

Facultad de Química – Universidad de la República PEDECIBA

Proyecto de Tesis de Doctorado en Química Síntesis, caracterización estructural y modelado de nanoestructuras de dióxido de titanio y titanatos con potencial aplicación en DSSC

Ing. Quím. Luciana Fernández Werner (lucianaf@fq.edu.uy)

Directores de Tesis:

- Prof. Dr. Álvaro W. Mombrú (amombru@fq.edu.uy)
- Prof. Dr. Ricardo Faccio (rfaccio@fq.edu.uy)

Cátedra de Física - DETEMA & Centro *Nano*Mat – Polo Tecnológico de Pando

Octubre 2013

Resumen

RESUMEN

En el presente trabajo se estudian nanoestructuras de alta relación de aspecto obtenidas mediante métodos hidrotermales alcalinos utilizando como precursor dióxido de titanio en sus polimorfos anatasa y rutilo. Se realiza en forma paralela el modelado por primeros principios de estructuras de dióxido de titanio a escala nanométrica y subnanométrica evaluando su estabilidad y reactividad. Las estructuras sintetizadas pueden subdividirse según su morfología en nanotubos del orden de 10-15nm de diámetro externo y 100-200nm de longitud y nanorods del orden de 100-500nm de diámetro y 2-10µm de longitud. En lo que respecta a la estructura cristalográfica, se trata de titanatos de sodio e hidrógeno, siendo el contenido de sodio dependiente del método de lavado posterior al tratamiento hidrotermal. Se caracterizan los nanotubos mediante microscopía electrónica de transmisión (TEM), adsorción-desorción de N₂ (BET), difracción de rayos X (DRX), dispersión de rayos X a ángulos bajos (SAXS), espectroscopía infrarroja (FTIR), espectroscopía Raman y análisis elemental. Los nanotubos obtenidos mediante la optimización de la ruta de síntesis presentan diámetro interno del orden de 6nm y externo 12nm, superficie específica de 286m²/g y un contenido de hidrógeno de 1.98% m/m, no se detecta por EDS presencia de Na en la muestra. La construcción de modelos y la simulación de los patrones de DRX permitió la discriminación entre fases propuestas, obteniéndose la mejor descripción en el caso de NT concéntricos de H₂Ti₃O₇ obtenidos a partir del enrollamiento de planos (100) alrededor del [010] siendo la dirección tangencial c. En lo que respecta a la estabilidad térmica, se verifica la existencia de morfología tubular hasta temperaturas de 400°C y la misma es perdida por completo a 500°C. Por otro lado, el análisis termo gravimétrico (TGA) muestra una pérdida de masa continua hasta alcanzar una temperatura entre 350°C y 400°C asociado a la deshidratación de la muestra. En el caso de los nanorods se obtienen muestras de carácter multifásico de titanatos de sodio e hidrógeno. Durante las calcinaciones se observa como fase intermediaria el polimorfo $TiO_2(B)$ (en el rango de temperaturas 250-600°C) evolucionando a una mezcla de fases anatasa/Na₂Ti₆O₁₃. Se ensamblaron prototipos de DSSC a partir de las estructuras sintetizadas obteniéndose eficiencias muy bajas, inferiores al 1%. Se presentan las dificultades encontradas en el ensamblaie.

De los modelos teóricos realizados se enfatizan la baja energía de formación de la bicapa periódica TB(001), la cual es comparable con A(101). Esto es un indicio de la estabilidad relativa de estos polimorfos a escala nanométrica y motivó la investigación de esta estructura como bloque constructor de otras estructuras nanométricas. Se evaluó su reactividad mediante el estudio de la adsorción de HCOOH sobre nanohojas ultra delgadas secas de TiO₂(B). Por otro lado, se estudió la absorción del colorante N719 sobre un clúster basado en esta superficie, obteniéndose resultados alentadores en lo que respecta a las energías de gap y alineación de niveles energéticos. Se lograron converger estructuras estables de hilos atómicos de anatasa y TiO₂(B) y fueron caracterizados desde el punto de vista estructural y electrónico. Se dilucidó una estructura comparativamente más estable: *TBy*. Se describen las propiedades vibracionales extrayendo sus propiedades termodinámicas.

Con respecto a los modelos de NTs generados mediante el enrollamiento de hojas ultradelgadas TB(001), se observó que durante la optimización las estructuras iniciales propuestas sufren importante reconstrucción estructural que da lugar a fragmentación de los tubos. Lo que refleja grandes tensiones iniciales.

Agradecimientos

AGRADECIMIENTOS

En primer lugar me gustaría agradecer a mis directores de tesis los Dres. Álvaro Mombrú y Ricardo Faccio. Álvaro fue quien me propuso trabajar en esta línea de investigación la cual me resultó muy interesante. Valoro mucho las oportunidades de formación que me ha brindado durante el período de desarrollo del trabajo, la libertad otorgada para la realización de las diferentes actividades propuestas y el apoyo en todo el proceso. Por otro lado, él fue quien me dijo allá por fines del 2004 cuando entré a trabajar como docente en la cátedra: "Cualquier duda que tengas preguntale a Ricardo". Y así fue, que desde consultas sobre problemas específicos de física, de cómo dar una clase, de cómo atender las consultas y hasta de la vida misma fueron evacuadas. Estoy muy agradecida por todo el tiempo y dedicación brindado por Ricardo, quién me enseñó el mundo de las simulaciones computacionales y participó en forma activa en muchos de los cálculos cuyos resultados se presentan, así como en las distintas etapas del presente trabajo.

Por otro lado quería agradecer al resto de los compañeros de la cátedra. A Helena Pardo por toda la ayuda y sugerencias principalmente en las etapas experimentales del trabajo. A Leopoldo Suescun, por estar siempre dispuesto a compartir sus conocimientos y darme una mano en momentos claves. A Ricardo Leone por sus críticas constructivas y su interés sincero, y a Ruben Behak y a Virginia Veneziano por el apoyo y compañerismo. A los más jóvenes, Mariano Romero, Santiago Vázquez, Benjamín Montenegro y Leticia Donatti quienes llenan de energía el ambiente. Principalmente a Mariano por las medidas de Raman y FTIR, y por su contribución en la interpretación de los datos y a Leticia por la colaboración en el ensamblaje de prototipos de DSSC. Y a los ex-compañeras de cátedra: Cecilia Goyenola y Alejandra Szabo. A Ceci principalmente por su amistad y por tantas cosas compartidas, y a Alejandra por la colaboración en el ensamblaje de prototipos DSSC.

Quisiera agradecer también a los grupos que colaboraron:

- Al Laboratório Central de Microscopia Eletrônica de la Universidad Federal de Santa Catarina (UFSC) dirigido por el Dr. André Pasa. Principalmente al Dr.

Agradecimientos

J. Javier S. Acuña quien realizó la caracterización por microscopía electrónica de los nanorods.

- Al Dr. Néstor Tancredi y a Angie Quevedo de la Cátedra de Fisicoquímica de Facultad de Química por la adquisición de las isotermas de adsorcióndesorción de N₂ y la caracterización textural de las muestras.
- Al Dr. Jorge Castiglioni por las medidas de TGA y DTA y la ayuda en la interpretación de las mismas.
- A la Dra. Marcela Barreray el Grupo Energía Solar de la Comisión Nacional de Energía Atómica, Argentina, por las medidas eléctricas de la primer serie de DSSC.
- A Lorena Gonzato de la Cátedra de Química Inorgánica de Facultad de Química Inorgánica por las medidas de Análisis Elemental

A los miembros del tribunal:

- Dr. Carlos Kremer, Cátedra de Química Inorgánica, Facultad de Química, UdelaR

- Dr. André Pasa, Universidad Federal de Santa Catarina, Brasil

- Dr. Alfredo Juan, Universidad Nacional del Sur, Argentina

A las fuentes de financiación:

- A la Agencia Nacional de Investigación e Innovación, por el apoyo mediante la Beca de Maestría en Áreas Estratégicas (2009-2011): REF.: BE_POS_2009_1368

- A la Comisión Académica de Posgrado, por el apoyo mediante una BECA CAP-UdelaR de Finalización de Doctorado (2011-2012)

- Al PEDECIBA

A mis padres por todo el amor y el apoyo incondicional. Y a mis hermanos y hermana por estar siempre y por ayudar a cuidar al sobrinito (sobre todo Leopoldo).

A mi esposo Juan, quien insiste en hacerme feliz y lo logra, por ser mi compañero de aventuras. A nuestros retoños, el pequeño Ian ("terremoto Tomasini") quien llegó hace poco más de un año a sacudir nuestras vidas y llenarlas de alegría y me enseñó a poner las cosas en perspectiva. Y al pequeñito (o pequeñita), que aún no ha comenzado su vida en el exterior del útero, por acompañarme en todo momento y bancarse todo el estrés final.

ÍND	ICE GENERAL	
CAPÍTULO 1 – INTRODUCCIÓN	1	Cap. 1-1
REFERENCIAS – Capítulo 1		Cap. 1-4
CAPÍTULO 2 – REVISIÓN BIBL	IOGRÁFICA	
Índice – Capítulo 2		Cap. 2-1
2.1. TiO_2 : ESTRUCTURA, PRO	PIEDADES Y APLICACIONES	Cap. 2-2
2.1.1 Estructura		Cap. 2-2
2.1.2 Propiedades electrónic	as	Cap. 2-5
2.1.3 Aplicación en celdas se	olares sensibilizadas con colorantes	Cap. 2-8
2.1.3.1 Principios de op	eración de una DSSC	Cap. 2-9
2.1.3.2 Características d	lel film semiconductor	Cap. 2-13
2.2. SÍNTESIS Y CARACTER	ZACIÓN DE NANOESTRUCTURAS DE	
TIO2 Y TITANATOS DE ALTA RE	ELACIÓN DE ASPECTO	Cap. 2-14
2.3. MODELADO COMPUTAC	CIONAL DE NANOESTRUCTURAS DE	
TiO ₂ DE ALTA RELACIÓN DE AS	РЕСТО	Cap. 2-16
REFERENCIAS – CAPÍTULO 2		Cap. 2-17
CAPÍTULO 3 – OBJETIVOS		
Índice – Capítulo 3		Cap. 3-1
3.1. OBJETIVOS GENERALES		Cap. 3-2
3.2. OBJETIVOS ESPECÍFICOS		Cap. 3-2
3.2.1. Síntesis de nanoestruct	uras de dióxido de titanio	Cap. 3-2
3.2.2. Caracterización estruct	ural de las nanoestructuras	Cap. 3-3
3.2.3. Estudio de la estabilida	nd térmica de las nanoestructuras	Cap. 3-3
3.2.4. Optimización estructur	al de fases de titanatos laminares en bulk.	Cap. 3-3
3.2.5. Modelado teórico de na	anoestructuras de dióxido de titanio	Cap. 3-3
3.2.6. Estudio de la reactivida	ad de las nanohojas ultrafinas de TiO ₂ (B)	Cap. 3-4
3.2.7. Estudio teórico de inter	racciones semiconductor – colorantes	Cap. 3-4
3.2.8. Ensamblado de prototi	pos de dispositivos fotovoltaicos	Cap. 3-5
REFERENCIAS DEL CAPÍTULO 3		Cap. 3-6
CAPÍTULO 4 – MÉTODOS		
Índice – Capítulo 4		Cap. 4-1
4.1. MÉTODOS DE SÍNTESIS I	DE NANOESTRUCTURAS	Cap. 4-3
4.1.1. Introducción		Can. 4-3
4.1.2. Método hidrotermal ba	io presión endógena I	Cap. 4-4
4.1.2. Método hidrotormal ba	io presión endógene I	$C_{ap} = 4$

- 4.1.3. Método hidrotermal bajo presión endógena IICap. 4-84.1.3.1 SistemaCap. 4-84.1.3.2 Método experimentalCap. 4-10
 - I.G. 1/8

	4.1.4. Método hidrotermal bajo presión atmosférica	Cap. 4-13
	4.1.5. Método sonoquímico	Cap. 4-13
	4.1.6. Hidrólisis de precursores glicolados	Cap. 4-14
4.2.	TRATAMIENTOS TÉRMICOS	Cap. 4-15
4.3.	TÉCNICAS DE CARACTERIZACIÓN	Cap. 4-16
	4.3.1. Microscopía electrónica de barrido	Cap. 4-16
	4.3.2. Microscopía electrónica de transmisión, difracción de electrones y	Cap. 4-16
	análisis de energía dispersiva de rayos X.	
	4.3.3. Adsorción de N ₂ : Determinación de área superficial y volumen de	Cap. 4-17
	poros	
	4.3.4. Análisis elemental	Cap. 4-17
	4.3.5. Técnicas de caracterización con rayos X	Cap. 4-17
	4.3.5.1. Difracción de rayos X de polvo	Cap. 4-17
	4.3.5.2. Análisis del tamaño de dominio cristalino	Cap. 4-17
	4.3.5.3. Análisis de orientación preferencial	Cap. 4-18
	4.3.5.4. Reflectometría de rayos X	Cap. 4-19
	4.3.5.5. Medidas de dispersión de rayos X a ángulos bajos	Cap. 4-19
	4.3.6. Espectroscopías infrarroja (FTIR) y Raman	Cap. 4-19
	4.3.7. Análisis térmico (TGA, DTA, DSC)	Cap. 4-20
4.4.	MEDIDAS DE EFICIENCIA DE LOS PROTOTIPOS DE CELDAS	Cap. 4-20
SOL	ARES	
4.5.	PARTE TEÓRICA	Cap. 4-20
	4.5.1 Estudio estructural y electrónico de los polimorfos anatasa, rutilo, y	Cap. 4-21
	$TiO_2(B)$ en bulk.	
	4.5.2 Modelos bidimensionales	Cap. 4-22
	4.5.3 Adsorción de HCOOH sobre TB(001) y TB(100)	Cap. 4-23
4.5.4 Superficies (001) y (100) del polimorfo TiO2(B)		Cap. 4-24
	4.5.5 Nanohilos	Cap. 4-25
4.5.6 Nanotubos		Cap. 4-26
	4.5.7 Estudio de la interacción semiconductor – colorante	Cap. 4-27
REF	ERENCIAS – CAPÍTULO 4	Cap. 4-28
CAP	ÍTULO 5 – RESULTADOS Y DISCUSIÓN I:	
SÍN	TESIS DE NANOESTRUCTURAS DE TIO ₂ Y TITANATOS	
Índic	e – Capítulo 5	Cap. 5-1
5.1 S	ÍNTESIS HIDROTERMAL BAJO PRESIÓN ENDÓGENA	Cap. 5-2
	5.1.1 Observaciones generales – Etapa I "Barrido inicial de condiciones"	Cap. 5-2
	5.1.1.1 Influencia de los lavados	Cap. 5-5
	5.1.1.2 Influencia del material de partida, la temperatura y el tiempo	Cap. 5-14
	de reacción	
	5.1.2 Síntesis hidrotermal bajo presión endógena – Etapa II "Diseño de	Cap. 5-19
	un experimento"	

5.2 SÍNTESIS HIDROTERMAL BAJO PRESIÓN ATMOSFÉRICA	Cap. 5-27		
5.2.1 Observaciones generales	Cap. 5-28		
5.2.2 Conclusiones	Cap. 5-32		
5.3 MÉTODO SONOQUÍMICO	Cap. 5-32		
5.4 HIDRÓLISIS DE PRECURSORES GLICOLADOS	Cap. 5-33		
5.5 CONCLUSIONES-SÍNTESIS DE NANOESTRUCTURAS DE TIO ₂ Y	Cap. 5-34		
TITANATOS			
REFERENCIAS - CAPÍTULO 5	Cap. 5-35		
CAPÍTULO 6 - RESULTADOS Y DISCUSIÓN II:			
CARACTERIZACIÓN DE NANOTUBOS DE DIÓXIDO DE TITANIO Y T	TITANATOS		
Índice – Capítulo 6	Cap. 6-1		
6.1 CARACTERIZACIÓN MORFOLÓGICA POR MICROSCOPÍA TEM	Cap. 6-2		
6.1.1 Muestra NT 15CI	Cap. 6-2		
6.1.2 Muestra NT 18B	Cap. 6-3		
6.1.3 Muestra NT_4C	Cap. 6-4		
6.2 CARACTERIZACIÓN TEXTURAL	Cap. 6-4		
6.2.1 NT_15CI	Cap. 6-4		
6.2.2 NT_18B & NT_18C	Cap. 6-7		
6.2.3 NT_4C	Cap. 6-7		
6.3 ANÁLISIS ELEMENTAL	Cap. 6-8		
6.4 CARACTERIZACIÓN ESTRUCTURAL – ANÁLISIS POP	R Cap. 6-8		
DIFRACCIÓN DE RAYOS X DE POLVO	DIFRACCIÓN DE RAYOS X DE POLVO		
6.4.1 Introducción	Cap. 6-8		
6.4.2 Análisis dimensional de dominios cristalinos en los NT a partir de	e Cap. 6-11		
DRX utilizando la ecuación de Scherrer			
6.4.3 Influencia de las dimensiones y morfología de las partículas en e	l Cap. 6-14		
patrón de difracción -MODELOS DE NANOTUBOS EN TAMAÑO REAI			
6.4.4 Análisis de orientación preferencial mediante Rocking Curves	Cap. 6-27		
6.4.5 Dispersión de rayos X a ángulos bajos	Cap. 6-28		
6.5 ESPECTROSCOPÍAS INFRARROJA Y RAMAN	Cap. 6-30		
6.5.1 Espectroscopía IR	Cap. 6-30		
6.5.2 Espectroscopía Raman	Cap. 6-30		
6.6 ESTABILIDAD TÉRMICA DE LOS NANOTUBOS	Cap. 6-32		
6.6.1 Análisis por microscopía electrónica de transmisión	Cap. 6-32		
6.6.2 Análisis por DRX	Cap. 6-34		
6.6.3 Análisis térmicos: TGA, DTA y DSC	Cap. 6-37		
6.6.4 Análisis elemental para evaluación del contenido de hidrógeno	Cap. 6-40		
COCLUSIONES – CARACTERIZACIÓN DE NANOTUBOS	Cap. 6-42		
REFERENCIAS – CAPÍTULO 6	Cap. 6-45		

Índice General

CAP	ÍTULO	7 – RESULTADOS Y DISCUSIÓN III: DIZACIÓN DE NANOPODS DE DIÓXIDO DE TITANIO Y TITA	NATOS
		RIZACIÓN DE NANORODS DE DIOXIDO DE ITTANIO Y ITTA	NATUS
Indic	e - Capit		Cap. 7-1
7.1	Carac	cterización por microscopía electrónica de barrido	Cap. 7-2
	7.1.1	Imágenes Muestra 3A	Cap. 7-2
	7.1.2	Análisis químico por espectroscopía de energía dispersa de rayos X	Cap. 7-3
	(EDS) -	– Muestra 3A	
	7.1.3	Imágenes - Muestra 5A	Cap. 7-4
	7.1.4	Análisis químico por espectroscopía de energía dispersa de rayos X	Cap. 7-5
	(EDS) -	– Muestra 5A	
7.2	Carac	cterización por microscopía electrónica de transmisión	Cap. 7-6
	7.2.1	Imágenes de campo claro – Muestra 3A	Cap. 7-7
	7.2.2	Imágenes de HRTEM – Muestra 3A	Cap. 7-7
	7.2.3	Patrones de difracción – Muestra 3A	Cap. 7-10
	7.2.4	Análisis químico por nano-EDS – Muestra 3A	Cap. 7-12
	7.2.5	MET100 Patrones de difracción de electrones y distancias	Cap. 7-12
	interpla	nares – Muestra 3A	
	7.2.6	Imágenes de campo claro – Muestra 5A	Cap. 7-13
	7.2.7	Imágenes de HRTEM – Muestra 5A	Cap. 7-14
	7.2.8	Análisis químico por nano-EDS – Muestra 5A	Cap. 7-16
	7.2.9	MET100 Patrones de difracción de electrones y distancias	Cap. 7-17
	interpla	nares – Muestra 5A	_
7.3	Carac	cterización estructural – Análisis por difracción de rayos X de polvo	Cap. 7-19
7.4	Estab	ilidad térmica de los nanorods	Cap. 7-19
	7.4.1	Muestra 3A	Cap. 7-19
	7.4.2	Muestra 5A	Cap. 7-24
7.5	CONC	LUSIONES – CARACTERIZACIÓN DE NANORODS	Cap. 7-28
REFI	ERENCI	AS – CAPÍTULO 7	Cap. 7-29
			—

CAPÍTULO 8 – RESULTADOS Y DISCUSIÓN IV:

ENSAMBLADO DE PROTOTIPOS DE CELDAS SOLARES DE SENSIBILIZACIÓN ESPECTRAL (DSSC)

Índice - Capítulo 8		ítulo 8	Cap. 8-1
8.1	8.1 INTRODUCCIÓN		Cap. 8-2
	8.1.1	Esquema de los dispositivos	Cap. 8-2
	8.1.2	Ensamblado de prototipos	Cap. 8-3
		SERIE I	Сар. 8-6
		SERIE II	Cap. 8-6
		SERIE III	Cap. 8-7
8.2	CAF	RACTERIZACIÓN ELÉCTRICA	Cap. 8-9
	SERIE	EI	Cap. 8-9

Índice General

SERIE II	Cap. 8-10
SERIE III	Cap. 8-12
8.3 CONCLUSIONES - ENSAMBLADO DE PROTOTIPOS DE	Cap. 8-13
DISPOSITIVOS FOTOVOLTAICOS DEL TIPO DSSC	
REFERENCIAS – CAPÍTULO 8	Cap. 8-15

CAPÍTULO 9 – RESULTADOS Y DISCUSIÓN V:

MO	DELA	DO DE NANOESTRUCTURAS DE DIÓXIDO DE TITANIO Y TITA	ANATOS
Índic	ce - Caj	pítulo 9	Cap. 9-1
9.1	EST	FUDIO ESTRUCTURAL Y ELECTRÓNICO DE LOS	Cap. 9-3
POL	IMOR	FOS ANATASA, RUTILO, Y TiO ₂ (B) EN BULK	
	9.1.1	Optimización estructural	Cap. 9-3
	9.1.2	Estimación de gaps	Cap. 9-4
9.2	MC	DELOS BIDIMENSIONALES	Cap. 9-5
	9.2.1	Introducción	Cap. 9-5
	9.2.2	Superficies ultrafinas	Cap. 9-5
		9.2.2.1 Superficies de anatasa	Cap. 9-7
		9.2.2.2 Superficies de rutilo	Cap. 9-9
		9.2.2.3 Superficie de $TiO_2(B)$	Cap. 9-9
		9.2.2.4 Consideraciones finales del estudio de superficies ultrafinas	Cap. 9-11
	9.2.3	Nanohojas ultrafinas	Cap. 9-12
		9.2.3.1 Nanohojas de anatasa y rutilo	Cap. 9-13
		9.2.3.2 Nanohojas de $TiO_2(B)$	Cap. 9-14
		9.2.3.3 Estructura electronica de las nanohojas ultrafinas de anatase,	Cap. 9-14
		rutilo y TiO ₂ (B)	
9.3	AD	SORCIÓN DE HCOOH SOBRE HOJAS ULTRAFINAS DE TiO ₂ (B)	Cap. 9-15
	9.3.1	Adsorción de HCOOH sobre superficies ultrafinas de TB(001) y	Cap. 9-16
	TB(1	00) empleando bases atómicas localizadas	
	9.3.2	Validación del método	Cap. 9-21
	9.3.3	Adsorción de HCOOH sobre hojas ultrafinas de TB(001) y TB(100)	Cap. 9-23
	emple	eando ondas planas	
9.4	SU	PERFICIE (001) DEL POLIMORFO TiO ₂ (B)	Cap. 9-24
9.5	NA	NOHILOS	Cap. 9-25
	9.5.1	Introducción	Cap. 9-25
	9.5.2	Nanohilo de anatasa [001]	Cap. 9-26
	9.5.3	Nanohilos TBx y TBy	Cap. 9-29
	9.5.4	Estructura electrónica de los nanohilos	Cap. 9-33
9.6	NA	NOTUBOS	Cap. 9-35
9.7 E	ESTUD	IO DE LA INTERACCIÓN COLORANTE-SEMICONDUCTOR	Cap. 9-36
9.8	OP	TIMIZACIÓN ESTRUCTURAL DE TITANATOS LAMINARES	Cap. 9-39
DEL	TIPO	$Na_{x}H_{2-x}Ti_{3}O_{7} y H_{2-x}Na_{x}Ti_{2}O_{5} \cdot yH_{2}O$	
	9.7.1	$Na_{x}H_{2-x}$ $Ti_{3}O_{7}$	Cap. 9-39

