be-
long to the difference V(G2) — V(G)) (see Line 2).
A Boolean constant determines whether there ex-
ists some improvement or not (Line 3). Iteratively,
all (protected,non-protected) pairs are considered and
switched to see whether there is some improvement
or not (block of Lines 5-15). If there is some im-
provement, Locallmprovement is set to True (Line
11) and iterative process is finished (Line 12). The
pair (G, Improve) is returned. It is worth to remark
that G,,;, = G if and only if G| is a local optimum.
Otherwise, the best first movement is produced.

44 PATH RELINKING

Thanks to the randomization introduced to the Grasp
heuristic, new solutions are obtained with different
runs. Then, once we consider a pool {Gy,...,Gs} of
s elite solutions (they are the best solutions obtained
using N >> s runs), new solutions could be found via
elementary paths in the graph G of solutions. In this
case, the node set of G is the induced subgraph of G
with precisely n — B nodes. Two solutions G| and G,
are incident if and only if there is a single swap that
moves one solution into the other (i.e., if they differ
in one node).



Algorithm 8 Pool = Relinking(G1,Ga,...,G,)

. §¢ (G1,Ga,...,G))

: for all (u,v) € Pool do

Path <+ ShortestWalk(u,v)
Su,y <— Best(Path)

S ¢ SU{Sus}

6: end for

7: Pool + SelectBest(r,S)

8: return Pool

AR A e

Relinking receives a pool of r solutions and
returns another pool of r solutions, with better
score.New candidate solutions S, , are found for ev-
ery pair of elite solutions u and v. The best r solutions
are returned.

4.5 MAIN ALGORITHM

The main algorithm combines Grasp strength and a
Path relinking post-optimization stage, in a straight-
forward fashion.

Algorithm 9 G,,,, = Main(G,B,N;,N,)

I: §+0

2: fori=1:N; do

3:  G; <+ Grasp(G,B)
4 S+ SUG;

5: end for

6: (Gi,...,Gy) < Best(r,5)
7

8

9

0

1

: fori=1:N,do

. (Gy,...,Gy) < Relinking(Gy,...,G;)
: end for

Gou < SelectBest(1,{G1,Ga,...,G,})
return G,

10:
11:

S RESULTS

In order to highlight the effectiveness of our three
heuristics, we introduce Greedy, Balance and Main
to three real-life graphs. These graphs Gysa, Gron
and Gpgg represent respectively the neighborhood of
the states from USA, a real Fiber Optic Network and
a part of a real Power Electric Grid. In all cases, it
is highly desirable to minimize the risk of the neigh-
boring elements, once a failure or catastrophic event
occurs. Thanks to the randomization effect during
Balance call, the performance of different runs is vari-
able. Figures 1, 2 and 3 show the score of Greedy
(solid line) and the scores of 30-runs of Balance
(dashed lines) versus Main with Ny = N, =30, r = 6,
o = 0.5. The score for the different heuristics is ex-
pressed as a function of the budget B. Red point’s

Score Reduction

Greedy
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40
|
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|

Score

20
|

10
|

Removed nodes

Figure 1: Greedy (solid) vs. 30 Balance runs (dashed) for
the Neighborhood Graph
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Figure 2: Greedy (solid) vs. 30 Balance runs (dashed) for
the Fiber Optic Graph

abcissa is the cost reached by Main after removing 20
nodes. Runs were made on a computer Dell Inspiron-
N4010 with 1.8 GiB of memory, proccesor Intel Core
i3 CPU M380 @ 2.53 GHz x 4, 64 bit’s OS. CPU
times are 0.924 min. for Gygy, 1.065 min. for Groyn
and 13.021 min. for Gpgg.

It can be appreciated that our Main heuristic out-
performs both naive solutions Greedy and Balance,
under all possible budgets. Even though Balance
has a reduced computational cost, its performance
presents a large gap with respect to Greedy heuris-
tic. Figures 4, 5 and 6 show the pruning result for the
different heuristics and graphs under study.

6 CONCLUSIONS

The Graph Fragmentation Problem (GFP) has
been introduced. The goal is to protect (remove) B
nodes from a graph G, in such a way that a random at-
tack to an arbitrary node v affects the lowest expected
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Figure 3: Greedy (solid) vs. 30 Balance runs (dashed) for
the IEEE 300 Graph

Neighborhood Graph, Score= 41 After Greedy, Score= 12.429

After Balance, Score= 19.095 After Main, Score= 4.143

Figure 4: Graph Gygs when oo = 1/2

number of nodes (where the whole connected compo-
nent from v is affected). The GFP finds applications
to fire fighting, highly virulent epidemic propagations
and electric shocks, among others.

In this paper, elementary properties of the GFP were
studied. Specifically, graph fragmentation and bal-
ancing are good strategies. Together, they define a
Greedy notion for the problem. Furthermore, we
proved that Greedy achieves improvement in each it-
eration (i.e., in each node protection). A more sophis-
ticated Grasp heuristic enriched with a Path Relinking
post-optimization scheme has been developed. The
effectiveness of our more sophisticated heuristic has
been tested on a real-life networks.

Fiber Optic Graph, Score= 62 After Greedy, Score= 19.095

After Balance, Score= 36.333 After Main, Score= 12.81

Figure 5: Graph Gpony when oo = 1/2

IEEE300 Graph, Score= 265 After Greedy, Score= 36.396

After Balance, Score= 229.343 After Main, Score= 35.343

Figure 6: Graph Gpgg when oo = 1/2

As a future work, we would like to establish the in-
tractability of GFP and incorporate different scores.
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