9.7.2 $H_{2-x}Na_xTi_2O_5$ ·y H_2O	Cap. 9-40
9.9 CONCLUSIONES SOBRE EL MODELADO TEÓRICO DE	Cap. 9-43
NANOESTRUCTURAS DE DIÓXIDO DE TITANIO	
REFERENCIAS – CAPÍTULO 9	Cap. 9-45
CAPITULO 10 – CONCLUSIONES	C 10.1
Indice - Capitulo 10	Cap. 10-1
10. I. CONCLUSIONES SOBRE LA SINTESIS DE NANOESTRUCTURAS DE DIÓXIDO DE TITANIO Y TITANATOS	Cap. 10-2
10.2 CONCLUSIONES SOBRE LA CARACTERIZACIÓN ESTRUCTURAL	Cap 10-2
VI A ESTABILIDAD TÉRMICA DE LAS NANOESTRUCTURAS	Cap. 10-2
10.2.1. Caracterización y estabilidad térmica de nanotubos	Cap 10-2
10. 2. 2. Caracterización y estabilidad térmica de nanorods	Cap. $10-2$
10.3 CONCLUSIONES SOBRE EL ENSAMBLADO DE PROTOTIPOS DE	Cap. $10-4$
DISPOSITIVOS FOTOVOL TAICOS DEL TIPO DSSC	Cup. 10-5
10.4 CONCLUSIONES SOBRE EL MODELADO TEÓRICO DE	Cap 10-6
NANOESTRUCTURAS DE DIÓXIDO DE TITANIO	Cup: 10 0
10 4 1 Modelos bidimensionales	Cap 10-6
10 4 2 Modelos unidimensionales	Cap. 10-6
10.4.3 Interacción clúster – colorante	Cap. 10-7
10.5 RESULTADOS GENERALES	Cap. 10-7
10.5.1. Presentaciones en eventos	Cap. 10-7
10.5.2. Trabajos enviados para su publicación	Cap. 10-9
10.5.3. Trabajos en preparación	Cap. 10-9
10.5.4. Trabajos relacionados	Cap. 10-9
10. 6. PERSPECTIVAS	Cap. 10-10
ANEXO I - IIIANA IOS LAMINARES, IIO ₂ (B) Y ESTRUCTURA DE INIS	AT 1
I = I = I = I = I = I = I = I = I = I =	
I. I ESTRUCTURAS DE COMPUESTOS TIPO $[\Pi, A]_2 \Pi_N O_{2N+1}$. I $\Pi_2 O$ DESLIELTAS EN LA BASE DE DATOS	AI-3
L = 1 + n - 2	ΔI_3
I = 1 + 1 + 1 + 2 I = 1 + 2 = n - 3	
I = 1 = 2 I = 1 = 3 $n = 4$	ΔI-5
$I = 1 4 n^{-5}$	AI-7
I = 1.5 I = 1.5 n=6	AI-9
1.1.5 n=0 1.1.6 n>7	AI-10
I = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	AI-12
I 2 RELACIONES ESTRUCTURALES MECANISMOS PROPHESTOS	AI-12
DE FORMACIÓN DEL POLIMOREO TIO, (B)	AI-14
$I_{3} = CARACTERIZACIÓN ESTRUCTURAL DE NANOTUROS DE TIO_Y$	AI-15
TITANATOS OBTENIDOS POR EL MÉTODO HIDROTERMAL ALCALINO	111 15

Índice General

REFERENCIAS – ANEXO I	AI-18
ANEXO II – MICROSCOPÍAS SEM Y TEM	
Índice – Anexo II	AII-1
II – 1. MÉTODO HIDROTERMAL BAJO PRESIÓN ENDÓGENA	AII-3
II – 1.1 Barrido Inicial	AII-3
Batch 1 (A, 150°C, 24hs) Lavados: 3HCl+1H2O	AII-3
Batch 2 (A, 142°C, 20hs) Lavados: 4HCl+1H2O	AII-3
Batch 3 (A, 148°C, 43hs)	AII-3
Batch 5 (A+R, 150°C, 39hs)	AII-4
Batch 6 (R, 150°C, 22hs)	AII-5
Batch 8 (R, 156°C, 47hs)	AII-5
Batch 9 (A+R, 150°C, 68hs)	AII-6
Batch 16 (R, 140°C, 24hs)	AII-7
Batch 18 (R, 1,5g, 140°C, 25hs)	AII-9
Batch 19 (A, 120°C, 24hs)	AII-12
II- 1.2 Diseño de un experimento	AII-14
AI() Corrida 9	AII-14
AII() Corrida 6	AII-15
BI(+) Corrida 2	AII-16
BII(+) Corrida 11	AII-17
CI(-+-) Corrida 15	AII-18
CII Corrida 8	AII-19
DI(++-) Corrida16	AII-21
DII(++-) Corrida 1	AII-22
EI(+) Corrida 3	AII-23
EII(+) Corrida 13	AII-24
FI(+-+) Corrida 5	AII-25
FII(+-+) Corrida 10	AII-26
GI(-++) Corrida 14	AII-27
GII(-++) Corrida 12	AII-28
HI(+++) Corrida 7	AII-29
HII(+++) Corrida 4	AII-30
II – 2. MÉTODO HIDROTERMAL BAJO PRESIÓN ATMOSFÉRICA	AII-31
Batch 4 (A, 69hs, s/a)	AII-31
Batch 15 (A, 48hs, c/a) – Muestra 15A	AII-33
Batch 15 (A, 48hs, c/a) – Muestra 15B	AII-34
II – 3. MÉTODO SONOQUÍMICO	AII-36

ANEXO III – DIAGRAMAS DE DIFRACCIÓN DE POLVO

Índice – Anexo III III. 1 MÉTODO HIDROTERMAL BAJO PRESIÓN ENDÓGENA AIII-2

III. 2 MÉTODO HIDROTERMAL BAJO PRESIÓN ATMOSFÉRICA	AIII-31
ANEXO IV – DFT	
Índice – Anexo IV	
IV.1 TEORÍA DE FUNCIONALES DE LA DENSIDAD	AIV-2
IV.1.1 INTRODUCCIÓN	AIV-2
IV.1.2 TEOREMAS DE KOHN Y HOHENBERG	AIV-4
IV.1.3 FUNCIONAL DE CORRELACIÓN E INTERCAMBIO	AIV-7
REFERENCIAS – ANEXO IV	AIV-10

CAPÍTULO 1

INTRODUCCIÓN

Impulsado por el descubrimiento de los nanotubos de carbono [1], se inició la búsqueda de otros compuestos nanotubulares que, debido a su particular estructura nanocristalina y nanoporosa, pudieran otorgar novedosas propiedades a potenciales productos. Los nanotubos de dióxido de titanio y titanatos vienen siendo sintetizados desde hace poco más de quince años, inicialmente utilizando técnicas complejas de deposición electroquímica sobre moldes poliméricos [2] y posteriormente adoptando mayoritariamente el método hidrotermal empleado por primera vez para este tipo de estructuras por Kasuga y colaboradores [3].

Dicha técnica de síntesis representa una ruta sencilla y fácilmente escalable para la producción a escala industrial. Adicionalmente, representa un método versátil que permite, mediante la variación de las condiciones de síntesis, obtener un amplio rango de nanoestructuras igualmente interesantes desde el punto de vista de potenciales aplicaciones. Entre estas se pueden citar las nanopartículas, nanobastones (o *nanorods*) y nanofibras. Sin embargo, la influencia de los distintos parámetros de reacción aún no está del todo clara. El mecanismo de formación de las estructuras y, en particular, de los nanotubos es un tema actualmente sigue siendo investigado y no se encuentra completamente elucidado.

Por otro lado, en lo que respecta a la estructura cristalográfica de los nanotubos sintetizados el método hidrotermal, aún existe un debate abierto al respecto. La principal problemática existente a la hora de la caracterización estructural de nanotubos y otras nanoestructuras de alta relación de aspecto radica en las limitaciones intrínsecas del método de difracción de rayos X aplicado a este tipo de muestras. El pequeño tamaño de las estructuras (y por lo tanto de las cristalitas o dominios cristalinos), particularmente en la dirección radial, estando las paredes compuestas por unos pocos planos atómicos, genera máximos de difracción extremadamente anchos. Por otro lado, la alta relación de aspecto, puede provocar la propensión de las muestras a orientaciones preferenciales. Las mismas se traducen en cambios en las intensidades relativas de los máximos. A su

Capítulo 1 - Introducción

vez, debido a la morfología, el ancho de pico varía según los índices de Miller asociados a la reflexión. Sumado a esto, luego del intercambio iónico que se da durante los lavados, las fases resultantes corresponden a titanatos protonados (ácidos polititánicos). Debido al bajo poder de dispersión de los átomos de hidrógeno resulta difícil la determinación de sus posiciones y ocupaciones dentro del cristal mediante métodos convencionales de difracción de rayos X. Por lo anterior, el análisis resulta complejo, siendo, en muchos casos, limitada la información que puede extraerse del mismo.

Entre las potenciales aplicaciones de las nanoestructuras de dióxido de titanio se encuentra su utilización como componentes del film semiconductor de los fotoelectrodos de celdas solares fotovoltaicas del tipo sensibilizadas por colorantes (DSSC o DSC, del inglés "*Dye Sensitized Solar Cells*" o "*Dye-Sensitized Solar Cells*" respectivamente) [4],[5]. Este tipo de celda surge a inicios de la década del 90 como una alternativa técnica y económicamente atractiva en lo que respecta a la tecnología fotovoltaica existente.

Se proyecta que la demanda energética global siga en aumento llegando a 46TW para finales del siglo. Esto acompañaría al aumento mundial de población en conjunto con el desarrollo tecnológico y crecimiento económico global [6]. Las reservas de combustibles fósiles, que actualmente suplen de energía a la sociedad, a largo plazo se verán superadas por esta demanda creciente. Sumado los efectos adversos asociados al uso de estos combustibles. Se vuelve imperiosa la búsqueda de fuentes alternativas de energía que puedan reforzar a las actuales y cumplan con las exigencias ambientales, así como de tecnologías para mitigar la polución asociada a las fuentes tradicionales.

La luz solar representa por lejos la mayor fuente de energía libre de carbono. Llega más energía a través de esta a la Tierra en una hora $(4.3*10^{20}\text{J})$ que lo que se consume anualmente en todo el planeta $(4.1*10^{20}\text{J})$. La energía eléctrica generada a partir del sol representa menos de un 0.1% de la energía eléctrica total mundial hasta el año 2001 mientras que la biomasa significa menos de un 1.5% de la matriz energética mundial [6]. Esto evidencia la gran diferencia existente entre el uso actual de la energía solar y el enorme potencial asociado a la misma. Es claro que la energía solar es una solución factible en lo que respecta a la necesidad global de nuevas fuentes de energía limpia¹.

¹ Cubriendo el 0.16% de la superficie terrestre con celdas solares de un 10% de eficiencia podrían obtenerse 20TW de potencia, lo que es aproximadamente el doble de lo que se genera mediante combustibles fósiles y equivale a 20000 plantas de fisión nuclear de 1-GWe.

Capítulo 1 - Introducción

En Uruguay, al igual que en el resto del mundo, los combustibles fósiles aún dominan la matriz energética [7].

Considerando lo antes expuesto, las interrogantes existentes en lo que respecta a la síntesis, mecanismo de formación y caracterización estructural de nanoestructuras de alta relación de aspecto de dióxido de titanio y titanatos, sumado a la potencial aplicación en celdas fotovoltaicas motiva el presente trabajo de tesis.

En el mismo, se plantea el estudio de este tipo de estructuras nanométricas con el objetivo de aportar al estado de arte en lo que respecta a la síntesis, caracterización estructural y modelado teórico por métodos computacionales. Por otro lado, se ensayan los materiales obtenidos desde el punto de vista de su aplicación en celdas del tipo DSSC. Se realizan también estudios teóricos de estabilidad y reactividad, así como de interacción con colorantes del tipo utilizados en la aplicación. La investigación de estos materiales fue dividida en cuatro niveles de abordaje al problema, buscando la retroalimentación entre los mismos:

1. Síntesis de las nanoestructuras.

2. Caracterización morfológica y estructural de las estructuras obtenidas.

3. Modelado teórico de nanoestructuras de dióxido de titanio y su interacción con colorantes.

4. Armado de dispositivos a escala de laboratorio

La relativamente escasa, e incipiente, investigación en modelado de nanotubos y nanoestructuras de alta relación de aspecto de TiO_2 y titanatos, sumado a la falta de consenso sobre su estructura y propiedades, al alto interés desde el punto de vista tecnológico y a la simplicidad de su método de síntesis, demuestra que este es un campo fértil de trabajo en el cual se podrían realizar aportes.

REFERENCIAS – Capítulo 1

[1] Ijima, S., *Nature* **1991**, 354, 56-59

[2] Hoyer, P., Langmuir 1996, 12 (6), 1411-1413.

[3] Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K., *Langmuir* **1998**, 14, 3160-3163.

[4] Vlachopoulos, N.; Liska, P.; Augustynski, J.; Grätzel, M. J. Am. Chem. Soc. 1988,

110, 1216

[5] O'Regan, B.; Grätzel, M. Nature 1991, 335, 737.

 [6] Basic Research Needs for Solar Energy Utilization, Report of the *Basic Energy* Science Workshop on Solar Energy Utilization April 18-21, 2005, publicación: Renée
 M. Nault, Argonne National Laboratory

[7] Área de energía. Informe preliminar de la consultoría sobre Energía en el marco del Plan Estratégico Nacional en Ciencia Tecnología en Innovación a cargo del Dr. Ramón Méndez Galain. Febrero de 2008.

Capítulo 2 – Revisión bibliográfica

CAPÍTULO 2

REVISIÓN BIBLIOGRÁFICA

Índice – Capítulo 2

2.1. TiO ₂ :	ESTRUCTURA, PROPIEDADES Y APLICACIONES	,
2.1.1 E	Estructura 2	,
2.1.2 F	Propiedades electrónicas 5	,
2.1.3 A	Aplicación en celdas solares sensibilizadas con colorantes (DSSC)	,
2.1.3.1	Principios de operación de una DSSC)
2.1.3.2	Características del film semiconductor	
2.2. SÍNT	ESIS Y CARACTERIZACIÓN DE NANOESTRUCTURAS DE TiO ₂ Y	
TITANATO	OS DE ALTA RELACIÓN DE ASPECTO14	•
2.3. MOD	DELADO COMPUTACIONAL DE NANOESTRUCTURAS DE TiO ₂ DE	
ALTA REL	ACIÓN DE ASPECTO 16)
REFERENC	CIAS – Capítulo 2 17	,

Capítulo 2 – Revisión bibliográfica

2.1. TiO₂: ESTRUCTURA, PROPIEDADES Y APLICACIONES

2.1.1 Estructura

El dióxido de titanio (TiO₂) se presenta en la naturaleza mayoritariamente como los polimorfos rutilo (tetragonal, P4₂/mnm, a=b=4,5941(1)Å, c=2,9589(1)Å [1]), anatasa (tetragonal, I4₁/amd, a=b=3,7892(4) Å, c=9,537(1)Å [2]) y brookita (romboédrico, Pbca, a=9.184Å, b=5.447Å, c=5.145Å [3]). Estas tres estructuras cristalinas se caracterizan por tener un mismo bloque de construcción correspondiente a octaedros [TiO₆], siendo la distorsión de los mismos y su modo de interconexión lo que difiere entre las fases (Figura 2.1.1-1). En los tres casos, el apilamiento de octaedros resulta en oxígenos coordinados a tres átomos de titanio. Los polimorfos rutilo y anatasa son los que juegan roles principales en las aplicaciones tecnológicas y por ende son los que han sido más estudiados.

En el caso de rutilo, se puede ver la estructura como cadenas de octaedros paralelas a la dirección [001] que comparten aristas. Estas cadenas se encuentran unidas entre sí mediante vértices. Los octaedros no son regulares, presentan una distorsión tal que los enlaces de Ti con los oxígenos apicales son levemente mayores (1,983Å) que los que involucran a los oxígenos ecuatoriales (1.946Å) (Figura 2.1.1-2 (a)) [4]. Octaedros adyacentes comparten un vértice a lo largo de las direcciones diagonales de cara, apilándose de forma de que su eje mayor se alterna 90°. Cada octaedro se encuentra en contacto con diez vecinos de los cuales comparte aristas con dos de ellos y vértices con los restantes ocho.

En la estructura anatasa, cada octaedro está en contacto con ocho vecinos, con cuatro comparte aristas y con cuatro comparte vértices. En esta fase se observa una distorsión mayor en los octaedros siendo las distancias de enlace de Ti a los oxígenos apicales también levemente superior a la correspondiente a Ti-oxígenos ecuatoriales, a lo cual se suma una desviación en los ángulos de enlace, los cuales difieren de 90° (Figura 2.1.1-2(b)). Las diferencias estructurales derivan en diferencias en la densidad y estructura electrónica de las fases.

Capítulo 2 – Revisión bibliográfica

Figura 2.1.1-1 Celda unidad de la fase anatasa vista según las direcciones [100] (a) y [010] (b), celda unidad correspondiente a rutilo vista según las direcciones [001] (c) y [100] (d). Estructura del polimorfo brookita según la dirección [001].

Figura 2.1.1-2 – Distorsiones de los octaedros $[TiO_6]$ en los polimorfos rutilo (a) y anatasa (b). Fuente: referencia [4].

Rutilo es la fase más estable a altas temperaturas, pero anatasa y brookita son los polimorfos más comunes en muestras naturales y sintéticas de tamaño nanométrico. Bajo calentamiento se han observado las siguientes transformaciones de fase: anatasa \rightarrow brookita \rightarrow rutilo, brookita \rightarrow anatasa \rightarrow rutilo, anatasa \rightarrow rutilo y brookita \rightarrow rutilo [5].

Existen otros polimorfos de dióxido de titanio, algunos de los cuales se listan en la

Tabla 2.1.1-1. De entre estos, el denominado TiO_2 (B) adquiere relevancia para el presente trabajo de tesis por tratarse de una fase metaestable que se observa en el proceso de deshidratación de titanatos ácidos laminares sintetizados por métodos hidrotermales alcalinos y posterior intercambio iónico. En los últimos tiempos, esta fase ha ganado más atención debido a sus potenciales aplicaciones, principalmente en las baterías recargables de ión Li⁺ [6], [7], pero también en celdas solares de sensibilización espectral [8], [9] (DSSCs, del inglés "dye sensitized solar cells" [10]) y supercapacitores [11].

...

1 50

. .

I abla 2.1.1-1 - Características estructurales de polímorfos de TíO ₂ .									
Polimorfo	Sistema cristalino	Grupo Espacial	a(Å)	b(Å)	c(Å)	α (°)	β (°)	γ (°)	Ref.
TiO ₂ II (α-PbO ₂ - type)	ortorrómbico	Pbcn	4.515 (6)	5.497 (5)	4.939 (5)	90.	90.	90.	[12]
TiO ₂ (B)	monoclínico	C12/m1	12.1787 (10)	3.7412 (2)	6.5249 (5)	90.	107.054 (4)	90.	[13]
$TiO_2(R)$	ortorrómbico	Pbnm	4.9022 (14)	9.4590 (12)	2.9585 (14)	90.	90.	90.	[14]
$TiO_2(H)$	tetragonal	I4/m	10.161 (3)	10.161 (3)	2.970 (1)	90.	90.	90.	[15]
TiO ₂ hexagonal	hexagonal	P3 ₁ 21	5.291	5.291	6.133	90.	90.	120.	[16]
Baddeleyite -type TiO ₂	monoclínico	$P2_1/c$	4.64(1)	4.76(1)	4.81(1)	90.	99.2(4)	90.	[17]
TiO ₂ OI	ortorrómbico	Pbca	9,052	4,836	4,617	90.	90.	90.	[18]
TiO ₂ OII Cotunnite- type	ortorrómbico	Pnma	5.163 (2)	2.989 (1)	5.966 (2)	90.	90.	90.	[19]
TiO ₂ cúbico	cúbico	Fm3m o Pa3	4.516 (1)			90.	90.	90.	[20]

El TiO₂ (B) fue sintetizado por primera vez por Marchand *et al* [21], su estructura química deriva de la de bronce titanato Na_xTiO₂, ésta presenta canales continuos y posee menor densidad que las fases anatasa, rutilo y brookita. Puede ser obtenido fácilmente por rutas químicas mediante el intercambio protónico y subsecuente deshidratación de titanatos laminares como fue descrito por Feist y colaboradores [22][23]. Esta fase fue observada por varios grupos de investigación, entre ellos el nuestro, durante el tratamiento térmico de muestras obtenidas mediante síntesis hidrotermal alcalina de nanotubos y nanorods de dióxido de titanio y titanatos derivados [24], inicialmente propuesta por Kasuga et al [25]. Utilizando este abordaje fueron sintetizadas diferentes nanoestructuras de TiO₂(B), como nanopartícluas [9], nanohilos [6][7][11], nanocintas [8] y nanotubos [26]. En el Anexo I se amplía la información sobre el método de síntesis y mecanismos de transformaciones estructurales propuestos. Algunos estudios teóricos también fueron llevados a cabo, en los últimos años, en lo que respecta a $TiO_2(B)$. La estructura, propiedades electrónicas y vibracionales del bulk fueron investigadas por Ben Yahia M. y colaboradores [27] por medio de cálculos según la teoría de funcionales de la densidad electrónica (DFT, del inglés Density Functional Theory). La reconstrucción y estabilidad superficial según distintas orientaciones cristalográficas ha sido estudiada por Vittadini et al [28], encontrando que la energía superficial promedio en este polimorfo es prácticamente idéntica a la de la

Capítulo 2 - Revisión bibliográfica

anatasa, y observando que la superficie (001) del TiO₂(B) se encuentra entre las más estables para el dióxido de titanio (comparable con anatasa (101) y rutilo (110). Adicionalmente, Liu W. y colaboradores analizaron la adsorción de agua en las superficies (001) y (100) [29], confirmando la menor reactividad (asociada a la mayor estabilidad) de la orientación (001) con respecto a (100). Por último, el transporte de Li⁺ ha sido evaluado por Arrouvel *et al* mostrando altas movilidades iónicas [30].

2.1.2 Propiedades electrónicas

Estructura de bandas del dióxido de titanio

Si se considera un octaedro [TiO₆] aislado, los cinco niveles *d* del Ti se desdoblan en tres niveles t_{2g} y dos niveles e_g . Debido a que los orbitales t_{2g} quedan orientados según las bisectrices de los ángulos Ti-O-Ti, estos no solapan efectivamente con simetría σ con los orbitales s o p del oxígeno. El solapamiento π es poco importante debido a que la extensión de los orbitales t_{2g} es pequeña. Por otro lado, el solapamiento de los orbitales e_g del Ti con los orbitales p del oxígeno resulta en una estabilización del O 2p que adquiere un pequeño grado de Ti e_g y desestabiliza al Ti e_g que adquiere un pequeño grado de Ti e_g y los orbitales 2s del O y los 4s del Ti, estos tienen escasa contribución al enlace. [31]

Figura2.1.2-1 – Esquema del desdoblamiento de los niveles d del titanio en un octaedro [TiO₆] aislado [31].
Si se considera la celda unidad del rutilo que posee dos octaedros, la banda asociada principalmente a O_{2s} tiene una capacidad para 8N electrones (siendo N el número de celdas unidad en el sólido), la banda asociada principalmente a los orbitales O 2p tiene

Capítulo 2 – Revisión bibliográfica

capacidad para 24N electrones (16N que provienen del O y 8N que provienen del Ti). Ambas bandas se encuentran completamente llenas, quedando vacías las bandas a partir de la asociada principalmente a los orbitales Ti t_{2g} [31].

De acuerdo con el esquema anterior, se puede inferir que la banda de valencia está asociada al nivel 2p de los iones O^{2-} y la banda de conducción a los niveles t_{2g} de los iones Ti^{4+} . Las bandas calculadas u obtenidas mediantes espectroscopía de fotoelectrones son apreciablemente anchas, lo que indica que, en realidad, el enlace no puede considerarse iónico, se ha calculado la carga sobre el Ti y el O obteniéndose +1.4 y 0.70 respectivamente. Por otro lado, debe tenerse en cuenta que los desdoblamientos de niveles son coherentes con la simetría real del sólido que es inferior a la cúbica (octaedro) tanto para el rutilo como para la anatasa. Por último, el dióxido de titanio suele presentar vacancias de oxígeno que introduce estados localizados Ti^{3+} (impuerzas donoras) próximas a la banda de conducción)[31].

En la Figura 2.1.2-2 se esquematizan los diagramas de orbitales moleculares resultantes para los polimorfos rutilo y anatasa. Y en la Figuras Figura 2.1.2-3Figura 2.1.2-4 se muestran las densidades de estados totales y parciales calculadas para ambos polimorfos.

Figura 2.1.2-2 – Esquemas de diagramas de orbitales moleculares correspondientes a los polimorfos rutilo (a)[32] y anatasa (b) [33], en el esquema (b) las líneas continuas y punteadas representan interacciones grandes y pequeñas respectivamente.

Figura 2.1.2-3 – Densidad de estados (DOS) total y parcial calculada para rutilo (gráfico de la izquierda) y anatasa (gráfico de la derecha). (a) Total, (b) O_{2s}, (c) O_{2p} y (d) Ti_{3d}. [34]

Figura 2.1.2-4 – **D**ensidad de estados total y parcial para la fase anatasa. En este caso, la DOS se descompone en las componentes asociadas a Ti e_g , Ti t_{2g} (d_{yz} , d_{zx} , and d_{xy}), O ps en el plano Ti₃O, y O pp fuera del plano Ti₃O. Se toma como energía cero el máximo de la banda de valencia (línea continua vertical). La línea punteada vertical indica el mínimo de la banda de valencia [33].

Capítulo 2 – Revisión bibliográfica

La energía de banda prohibida del dióxido de titanio en *bulk* cae dentro de la región UV del espectro electromagnético, siendo 3.0eV para la fase rutilo y 3.2eV para la fase anatasa, en ambos casos se trata de semiconductores de gap indirecto [35].

Cabe señalar, que al reducir el tamaño de partícula de un material, emergen nuevas propiedades físicas y químicas. Una propiedad característica en semiconductores nanométricos es que el movimiento de electrones y huecos está gobernado por el fenómeno de confinamiento cuántico. Las propiedades de transporte relacionadas a fonones y fotones son también ampliamente influenciadas por el tamaño y la geometría de los materiales. El área específica y la fracción superficie-volumen aumentan drásticamente al reducir el tamaño de partícula. La alta área superficial facilita la interacción con el medio lo que resulta beneficioso en numerosas aplicaciones. Por lo que el rendimiento de dispositivos basados en TiO₂ depende del tamaño de las subunidades de TiO₂ en la nanoescala.

2.1.3 Aplicación en celdas solares sensibilizadas con colorantes (DSSC)

El dióxido de titanio tiene un amplio rango de aplicaciones, por ejemplo, es utilizado como en catálisis heterogénea, como fotocatalizador, en celdas solares para la producción de hidrógeno y para la producción de corriente eléctrica, como sensor de gas, como pigmento blanco en pinturas y cosméticos (entre otros productos), en recubrimientos protectores anticorrosivos, en recubrimientos ópticos, y en algunos dispositivos electrónicos (por ejemplo en resistores dependientes del voltaje, VDR). También es de potencial aplicación en transistores del tipo MOSFETS y como separador en sistemas del tipo válvulas magnéticas de spin. A su vez, debido a que es un material biocompatible juega un papel importante en implantes de huesos. Por otro lado, en forma nanoestructurada se aplica en baterías de litio de estado sólido y dispositivos electrocrómicos [4].

En lo que respecta a la aplicación en celdas solares para la generación de energía eléctrica (celdas fotovoltaicas), es el semiconductor más empleado en las llamadas

Capítulo 2 – Revisión bibliográfica

celdas solares sensibilizadas con colorantes (DSSC o DSC, del inglés "*Dye Sensitized Solar Cells*" o "*Dye-Sensitized Solar Cells*" respectivamente)¹ [36] [37].

En contraposición a la tecnología fotovoltaica convencional, donde el semiconductor cumple ambas funciones: absorción de la luz y transporte de carga, en este caso las funciones están separadas. En este tipo de dispositivo, la luz es absorbida por un "sensibilizador" (molécula de colorante), el cual se encuentra anclado a un semiconductor de banda ancha. La separación de cargas tiene lugar en la interface vía la inyección de un electrón foto-inducido del colorante a la banda de conducción del sólido. Las cargas son transportadas a través de la banda de conducción del semiconductor hasta el colector de cargas. El uso de sensibilizadores de amplia banda de absorción en conjunto con filmes de óxidos de morfología nanocristalina permite colectar una mayor fracción de la luz solar. Se logran conversiones casi cuantitativas de fotones incidentes a corriente eléctrica a lo largo del rango del espectro comprendido desde la región UV hasta el IR cercano. Se obtiene una eficiencia promedio de conversión de energía solar (estándar AM 1.5^2) a corriente (IPCE) superior al 11%.

Existen reportados varios resúmenes en los que se recopilan los avances de este tipo de tecnología [38] [39], entre estos nuestro grupo ha realizado uno que considera las últimas patentes en lo que refiere a la ingeniería y diseño de nuevos colorantes, capas de semiconductor y electrolitos [40].

El dióxido de titanio es el semiconductor mayormente utilizado debido a su bajo costo, a que está ampliamente disponible, no es tóxico y es biocompatible. El colorante estándar es tris(2,2'-bipyridyl-4,4'-carboxylate)ruthenium(II), donde la función de los grupos carboxilatos es la de unirse mediante quemisorción al óxido.

2.1.3.1 Principios de operación de una DSSC [41] [42]

Las Figuras 2.1.3-1 y 2.1.3-2 esquematizan el funcionamiento de una celda tipo DSSC. Las nanopartículas de semiconductor se depositan en forma de film nanocristalino (que debe someterse a un proceso de sinterizado para permitir la conducción electrónica)

¹Estas también son conocidas como celdas solares de sensibilización espectral, celdas solares fotoelectroquímicas (estos dos términos son más generales) o celdas de Grätzel.

² Espectro correspondiente a la luz solar cuando la elevación del sol es de 42° respecto al horizonte, o sea cuando el camino a través de la atmósfera es 1,5 veces mayor que cuando el sol está en alto mediodía.

Capítulo 2 - Revisión bibliográfica

sobre un sustrato conductor (generalmente vidrio con una capa de óxido de estaño dopado con flúor o indio, FTO o ITO respectivamente³). El colorante se encuentra adsorbido como una monocapa sobre el semiconductor. Como se mencionó arriba, la foto-excitación de la molécula de colorante resulta en la inyección de un electrón dentro de la banda de conducción del óxido, este es transportado a través de la banda de conducción del semiconductor hasta el colector de cargas.

Figura 2.1.3-1 – Esquema de los elementos constituyentes de una celda solar sensibilizada con colorantes, los círculos llenos representan las moléculas de colorantes y los círculos mayores representan las nanopartículas de semiconductor [40].

Figura 2.1.3-2 – Esquema del camino electroquímico de los electrones luego de la absorción de un fotón.

Los puntos azules representan a los electrones. [40]

³ Del inglés: *Fluorine doped Tin Oxide* e *Indium Tin Oxide*, respectivamente.

Capítulo 2 – Revisión bibliográfica

Los colorantes típicos son complejos de rutenio como por ejemplo el N719, N3 y black dye (Figura 2.1.3-3), los cuales se anclan a la superficie de TiO₂ mediante los grupos carboxilato de los ligandos bipiridina. La absorción en la región visible se debe a una transferencia de carga del tipo metal-ligando. Los grupos carboxilatos están directamente coordinados a los iones de la superficie del semiconductor generando el contacto electrónico entre la molécula de colorante y el semiconductor. La injección electrónica se da desde el orbital π^* del ligando bipiridina hacia los orbitales t_{2g} que conforman la banda de conducción del TiO₂. En la reacción de recombinación (no deseada) los electrones se injectan desde la banda de conducción a los orbitales d del Ru(III). Estos procesos se esquematizan en la Figura 2.1.3-4. Debido al buen acoplamiento electrónico ente el orbital π^* del ligando y los orbitales t_{2g} del semiconductor, la inyección de electrones desde el colorante excitado hacia el TiO2 es extremadamente rápida, del orden de los femtosegundos. Por el contrario, la reacción de recombinación involucra a los orbitales d localizados en el metal del complejo de rutenio oxidado, cuyo solapamiento con la banda de conducción del metal es pequeño. Sumado a esto, la contracción espacial de la función de onda al darse la oxidación del Ru(II) a Ru(III) disminuye aún más el solapamiento, provocando que la reacción de recombinación sea relativamente lenta (del orden de los microsegundos).

Figura 2.1.3-3 – Estructura de los colorantes N3(a), N719(b), y "Black Dye"(c).

Por otro lado, el estado original del colorante es restablecido mediante la donación de un electrón desde el electrolito, usualmente un solvente orgánico conteniendo un sistema redox, como por ejemplo el par ioduro/triioduro. Dicha regeneración ocurre mediante los grupos tiocianatos. La rápida regeneración del colorante vía el ioduro impide la recombinación del electrón de la banda de conducción con el colorante oxidado. El ioduro es regenerado vía la reducción del triioduro en el contraelectrodo, al

Capítulo 2 – Revisión bibliográfica

migrar el electrón por la carga externa cerrando el circuito. El voltaje generado bajo iluminación corresponde a la diferencia entre el quasi nivel de Fermi del electrón en el sólido y el potencial redox del electrolito.

Figura 2.1.3-4 – (a) Transferencia electrónica en la interface correspondiente a un complejo de rutenio unido a la superficie de TiO₂ mediante los grupos carboxilato de los ligandos bipiridina. (b) Diagrama de orbitales indicando la reacción esperada (de constante k_f), injección electrónica desde el orbital π^* del ligando bipiridina en hacia los orbitales t_{2g} que conforman la banda de conducción del TiO₂ y la reacción de recombinación (k_b) desde la banda de conducción a los orbitales d del Ru(III) [41]

En forma esquemática, las distintas etapas del mecanismo de transformación de la energía: generación del electrón foto excitado, separación, transporte y recombinación pueden resumirse según las ecuaciones a continuación. Estas muestran que la eficiencia en la conversión de energía depende además de la rugosidad y morfología del óxido, de la fotofísica del colorante, y la química redox del electrolito.

- i. Excitación del colorante: $D \xrightarrow{luz} D^*$ (1)
- ii. Inyección de los electrones: $D^* \to D^+ + e^- (CB \text{ del TiO}_2)$ (2)
- iii. Regeneración del colorante: $D^+ + \frac{3}{2}I^- \rightarrow D + \frac{1}{2}I_3^-$ (3)

iv. Regeneración del par redox:
$$\frac{1}{2}I_3^- + e^-(contraelectrodo) \rightarrow \frac{3}{2}I^-$$
 (4)

v. Recombinación: $D^+ + e^- (CB \text{ del } \text{TiO}_2) \rightarrow D$ (5)

$$\frac{1}{2}I_3^- + e^- \left(CB \text{ del TiO}_2\right) \rightarrow \frac{3}{2}I^- \tag{6}$$

Cap. 2 - 12/20

Capítulo 2 – Revisión bibliográfica

Las ecuaciones (5) y (6) corresponden a los procesos de recombinación que originan pérdidas de corriente. Por un lado, puede existir la ya mencionada recombinación de electrones presentes en la banda de conducción (CB) el colorante en su estado oxidado. Por otro lado, estos electrones pueden reaccionar con los iones I_3^- presentes en el electrolito que permean el film nanoestructurado (este proceso es conocido como corriente oscura).

2.1.3.2 Características del film semiconductor

El electrodo de trabajo, típicamente consiste de un film de 5-20µm de espesor formado de un entorno tridimensional de nanopartículas de semiconductor interconectadas, típicamente de diámetros de 15nm a 20nm. Para estas aplicaciones, la estructura debe ser tal que el área superficial sea suficientemente grande para la interacción y el tamaño de poro debe ser el óptimo para la difusión de las especies activas. La alta área superficial asociada a estos filmes permite gran adsorción de moléculas de colorante lo que se traduce en un aumento de la absorción de fotones y por lo tanto de cargas fotogeneradas. En lo que respecta al coeficiente de difusión del electrón en el empaquetamiento de partículas orientadas al azar, ha sido observado que el transporte está limitado por el tiempo de residencia de los electrones en las trampas y la morfología asociada al entorno de partículas y al área de contacto entre partículas. El transporte electrónico es un factor limitante en la performance de los electrodos nanoporosos.

Capítulo 2 – Revisión bibliográfica

2.2. SÍNTESIS Y CARACTERIZACIÓN DE NANOESTRUCTURAS DE TIO₂ Y TITANATOS DE ALTA RELACIÓN DE ASPECTO

Existen numerosos métodos de síntesis de nanomateriales de dióxido de titanio. Entre estos se pueden nombrar: sol-gel, métodos de micelas y micelas invertidas, métodos sol, síntesis hidrotermales, síntesis solvotermales, métodos de oxidación directa, deposición química de vapor, deposición física de vapor, electrodeposición, métodos sonoquímicos y métodos asistidos con microondas. Xiaobo Chen y Samuel S. Mao realizaron un exhaustivo resumen de estos métodos y sus resultados [5].

En lo que respecta a nanoestructuras de alta relación de aspecto, se puede subdividir a los procedimientos más utilizados entre métodos con moldes y métodos sin moldes. De los métodos sin moldes, los más empleados son la anodización electroquímica de titanio y las síntesis hidrotermales. Específicamente, dentro de estas estructuras alongadas, los nanotubos de dióxido de titanio y titanatos vienen siendo sintetizados desde hace poco más de quince años, inicialmente utilizando técnicas complejas de deposición electroquímica sobre moldes poliméricos [43], y posteriormente adoptando mayoritariamente el método hidrotermal empleado por primera vez para este tipo de estructuras por Kasuga y colaboradores [44]. Existen numerosos trabajos en los cuales se investiga la influencia de distintos parámetros de reacción en las características de los productos [45], [46], [47], [48], [49], [50], siendo las conclusiones no siempre concordantes. Esto podría atribuirse a la multiplicidad de etapas que originan variables que no siempre son controladas y en algunos casos no están especificadas, lo que hace que la comparación entre diferentes trabajos sea poco válida.

Con respecto a la morfología de los nanotubos obtenidos, estos son, en su mayoría, abiertos en ambos extremos de diámetro externo de 5-15nm y diámetro interno 2-7nm. Se observó que los mismos poseen paredes formadas por multicapas laminares, existiendo imágenes de microscopía electrónica por trasmisión (TEM) de algunos casos que muestran que los nanotubos no son simétricos con respecto al número de capas si no que parecen estar enrollados en espiral [51]. Cabe señalar que, mediante el método hidrotermal alcalino, variando las condiciones de proceso pueden obtenerse además un amplio rango de nanoestructuras de alta relación de aspecto igualmente interesantes desde el punto de vista de potenciales aplicaciones.

Capítulo 2 – Revisión bibliográfica

Diferentes fases fueron propuestas para los nanotubos de dióxido de titanio (o titanatos laminares derivados), de ahora en más TTNT. Entre estas se pueden citar: TiO₂ anatasa [25][52], bititanatos H₂Ti₂O₄(OH)₂ [53], Na_xH_{2-x}Ti₂O₄(OH)₂[53], trititanato protónico H₂Ti₃O₇ [54][55][56], trititanato protónico hidratado H₂Ti₃O₇.n H₂O, trititanato Na_xH₂-_xTi₃O₇, trititanato hidratado Na_xH_{2-x}Ti₃O₇.nH₂O [57], tetratitanato protónico de lepidocrocita $H_{0.7}Ti_{1.825} \square_{0.175}O_4.H_2O[58][59],$ tetratitanato $H_2Ti_4O_9 \cdot H_2O[60]$ y TiO₂(B)[61], existiendo aún un debate abierto al respecto. Como fue mencionado en la introducción, la caracterización cristalográfica de los nanotubos es compleja debido múltiples factores. Los diagramas de difracción presentan picos anchos debido a la baja dimensionalidad de los dominios cristalinos (particularmente en la dirección radial). A su vez, el ancho varía en función de los índices de Miller de la familia de planos asociada debido a la alta relación de aspecto y a la curvatura de las estructuras. Las intensidades relativas de los picos también pueden verse afectadas debido a la propensión a orientación preferencial de las muestras. Por último la posición y ocupación de los átomos de hidrógeno en el caso de titanatos ácidos resulta imposible de determinar mediante los métodos convencionales de difracción de rayos X.

Capítulo 2 – Revisión bibliográfica

2.3. MODELADO COMPUTACIONAL DE NANOESTRUCTURAS DE TIO₂ DE ALTA RELACIÓN DE ASPECTO

Los modelos teóricos de nanotubos con diámetros y espesores de pared coherentes con las observaciones experimentales, involucran gran número de átomos, lo que genera un alto costo desde el punto de vista computacional. Existen en literatura trabajos recientes en los cuales se comienza a abordar el estudio de la estabilidad, estructura y reactividad de los TTNT, así como posibles modelos de formación a partir del enrollamiento de láminas bidimensionales, desde el punto de vista teórico.

Por ejemplo, Casarin y colaboradores [62] encontraron, realizando cálculos DFT, que láminas de TiO₂-lepidocrocita pueden enrollarse espontáneamente cuando son hidrolizadas por un solo lado, formando tubos de aproximadamente 3nm de diámetro, lo que concuerda con las observaciones experimentales. Se estudió posteriormente, la dependencia de la energía y la estructura electrónica de nanotubos de este polimorfo con respecto al diámetro, para distintas configuraciones de enrollamiento [63]. También se han modelado nanotubos partiendo de láminas de rutilo (001) reconstruidas [64], anatasa (101) [65], [66], [67], [68], [69], anatasa (001) [70], H₂Ti₃O₇ [71] y H₂Ti₂O₅ [72]. Hart y colaboradores realizaron un estudio comparativo entre nanotubos de las fases H₂Ti₃O₇ (100) lepidocrocita (010), anatasa (101) y (100), encontrando que la los nanotubos de tritanatos son los de menor energía [73].

Capítulo 2 – Revisión bibliográfica

REFERENCIAS – Capítulo 2

[1] Baur W. H., Khan A. A., Acta Crystallographica B, 1971, 27, 2133-2139

[2] Horn M., Schwerdtfeger C. F., Meagher E. P., Zeitschrift fuer Kristallographie,

- Kristallgeometrie, Kristallphysik, Kristallchemie 1972, 136, 273-281
- [3] Baur W. H., Khan A. A., Acta Crystallographica 1961, 14, 214-216
- [4] Diebold U., Surface Science Reports 2003, 48, 53-229
- [5] Chen X., Mao S. S., Chem. Rev. 2007, 107, 2891-2959

[6] Armstrong R., Armostrong G., Canales J., García R., Bruce P. G., Advanced Materials 2005, 17, 862-865.

[7] Armstrong G., Armostrong R., Bruce P. G., Reale P., Scrosati B., Advanced Materials 2006, 18, 2597-2600.

[8] Tsai C.-C., Chu Y.-Y., Teng H., Thin Solid Films 2010, 519, 662-669.

[9] Qi L., Liu Y., Li C., Applied Surface Science 2010, 257, 1660-1665.

- [10] Grätzel M., Journal of Photochemestry and Photobiology C 2003, 4, 145-153
- [11] Wang Q., Wen Z., Li J., Adv. Funct. Mater. 2006, 16, 2141-2146.
- [12] Simons P. Y., Dachille F., Acta Crystallographica 1967, 23, 334-336
- [13] Feist T. P., Davies P. K., Journal of Solid State Chemistry 1992, 101, 275-295
- [14] Akimoto J., Gotoh Y., Oosawa Y., Nonose N., Kumagai T., Aoki K., Takei H., *Journal of Solid State Chemistry* **1994**, 113, 27-36

[15] Latroche M., Brohan L., Marchand R., Tournoux M., Journal of Solid State Chemistry 1989, 81, 78-82

[16] Lacks D.J., Gordon R.G., *Physical Review*, Serie 3. B - Condensed Matter 1993, 48, 2889-2908

[17] Sato H., Endo S., Sugiyama M., Kikegawa T., Shimomura O., Kusaba K., *Science* 1990, 251, 786 -787

[18] Dubrovinskaia N. A., Dubrovinsky L. S., Ahuja R., Prokopenko V. B., Dmitriev V., Weber H.-P., Osorio-Guillen J. M., Johansson B., *Physical Review Letters* 2001, 87, 27, 275501(4)

[19] Dubrovinsky L. S., Dubrovinskaia N. A., Swamy V., Muscat J., Harrison N. M., Ahuja R., Holm B., Johansson B., *Nature* 2001, 410, 653-654.

Capítulo 2 – Revisión bibliográfica

[20] Mattesini M., de Almeida J. S., Dubrovinsky L., Dubrovinskaia N., Johansson B., Ahuja R., *Physical Review B* **2004**, 70, 212101

[21] Marchand R., Brohan L., Tournox M, *Materials Research Bulletin* 1980, 15, 8, 1129-1133.

[22] Feist T. P., Mocarski S. J., Davies P. K., Jacobson A. J., Lewandowski J. T., *Solid State Ionics* **1988**, 28-30, 1338-1343.

[23] Feist T. P., Davies P. K., Journal of Solid State Chemestry 1992, 101, 275-295.

[24] Morgado Jr., E., de Abreu, M.A.S., Pravia, O.R.C., Marinkovic, B.A., Jardim,P.M., Rizzo, F.C., Araújo, A.S., *Solid State Sciences* 2006, 8, 888–900.

[25] Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K., *Langmuir* **1998**, 14, 3160-3163.

[26] Qu J., Gao X. P., Li G. R., Jiang Q. W., Yan T. Y., J. Phys. Chem. C. **2009**, 113, 3359-3363.

[27] Ben Yahia M., Lemoigno F., Beuvier T., Filhol J.S., Richard-Plouet M., Brohan L., Doublet M. L., *J Chem Phy* **2009**, 130, 204501.

[28] Vittadini A., Casarin M., Selloni A., *The Journal of Physical Chemistry C Letters*, 2009, 113, 18973-18977.

[29] Liu W., Wang J-g, Li W., Guo X., Lu L., Lu X., Feng X., Liu C., Yang Z., *Physical Chemistry Chemical Physics* **2010**, 12, 8721-8727.

[30] Arrouvel C., Parker S. C., Islam M. S., Chem Matter. 2009, 21, 4778-4783.

[31] Semiconductores con actividad fotocatalítica, Roberto J. Candal, Sara A. Bilmes y Miguel A. Blesa y referencias incluidas en el mismo.

[32] Woicik J. C., Nelson E. J., Kronik L., Jain M., Chelikowsky J. R., Heskett D., Berman L. E., Herman G. S, *Phys. Rev. Lett.* **2002**, 89, 077401.

[33] Asahi R., Taga Y., Mannstadt W., Freeman A. J., *Physical Review B* 2000 –I, 61, 11, 15, 7459-7465

[34] Mo S-D., Ching W. Y., Physical Review B 1995-I, 51, 13023-13032

[35] Kavan L., Grätzel M., Gilbert S. E., Klemenz C., Scheel H. J., *J. Am. Chem. Soc.***1996**, 118, 6716

[36] O' Regan B., Grätzel M., Nature 1991, 356, 737-740

[37] Grätzel M., Journal of Photochemestry and Photobiology C: Photochemestry Reviews 2003, 4, 145-153

Capítulo 2 – Revisión bibliográfica

[38] Kong F-T., Dai S-Y., Wang K-J., Advances in Opto Electronics 2007, (2007), 1-13

[39] Gong J., Liang J., Sumathy K., *Renewable and Sustainable Energy Reviews* 2012, 16, 5848–5860

[40] Faccio R., Fernández-Werner L., Pardo H., Mombrú A.W., *Recent Patents on Nanotechnology* **2011**, 5 (1), 46-61

[41] Grätzel M., Inorg. Chem. 2005, 44, 6841-6851

[42] Grimes C. A., Mor G. K., TiO₂ Nanotube Arrays Synthesis, Properties, and Applications, *Springer Science + Business Media*, LLC **2009**

[43] Hoyer, P., Langmuir 1996, 12 (6), 1411-1413.

[44] Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K., *Langmuir* **1998**, 14, 3160-3163.

[45] Tsai C.-C., Teng H., Chem. Mater. 2004, 16, 4352-4358

[46] Menzel R., Peiro' A. M., Durrant J. R., Shaffer M. S. P., Chem. Mater. 2006, 18, 6059-6068

[47] Kolen'ko Y. V., Kovnir K. A., Gavrilov A. I., Garshev A. V., Frantti J., Lebedev O.

I., Churagulov B. R., Tendeloo G. V., Yoshimura M., J. Phys. Chem. B 2006, 110, 4030-4038

[48] Das K., Panda S. K., Chauduri S., Journal of Crystal Growth 2008, 310, 3792-3799

[49] Safaei M., Sarraf-Mamoory R., Rashidzadeh M., J. Nanopart. Res. 2010, 12, 2723-2728

[50] Santara B. Giri P. K., Materials Chemistry and Physics 2013, 137, 928-936

[51] Edisson Morgado Júnior, "Estudo de titanatos nanoestruturados obtidos por tratamiento hidrotérmico de óxido de titânio en meio alcalino", Tesis de Doctorado, Universidade Federal do Rio Grande do Norte **2007**, y referencias incluidas en la misma.

[52] Poudel B., Wang W. Z., Dames C., Huang J. Y., Kunwar S., Wang D. Z., Banerjee D., Chen G., Ren Z. F., *Nanotechnology*, 2005, 16, 1935.

[53] Yang J. J., Jin Z. S., Wang X. D., Li W., Zhang J. W., Zhang S. L., Guo X. Y., Zhang Z. J., *Dalton Trans.* 2003, 20, 3898.

[54] Du G. H., Chen Q., Che R. C., Yuan Z. Y., Peng L. -M., *Appl. Phys. Lett.* 2001, 79, 3702.

Capítulo 2 – Revisión bibliográfica

[55] Chen Q., Du G. H., Zhang S., Peng L. M., Acta Crystallogr., Sect B: Struct. Sci.2002, 58, 587.

- [56] Wu D., Liu J., Zhao X., Li A., Chen Y., Ming N., Chem. Mater. 2006, 18, 547.
- [57] Morgado Jr. E., de Abreu M. A. S., Pravia O. R. C., Marinkovic B. A., Jardim P.
- M., Rizzo F. C., Araújo A. S., Solid State Sciences 2006, 8, 888–900
- [58] Ma R. Z., Bando Y., Sasaki T., Chem. Phys. Lett. 2003, 380, 577.
- [59] Ma R. Z., Fukuda K., Sasaki T., Osada M., Bando Y., J. Phys. Chem. B 2005, 109, 6210.
- [60] Nakahira A., Kato W., Tamai M., Isshiki T., Nishio K., Aritani H., J. Mater. Sci., **2004**, 39, 4239.
- [61] Morgado Jr E., Jardim P. M., Marinkovic B. A., Rizzo F. C., de Abreu M. A. S.,
- Zotin J. L., Araújo A. S., Nanotechnology 2007, 18, 495710.
- [62] Casarin M, Vittadini A., Selloni A., ACSNano 2009, 3 (2), 317-324.
- [63] Szieberth D., Ferrari A. M., Noel Y., Ferrabone M., Nanoscale 2010, 2, 81-89.
- [64] He T., Zhao M., Zhang X., Zhang H., Wang Z., Xi Z., Liu X., Yan S., Xia Y., Mei L., J. Phys. Chem. C 2009, 113, 13610-13615.
- [65] Bandura A. V., Evarestov R. A., Surface Science 2009, 603, L117-L120.
- [66] Hossain F. M., Evteev A. V., Belova I. V., Nowotny J., Murch G. M., *Computational Material Science* **2010**, 48, 854-858.
- [67] Lin F., Zhou G., Li Z., Li J., Wu J., Duan W., *Chemical Physics Letters* 2009, 475, 82 85
- [68] Nunzi F., De Angelis F., J. Phys. Chem. C 2011, 115, 2179-2186.
- [69] Evarestov R. A., Zhukovskii Y. F., Bandura A. V., Piskunov S., Cent. Eur. J. Phys.**2011**, 9(2), 492-501.
- [70] Ferrari A. M., Szieberth D., Zicovich-Wilson C. M., Demichelis R., *J. Phys. Chem. Lett.* **2010**, 1, 2854-2857.
- [71] Szieberth D., Ferrari A. M., D'Arco P., Orlando R., *Nanoscale* **2011**, 3, 1113-1119.
- [72] Ferrari A. M., Lessio M., Szieberth D., Maschio L., J. Phys. Chem. C 2010, 114, 21219-21225.
- [73] Hart J. N., Parker S. C., Lapkin A. A., ACS NANO 2009, 3, 11, 3401-3412
CAPÍTULO 3

OBJETIVOS

Índice - Capítulo 3

3.1.	OBJ	IETIVOS GENERALES	. 2
3.2.	OBJ	IETIVOS ESPECÍFICOS	. 3
3.2	.1.	Síntesis de nanoestructuras de dióxido de titanio	. 3
3.2	.2.	Caracterización estructural de las nanoestructuras	. 3
3.2	.3.	Estudio de la estabilidad térmica de las nanoestructuras	. 3
3.2	.4.	Optimización estructural de fases de titanatos laminares en bulk mediante	
mé	todos	DET	4
	iouos	υΓι	.4
3.2	.5.	Modelado teórico de nanoestructuras de dióxido de titanio	.4 .4
3.2 3.2	.5. .6.	Modelado teórico de nanoestructuras de dióxido de titanio Estudio de la reactividad de las nanohojas ultrafinas de TiO ₂ (B)	.4 .4 .4
3.2 3.2 3.2	.5. .6. .7.	Modelado teórico de nanoestructuras de dióxido de titanio Estudio de la reactividad de las nanohojas ultrafinas de TiO ₂ (B) Estudio teórico de interacciones semiconductor – colorantes	. 4 . 4 . 4 . 5
3.23.23.23.23.2	.5. .6. .7. .8.	Modelado teórico de nanoestructuras de dióxido de titanio Estudio de la reactividad de las nanohojas ultrafinas de TiO ₂ (B) Estudio teórico de interacciones semiconductor – colorantes Ensamblado de prototipos de dispositivos fotovoltaicos del tipo DSSC	. 4 . 4 . 4 . 5 . 3

Capítulo 3 - Objetivos

3.1. OBJETIVOS GENERALES

El objetivo general del presente trabajo es el estudio de estructuras nanométricas de alta relación de aspecto de dióxido de titanio y titanatos con potencial aplicación en celdas solares sensibilizadas con colorantes (DSSC). Se plantearon, como fue mencionado en la introducción, cuatro niveles de abordaje a la investigación en este tipo de materiales:

- Síntesis de nanoestructuras de dióxido de titanio y titanatos.
- Caracterización morfológica y estructural de las estructuras obtenidas.
- Modelado teórico de nanoestructuras de dióxido de titanio y su interacción con colorantes.
- Ensamblado de prototipos de dispositivos fotovoltaicos del tipo DSSC.

Se pretende aportar en el estado de arte de este tipo de estructuras que, si bien se encuentran estudiadas debido a su gran potencial de aplicaciones, aún presentan interrogantes principalmente en lo que respecta a su estructura cristalina. El conocimiento de la estructura juega un papel muy importante en el entendimiento de las propiedades físicas y químicas del material y por lo tanto de sus potenciales aplicaciones tecnológicas.

En el caso en estudio la aplicación de interés consiste en la utilización como componente del fotoelectrodo de celdas fotovoltaicas. Por lo anterior, se plantea la elaboración de dispositivos a escala de laboratorio para su evaluación mediante la realización de medidas comparativas de eficiencia. Paralelamente, se evalúa teóricamente la estructura, reactividad y propiedades ópticas de modelos de estructuras de dióxido de titanio – colorantes.

Por último, se considera como un objetivo de este trabajo el estudio de oportunidades de retroalimentación entre el análisis experimental y teórico que pueda aportar en algún sentido en el entendimiento de este tipo de materiales, ya sea en lo que respecta a la caracterización, propiedades o aplicaciones.

Capítulo 3 - Objetivos

3.2. OBJETIVOS ESPECÍFICOS

3.2.1. Síntesis de nanoestructuras de dióxido de titanio

Se plantea la síntesis de nanotubos (NTs) y nanorods (NRs) de dióxido de titanio y titanatos partiendo de métodos hidrotermales reportados en bibliografía. Se busca aportar al entendimiento de la influencia de los distintos parámetros de síntesis en los resultados obtenidos, optimizando las condiciones de síntesis.

3.2.2. Caracterización estructural de las nanoestructuras

Se pretende la caracterización morfológica y cristalográfica, obteniendo la estructura cristalina de las muestras.

3.2.3. Estudio de la estabilidad térmica de las nanoestructuras

Se plantea estudiar la estabilidad térmica de los productos. Este objetivo surge como necesario por un lado debido a los tratamientos térmicos a los cuales son sometidas las muestras a la hora del sinterizado del fotoelectrodo en el proceso de ensamblado de las celdas fotovoltaicas. Por otro lado, debido a las dificultades intrínsecas asociadas a este tipo de estructuras a la hora de la caracterización estructural, la evolución de la estructura con la temperatura brinda información indirecta sobre la estructura inicial.

3.2.4. Ensamblado de prototipos de dispositivos fotovoltaicos del tipo DSSC

Se plantea el armado de dispositivos fotovoltaicos a escala de laboratorio con el fin de evaluar comparativamente eficiencias empleando las muestras sintetizadas. Se toma como variable la composición del fotoelectrodo, utilizando materiales comerciales convencionales para el resto de los componentes de los prototipos.

Capítulo 3 - Objetivos

3.2.5. Optimización estructural de fases de titanatos laminares en bulk mediante métodos DFT.

La optimización estructural de las familias de titanatos laminares $H_{2-x}Na_xTi_2O_5\cdot yH_2O$ y $H_{2-x}Na_xTi_3O_7\cdot yH_2O$ surge como un objetivo auxiliar a la hora de la caracterización cristalográfica de los nanotubos obtenidos.

3.2.6. Modelado teórico de nanoestructuras de dióxido de titanio

En este punto se busca el modelado por *primeros principios* de nanoestructuras de dióxido de titanio con el fin de obtener una retroalimentación entre los resultados teóricos y los experimentales.

Se aproxima al problema por un lado mediante la simulación de estructuras periódica bidimensionales planas (slabs) a las que se denomina nanohojas ultrafinas, partiendo de diferentes polimorfos de dióxido de titanio. Se elige dicho modelo debido a que existen evidencias experimentales de la presencia de este tipo de láminas en el proceso de formación de los nanotubos. Por otro lado, los nanotubos pueden entenderse como láminas de arreglos de octaedros [TiO6] enrolladas alrededor de determinada dirección (eje del tubo) por lo que la información extraída podría aplicarse a los mismos.

Por otro lado, en lo que respecta a el modelado de nanorods se plantea un estudio enfocando a la miniaturización de los mismos, investigando la estabilidad de "hilos atómicos" (atomic wires) derivados de cortes de las estructuras bidimensionales. Se busca elucidar estructuras estables a escala atómica motivados en observaciones experimentales [1].

Por último, se plantea investigar la estabilidad de nanotubos de dióxido de titanio de los polimorfos anatasa y TiO₂(B).

3.2.7. Estudio de la reactividad de las nanohojas ultrafinas de $TiO_2(B)$

Este punto tiene como objetivo evaluar la geometría más estable de interacción entre moléculas de ácido fórmico y nanohojas de TiO₂(B). Se utiliza HCOOH debido a que

Capítulo 3 - Objetivos

corresponde con los grupos de anclaje de los colorantes de rutenio ampliamente empleados en DSSC, y particularmente el N719 que es el que se utiliza en este trabajo.

3.2.8. Estudio teórico de interacciones semiconductor – colorantes

Se busca entender la interacción entre las nanopartículas y los colorantes en cuanto a la reactividad, estructura y las propiedades ópticas. Se plantea un estudio simplificado mediante la evaluación de una molécula de colorante N719 anclada a un clúster del polimorfo $TiO_2(B)$.

Capítulo 3 - Objetivos

REFERENCIAS - Capítulo 3

[1] Liu C., Yang S., ACS Nano, **2009**, *3* (4), pp 1025–1031

CAPÍTULO 4

MÉTODOS

Índice - Capítulo 4

4.1.	MÉT	ODOS DE SÍNTESIS DE NANOESTRUCTURAS DE DIÓXIDO DE
TITAN	NIO	
4.1.	1. I	ntroducción 3
4.1.2	2. N	Aétodo hidrotermal bajo presión endógena I - Barrido Inicial
4.1.	3. N	Aétodo hidrotermal bajo presión endógena II.Diseño de un experimento:
Sínt	esis de	e nanoestructuras de titanatos, TiO2-B y anatasa de alta relación de aspecto
med	liante	síntesis hidrotermal alcalina bajo presión endógena
4.	.1.3.1	Sistema
4.	.1.3.2	Método experimental
4.1.4	4. N	Aétodo hidrotermal bajo presión atmosférica13
4.1.:	5. N	Aétodo sonoquímico
4.1.0	6. H	Iidrólisis de precursores glicolados14
4.2.	TRA	TAMIENTOS TÉRMICOS 15
4.3.	TÉC	NICAS DE CARACTERIZACIÓN16
4.3.	1. N	Aicroscopía electrónica de barrido (SEM) 16
4.3.2	2. N	Aicroscopía electrónica de transmisión (TEM), difracción de electrones
(SA	ED) y	análisis de energía dispersiva de rayos X (EDX)16
4.3.	3. A	Adsorción de N ₂ : Determinación de área superficial (BET) y volumen de
porc	os (BJI	H) 17
4.3.4	4. A	Análisis elemental 17
4.3.	5. Т	Cécnicas de caracterización con rayos X 17
4.	.3.5.1.	Difracción de rayos X de polvo (PXRD) 17
4.	.3.5.2.	Análisis del tamaño de dominio cristalino mediante el Método de Scherrer
		18
4.	.3.5.3.	Análisis de orientación preferencial mediante Rocking Curves 18
4.	.3.5.4.	Reflectometría de rayos X (XRR) 19

Capítulo 4 - Métodos

۷	4.3.5	.5. Medidas de dispersión de rayos X a ángulos bajos (SAXS)	19
4.3.6. Espectroscopías		Espectroscopías infrarroja (FTIR) y Raman	19
4.3	.7.	Análisis térmico (TGA, DTA, DSC)	20
4.4.	MI	EDIDAS DE EFICIENCIA DE LOS PROTOTIPOS DE CELDAS SO	LARES
	20		
4.5.	PA	ARTE TEÓRICA	20
4.6	.1. E	studio estructural y electrónico de los polimorfos anatasa, rutilo, y TiO	$_2(B)$ en
bul	k		21
4.6	.2. N	Iodelos bidimensionales	22
4.6	.3.Ao	dsorción de HCOOH sobre TB(001) y TB(100)	23
4.6	.4.Su	aperficies (001) y (100) del polimorfo TiO ₂ (B)	24
4.6	.5. N	anohilos	25
4.6	.6.	Nanotubos	26
4.6	.7.	Estudio de la interacción semiconductor – colorante	27
REFE	EREN	NCIAS - Capítulo4	28

Capítulo 4 - Métodos

4.1.MÉTODOS DE SÍNTESIS DE NANOESTRUCTURAS DE DIÓXIDO DE TITANIO

4.1.1. Introducción

Se realizaron síntesis de nanoestructuras de TiO₂ y titanatos mediante las siguientes rutas:

- i. Síntesis hidrotermal bajo presión endógena.
- ii. Síntesis hidrotermal bajo presión atmosférica.
- iii. Síntesis sonoquímica.
- iv. Hidrólisis de precursores glicolados.

Figura 4.1.1-1(a) Autoclave utilizada para las síntesis hidrotermales bajo presión endógena. (b) Esquema del reflujo empleado en la síntesis hidrotermal a presión atmosférica sin agitación. (c) Sonicador utilizado para el método sonoquímico. (d) Imagen de cámara de guantes usada para la síntesis mediante hidrólisis de precursores glicolados.

Capítulo 4 - Métodos

4.1.2. Método hidrotermal bajo presión endógena I - Barrido Inicial

Las síntesis hidrotermales en general pueden dividirse en tres etapas: tratamiento básico del precursor (o tratamiento hidrotermal), lavado del precipitado y secado de la muestra. Luego del secado pueden existir distintas etapas de calentamiento, se considerará que estas no forman parte de la síntesis, sino que es un tratamiento posterior. Por lo tanto, se referirá como productos de síntesis a los obtenidos luego del secado.

El tratamiento hidrotermal bajo presión endógena, se realiza en una autoclave (reactor solvotermal o reactor hidrotermal) de acero elaborada en plaza (Figura 4.1.1-1 (a)). Esta contiene un recipiente de teflón de 80ml de capacidad en el cual se coloca la mezcla de reacción. El calentamiento (y control de temperatura) se realiza colocando esta pieza dentro de una estufa a temperatura conocida. Los parámetros que caracterizan esta etapa son: material de partida, masa inicial, relación sólido/líquido, factor de llenado del autoclave, concentración de la soda, temperatura y tiempo de reacción. La reacción se lleva a cabo sin agitación.

Con el objetivo de entender la influencia de los distintos parámetros y dado el volumen de resultados, a veces no muy claros y hasta contradictorios, reportados utilizando este método se realiza un barrido inicial variando los siguientes parámetros: precursor, temperatura de reacción, tiempo de reacción, agente de lavado, modo de lavado, y temperatura de secado (ver Tabla 4.1.2-1). Por otro lado, los parámetros: volumen (60mL), relación sólido líquido (1g/60mL), agente alcalino (NaOH(ac)) y concentración (10M) permanecieron invariables en las diferentes corridas. Como consecuencia, el factor de llenado de la autoclave fue un parámetro que se mantuvo relativamente constante en las diferentes síntesis.

Con respecto al material de partida, se utilizaron dos polvos de TiO₂, anatasa nanopolvo de diámetro de partícula menor a 25nm (*ALDRICH, Titanium(IV) oxide, nanopawder, 99.7%, anatase*), y rutilo micrométrico (*ALDRICH, Titanium(IV) oxide, 99.99%*). De aquí en adelante se referirá al primero como **A** y al segundo como **R**. Cabe señalar que estos reactivos además de ser distintos polimorfos tienen el tamaño de cristalita significativamente diferente. Se realizaron síntesis partiendo de cada uno de estos así

Capítulo 4 - Métodos

como de mezclas de ambos en proporción 50% p/p^1 . La temperatura de reacción se varió entre 120°C y 150°C y el tiempo de reacción entre 20hs y 68hs.

Por otro lado, se realizaron distintos procedimientos de lavado. Los agentes utilizados fueron agua destilada y HCl(ac) 0.1M. En el procedimiento más usado, nombrado en adelante como "*estándar*", se separa por centrifugación el sólido obtenido en el tratamiento hidrotermal, se lo divide en dos partes (a las que en general se les practican lavados diferentes), se le agrega 40ml aproximadamente del agente de lavado, se mezcla por varios minutos (2 a 5min) utilizando un vórtex, luego se sónica (15 pulsos, Amp 50%).² El sólido luego es separado mediante centrifugación (5min, 3000rpm). Se practicaron algunas variantes al mismo, sonicando por un mayor tiempo entre lavados, utilizando mayor volumen de agente de lavado, variando la temperatura, mezclando mediante agitación magnética, etc. En la Figura 4.1.2-1 se puede ver un esquema general del método de síntesis para el caso de lavados estándar. En todos los casos se verificó pH neutro o inferior para las muestras luego de los lavados.

¹Se elige trabajar según esta proporción debido a los resultados reportados por Menzel y colaboradores [2]. Ellos obtienen productos de menor tamaño y más uniformes al utilizar el precursor de fase mixta.
²Sonic Vibra-Cell TM, model: VCX 130PB serial, No: 53133 R, 130W, 20kHz

Capítulo 4 - Métodos

Figura 4.1.2-1 - Esquema del método hidrotermal.

Capítulo 4 - Métodos

Batch	Muestra	TiO ₂	m(g)	T _r (°C)	t _r	N _{HCl}	N _{H2O}	T _s (°C)	t _s
1	Aa24_3/1 Aa24_3/1	А	1.001	150	24h	3 3	1 1	145	24h
	Am20_0/0	А	1.003	142	20h30min	0	0	115	68h
2	$Am20_4/2(s)^{*1}$					4	2		45h
	Am20_4/2					4	2		45h
3	Aa43_4/2(u)* ²	Δ	1.003	148	43h20min	4	2	115	24h
	Aa43_4/2	Λ	1.005	140	43112011111	4	2	115	24h
5	ARa39_4/2	A+R	0 506±0 507	150	30h	4	2	115	23h
	ARa39_0/8	71 H	0.50010.507	150	5711	0	8	115	23h
6	Ra22_4/2	R	0.999	150	22h30min	4	2	115	70h
	Ra22_0/8					0	8	110	70h
8	Ra47_4/2	R	1.004	156	47h	4	2	115	69h
	Ra47_0/8					0	8		69h
9	ARa68_4/2	A+R	0.508+0.507	150	68h	4	2	80	45h
	ARa68_0/8					0	8		45h
	Rm24_4/4	р	1.003	140	24h	4	4	70	-
16	Rm24_0/8	ĸ				0	8	/0	-
	$Rm24_0/0$					0	0		-
10	$R'm24_1'/4*'$	р	1 502	140	24h40min	1	4	70	24n
18	$R m24_0/8$	ĸ	1.505			0	8		-
	K III24_4/4					4	4		-
19	$A024_4/4$	Α	1.0147	120	24h	4	4	70	-
	$A024_0/4$					4	4	70	-
20	$\Delta Rh2/1 0/8$	A+R	0.5081 + 0.5005	124	24h	4	2 8		-
	$\frac{\Lambda R_{0}24_{0}}{\Lambda R_{0}24_{1}}$					1	2		
21	$A D_0 24 0/9$	A+R	0.5060 + 0.5057	150	24h	4	2 Q	70	-
L	AKa24_0/8					0	ð		

Tabla 4.1.2-1– Barrido inicial de condiciones, características de las síntesis realizadas por el método hidrotermal bajo presión endógena.

*¹ Corresponde al sobrenadante.

 $*^{2}$ La muestra Aa43_4/2(u) fue sometida a una sonicación más extensa entre lavados (15min, 90% Amp, 0.9ciclos)

 $*^{3}$ En esta muestra se sustituyen los 4 lavados estándares con HCl, por un único lavado con el mismo agente pero en baño de ultrasonido (250ml, 0.1M, 1h)

Capítulo 4 - Métodos

4.1.3. Método hidrotermal bajo presión endógena II. Diseño de un experimento: Síntesis de nanoestructuras de titanatos, TiO₂-B y anatasa de alta relación de aspecto mediante síntesis hidrotermal alcalina bajo presión endógena.

4.1.3.1 Sistema

En una segunda etapa y de acuerdo a los resultados obtenidos en el barrido inicial se diseñó un experimento siguiendo la metodología descrita en el texto "*Statistical Design* - *Chemometrics*"[1].El primer paso hacia el diseño consistió en la definición del sistema compuesto por un proceso, factores controlables y respuestas.

Proceso:

El proceso estudiado fue la formación de nanoestructuras "cristalinas" de alta relación de aspecto de dióxido de titanio y titanatos. Las nanoestructuras objetivos fueron nanotubos, nanowires, o nanorods. Los polimorfos de interés son: TiO₂-B y anatasa. El método de síntesis seleccionado es la ruta hidrotermal alcalina bajo presión endógena.

Objetivo:

El objetivo del proceso se planteó como la optimización de la obtención del tipo de estructuras mencionado. Se buscó maximizar tanto la cristalinidad como el área superficial ya que esto va de la mano con el desempeño como semiconductores en celdas tipo DSSC que sería su aplicación final.

Factores:

Al igual que en el barrido inicial, los factores que se estudiados fueron: (I) el precursor, (II) la temperatura del tratamiento alcalino, (III) el tiempo de reacción. Los niveles de cada uno de los factores fueron escogidos según experiencia previa y resultados reportados en la literatura, para poder realizar un diseño tipo factorial 2^k.

(I) Precursores: A, mezcla A/R (50% p/p)

Capítulo 4 - Métodos

A: anatasa nanopolvo de d<25nm (ALDRICH, Titanium(IV) oxide, nanopowder, 99.7%, anatase)

R: rutilo micrométrico (*ALDRICH*, *Titanium*(*IV*) oxide, 99.99%)

Se utilizaron los niveles: A y A+R(50% p/p), de ahora en adelante se hará referencia al segundo como AR. Esquemáticamente, los motivos por el cual se prefiere trabajar con estos dos son:

- Se obtuvieron en síntesis previas nanorods cristalinos partiendo tanto de A como AR con altos grados de conversión (batchs: 2, 3, 1, 5) no habiéndose observado estas estructuras en síntesis análogas con R como precursor (muestras: 6, 16 y 18).
- Trabajos en literatura en los que asocian la mezcla de fases con la mayor conversión a nanoestructuras [2].
- (II) Temperatura: **130-135°C**, **150-155°C**
- (III) Tiempo: 24hs, 48hs

Respuestas:

(a) Conversión.

Esta respuesta se ve en forma cualitativa mediante microscopía electrónica y DRX. Por un lado, se busca por TEM la presencia de acúmulos de material sin alta relación de aspecto que podrían indicar que parte del material inicial no sufrió modificaciones estructurales. Por otro lado, mediante el análisis por difracción de rayos X, se busca evidencia de la existencia de precursor sin reaccionar.

(b) Morfología.

En este caso se ve, también en forma cualitativa, por microscopía electrónica la morfología de las partículas existentes.

(c) Dispersión de tamaños

Se procesarán imágenes obtenidas mediante microscopía electrónica.

(d) Cristalinidad, fase cristalina, tamaño de cristalita, y orientación preferencial.Se analiza mediante difracción de RX

Capítulo 4 - Métodos

4.1.3.2 Método experimental

Cantidad de corridas

Se seleccionaron tres factores de dos niveles cada uno, se realizará un diseño factorial completo del tipo 2^k con k=3. Adicionalmente, se realizó una réplica genuina de cada corrida para verificar reproducibilidad. Por lo tanto el número de corridas realizadas fue N=2*(2^3)=16. Estas fueron realizadas en forma aleatoria para minimizar efectos de factores no tenidos en cuenta en el diseño.

Tabla 4.1.3-1- Definición de factores y niveles

Factor	(-)	(+)
1 - Precursor	А	AR
2 - Temperatura	130°C	150°C
3 - Tiempo	24hs	48hs

Orden de las corridas

 Tabla 4.1.3-2 – Orden en que fueron realizadas las corridas (indicado por números del 1 al 16 en colora zul)

Muestra	1	2	3	Réplica I	Réplica II
Α	-	-	-	9	6
В	+	-	-	2	11
С	-	+	-	15	8
D	+	+	-	16	1
Ε	-	-	+	3	13
F	+	-	+	5	10
G	-	+	+	14	12
H	+	+	+	7	4

Metodología detallada

La metodología se describe en el esquema a continuación.

i. Sonicado inicial

Se realizó un tratamiento por ultrasonido previo al tratamiento hidrotermal. Se utiliza el equipo: *Sonics Vibra-Cell (130W, 20kHz)* durante 5 minutos a 50% de amplitud.

ii. Tratamiento hidrotermal alcalino:

Se empleó 1g de precursor en 60mL de NaOH(ac) 10M. El control de temperatura se realizó colocando el reactor en una estufa a la temperatura correspondiente al nivel en estudio.

iii. Enfriamiento³:

Con respecto al enfriamiento previo a los lavados, se tratará de que este sea lo más invariable posible entre corrida y corrida⁴. Se opta por un enfriamiento lento al aire por períodos de 12-24hs.

iv. Lavados:

Se realizan procedimientos de lavado similares al previamente descrito como estándar con HCl 0.1M. El nuevo procedimiento se esquematiza en la Figura 4.1.3-1. El tratamiento con ultrasonido se limitó al mezclado inicial antes del tratamiento alcalino y en el primer lavado ácido. Se duplicó el número de lavados ácidos "estándar" y se agregó un lavado extra (con agitación magnética vigorosa durante 1h) con respecto al barrido inicial con el objetivo de minimizar el contenido de sodio resultante en las estructuras. Se observó que el pH final luego de los lavados varió entre 3 y 4,5.

³ El tiempo de enfriamiento no fue uno de los factores estudiados. Considerando que el mecanismo de transformación estructural corresponde a un mecanismo de disolución-cristalización, entonces tanto la concentración inicial como el tiempo de enfriamiento podrían estar jugando un rol crucial en la morfología y tamaño final de los productos. Resulta interesante y queda planteado para un trabajo futuro la inclusión de este factor en conjunto con la concentración inicial en un nuevo diseño factorial.

⁴ Esto a veces se dificulta debido a los horarios disponibles para ir o permanecer en el laboratorio.

Capítulo 4 - Métodos

Figura 4.1.3-1 – Procedimiento de lavado empleado en el diseño factorial. Nota: entre los dos primeros lavados con HCl se sónica (15 pulsos de 1seg/50% Amp).

Capítulo 4 - Métodos

4.1.4. Método hidrotermal bajo presión atmosférica

En el caso del tratamiento hidrotermal a presión atmosférica, la mezcla de reacción se coloca en un matraz de polietileno y se refluja utilizando agua a temperatura ambiente como medio de enfriamiento. La temperatura de trabajo en este caso es de 120°C – 124°C, la cual es alcanzada y mantenida mediante baño de aceite. Las condiciones son menos agresivas que en el caso anterior, sin embargo el tiempo de reacción es mayor en este caso, verTabla 4.1.4-1. Adicionalmente, en los batch 11, 13 y 15, se mantiene una agitación continua mediante agitador de paleta para favorecer la reacción.

Se parte de 2g de sólido (A, R, o A+R 50% p/p) em 100ml de NaOH 10M. Con respecto al lavado, se utilizaron los lavados estándares mencionados en el acápite anterior, sumado a variaciones en algunas de las muestras que serán detalladas oportunamente.

Muestra	TiO ₂	m(g)	$T_r(^{\circ}C)$	t _r	N _{HCl}	N _{H2O}	$T_s(^{\circ}C)$
4 A					0	0	
4B	А	2.010	124	69h	4	2	115
4 C					0	8	
7A	$\mathbf{A} + \mathbf{D}$	0.000 ± 1.002	124	26h20min	4	2	115
7B	A+K	0.999+1.002	124	30112011111	0	8	115
11A	A + D	1 002 1 007	120	19h	1^{*^1}	2	00
11B	A+K	1.003+1.007	120	4011	1^{*2}	2	90
13A	A + D	1 001 1 005	120	4.4h	4	2	70
13B	A+K	1.001+1.005	120	4411	4	2	70
15A	٨	2 007	120	19h	4	4	70
15B	A	2.007	120	4011	0	8	70

 Tabla 4.1.4-1– Características de las síntesis realizadas por el método hidrotermal bajo presión atmosférica.

 $*^{1}$ – 200ml de HCl 0.1M agitando continuamente a temperatura ambiente durante 35min y luego a 70°C durante 5h45min, luego 6h18min, luego otro lavado con 200ml de HCl a Temp. Ambiente. Luego dos lavados estándar con agua.

*² – Idem a anterior sin sonicar entre los lavados estándar con agua destilada.

4.1.5. Método sonoquímico

A pesar de que este método resulta muy atractivo debido a su simplicidad y al bajo tiempo requerido, en comparación con los anteriores, se realizó una única síntesis sonoquímica partiendo de anatasa (A). Esto se debió principalmente a que la alta basicidad del medio de reacción favorece el deterioro del puntero del equipo de

Capítulo 4 - Métodos

ultrasonido disponible, sumado al hecho de que los resultados, los que serán expuestos en el próximo capítulo, no mostraron estructuras de alta relación de aspecto.

Se partió de 0.300g de polvo A y 60mL de NaOH 10M, la mezcla fue sometida a tres tandas de ultrasonicado de 20min a 180W con una separación de 10 min entre cada una. Luego esta mezcla fue mantenida a 110°C (baño de aceite) durante 4 horas.

Se separa el sólido y se realiza un lavado con 250ml de HCl 0.1M bajo agitación vigorosa durante 2 horas y luego con 250ml de H₂O destilada bajo agitación vigorosa durante 3hs. De esta forma no se llega a pH neutro por lo que se realizan dos lavados estándar adicionales con agua destilada y se llega a neutralidad.

4.1.6. Hidrólisis de precursores glicolados

Se realizaron pruebas para obtener nanopartículas esféricas a partir de hidrólisis de precursores glicolados según la técnica descrita por Mou Pal y colaboradores [3]. En esta, se elabora un precursor glicolado de titanio y luego se realiza la hidrólisis controlada del mismo. Se parte de 0.3 mol TBT Aldrich 97% y se lo agrega a 16 mol de etilenglicol en una caja de guantes bajo atmósfera de nitrógeno. Esta solución de precursor es agitada magnéticamente durante 8 horas a temperatura ambiente y luego retirada de la caja de guantes. Luego esta solución es vertida en acetona (conteniendo 0.3% de agua) en diferentes concentraciones (0.077 – 0.003M) bajo agitación vigorosa durante 15-20min y finalmente se la deja reposar 1h. Así, el precursor transparente se vuelve turbio y blanco indicando la formación del dióxido de titanio, el cual fue caracterizado por los autores del artículo como titania no estequiométrica. Este precipitado, luego de decantar, es separado por centrifugación y luego lavado varias veces con agua desionizada y etanol para remover el exceso de etilenglicol de la superficie de las partículas. Luego de secar las muestras, estas se someten a distintos tratamientos térmicos, es importante esta etapa ya que los productos de titania no estequiométrica sintetizados por esta ruta son amorfos y requieren del calentamiento para cristalizarse.

$$Ti(OBu)_{4} + 2OHCH_{2}CH_{2}OH \rightarrow Ti(OCH_{2}CH_{2}O)_{2} + 4BuOH$$

Capítulo 4 - Métodos

$$Ti(OCH_{2}CH_{2}O)_{2} + 4H_{2}O \xrightarrow{hidrólisis} Ti(OH)_{4} + 2OHCH_{2}CH_{2}OH$$
$$Ti(OH)_{4} \xrightarrow{condensación} TiO_{2} \cdot xH_{2}O + (2-x)H_{2}O$$

Fue necesario modificar la técnica agregando NaOH 10M como agente precipitante, debido a la nula precipitación de producto durante el vertido del precursor en acetona.

4.2.TRATAMIENTOS TÉRMICOS

Las muestras fueron sometidas a calentamientos sucesivos en atmósfera de aire. En general, las temperaturas fueron 150°C, 200°C, 250°C, 300°C, 350°C, 400°C, 450°C, 500°C, 550°C, 600°C y 650°C, en el caso de NRs se alcanzaron temperaturas mayores. Se utilizó en todos los casos una rampa de temperatura de 5°C/min y, salvo en casos que se especifican, el tiempo de calentamiento fue de dos horas a la temperatura objetivo.

El estudio de la estabilidad térmica de los productos sintetizados es de gran importancia tanto para la caracterización estructural del material como para su evaluación pensando en su aplicación en celdas solares. Con respecto a la caracterización estructural, debido a que al calentar las muestras, sumado a los cambios de fase, aumenta su cristalinidad y el tamaño del dominio cristalino, disminuye la dificultad en el análisis de los resultados arrojados por difracción de rayos X. Por lo anterior, se planteó hacer el camino inverso identificando los polimorfos luego del tratamiento térmico y tratando de interpretar los cambios de fases que ocurren y así brindar información sobre las fases iniciales (que presentan características que dificultan su análisis directo por DRX).

Con respecto a la aplicación en DSSC, es crucial estudiar las modificaciones de la muestra al calentar hasta 450°C, ya que esta temperatura es empleada en el proceso de sinterizado del film de nanopartículas, paso crítico al ensamblar el fotoelectrodo de las celdas.

La determinación de la estructura cristalina del material al ser calcinado proporciona además un método indirecto para la estimación del contenido de sodio y por lo tanto eficiencia del intercambio catiónico durante el procedimiento de lavado. Teniendo en cuenta que el análisis por DRX sólo considera la fracción cristalina de la muestra y que

Capítulo 4 - Métodos

parte del Na podría perderse en la calcinación como Na₂O [4], el sodio obtenido de esta manera sería una cota inferior del contenido real de la muestra.

4.3.TÉCNICAS DE CARACTERIZACIÓN

4.3.1. Microscopía electrónica de barrido (SEM)

Se utiliza el Servicio de Microscopía de Facultad de Ciencias-UdelaR, el cual dispone de un microscopio electrónico de barrido JEOL JSM-5900LV. Las micrografías SEM fueron tomadas utilizando un voltaje acelerador de 20 kV.

Adicionalmente, en el caso de los nanorods, se utilizó un microscopio electrónico de barrido con cañón de electrones con emisión por efecto del campo eléctrico (FEG-SEM), JEOL JSM-6701F Scanning Electron Microscope, con análisis químico por detección de rayos X (EDS). El análisis de estas muestras fue llevado a cabo por el Dr. J. Javier S. Acuña en el Laboratório Central de Microscopia Eletrônica de la Universidad Federal de Santa Catarina (UFSC).

4.3.2. Microscopía electrónica de transmisión (TEM), difracción de electrones (SAED) y análisis de energía dispersiva de rayos X (EDX).

En el caso de la caracterización de nanotubos, se utiliza un microscopio electrónico de transmisión JEOL JEM 1010 del Servicio de Microscopía de Facultad de Ciencias-UdelaR. Para las micrografías se emplea un voltaje acelerador de 80kV - 100kV (el mismo se encuentra identificado en el pie de cada imagen). Las muestras fueron dispersadas en etanol y vertidas en un film de carbono sobre grilla de cobre.

Para los nanorods, al igual que para el caso de microscopía de barrido, el análisis por microscopía electrónica de transmisión fue realizado por el Dr. Javier S. Acuña en el Laboratório Central de Microscopia Eletrônica de la Universidad Federal de Santa Catarina (UFSC). Se utilizaron dos microscopios ambos con emisión por efecto termiónico, uno de 200kV de aceleración de voltaje y cañón de electrones de LaB6

Capítulo 4 - Métodos

(JEOL JEM-2100), se hace referencia a este como MET200. El segundo es de 100kV y cañón de W (JEOL JEM-1011), se referiere a este como MET100. El primero está acoplado con análisis químico por EDS. Se realizó el análisis por difracción de electrones utilizando el microscopio MET100 y se realizó HRTEM utilizando el MET200. Las muestras fueron suspendidas en alcohol etílico y esparcidas sobre grillas conductoras de cobre con film de carbono.

4.3.3. Adsorción de N₂: Determinación de área superficial (BET) y volumen de poros (BJH)

Las isotermas de adsorción – desorción de N_2 fueron realizadas utilizando un equipo Beckman Coulter SA3100 a -196°C.La temperatura de desgaseo fue de 50°C y el tiempo 10hs. El área específica fue calculada empleando la ecuación de BET. La distribución de volumen de poros se determinó mediante el modelo BJH. El diámetro medio de poro fue calculado como 4V/A, donde V es el volumen de poros específico y A el área específica.

4.3.4. Análisis elemental

El contenido de hidrógeno de las muestras se estimó mediante análisis elemental utilizando un equipo Elemental Analyzer Thermo flash 2000. Las muestras fueron mantenidas en desecador hasta el momento de las medidas.

4.3.5. Técnicas de caracterización con rayos X

4.3.5.1. Difracción de rayos X de polvo (PXRD)

Las medidas de difracción de rayos X de polvo se llevan a cabo utilizando un difractómetro Rigaku Ultima IV operando con radiación Cu K α en geometría focalizante Bragg-Brentano.

En el caso de los NTs, se realizaron diagramas de mayor estadística, siendo los datos colectados en el rango 2θ =5-80°, y las condiciones empleadas 40kV, 30mA, paso de 0.02° y 35 y 12 segundos por paso para las muestras en forma previa al tratamiento térmico y luego de cada calcinada respectivamente.

4.3.5.2. Análisis del tamaño de dominio cristalino mediante el Método de Scherrer

Si los dominios cristalinos (cristalitas) de una muestra en polvo son lo suficientemente pequeños, los picos del patrón de difracción se ensanchan en forma inversamente proporcional al tamaño del dominio. Por lo tanto, mediante la medición del ensanchamiento adicional del pico puede estimarse el tamaño según la ecuación a continuación, denominada fórmula de Scherrer [5] [6].

$$d = \frac{K\lambda}{B(2\theta)cos\theta}$$

En la misma λ es la longitud de onda de la radiación, B(2 θ) es el ensanchamiento adicional del pico (en radianes), θ es el ángulo de Bragg y K es una constante adimensional ("constante de Scherrer") cercana a la unidad. Se utiliza el ancho de pico a media altura corregido por el ancho instrumental y constante K=0.94⁵.

4.3.5.3. Análisis de orientación preferencial mediante Rocking Curves

La llamada "rocking-curve" (RC), es una medida de intensidad obtenida moviendo la muestra con respecto a la dirección del haz incidente, manteniendo el detector fijo [7]. Esto se logra desacoplando la rotación de la muestra (o de la fuente en el caso del difractómetro utilizado) y la del detector, alrededor del eje perpendicular al plano de los haces.

En el caso de un monocristal o de una capa muy texturada (con orientación preferencial), si se fija la posición 2θ tal que se cumpla la condición de Bragg, una pequeña desviación de la muestra fuera de la condición ideal (θ) causa una disminución

⁵Cabe señalar que este valor es aplicable en el caso de dominios esféricos de cristales con simetría cúbica y dimensiones inferiores a 100nm, de todas formas a sido aplicada satisfactoriamente para partículas de alta relación de aspecto.

Capítulo 4 - Métodos

de la intensidad difractada. Contrariamente, si se trata de un polvo, distribuido en forma aleatoria, la intensidad se mantiene constante ante esta variación.

Los diagramas fueron colectados utilizando un difractómetro Rigaku Ultima IV operando con radiación Cu K α en geometría focalizante Bragg-Brentano. Se realizó un barrido en θ el rango θ =14-34° alrededor de la condición de Bragg seleccionada (2 θ fijo en 48.45°). Las condiciones empleadas 40kV, 30mA, paso de 0.02°.

4.3.5.4. Reflectometría de rayos X (XRR)

Las medidas de reflectometría de rayos X de polvo se llevan a cabo utilizando un difractómetro Rigaku Ultima IV operando con radiación Cu K α en geometría de haz paralelo utilizando el aditamento MPA-U4 para capas finas. Los diagramas fueron colectados en el rango 2 θ - Ω =0.024-8.000°, y las condiciones empleadas 40kV, 30mA, paso de 0.002° y 2 segundos por paso.

4.3.5.5. Medidas de dispersión de rayos X a ángulos bajos (SAXS)

El análisis de dispersión de rayos X a ángulos bajos se realizan empleando el mismo difractómetro Rigaku Ultima IV operando con radiación Cu K α en geometría de haz paralelo utilizando el aditamento MPA-U4 para capas finas. Los diagramas fueron colectados en el rango 2 θ - Ω =0.100-8.000°, y las condiciones empleadas 40kV, 30mA, paso de 0.001° y 20 segundos por paso.

4.3.6. Espectroscopías infrarroja (FTIR) y Raman

Las medidas de espectroscopía infrarroja se realizaron con un equipo ShimadzuPrestige 21 FT-IR en el rango 400-4000 cm⁻¹ utilizando pellets 3%KBr.

Los espectros Raman fueron adquiridos en el rango 400-2000cm⁻¹ mediante un espectrómetro DeltaNuAdvance 532 Spectrometer con una longitud de onda de láser de 532nm, potencia 25mW, 500 ciclos con tiempo de integración 4s/ciclo, usando capilares de vidrio. Se presentan los datos crudos, sin corrección por fluorescencia ni suavizado.

Capítulo 4 - Métodos

4.3.7. Análisis térmico (TGA, DTA, DSC)

La descomposición térmica fue analizada por Análisis Térmico Diferencial (DTA) y Análisis Termogravimétrico (TGA) utilizando los equipos Shimadzu DTA-50 y Shimadzu TGA-50 respectivamente. Ambos utilizando un flujo de 50ml/min de aire y una rampa de calentamiento de 10°/min en el rango 25-900°C.

4.4. MEDIDAS DE EFICIENCIA DE LOS PROTOTIPOS DE CELDAS SOLARES

SERIE I

Se realizaron curvas I-V en el *Grupo Energía Solar* de la Comisión Nacional de Energía Atómica, Argentina. Utilizando una lámpara dicroica (OSRAM, 250W xenophot, 64653 HLX ELC, 24V GX 5.3) a una distancia tal que la intensidad de luz en el plano de la celda era de 1000W/m² (calibrada con celda de silicio).

SERIES II Y III

En este caso, la caracterización eléctrica de las celdas se realizó utilizando el simulador Solar Cell Testing 1000W Light Source – Model LS1000 de Solar Light el cual provee $1000W/m^2$ AM 1,5 en el plano de trabajo.

4.5.PARTE TEÓRICA

El estudio realizado se basó en la aplicación de la Teoría de los Funcionales de la Densidad (DFT) para la determinación de la densidad electrónica de las fases de dióxido de titanio y titanatos de hidrógeno y sodio estudiadas. En el Anexo IV se introduce y resumen los principales enunciados de esta teoría. Las simulaciones fueron realizadas principalmente mediante el código SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) [8], aunque también fueron utilizados los códigos VASP [9], Quantum-ESPRESSO [10] y WIEN2k [11] ya sea para validar los

Capítulo 4 - Métodos

resultados obtenidos por el primero como para cálculos específicos que serán oportunamente mencionados.

El código SIESTA adopta una combinación lineal de bases numéricas localizadas de orbitales atómicos para la descripción de los electrones de valencia y pseudopotenciales para los núcleos. Por otro lado, los códigos WIEN2k, Quantum ESPRESSO, y VASP utilizan ondas planas como conjuntos base. WIEN2k maneja la totalidad de los electrones, mientras que Quantum-ESPRESSO y VASP utilizan pseudopotenciales, al igual que SIESTA, para describir la región del *core* del átomo.

4.6.1. Estudio estructural y electrónico de los polimorfos anatasa, rutilo, y $TiO_2(B)$ en bulk.

Optimización estructural

Para los cálculos con SIESTA se seleccionaron bases DZP para describir los electrones de valencia (Ti: $4s^23d^2$ y O: $2s^22p^4$). Los radios de corte utilizados para los orbitales fueron los correspondientes a una energía de confinamiento de 50meV. Los pseudopotenciales utilizados fueron construidos utilizando el esquema de Trouiller y Martins [12], los mismos describen la interacción entre los electrones de valencia y el *core* del átomo.

Para el cálculo de la energía total se empleó un la parametrización de Perdew–Burke– Ernzerhof (PBE) de la aproximación GGA [13] del potencial de correlación e intercambio. La grilla en espacio real utilizada para representar la densidad de carga y la función de onda fue la equivalente a la obtenida mediante ondas planas con un cutoff de 450Ry.

Las estructuras optimizadas según el método anterior, fueron utilizadas como partida para cálculos en los cuales se utilizaron ondas planas como bases (empleando los códigos WIEN2k and Quantum ESPRESSO). Esto se realizó para validar las bases numéricas seleccionadas.

Estimación de gaps

Capítulo 4 - Métodos

La energía de banda prohibida fue estimada utilizando la aproximación LDA para el potencial de correlación e intercambio según la reciente versión modificada por Becke-Johnson [14] implementada en el código WIEN2k. En el caso de este código, las funciones de onda se expanden en harmónicos esféricos dentro de esferas que no se superponen de radio R_{MT} , y en ondas planas en la región intersticial. Los radios R_{MT} , utilizados para el Ti y el O fueron de 1.02 y 0.92 Å, respectivamente. La integración en el espacio recíproco se realizó empleando el método de tetraedros. El producto $R_{MT}K_{máx}$, que controla el tamaño de la base, fue 8.0 para todos los casos.

4.6.2. Modelos bidimensionales

La optimización de los distintos modelos fue realizada utilizando los códigos SIESTA y VASP. Dadas las limitaciones de las bases localizadas para el cálculo de las energías de superficie [15], en este punto también se utilizó el código VASP basado en ondas planas y pseudopotenciales. Las interacciones electrón-ion se describieron mediante el uso de pseudopotenciales de tipo *ultrasoft* [16]. Los electrones de valencia incluyeron las capas 2s y 2p del oxígeno y 3s, 3p, 3d y 4s del Ti. Los estados electrónicos fueron expendidos en ondas planas, los *cutoffs* de energía para la parte suave de las funciones de onda y de la densidad aumentada corresponden a 40Ry y 400Ry respectivamente.

Para el cálculo de energías superficiales usando orbitales atómicos como bases, se introdujo una capa de "*bases flotantes*" correspondientes a una monocapa de TiO_2 , según el patrón correspondiente a cada polimorfo, en ambas caras del slab. Esto fue necesario para contemplar la expansión de las bases que surge en el bulk por proximidad de los átomos vecinos y que afecta al comparar la energía total del slab con la del bulk correspondiente al calcular la energía de superficie.

Al relajar las posiciones atómicas usando SIESTA, se utilizó el algoritmo de gradientes conjugados hasta que las fuerzas alcanzaron la tolerancia de F= 0.04 eV/Å. Para el mapeo en puntos k de la zona de Brillouin se seleccionó una grilla Monkhorst Pack [17] de 6x4x1 a 15x15x1 según la supercelda. Utilizando estos parámetros se alcanzó la convergencia en energía total y en fuerzas.

La energías de superficie fueron calculadas según la expresión (4.6.2-1), en la cual Eslab hacer referencia a la Energía Total del slab, NTi corresponde al número de unidades TiO_2 que contiene el slab, $E_{TiO2-bulk}$ es la energía total de la estructura bulkcorrespondiente por unidad de TiO_2 , y S corresponde al área de la superficie de la supercelsa usada.

$$E_{s} = \frac{E_{slab} - N_{Ti} E_{TiO_{2} - bulk}}{2S}$$
(4.6.2-1)

4.6.3. Adsorción de HCOOH sobre TB(001) y TB(100)

Las simulaciones de las interacciones molécula – superficie fueron realizadas en una primera instancia utilizando bases localizadas (empleando SIESTA) y en una segunda instancia utilizando ondas planas (VASP)

En el caso del estudio con SIESTA, las energías de adsorción (E_f) se calculan según la expresión (4.6.3-1). En la misma E_T hace referencia a la energía total calculada para el *slab* de TiO₂ y la molécula de HCOOH sobre la superficie. E_{ni} representa la energía calculada para el *slab* con la molécula no interactuando, lejos de la superficie. La molécula se encuentra en configuración *trans* a una distancia de aproximadamente ~5Å. Por último, el término |BSSE| (del inglés, *basis set superposition error*) corresponde al error de superposición de bases asociado al uso de bases localizadas.

$$E_{f} = -\left(E_{T} - E_{ni} + \left|BSSE\right|\right)(4.6.3-1)$$
$$|BSSE| = E_{HCOOH,dist} - E_{TiO_{2},ghost} + E_{TiO_{2},dist} - E_{HCOOH,ghost}(4.6.3-2)$$

El |BSSE| se estimó utilizando la ecuación (4.6.3-2). El término $E_{HCOOH,dist}$ refiere a la energía de la molécula de HCOOH distorsionada en la forma que prevalece durante la interacción con la superficie (para alguna de las configuraciones se encuentra disociada). Análogamente, $E_{TiO2,dist}$ es la energía total calculada para el slab de TiO₂ distorsionado de la misma manera que ocurre en la interacción. Por último $E_{TiO2,ghost}$ es la energía de la molécula de HCOOH expandida por las bases flotantes de la superficie

de TiO₂ y $E_{HCOOH,ghost}$ es la energía total del slab de TiO₂ expandido con las bases flotantes de la molécula.

Durante los cálculos, las posiciones atómicas fueron relajadas mientras que los parámetros de red en las direcciones del plano se mantuvieron constantes. La grilla en el espacio real usada para representar la densidad de carga y la funciones de onda fue la equivalente a la obtenida a partir de una energía de corte de 500Ry para ondas planas. La primera zona de Brillouin fue estudiada con una grilla 1x15x15 de puntos k. El factor de convergencia para la fuerza residual utilizado fue de 0.04eV/Ang. En el caso de los cálculos de los bulks la tolerancia en la presión para la optimización de la celda fue de 0.05GPa. Estos parámetros permitieron la convergencia en la energía total.

Los espesores de los modelos fueron elegidos como el mínimo que contenga al menos una celda unidad en la dirección no periódica, lo que implica una bicapa de átomos de Ti en el caso (001) y cuatro capas de Ti en el caso (100). Se agregó vacío en la dirección normal a las superficies seleccionadas (c*cos(β -90°) = 6.24Å para (001) y a*cos(β -90°) = 11.64Å para (100)).

Para el estudio de las interacciones superfice-molécula, la molécula se situó siempre en la conformación trans a una distancia inicial Ti(5c)-O de 2-2.2 Å y O(2c)-H 1.7-2.0Å o 1.1-1.4 Å según se tratase de configuraciones no disociadas o disociadas respectivamente. Ti(5c) y O(2c) refieren a los Ti de la superficie con coordinación 5 y los oxígenos superficiales de coordinación 2 respectivamente. En todos los casos fueron relajadas las posiciones atómicas.

4.6.4. Superficies (001) y (100) del polimorfo $TiO_2(B)$

Se realizó un estudio más amplio de la estabilidad relativa de las superficies TB(001) y TB(100) empleando slabs de hasta 10 capas de TiO₂. Se varió el número de capas internas que quedaron fijas a sus posiciones en el bulk durante la optimización. Se optimizaron las coordenadas atómicas dejando fijos los parámetros de celda. Se repitió el estudio utilizando los valores experimentales y los valores optimizados para la estructura bulk. Se empleó en este caso el código SIESTA.

Capítulo 4 - Métodos

4.6.5. Nanohilos

A partir de los cortes del film ultrafinoTB(001) según se esquematiza en la Figura 4.6.5-1, se obtiene los nanohilos o hilos atómicos TB_x , TB_y y TB_z . En la nomenclatura, el subíndice indica la dirección periódica del hilo. Los cálculos fueron realizados empleando la parametrización PBE de la aproximación GGA al potencial de correlación e intercambio. Los mismos son optimizados mediante los códigos SIESTA y VASP.En el caso VASP se utiliza el método PAW, utilizando una energía de corte de 500 eV y pseudopotenciales para describir el *core*. En el caso particular de Ti se utilizan pseudos con estados los estados de semicore 3s y 3p ubicados en valencia.

Una vez optimizadas las estructuras, las mismas se someten a cálculos posteriores para la corrección de energía de gap, tanto mediante el uso de funcionales híbridos $HSE06^{18}$ y aproximación de muchos cuerpos (many body) GW^{19} , 20 , 21 , 22 .

Las estructuras optimizadas fueron luego sometidas a cálculos DFPT (Density Functional Perturbation Theory) [23] [24] [25] con el fin de obtener el diagrama de dispersión fonónica. Este último aspecto es relevante para evaluar la estabilidad local de las diferentes estructuras de baja dimensionalidad. Con ello se obtiene propiedades vibracionales como densidad de estados fonónica, estabilidad térmica y capacidad calorífica.

Figura 4.6.5-1 – Esquema de corte de los nanohilos a partir del film TB(001).

Capítulo 4 - Métodos

Por otro lado se optimizó en forma comparativa el hilo atómico derivado de anatasa según la dirección [001] (Figura 4.6.5-2), del cual existe evidencia experimental [26] en su forma dopada con N y protegidos con ácido oleico, ver Figura 4.6.5-3.

Figura 4.6.5-2 – Estructura inicial del nanohiloA[001].

Figura 4.6.5-3 – Microscopías TEM de hilos atómicos de anatasa obtenidos experimentalmente. Imagen extraída de la referencia [26].

4.6.6. Nanotubos

Se construyeron modelos de nanotubos de $TiO_2(B)$ para su optimización mediante el código SIESTA el plegando los films ultrafinos TB(001) según la dirección a, alrededor de la dirección [010]. El esquema de construcción se incluye en la Figura 4.6.6-4.

Capítulo 4 - Métodos

Figura 4.6.6-4 – Esquema de construcción de los nanotubos del polimorfo TiO₂(B).

4.6.7. Estudio de la interacción semiconductor – colorante

En este caso se pretende estudiar la interacción semiconductor colorante de una forma tal que permita la obtención de sus propiedades ópticas, considerando el colorante utilizado en el ensamblado de prototipos N719. Dado el número de átomos que contiene el colorante N719 y las nanopartículas de TiO₂, es que se selecciona un modelo tipo cluster para este último de forma de que la simulación sea factible desde el punto de vista computacional.

En primera instancia se optimizó el colorante y el cluster por separado, utilizando el código SIESTA y posteriormente re-optimizado con VASP, utilizando el potencial de correlación intercambio GGA-PBE. El uso de dos códigos permite validar la metodología, tal como se ha descrito en puntos anteriores. En referencia al clúster, este se basa en un corte basado en una superficie de $TiO_2(B)$ (001).

REFERENCIAS - Capítulo4

[1] Bruns R. E., Scarminio I. S., de Barros Neto B., "*Statistical design* — *Chemometrics*", DATA HANDLING IN SCIENCE AND TECHNOLOGY—VOLUME 25, Advisory Editors: S. Rutan and B. Walczak, **2006** Elsevier B.V.

[2] Menzel R., Peiró A. M., Durrant J. R., Shaffer M. S. P., Chem. Mater.2006, 18, 6059-6068

[3] Pal M., García Serrano J., Santiago P., Pal U., J. Phys. Chem. C2007, 111, 96 – 102.

[4] Kolen'ko Y. V., Kovnir K. A., Gavrilov A. I., Garshev A. V., Frantti J., Lebedev O.

I., Churagulov B. R., Van Tendeloo G., and Yoshimura M., *J. Phys. Chem.* **B2006**, 110, 4030 - 4038

[5]Scherrer P., Nachr. Ges. Wiss. Göttingen1918, 26, 98-100

[6] Langford J. I., Wilson A. J. C., J. Appl. Cryst. 1978, 11, 102-113

[7] Material del curso "Difracción de rayos X. Ejemplo prácticos en física de materiales", Dr. Daniel Ariosa, Facultad de Ciencias,UdelaR, 2008

[8]Soler J. M., Artacho E., Gale J. D., García A., Junquera J., Ordejón P., Sánchez-Portal D., J. Phys.: Condens. Matter **2002**, 14, 2745

[9]Kresse G., Joubert D., "From ultrasoft pseudopotentials to the projector augmentedwave method," *Phys. Rev. B*, vol. 59, pp. 1758-1775, 1999.

[10]Giannozzi, P. et al., J. Phys.: Condens.Matter2009, 21, 395502

[11]P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Technical Universität Wien, Austria, **1999**).

[12] Troullier N., Martins J.L., Phys. Rev. B **1991**, 43, 1993.

[13]Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett. **1996**, 77, 3865, Phys. Rev. Lett. **1997**, 78, 1396.

- [14] Tran F., Blaha P., Phys. Rev. Lett. 2009, 102, 226401
- [15] Garcia-Gil S., Lorente N., Garcia A., Ordejon P., Phys. Rev. B 2009, 79, 075441
- [16] Vanderbilt, D. Phys. Rev. B 1990, 41, 7892–7895
- [17] Monkhorst H. J., Pack J. D., Phys. Rev. B 1976, 13, 5188
- [18] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).
- [19] Shishkin M., Kresse G., Phys. Rev. B 2006, 74, 035101.

Capítulo 4 - Métodos

- [20] Shishkin M., Kresse G., Phys. Rev. B 2007, 75, 235102
- [21] Fuchs F., Furthmüller J., Bechstedt F., Shishkin M., Kresse G., *Phys. Rev. B* 2007, 76, 115109-1–8
- [22] Shishkin M., Marsman M., Kresse G., Phys. Rev. Lett. 2007, 99, 246403.
- [23] S. Baroni, P. Giannozzi and A. Testa, Phys. Rev. Lett. 1987, 58, 1861
- [24] X. Gonze, Phys. Rev. A,1995, 52, 1086.
- [25] X. Gonze, Phys. Rev. A, 1995, 52, 1096.
- [26] Liu C., Yang S., ACS Nano 2009, 3,4, 1025–1031

Capítulo 5 – Síntesis de nanoestructuras

CAPÍTULO 5 – RESULTADOS Y DISCUSIÓN I

SÍNTESIS DE NANOESTRUCTURAS DE TIO₂ Y TITANATOS

Índice - Capítulo 5

5.1 \$	SÍNTESI	S HIDROTERMAL BAJO PRESIÓN ENDÓGENA2
	5.1.1	Observaciones generales – Etapa I "Barrido inicial de condiciones"2
	5.1.1.1	Influencia de los lavados5
	i –	- Ausencia de lavados
	ii	- Agente de lavado: HCl+H ₂ O vs. H ₂ O10
	iii	- Intensidad del tratamiento con ultrasonido entre lavados12
	5.1.1.2	Influencia del material de partida, la temperatura y el tiempo de reacción14
	5.1.2	Síntesis hidrotermal bajo presión endógena – Etapa II "Diseño de un experiemento"19
5.2 \$	SÍNTESIS	S HIDROTERMAL BAJO PRESIÓN ATMOSFÉRICA27
	5.2.1	Observaciones generales – síntesis hidrotermal bajo presión atmosférica28
	5.2.2	Conclusiones – síntesis hidrotermal bajo presión atmosférica
5.3 I	MÉTODO) SONOQUÍMICO32
5.4	HID	RÓLISIS DE PRECURSORES GLICOLADOS33
5.5	CON	CLUSIONES – SÍNTESIS DE NANOESTRUCTURAS DE TIO ₂ Y TITANATOS34
REFE	ERENCIAS	– CAPÍTULO 5
Capítulo 5 – Síntesis de nanoestructuras

5.1 SÍNTESIS HIDROTERMAL BAJO PRESIÓN ENDÓGENA

5.1.1 Observaciones generales – Etapa I "Barrido inicial de condiciones"

Empleando síntesis hidrotermales bajo presión endógena, se obtuvieron materiales de alta relación de aspecto (HAR, del inglés *"high aspect ratio"*), partiendo tanto de anatasa nanoestructurada, de rutilo micrométrico como de mezclas de ambos. En la Figura 5.1.1-1 se muestra un resumen de microscopías SEM para ejemplificar la diversidad de morfologías obtenidas. La Figura 5.1.1-2 se muestra imágenes TEM de algunas de las muestras para las cuales por SEM no fueron detectadas estructuras del tipo HAR.

Figura 5.1.1-1– Ejemplo de las distintas morfologías obtenidas en el barrido inicial utilizando el método hidrotermal en autoclave. Imágenes obtenidas con microscopía electrónica de barrido.

Capítulo 5 – Síntesis de nanoestructuras

Figura 5.1.1-2 Microscopías TEM de muestras 16A, 16B, 18B, 18C, 19A y 19B con magnificaciones 200000x, 150000x, 200000x, 250000x, 150000x y 300000x respectivamente. El segmento indicado en la escala corresponde a 100nm en todas las imágenes.

Las características de las síntesis de cada muestra se detallan en la Tabla 5.1.1-1. En la misma, la columna TiO₂ indica el precursor (A: anatasa, R: rutilo) siendo *m* la masa inicial. T_r y t_r hacen referencia a la temperatura y el tiempo del tratamiento alcalino respectivamente. N_{HCl} y N_{H2O} indican el número de lavados con ácido clorhídrico 0.1M y agua destilada respectivamente. Por último T_s y t_s corresponden a la temperatura y tiempo de secado de la muestra. Se adoptó como nomenclatura de las muestras la que se indica en el esquema a continuación.

Tiempo Precursor XyZ_N_{HCl}/N_{H2O} Lavados Temperatura

Capítulo 5 – Síntesis de nanoestructuras

X indica el precursor (A= antasa, R=rutilo, AR=mezcla 50% en peso de anatasa-rutilo). El segundo carácter (y) hace referencia a la temperatura del tratamiento hidrotermal, siendo:

- $a = temperatura alta (148 156^{\circ}C)$
- m = temperatura media (140 142°C)
- $b = temperatura baja (120 124^{\circ}C)$

Z es el tiempo de reacción y los números N_{HCl}/N_{H_2O} indican la cantidad de lavados: N_{HCl} lavados con HCl 0.1M y N_{H_2O} lavados con agua destilada.

Batch		Muestra	TiO ₂	m(g)	T _r (°C)	t _r	N _{HCl}	N _{H2O}	T₅ (°C)	ts
1	A B	Aa24_3/1 Aa24_3/1	А	1.001	150	24h	3 3	1 1	145	24h
	A	Am20_0/0					0	0		68h
2	B	$Am20_4/2(s)^{*1}$	Α	1.003	142	20h30min	4	2	115	45h
	С	Am20_4/2					4	2		45h
3	Α	Aa43_4/2(u)* ²	А	1 003	148	43h20min	4	2	115	24h
•	B	Aa43_4/2		1.005	140	45112011111	4	2	115	24h
5	Α	ARa39_4/2	A+R	0 506+0 507	150	39h	4	2	115	23h
-	B	ARa39_0/8	7111	0.50010.507	100	571	0	8	115	23h
6	Α	Ra22_4/2	R	0.999	150	22h30min	4	2	115	70h
Ŭ	B	Ra22_0/8					0	8		70h
8	Α	Ra47_4/2	R	1.004	156	47h	4	2	115	69h
Ŭ	В	Ra47_0/8			100	.,	0	8	110	69h
9	Α	ARa68_4/2	A+R	0.508+0.507	150	68h	4	2	80	45h
	B	ARa68_0/8					0	8	00	45h
	Α	Rm24_4/4		1.003	140	24h	4	4	70	-
16	B	Rm24_0/8	R				0	8		-
	C	Rm24_0/0					0	0		-
	Α	R'm24_1'/4* ³					1	4		24h
18	B	R'm24_0/8	R	1.503	140	24h40min	0	8	70	-
	C	R'm24_4/4					4	4		-
19	Α	Ab24_4/4	А	1 0147	120	24h	4	4	70	-
	B	Ab24_0/4		1.0117	120	2 111	0	4	70	-
20	Α	ARb24_4/2	A+R	0 5081+0 5005	124	24h	4	2	70	_
20	B	ARb24_0/8				2	0	8	, ,	
21	A	ARa24_4/2	A+R	0 5060+0 5057	150	24h	4	2	70	_
41	B	ARa24_0/8	1111	0.5000+0.5057	150	<i>∠</i> ⊤11	0	8	/0	_

Tabla 5.1.1-1 – Barrido inicial de condiciones, características de las síntesis realizadas por el método hidrotermal bajo presión endógena.

*¹ Corresponde al sobrenadante.

*² La muestra Aa43_4/2(u) fue sometida a una sonicación más extensa entre lavados (15min, 90% Amp, 0.9ciclos)

 $*^{3}$ En esta muestra se sustituyen los 4 lavados estándares con HCl, por un único lavado con el mismo agente pero en baño de ultrasonido (250ml, 0.1M, 1h)

Capítulo 5 – Síntesis de nanoestructuras

Las estructuras de alta relación de aspecto obtenidas pueden subdividirse en estructuras tipo varillas macizas (a las cuales en adelante se referirá como *nanorods*, o en forma abreviada **NR** o **NRs**) del orden de 100-500nm de diámetro y 2-10µm de largo y estructuras tubulares (*nanotubos*, **NT** o **NTs**) del orden de 10-15nm de diámetro externo y 100-200nm de longitud. En el Anexo II se adjuntan microscopías SEM y TEM adicionales para los productos sintetizados en esta etapa y en el Anexo III se recopila la comparación preliminar con la base de datos de los correspondientes diagramas de DRX de polvo. A continuación se discutirán observaciones correspondientes a la influencia de los distintos parámetros de reacción.

5.1.1.1 Influencia de los lavados

Se estudiaron los siguientes aspectos con respecto a los lavados:

- i. Ausencia de lavados
- *ii.* Agente de lavado: HCl+H₂O vs. H₂O
- iii. Intensidad del tratamiento con ultrasonido entre lavados

<u>i – Ausencia de lavados</u>

Para estudiar la influencia en la morfología, se analizaron mediante microscopía electrónica dos alícuotas tomadas en forma previa a los lavados, una correspondiente al Batch 1 (en el cual se obtuvieron NRs como producto final) y otra correspondiente al Batch 18 (en el cual se obtuvieron NTs). En ambas la morfología general difiere significativamente de la obtenida luego del procedimiento de lavado.

La muestra 1 sin lavar presentó características amorfas, con estructuras del tipo membranosas (Figura 5.1.1-3 y pág. 10 de Anexo II). La ausencia de nanorods podría estar indicando la completa disolución del material de partida durante el tratamiento alcalino y sugiriendo un mecanismo de recristalización y crecimiento cristalino en las etapas posteriores. Sin embargo esto contradice el mecanismo más ampliamente aceptado en bibliografía, en el cual la formación de estructuras de alta relación de aspecto se da durante el tratamiento hidrotermal [1]. Cabe señalar que las muestras sin lavar presentan un alto contenido de NaOH 10M, las mismas se carbonatan en contacto

Capítulo 5 - Síntesis de nanoestructuras

con el aire (hecho que se constató por difracción de rayos X). Esta carbonatación podría estar acompañada de una pérdida de morfología.

Figura 5.1.1-3 – Comparación de morfología antes y después del lavado para la muestra 1. (a) Microscopía TEM de la muestra sin lavar. (b) Microscopía SEM de la muestra lavada (3HCl+H₂O).

La muestra de nanotubos revela una morfología fibrosa antes del lavado (Figura 5.1.1-5). Se observaron nanohilos o nanofibras de varias micras de longitud, pero no se detectaron estructuras tubulares. Esto sugiere que los tubos también serían formados durante el proceso de lavado y posterior secado de las muestras. Lo que está de acuerdo con algunos autores [2] pero en contraposición con numerosos trabajos en los que se argumenta que la formación de tubos, al igual que en el caso de los nanorods, se da durante el tratamiento alcalino [1, 3, 4, 5].

Este tipo de fibras antes del procedimiento de lavado fueron observadas por Menzel y colaboradores, quienes obtuvieron nanorods como producto final, concluyendo que la morfología y tamaño de los productos es más dependiente del tratamiento hidrotermal que del método de lavado [4]. Apoyando el mecanismo propuesto por Kukovecs *et al* [6] de crecimiento de las nanoestructuras a partir de precursores curvados (los que denominan "nanoloops") ya existentes en las primeras etapas del tratamiento alcalino, más que al mecanismo de enrollamiento de precursores del tipo nanohojas durante el procedimiento de lavado. Sin embargo, en el caso que se expone, el producto final son

Capítulo 5 – Síntesis de nanoestructuras

tubos por lo que lo anterior no queda claro, ya que debe existir una transformación de fibras a tubos durante el lavado y posterior secado.

Figura 5.1.1-4 – Comparación de morfología antes ((a) y (b)) y después ((c) y (d)) del lavado con agua destilada para muestra correspondiente al batch 18, microscopías SEM.

No fue posible el análisis de la estructura cristalina de las muestras antes del lavado debido a que, como ya fue mencionado, las mismas se carbonatan al molerlas en presencia de aire, dada la alta concentración de soda que presentan (ver Anexo III). Según estas observaciones de muestras sin lavar, no se puede concluir que las estructuras de alta relación de aspecto se formen durante el tratamiento alcalino. Con respecto al mecanismo de enrollamiento de precursores del tipo nanohojas, si bien no hay elementos que lo confirmen directamente, este no se descarta. En algunas muestras se observaron este tipo de estructuras tipo hojas luego de los lavados (ver Figura 5.1.1-6) e incluso pudieron verse pliegues de las mismas (Figura 5.1.1-6 (c)).

Figura 5.1.1-5 – Comparación de morfología antes (a) y después (b) del lavado con agua para muestra correspondiente al batch 18, microscopías TEM.

Figura 5.1.1-6 – Imágenes TEM en las cuales se puede ver existencia de estructuras tipo hojas delgadas, en muestras 18B (R'm24_0/8) (a y c), 15B (c y d) y 4C (e y f). En (c) la flecha indica un pliegue de una de estas estructuras. Nota: las muestras 15B y 4C fueron sintetizadas a presión atmosférica, las mismas serán analizadas más adelante.

Capítulo 5 – Síntesis de nanoestructuras

ii - Agente de lavado: HCl+H₂O vs. H₂O

La estructura cristalina resultante depende fuertemente del agente de lavado (ver Anexo III, batchs 5, 6, 8, 9, 16, 18, 19, 20, y 21). Esto está de acuerdo con el hecho ampliamente aceptado en la literatura de que los lavados ácidos favorecen el intercambio iónico entre los cationes del metal alcalino (en este caso Na^+) e H⁺ en los titanatos laminares.

En particular, se observó para los casos de condiciones de síntesis menos extremas (menores temperaturas y tiempo de reacción o bien presión atmosférica) y partiendo del polvo A (batchs 19, 4 y 15^1) que la estructura cristalina del producto obtenido luego de lavar con HCl y agua es anatasa, mientras que para la muestra lavada sólo con agua se obtienen titanatos laminares. Para estas condiciones, al partir de mezclas de polvos A-R, sólo la fracción de anatasa parece modificarse estructuralmente (20, 21, 7, 11, 13^2), o al menos existe una fracción de rutilo que permanece sin modificarse, lo que es coherente con el menor tamaño de partícula asociado a una mayor reactividad de la anatasa de partida y la mayor estabilidad de la fase rutilo.

Anatasa como fase final también fue observada en los batchs 6 y 18 cuyo material de partida fue rutilo. Si bien la temperatura para el batch 6 fue elevada, el tiempo de reacción fue relativamente pequeño (22,5hs). Por otro lado, el batch 18 fue realizado en autoclave a una temperatura intermedia (140°C) durante 24 horas. En este caso, que la estructura del material obtenido luego de lavar con HCl sea anatasa es un claro indicio de que se está dando un mecanismo de disolución-recristalización. Donde el TiO₂ de partida se disuelve y luego cristaliza como titanato de sodio. Durante los lavados ácidos se obtienen titanatos de hidrógeno y luego se deshidratan formando anatasa.

Con respecto a la dependencia de la morfología, para los casos que se obtuvieron estructuras tipo varillas, se observa que las lavadas sólo con agua presentan, a grandes rasgos, similar geometría pero un mayor tamaño promedio (Figura 5.1.1-7).

En el caso de las muestras que presentan nanotubos, realizadas en condiciones menos agresivas, se tienen microscopías comparativas para los batchs 18 (realizado en autoclave) y 4 (sintetizado utilizando el método de reflujo). En ambas se observa que el material lavado sólo con agua presenta estructuras tubulares más definidas (Figura

¹ Los batch 4 y 15 fueron realizados en reflujo (tratamiento hidrotermal a presión atmosférica).

² Los batchs 7, 11 y 13 corresponden a síntesis en reflujo.

Capítulo 5 – Síntesis de nanoestructuras

5.1.1-8 y págs. 7-9 y 14-16 del Anexo II). Para el caso del batch 18, los tubos coexisten con estructuras tipo hojas o láminas delgadas en la muestra lavada con HCl. En el caso del Batch 4, se ven mayoritariamente partículas de menor tamaño que los tubos observado en la muestra correspondiente lavada con agua.

Figura 5.1.1-7 Imágenes SEM comparativas de muestras del mismo batch variando el agente de lavado.

Los iones de sodio retenidos en las muestras lavadas con agua estabilizan la estructura de titanatos [4]. Luego del tratamiento ácido, los sodios son remplazados por protones

Capítulo 5 – Síntesis de nanoestructuras

y agua los que pueden ser removidos en forma relativamente fácil mediante deshidratación. Por lo que la morfología general luego del calentamiento también depende del contenido de sodio. Las muestras lavadas con agua, en general retienen su estructura de alta relación de aspecto, aunque aparece algo de material granular policristalino. Por otro lado, la respuesta de las muestras lavadas con ácido depende de la morfología de las nanoestructuras de titanatos. La conversión de nanotubos conlleva a una dramática pérdida de relación de aspecto. Observación también reportada por Kolen'ko *et al* [7] quienes sostienen que durante el tratamiento térmico al aire de nanotubos de H₃Ti₃O₇ estos se transforman en anatasa y pierden su morfología. Sin embargo, las estructuras nanofibrosas mantienen su alta relación de aspecto; aparentemente, las fibras son suficientemente largas como para convertirse en anatasa policristalina sin un debilitamiento crítico.

iii - Intensidad del tratamiento con ultrasonido entre lavados

Comparando las muestras 3A (Aa43_4/2(u)) y 3B (Aa43_4/2), si bien no es concluyente, parece haberse obtenido una mayor homogeneidad de morfología general para el caso 3B, comparar imágenes (a) y (b) de Figura 5.1.1-9, siendo varillas de mayor largo. Esto indicaría que el ultrasonicado intenso puede romper las estructuras obteniéndose un material más heterogéneo o amorfo.

No se observan diferencias significativas al aumentar considerablemente el tiempo de ultrasonicado entre lavados, en lo que respecta a la estructura cristalina (ver batch 3, Anexo III).

Figura 5.1.1-8 – Imágenes TEM comparativas de muestras de nanotubos del mismo batch variando el agente de lavado.

Capítulo 5 – Síntesis de nanoestructuras

Figura 5.1.1-9 – Imágenes SEM, de las muestras 3A x2500 (a) y 3B x2500 (b).

5.1.1.2 Influencia del material de partida, la temperatura y el tiempo de reacción

Morfología

En la Figura 5.1.1-10 se esquematiza la morfología obtenida para distintas combinaciones t - T. De la misma surgen las siguientes observaciones:

- Existe un rango de valores t-T para los cuales se observa la formación de nanorods, T≥140°C t≥24hs para anatasa como material de partida y T≥150°C t>24hs para rutilo micrométrico. A altas temperaturas y tiempos prolongados de tratamiento hidrotermal (150°C 68hs), se favorece la formación de mayor tamaño. Por otro lado a temperaturas y tiempos menores (120°C 20-24hs) no se observan este tipo de estructuras.
- Se obtuvieron nanotubos partiendo de rutilo a $T=140^{\circ}C$ y t=24hs.

Estructura cristalina

Con respecto a la estructura cristalográfica, esta presenta gran variabilidad (Anexo III). En la gráfica siguiente (Figura 5.1.1-11) se comparan los resultados obtenidos a partir de anatasa variando el tiempo y la temperatura del tratamiento hidrotermal. La Figura 5.1.1-12 corresponde a mezclas Anatasa/Rutilo, se constata una fracción de rutilo

Capítulo 5 – Síntesis de nanoestructuras

remanente en todos los casos de tratamientos de 24 horas. Por último, los resultados en el caso de rutilo como material de partida se adjuntan en el gráfico de la Figura 5.1.1-13. Cabe señalar que en este caso para todas las condiciones ensayadas se observó la modificación del rutilo de partida inclusive para los casos de tratamientos de 24hs.

Figura 5.1.1-10 – Esquema morfología en función de los parámetros de síntesis T, t.

Los productos obtenidos consisten, en la mayoría de los casos, de una mezcla de fases de óxidos de titanio y titanatos laminares de sodio e hidrógeno (Anexo III). El análisis de los diagramas resulta particularmente dificultoso debido a que se trata de mezclas de fases de materiales nanoestructurados por lo que se observan máximos anchos de difracción que presentan superposición y alto background. Sumado a esto, al tratarse, en mucho de los casos, de materiales tipo varillas pueden ser propensas a orientaciones preferenciales modificando la relación de intensidades de los máximos. La alta relación de aspecto también genera diferencia en la forma y el ancho de los picos asociados a una misma fase, debido a la diferente dimensión del dominio cristalino.

Capítulo 5 – Síntesis de nanoestructuras

Por lo general, para estas muestras, la zona de ángulos bajos $(2\theta < 20^\circ, d > 4\text{\AA})$ corresponde al espaciado entre láminas de octaedros [TiO6] en la estructura cristalina. La presencia de máximos en esta región prueba que los productos tienen una estructura de tipo titanatos laminares.

Por otro lado, gran parte de los diagramas de difracción de polvo presentan un pico definido en 2 θ cercano a 48° ($d \sim 1.89 \dot{A}$) que corresponde al espaciamiento interplanar de la familia de planos (200) de la fase anatasa (ver Figura 5.1.1-14). Resulta importante notar que esta distancia corresponde a la separación Ti-O en el plano ecuatorial de los octaedros [TiO₆] que, como ya fue mencionado, son el bloque de construcción de los titanatos laminares. Por otro lado, en algunos casos este pico es menos ancho que los restantes del diagrama probando la anisotropía de la muestra, verificando la alta relación de aspecto de las estructuras, e indicando la dirección de crecimiento cristalino, eje de los NTs o NRs.

Figura 5.1.1-11 – DRX de muestras que corresponden A de material de partida.

Se analizará la estructura cristalina de nanorods de titanato obtenidos por este método en el Capítulo 7 "*Caracterización de nanorods de dióxido de titanio y titanatos*".

Figura 5.1.1-12- DRX de muestras que corresponden a mezclas A +R de material de partida.

Figura 5.1.1-13 – DRX de muestras que corresponden R de material de partida.

Figura 5.1.1-14 – Celda unidad de la fase anatasa, en verde se esquematiza la familia de planos cristalográficos (200).

Capítulo 5 – Síntesis de nanoestructuras

Resumen - barrido inicial de condiciones

Tabla 5.1.1-2 – Resumen de observaciones durante el barrido inicial de condiciones para el caso de síntesis hidrotermal bajo presión endógena.

Parámetro			Morfología	Estructura cristalina	Batch/s referencia /s	Observaciones
	Ausencia		No se observan NR, en su lugar se ve una estructura membranosa. Tampoco se observan NT, se ven estructuras tipo nanofibras de varias mucras de longitud.	No se determina.	4 (reflujo) 18 (autoclave)	El exceso de soda puede estar interfiriendo en la caracterización por microscopía.
L A V A D O	Agent	2	Para el caso de NR, la morfolgía es similar siendo las estructuras lavadas sólo con agua de mayor tamaño. Para el caso de NT, se observó que estos son más definidos en las muestras lavadas con agua, coexistiendo con nanopartículas y hojas delgadas luego de los lavados ácidos.	Existe una clara dependencia de la estructura cristalina con el agente de lavado.	NR: 5, 6, 8, 9, 19, 20, y 21 NT: 16, 18, 4	El lavado ácido es necesario para la remoción de los iones de Na ⁺ .
	Sonicado		El ultrasonicado intenso entre lavados parece ir en detrimento de la homogeneidad de tamaños de las estructuras tipo NR	No se observa dependencia	3	
Temperatura y tiempo de reacción			Se obtienen NR si T≥140°C- t≥24hs para A como material de partida y T≥150°C-t>24hs para rutilo micrométrico o mezclas AR. A altas temperaturas y tiempos prolongados (150°C – 68hs), se favorece la formación de estructuras de gran tamaño. Se observaron NT en la condición T=140°C y t=24hs partiendo de R.	En las condiciones menos extremas se observa anatasa como fase final luego de los lavados ácidos o bien mezclas A/R cuando se parte de mezclas. En estos casos, al lavar con H ₂ O se observan difractogramas típicos de titanatos laminares nanoestructurados	19, 20 Esto también se verifica en los batchs: 4, 7, 13 y 15 correspondie ntes al método de regflujo.	
A Precursor + R		A	Se observan NR, nanopartículas y hojas delgadas	Mezclas de titanatos	1, 3 y 19	
		A + R	Se observan NR	Mezclas de titanatos + R	5, 9, 20 y 21	
R			Se observa NR y NT	Mezclas de titanatos	6, 8, 16 y 18	

Capítulo 5 – Síntesis de nanoestructuras

5.1.2 <u>Síntesis hidrotermal bajo presión endógena – Etapa II "Diseño de un</u> <u>experiemento"</u>

En las figuras Figura 5.1.2-1 y Figura 5.1.2-2 se adjuntan las respuestas (difractogramas y microscopías electrónicas de transmisión) obtenidas para cada corrida, las cuales se resumen en forma cualitativa en la Tabla 5.1.2-1. En el Anexo I se adjuntan microscopías SEM y TEM adicionales para cada muestra. Debido al carácter cualitativo de las respuestas, la interpretación de los resultados en cuanto a los efectos de los distintos factores y su interacción no es tan directa. Sin embargo surgen las siguientes observaciones:

- En todos los casos que el primer factor es (+) (precursor: A+R), se obtiene una fracción de rutilo sin reaccionar. Siendo más notoria en los casos (+--) y (+-+), en menor proporción en el caso (++-) y mucho menor para el caso (+++). Esto indica que una temperatura en el rango de 130-135°C y tiempos de hasta 48hs no son suficientes para disolver totalmente al R inicial cuando se parte de mezclas AR. Y para una temperatura en el rango 150-155°C se requiere de al menos 48hs.
- Se obtuvieron NR sólo en los casos (-++), se observó coexistencia con NT en ambas corridas. Esto estaría indicando que la disolución del precursor A es más rápida y el proceso avanza hacia la formación de NT y posterior formación de NR, siendo necesario mayor tiempo para la conversión completa.
- Se observa por DRX que la respuesta no asociada a las fases iniciales presenta las mismas características en la totalidad de las muestras, con algunas variaciones en los casos (-++), principalmente en la señal a ángulos bajos. En la Figura 5.1.2-4 pueden verse la comparación de diagramas colectados con mayor estadística. El análisis de los mismos se realiza más adelante en el Capítulo 6.
- Con respecto a la reproducibilidad del método, en lo que respecta a la morfología de la muestra, los resultados fueron reproducibles en general. Se observaron algunas diferencias sin embargo por DRX, en los que la señal correspondiente a titanatos laminares es menos evidente y aparecen más claras reflexiones asociadas a la fase A. Comparando las imágenes correspondientes,

Capítulo 5 – Síntesis de nanoestructuras

puede verse que en los casos que la proporción de anatasa es mayor, los NT son de menor longitud y aumenta la proporción de NP.

Debido a que se trata de un proceso en batch de múltiples etapas, existen numerosos factores que no fueron controlados que pueden haber afectado estos resultados. Entre estos se pueden citar, el tiempo de enfriamiento antes de los lavados. El tiempo que permanece la mezcla antes de comenzar los lavados. La cantidad de acúmulos de material que permanecen sin deshacerse durante los lavados. El volumen de agua en la mezcla final que se deja secando y el tiempo de secado.

El tiempo de enfriamiento puede jugar un papel importante en la morfología final si se entiende el proceso como una disolución-recristalización del precursor de TiO_2 en el medio alcalino. Un enfriamiento rápido podría fomentar la nucleación sobre el crecimiento de los cristales y por lo tanto la obtención de cristales más pequeños y menos uniformes.

Por otro lado, bajo esta misma hipótesis, la concentración inicial de precursor determinaría el nivel de sobresaturación de la solución, lo que también juega un rol preponderante en la cristalización.

Queda planteado para un trabajo futuro, el diseño de un experimento adicional fijando los factores estudiados y tomando como nuevos factores la concentración de precursor inicial y el tipo de enfriamiento de la solución.

 Los mejores resultados, en cuanto a morfología y conversión, se obtuvieron en los casos (-+-) y (++-). Debido a las similitudes observadas por DRX y a que en el segundo existe una fracción de rutilo inicial, se selecciona la configuración (-+-) para la caracterización estructural y estudios de estabilidad térmica. Ambas muestras se ensayan en dispositivos DSSC (ver Capítulo 8)

Figura 5.1.2-1 Difractogramas y microscopías TEM para muestras A-D y respectivas réplicas.

Figura 5.1.2-2 Difractogramas y microscopías TEM para muestras E-H y respectivas réplicas.

Tabla 5.1.2-1Resumen de respuestas obtenidas.								
Muestra	Conversión	Morfología	Cristalinidad Fase Tamaño de cristalita Orientación preferencial					
AI() / 9	Se observa al TEM material sin HAR, tipo lamillas.	Existen NT coexistiendo con láminas.	Se observan señales anchas a 2theta: 9, 25, 48. El pico en 48° es el más definido. Leves estructuras en zona 25-35° (H ₂ Ti ₂ O ₅ ·H ₂ O?).					
AII() / 6	Se observa al TEM material sin HAR, tipo lamillas y NP del orden de los 15nm.	Coexisten NT, NP, NS (nanosheets)	Anatasa nano más leves estructuras alrededor de 9° y 25-35°.					
BI(+) / 2	DRX indica rutilo sin reaccionar TEM indica NP del orden de los 15nm	Coexisten NT con NP	Anatasa nano + rutilo micro					
BII(+) / 11	DRX indica rutilo sin reaccionar	Coexisten NT con microP	Anatasa nano más leves estructuras alrededor de 9° y 25-35°+ rutilo micro					
CI(-+-) / 15	NT	NT	Titanatos (H ₂ Ti ₂ O ₅ ·H ₂ O?)					
CII(-+-) / 8	NT+NP	NT+NP	Titanatos ($H_2Ti_2O_5 \cdot H_2O$?) + anatasa nano					
DI(++-) / 16	NT	NT	Titanatos ($H_2Ti_2O_5$ · H_2O ?) + algo de rutilo					
DII(++-) / 1	NP + segmentos de NT	NP + segmentos de NT	Anatasa + algo de rutilo					
EI(+) / 3	NP + segmentos de NT	NP + segmentos de NT	Anatasa					
EII(+) / 13	NT	NT+ membrana	Titanatos (H ₂ Ti ₂ O ₅ ·H ₂ O?)					
FI(+-+) / 5	DRX indica rutilo micro sin reaccionar	NT+NP	A+R					
FII(+-+) /10	DRX indica rutilo micro sin reaccionar	NT+NP Ver imagen	Titanatos $(H_2Ti_2O_5 \cdot H_2O?) + R$					
GI(-++) / 14	No se observan NP	NT+NR	Titanatos (H ₂ Ti ₈ O ₁₇ ? + H ₂ Ti ₂ O ₅ ·H ₂ O?) + anatasa					
GII(-++) /12	No se observan NP	NT+NR	Titanatos (H ₂ Ti ₈ O ₁₇ ? + H ₂ Ti ₂ O ₅ ·H ₂ O?) + anatasa					
HI(+++) /7	NT+NP	Los NT parecen estar más fragmentados y existe alta proporción de NP	Anatasa					
HII(+++) /4	NT+NP	Los NT parecen estar más fragmentados y existe alta proporción de NP	Anatasa + Titanatos					

Figura 5.1.2-3 – Microscopías SEM y TEM de muestras (-++) GII y GI. Coexistencia de NR y NT

Figura 5.1.2-4 - Comparación de patrones de DRX de las muestras DI, CI, GI, GII, y EII.

Cap. 5 - 24/35

Capítulo 5 – Síntesis de nanoestructuras

Con el objetivo de tratar de entender los efectos de los distintos parámetros en lo que respecta a la conversión a NT, se cuantifica la respuesta según 5 niveles del 1 al 5, según se adjunta en la Tabla 5.1.2-2 a continuación.

Nivel	Respuesta
1	No se observan NT
2	Coexisten NP y NT o NL y NT
3	Mayoritariamente NT
4	Coexisten NT y NR
5	Mayoritariamente NR

 Tabla 5.1.2-2 – Definición de niveles de respuesta conversión a estructuras nanométricas HAR.

	Р	Т	t	Réplica I	Réplica II	\overline{x}
Α	-	-	-	2	2	2
B	+	-	-	2	2	2
С	-	+	-	3	2	2.5
D	+	+	-	3	2	2.5
Ε	-	-	+	1	2	1.5
F	+	-	+	2	2	2
G	-	+	+	4	4	4
H	+	+	+	2	2	2

Tabla 5.1.2-3 – Respuestas obtenidas según los niveles definidos.

Tabla 5.1.2-4 – Ma	triz para el cálc	ulo de efectos	(1, 2, 3) e inter	acción de efe	ectos (12, 13	, 23, 123)	de los
distintos factores							

Promedio	1	2	3	12	13	23	123	\overline{x}
+	-	-	-	+	+	+	-	2
+	+	-	-	-	-	+	+	2
+	-	+	-	-	+	-	+	2.5
+	+	+	-	+	-	-	-	2.5
+	-	I	+	+	-	-	+	1.5
+	+	I	+	1	+	-	-	2
+	-	+	+	-	-	+	-	4
+	+	+	+	+	+	+	+	2

Capítulo 5 – Síntesis de nanoestructuras

Figura 5.1.2-5 – Esquema de las respuestas en función de los factores, resultados de la estimación de efectos e interacciones.

Este análisis cualitativo muestra:

- El uso de mezclas AR disminuye la conversión del precursor a estructuras HAR, pero este efecto es más pronunciado al incrementar la temperatura.
- El aumento de la temperatura de 130-135°C a 150-155°C conlleva a un aumento en la conversión a estructuras HAR. Esto es más significativo cuando el precursor es A y el tiempo de reacción 48hs.
- La mayor conversión a NT (indicada por cercanía al nivel 3 y ausencia de niveles 4 y 5) se observa a 150-155°C con tiempos de reacción de 24hs.
- La mayor conversión a NR (indicada por cercanía al nivel 5) se observa también a 150-155°C con tiempos de reacción de 48hs.

Por lo anterior, se infiere que utilizando la relación relación sólido-líquido, concentración de NaOH(ac), factor de llenado, tratamiento por ultrasonido previo, métodos de lavado y secado especificados, la mejor conversión a NT se obtiene al trabajar manteniendo la temperatura del tratamiento alcalino en el rango 150-155°C (+) por un período de 24hs (-). Si además consideramos los resultados observados por DRX, en los que se evidencia que en el caso de mezclas AR existe una fracción de rutilo que permanece sin reaccionar, el mejor resultado se obtuvo al partir del precursor A. Por otro lado, el tiempo de reacción deberá superar las 48hs para para que la conversión a NR sea total.

Comparando estos resultados con los de la etapa I, surge nuevamente la importancia del método de lavado en la morfología de los productos. Al aumentar los lavados ácidos se

Capítulo 5 – Síntesis de nanoestructuras

redujo significativamente rango de obtención de NR. A su vez, recurre la aparición de NP coexistiendo con NT.

5.2 SÍNTESIS HIDROTERMAL BAJO PRESIÓN ATMOSFÉRICA

Se realizaron 5 batchs según el método hidrotermal a presión atmosférica, cuyas características se listan en la Tabla 5.1.2-1. Los difractogramas de las muestras se adjuntan en el Anexo III. Se disponen de imágenes de microscopías para los batchs 4 y 15, las mismas se incluyen en Anexo II.

Tabla 5.1.2-1 – Caracterí	sticas de las síntesis	realizadas por el método	o hidrotermal bajo presión P _{atm} .
---------------------------	------------------------	--------------------------	---

Batch	Muestra	TiO ₂	m(g)	$T_r(^{\circ}C)$	t _r	Agitac.	N _{HCl}	N _{H2O}	$T_s(^{\circ}C)$
	4 A						0	0	
4	4B	Α	2.010	124	69h	No	4	2	115
	4C						0	8	
7	7A	$\mathbf{A} \perp \mathbf{P}$	0.000 ± 1.002	124	36h	No	4	2	115
/	7B	A+K	0.999+1.002	124	5011		0	8	115
11	11A	A+R	1 002 1 007	120	48h	Sí	1^{*^1}	2	90
11	11B		1.003+1.007	120			1^{*2}	2	
	13A	A+R	1.001+1.005	120	44h	Sí	4	2	70
12	13B						4	2	
15	13C						4	4* ³	
	13D						4AgNO ₃	2	
15	15A	А	2.007	120	48h		4	4	
	15B					Sí	0	8	70
	15C						3	2^{*^4}	

 $*^{1}$ – 200ml de HCl 0.1M agitando continuamente a temperatura ambiente durante 35min y luego a 70°C durante 5h45min, luego 6h18min, luego otro lavado con 200ml de HCl a Temp. Ambiente. Luego dos lavados estándar con agua.

*² – Idem a anterior sin sonicar entre los lavados estándar con agua destilada.

*3 – Uno de estos fue previo a los de HCl. Luego se realiza un lavado con AgNO3.

*4 - Luego un lavado con AgNO₃ 80mL 0.1M. 20min, 45°C, agitación intermedia.

Capítulo 5 – Síntesis de nanoestructuras

5.2.1 Observaciones generales - síntesis hidrotermal bajo presión atmosférica

i. Morfología

No se observaron estructuras tipo NRs para este método. Las imágenes SEM muestran características similares a las correspondientes a las condiciones menos extremas utilizadas en las síntesis hidrotermales bajo presión endógena (Figura 5.2.1-1). En las mismas se aprecia que las muestras correspondientes a lavados sólo con H₂O (14C, 15B) presentan bordes más irregulares que podrían ser un indicio de estructuras HAR de menor tamaño. Efectivamente, se observó por microscopía TEM la presencia de nanotubos coexistiendo con nanohojas en dichas muestras (Figura 5.2.1-2).

4B

4C

Figura 5.2.1-1 – Imágenes SEM de muestras obtenidas a presión atmosférica.

4C 003 100 nm HV=100kV TEM Mag = 250000x AMT Preferred Customer Print Mag = 13979x 0 6.99999969005585 mm Acquired Feb 7 2013 at 4:42 PM 100 nm HV=100kV TEM Mag = 250000x AMT Preferred Custome Print Mag = 13979x @ 6.999999969005585 mm Acquired Feb 7 2013 at 4:38 PM 4C4C100 nm HV=100kV TEM Mag = 150000x ANT Preferred Custom 100 nm HV=100kV TEM Mag = 150000x AMT Preferred Customer Print Mag = \$388x @ 6.99999969005585 mm Acquired Feb 7 2013 at 5:37 PM Print Mag = 8388x Ø 6.99999969005585 mm Acquired Feb 7 2013 at 5:38 PM 15B 15B

Capítulo 5 – Síntesis de nanoestructuras

Figura 5.2.1-2 – TEM muestras 4C y 15B

En lo que respecta a las muestras lavadas con HCl (ac) 0,1M, se observa coexistencia de nanopartículas con lo que parecerían ser fracciones de materiales HAR, ver Figura 5.2.1-3.

Capítulo 5 - Síntesis de nanoestructuras

Figura 5.2.1-3 – TEM muestras 4B

ii. Estructura cristalina

En este caso, se obtuvo una variación significativamente menor en los resultados vistos por DRX al variar las condiciones de síntesis, en comparación con las síntesis en autoclave. Independientemente del tiempo de reacción, que varió entre 36 y 69 horas, para el caso de material de partida nanopartículas de anatasa, se obtuvo el patrón correspondiente a anatasa en el caso de lavados con HCl y un patrón característico de titanatos laminares nanoestructurados para los casos lavados sólo con agua (Figura 5.2.1-4). Lo mismo se observa cuando se utiliza como precursor una mezcla de rutilo y anatasa, para los cuales se obtiene un diagrama que presenta dos fases claramente diferentes, siendo una rutilo y la otra varía según lo recientemente expuesto, reflejando las modificaciones inducidas en la fracción de anatasa (Figura 5.2.1-5).

En todos los casos que se utiliza rutilo como material de partida (cabe señalar que siempre se trató de mezclas, no se realizó ninguna síntesis en reflujo partiendo de rutilo puro) se revela la presencia de rutilo en el producto. Por lo anterior, resulta que las

Capítulo 5 – Síntesis de nanoestructuras

condiciones del tratamiento no son suficientes para inducir modificaciones en el rutilo o al menos se evidencia que parte del rutilo de partida permanece inalterado.

Por último, no se observa dependencia con el tiempo de tratamiento hidrotermal. Tampoco se evidencian diferencias en lo que respecta al reflujo con agitación con respecto al no agitado.

Figura 5.2.1-4 – DRX para las muestras correspondientes a los batchs 4 y 15.

Figura 5.2.1-5 - DRX para las muestras correspondientes a los batchs 7, 11, y 13.

Capítulo 5 – Síntesis de nanoestructuras

Conclusiones - síntesis hidrotermal bajo presión atmosférica 5.2.2

Según lo expuesto anteriormente se puede concluir que el método hidrotermal a presión atmosférica arroja resultados similares a los casos ensayados bajo presión endógena correspondientes a las condiciones menos extremas (temperaturas bajas y tiempos de reacción bajos). No se logra disolver la totalidad del rutilo micrométrico de partida en las condiciones. No se obtienen nanorods.

5.3 MÉTODO SONOQUÍMICO

En la Figura 5.2.2-1 se observa el material obtenido vía método sonoquímico, realizando los lavados con HCl y agua descritos con anterioridad. No se observaron NR en las microscopías SEM. Con respecto al diagrama de DRX, este es similar al correspondiente a las muestras de reflujo partiendo de anatasa, lavadas sólo con agua.

Figura 5.2.2-1 – Muestra obtenida mediante el método sonoquímico.

Capítulo 5 – Síntesis de nanoestructuras

5.4 HIDRÓLISIS DE PRECURSORES GLICOLADOS

No se obtuvieron buenos resultados a partir de este método. Se observó por SEM una de las muestras, revelando grandes tamaños de partícula y gran heterogeneidad en forma y tamaño de las mismas (Figura 5.2.2-2). No se observaron estructuras de alta relación de aspecto. Por otro lado los diagramas de DRX muestras el bajo grado de cristalinidad de estos productos, siendo necesario el tratamiento térmico posterior (Figura 5.2.2-2).

Figura 5.2.2-1 – SEM muestra 12.

Figura 5.2.2-2 – DRX de muestras sintetizadas a partir de la técnica descrita por Mou Pal et al.

Capítulo 5 – Síntesis de nanoestructuras

5.5 CONCLUSIONES – SÍNTESIS DE NANOESTRUCTURAS DE TIO₂ Y TITANATOS

- Fue posible obtener estructuras de alta relación de aspecto (nanotubos del orden de 10-15nm de diámetro externo y 100-200nm de longitud y nanorods del orden de 100-500nm de diámetro y 2-10μm) de dióxido de titanio y titanatos de hidrógeno y sodio mediante métodos hidrotermales partiendo tanto de anatasa nanoestructurada como de rutilo micrométrico.
- Se observó que se da un mecanismo de disolución-recristalización durante el tratamiento alcalino y la morfología general de las nanoestructuras y su estructura cristalina se ve fuertemente afectada por el método de lavado posterior. Las muestras lavadas con agua, en general presentan estructura de alta relación de aspecto. Por otro lado, en el caso de nanotubos, las muestras lavadas con ácido presentan mayor coexistencia con otro tipo de nanoestructuras como ser nanopartículas y nanohojas, confirmando el papel de los iones Na⁺ en la estabilización de la estructura.
- Se logró acotar los parámetros de reacción (precursor, tiempo y temperatura del tratamiento hidrotermal) para la obtención de estructuras de alta relación de aspecto, identificando condiciones de síntesis que favorecen la conversión a nanotubos y nanorods.

Capítulo 5 – Síntesis de nanoestructuras

REFERENCIAS – Capítulo 5

[1] Dmitry V. Bavykin y Frank C. Walsh, "Titanate and Titania Nanotubes. Synthesis,

Properties and Applications", RSC Nanoscience & Nanotechnology No. 12, 2010

[2] Chien-Cheng Tsai and Hsisheng Teng*, Chem. Mater. 2004, 16, 4352-4358

[3] Das K., Panda S. K., Chaudhuri S., Journal of Crystal Growth 2008, 310, 3792 - 3799

[4] Menzel R., Peiró A. M., Durrant J. R., Shaffer M. S. P., Chem. Mater. 2006, 18, 6059-6068

[5] Morgado Jr. E., de Abreu M. A. S., Pravia O. R. C., Marinkovic B. A., Jardim P. M.,

Rizzo F. C., Araújo A. S., Solid State Sciences 2006, 8, 888–900.

[6] Kukovecz A, Hodos M, Horvath E, Radnoczi G, Konya Z, y Kiricsi I, J. Phys. Chem. B 2005, 109, 17781

[7] Kolen'ko Y. V., Kovnir K. A., Gavrilov A. I., Garshev A. V., Frantti J., Lebedev O.

I., Churagulov B. R., Van Tendeloo G., and Yoshimura M., *J. Phys. Chem. B* **2006**, 110, 4030 - 4038

Capítulo 6 – Caracterización de NTs

CAPÍTULO 6 – RESULTADOS Y DISCUSIÓN II

CARACTERIZACIÓN DE NANOTUBOS DE TiO₂ Y TITANATOS

Índice - Capítulo 6

6 CAI	RACTERIZACIÓN DE NANOTUBOS DE DIÓXIDO DE TITA	NIO Y
TITANATO	9S	6.1-2
6.1 CAR <i>6.1.1</i>	RACTERIZACIÓN MORFOLÓGICA POR MICROSCOPÍA TEM Muestra NT_15CI	6.1-2 6.1-2
6.1.2	Muestra NT_18B	6.1-3
6.1.3	Muestra NT_4C	6.1-4
6.2 CAR <i>6.2.1</i>	RACTERIZACIÓN TEXTURAL NT_15Cl	6.2-4 6.2-4
6.2.2	NT_18B & NT_18C	6.2-7
6.2.3	NT_4C	6.2-7
6.3 ANA 6.4 CAR POLVO	ÁLISIS ELEMENTAL RACTERIZACIÓN ESTRUCTURAL – ANÁLISIS POR DIFRACCIÓI	6.3-8 N DE RAYOS X DE 6.4-8
6.4.1	Introducción	6.4-8
6.4.2	Análisis dimensional de dominios cristalinos en los NT a partir de DR	(utilizando la
ecuació	ón de Scherrer	6.4-11
6.4.3	Influencia de las dimensiones y morfología de las partículas en el pat	rón de difracción -
MODEL	OS DE NANOTUBOS EN TAMAÑO REAL	6.4-14
6.4.4	Análisis de orientación preferencial mediante Rocking Curves	6.4-27
6.4.5	Dispersión de rayos X a ángulos bajos	6.4-28
6.5 ESP 6.5.1	ECTROSCOPÍAS INFRARROJA Y RAMAN Espectroscopía IR	6.5-30 6.5-30
6.5.2	Espectroscopía Raman	6.5-30
6.6 EST <i>6.6.1</i>	ABILIDAD TÉRMICA DE LOS NANOTUBOS Análisis por microscopía electrónica de transmisión	6.6-32 6.6-32
6.6.2	Análisis por DRX	6.6-34
6.6.3	Análisis térmicos: TGA, DTA y DSC	6.6-37
6.6.4	Análisis elemental para evaluación del contenido de hidrógeno	6.6-40
6.7 CON REFEREN	NCLUSIONES – CARACTERIZACIÓN DE NANOTUBOS NCIAS – CAPÍTULO 6	6.7-42 6.7-45

Capítulo 6 – Caracterización de NTs

6 CARACTERIZACIÓN DE NANOTUBOS DE DIÓXIDO DE TITANIO Y TITANATOS

En esta sección se detalla la caracterización morfológica y estructural de las muestras de nanotubos de titanato ácido: NT_15CI (autoclave, -+-), así como su estabilidad térmica. Se analizan también algunos resultados comparativos de las muestras de titanatos de sodio NT_18B/18C (autoclave, rutilo, 140°C, 25hs, lavados sólo con agua y con HCl y agua respectivamente) y NT_4C (reflujo, anatasa, lavados sólo con agua).

6.1 CARACTERIZACIÓN MORFOLÓGICA POR MICROSCOPÍA TEM

6.1.1 Muestra NT_15CI

Mediante la observación al microscopio electrónico de transmisión, se verifica una gran conversión de la muestra a estructuras tubulares los que se encuentran formando agregados microscópicos. La diferencia de contraste en los bordes de las estructuras con respecto al centro es una señal clara de la estructura tubular, ya que el haz de electrones debe atravesar un mayor número de capas atómicas correspondiente a las paredes del tubo. Esto mismo se evidencia al observarse algunos tubos que se encuentran perpendiculares al plano de observación, señalados en Figura 6.1.1-1. Se infiere de las mismas imágenes que se trata de nanotubos abiertos en sus extremos.

Figura 6.1.1-1Imágenes TEM de la muestra 15CI con magnificaciones 250000x (a) y 200000x (b). Se señalan mediante flechas tubos perpendiculares al plano de observación.
Capítulo 6 – Caracterización de NTs

Se analizaron las imágenes mediante el software *ImageJ Image Proccesing and Analysis in Java*¹. Obteniéndose las distribuciones de diámetro interno y diámetro externo que se adjuntan a continuación (Figura6.1.1-2). El diámetro interno promedio obtenido es de 5,9nm (desviación estándar: 1,4nm) y el diámetro externo 12,1nm (desviación estándar: 2,0nm).

Figura6.1.1-2 – Distribuciones de diámetros internos (a) y externos (b) obtenidas analizando imágenes TEM para la muestra NT_15CI.

6.1.2 Muestra NT_18B

De forma análoga se obtuvo un diámetro interno promedio de 4,7nm (desviación estándar: 1,1nm) y diámetro externo promedio de 12,5nm (desviación estándar: 2,4nm) para el caso de la muestra R'm24_0/8 (18B), ver Figura6.1.2-1.

Figura6.1.2-1 - Distribuciones de diámetros internos (a) y externos (b) obtenidas analizando imágenes TEM para la muestra NT_18B.

¹http://rsb.info.nih.gov/ij/

6.1.3 Muestra NT_4C

Para la muestra 4C se obtuvo un diámetro interno promedio de 4,4nm (desviación estándar: 1,3nm) y diámetro externo promedio de 10,1nm (desviación estándar: 2,9nm).

Figura6.1.3-1 - Distribuciones de diámetros internos (a) y externos (b) obtenidas analizando imágenes TEM para la muestra NT_4C.

6.2 CARACTERIZACIÓN TEXTURAL

6.2.1 NT_15CI

Se determinó la superficie específica de los NT mediante el método BET, utilizando un equipo Beckman Coulter SA3100. La temperatura de desgaseo fue de 50°C y el tiempo 10hs, realizando dos réplicas². Se obtuvo un área BET de 286m²/g, volumen total de poros 0.947mL/g y radio promedio de poros 6,7nm utilizando el modelo BJH. No se observó presencia significativa de microporos.

La isoterma de adsorción – desorción de nitrógeno (Figura 6.2.1-1) muestra un ciclo de histéresis característico de sólidos mesoporosos del tipo IV según la clasificación de Brunauer, asociado al fenómeno de condensación capilar. El ciclo de histéresis puede ser clasificado, de acuerdo con la IUPAC, intermedio entre los tipos H1 ($0.5 < \frac{p}{p_0} < 0.8$) y H3 ($\frac{p}{p_0} > 0.8$) [1]. El tipo H1 es característico de poros uniformes en el interior

² El análisis fue llevado a cabo por Angie Quevedo del grupo de Fisicoquímica – DETEMA de Facultad de Química.

Capítulo 6 – Caracterización de NTs

de los agregados de partículas, puede asociarse al volumen hueco de NT abiertos en las dos extremidades. La extensión hacia presiones mayores indica presencia de poros de mayor tamaño que podrían asociarse a poros externos a los tubos en los agregados de partículas [2].

Suponiendo que la totalidad de la muestra está compuesta por estructuras tubulares abiertas en ambos extremos, a partir del valor experimental de superficie específica puede estimarse un espesor promedio de pared. De la ecuación (1) se deriva que la superficie específica (S) dependería, según este supuesto, únicamente del espesor y la densidad del material. En la misma S_{ext} y S_{int} hacen referencia a la superficie externa e interna del tubo respectivamente, V_{tubo} es el volumen no hueco del tubo, R_{int} es el radio interno, *e* es el espesor de pared y ρ la densidad del material.

$$S = \frac{S_{\text{ext}} + S_{\text{int}}}{\rho V_{\text{tubo}}} = \frac{2\pi L(R_{\text{int}} + e) + 2\pi L R_{\text{int}}}{\rho \pi L[(R_{\text{int}} + e)^2 - R_{\text{int}}^2]} = \frac{2}{\rho e}$$
(1)

Considerando una composición $H_2Ti_2O_5 \cdot 0.7(H_2O)$ con 2 fórmulas unidad por celda unidad de volumen aproximado 190.27Å³, la densidad del material sería 2.00uma/Å⁻³ (3322,07g/m³) y el espesor de pared promedio estimado de 2,1nm.

En lo que respecta a la distribución de mesoporos, como puede observarse en las curvas de la Figura 6.2.1-2, estas presentan valores máximos en la zona de diámetros entre 5 y 11nm. Estos valores son del orden de lo observado por microscopía electrónica de transmisión (~6nm). Debido a que en este método se incluyen los poros externos a los nanotubos (cavidades huecas en los conglomerados de NT), se obtiene un valor sobreestimado del radio promedio del tubo. Otra restricción de este método es que, supone que la tensión superficial del nitrógeno líquido no depende del radio del menisco, lo que no es necesariamente cierto en poros de pequeños diámetros (\leq 4nm) [2].

Capítulo 6 - Caracterización de NTs

Figura 6.2.1-1 – Isotermas de adsorción desorción de N₂ a 77K, correspondientes a la muestra NT_15CI.

Figura 6.2.1-2– Distribución de volumen de poros BJH. El gráfico inserto corresponde a un acercamiento en la zona de poros de diámetros promedio (D_p) menores a 14nm.

Capítulo 6 – Caracterización de NTs

6.2.2 NT_18B & NT_18C

Las superficies BET obtenidas en estos casos fueron 115m²/g y 187m²/g y los diámetros promedio según el modelo BJH de 7,8nm y 8,9nm.

Figura 6.2.2-1 - (a) y (c) Isotermas de adsorción desorción de N₂ a 77K y (b) y (d) distribución de volumen de poros BJH correspondientes a las muestras NT_18B y NT_18C respectivamente.

6.2.3 NT_4C

Se obtuvo un área BET de $213m^2/g$ y radio promedio de poros de 5,2nm.

Capítulo 6 - Caracterización de NTs

Figura 6.2.3-1 –(a) Isotermas de adsorción desorción de N_2 a 77K y (b) distribución de volumen de poros BJH correspondientes a la muestra NT_4C.

6.3 ANÁLISIS ELEMENTAL

Se realizó el análisis elemental de la muestra NT_15CI, siendo el porcentaje en masa de H obtenido de 1,727%. Por otro lado los análisis por EDS no revelaron presencia de sodio. Suponiendo en primer lugar que la totalidad de agua medida fuese estructural y en segundo lugar que se trate de un compuesto del tipo $H_2Ti_2O_5 \cdot nH_2O$, se obtiene n=0.63.

6.4 CARACTERIZACIÓN ESTRUCTURAL – ANÁLISIS POR DIFRACCIÓN DE RAYOS X DE POLVO

6.4.1 Introducción

Se observó en primer lugar que la muestra difracta poco lo que está de acuerdo con la baja coherencia principalmente en la dirección radial de las nanoestructuras. Por este motivo, y luego de ensayar varias configuraciones de rendijas, se decide realizar la adquisición de datos con las rendijas en su apertura máxima,

considerandoposteriormente los artefactos introducidos. Por un lado, el alto backgrounden la zona de ángulos bajos asociado a que parte del haz baña el porta muestras. Por otro lado, debido a que no todo el haz está alcanzando a la muestra la intensidad del pico a menor ángulo se ve afectada viéndose su intensidad relativa disminuida.

Figura 6.4.1-1 – Difractograma de la muestra NT_15CI. Se realizó la medida con un paso de 0.02° y 36s por paso, 40kV, 30mA.

El diagrama obtenido presenta características generales típicas de los correspondientes a nanotubos de titanatos laminares. En primer lugar, la señal a ángulos bajos es característica del espaciamiento interplanar asociado a las láminas de octaedros [TiO₆]. El ancho de pico está de acuerdo con cristalitasnanométricas. Por otro lado se observan que dos picos (en 20 aproximadamente 24.2° y 48.4°) son considerablemente más angostos los cuales podrían estar indicando la dirección de crecimiento de los tubos (dirección en la cual el dominio cristalino es mayor). Suponiendo que los nanotubos fuesen de titanatos laminares, el pico en $20 = 48.368^{\circ}$ sugeriría que la dirección de crecimiento sería a lo largo del eje *b*en el caso de las fases H₂Ti₃O₇[3],H₂Ti₂O₄(OH)₂[4], H₂Ti₄O₉·H₂O[5] y H_xTi_{2-x/4}O₄·H₂O[6] o *a* si se tratase H₂Ti₅O₁₁·H₂O [7].

Existe en la literatura un gran número de fases propuestas como constituyente de los nanotubos sintetizados vía métodos hidrotermales, habiendo aún hoy ciertas controversias. De la comparación con la base de datos, surge que dentro de los titanatos laminares reportados el que más se asimila en cuanto al patrón de difracción es la fase cristalográfica $H_2Ti_2O_5$ · H_2O (PDF N°47-124), pudiendo ser alguna de las reflexiones explicadas considerando el polimorfo anatasa de TiO₂. De todas formas el ajuste es muy

pobre y existen notorios problemas con las intensidades relativas y posiciones de algunos picos. Esto se muestra en la Figura 6.4.1-2y en la Tabla 6.4.1-1.

Figura 6.4.1-2 – Resultado de la comparación con la base de datos. Se indican los índices de Miller de los picos principales.

La interpretación de los diagramas obtenidos por difracción de rayos X, resulta compleja debido a una sumatoria de factores. Por un lado, como ya fue mencionado, se encuentran las características morfológicas de las muestras. Las dimensiones nanométricas y el carácter tubular de alta relación de aspecto. Por otro lado, debido a que por lo general se trata de titanatos ácidos hidratados se suma el hecho de que es difícil determinar la cantidad de agua "estructural" de la muestra y la cantidad de agua correspondiente a humedad adsorbida sobre las superficies de las partículas. Más aún, los átomos de hidrógeno poseen muy bajo factor de dispersión atómico por lo que se hace imposible poder determinar su posición mediante difracción de rayos X convencional. Esto genera que un porcentaje de las fases que aparecen en la base de datos no se encuentren resueltas (se dispone de indizados de las mismas). Por lo que se dificulta la interpretación, sobre todo a la hora de entender mecanismos de formación, intercambio iónico y transformaciones estructurales al realizar tratamientos térmicos. Por último, debido a que se trata de agregado de NT y que existe cierta distribución en

los diámetros de tubos y espesor de paredes, no se descarta que el intercambio iónico y grado de hidratación difiera entre partículas, por lo que el diagrama podría contener la suma de estas fases.

2θ(°)	d(Å)	I(u.a.)	Match	(hkl)	Observaciones
9.726	9.0862	876			Cercana a la reflexión (200) con d=9.0400Å para H ₂ Ti ₂ O ₅ ·H ₂ O
24.235	3.6694	1023	$H_2Ti_2O_5$ · H_2O	(110)	
25.552	3.4832	984	Anatasa	(101)	
28.050	3.1784	502	$H_2Ti_2O_5$ · H_2O	(310)	
32.215	2.7764	118			$H_2Ti_2O_5 \cdot H_2O$ presenta reflexión en d=2.6840 Å, correspondiente a (301)
38.337	2.3459	165			$H_2Ti_2O_5$ · H_2O presenta una reflexión en d=2.3060 Å, asociada a (501)
48.368	1.8803	1250	H ₂ Ti ₂ O ₅ ·H ₂ O & Anatasa	(020) _H & (200) _A	
49.331	1.8458	414	$H_2Ti_2O_5$ · H_2O	(220)	Cercana a (220) con d= 1.8510 Å correspondiente a H₂Ti₂O₅∙H₂O
50.206	1.8156	59			
54.037	1.6956	55	Anatasa	(211)	
59.242	1.5584	57			
62.699	1.4806	60	Anatasa	(204)	
68.155	1.3747	57			
69.780	1.3466	53			
76.192	1.2485	41			

 Tabla 6.4.1-1 Interpretación preliminar de reflexiones observadas.

A pesar de los números estudios existentes, el entendimiento sobre la estructura cristalina de los nanotubos aún es incompleto. En el acápite 6.4.3 se realiza un estudio teórico con el objetivo de aportar en la interpretación de este tipo de diagramas.

6.4.2 Análisis dimensional de dominios cristalinos en los NT a partir de DRX utilizando la ecuación de Scherrer

Para este análisis se ajustan los picos principales de difracción correspondientes al patrón de NT, según se enumeran en la Figura 6.4.2-1(a), se ensayan ajustes mediante curvas Voigt, Gaussianas y Lorentzianas para la estimación del ancho de pico a media altura (FWHM).

Capítulo 6 - Caracterización de NTs

Figura 6.4.2-1– Numeración de picos principales (NT_15CI) (a) y mejor ajuste correspondiente a los picos 1 (b), 2, 3, 4, 5 y 6 (c), 7 y 8(d).

En la tabla a continuación se listan los parámetros de ajuste y el tamaño del dominio cristalino obtenido empleando la ecuación de Scherrer (1). La dimensión dada por esta ecuación (d) corresponde al tamaño de la cristalita según la dirección normal a la familia de planos cristalinos correspondiente a la reflexión de Bragg analizada.

$$d = \frac{0.94*\lambda}{FWHM*\cos(\theta)} \tag{1}$$

Los tamaños calculados reflejan la alta relación de aspecto de las cristalitas. Los picos 2 y 7 se asocirían a familias de planos perpendiculares (o al menos no paralelos) al eje de los NTs, si bien los valores obtenidos (12,5nm y 14,8nm) son un orden de magnitud por debajo de lo esperado (según imágenes TEM el largo de los NT es del orden de los 100nm). Esto implica la existencia de otros efectos contribuyendo al ancho de pico. Dislocaciones, fallas de apilamiento e inhomogeneidades cristalinas según la dirección de crecimiento podrían explicar estos resultados. Por otro lado, y esto es válido para la

totalidad de las señales ajustadas, debido a las características del diagrama no puede afirmarse con certeza que los máximos anchos seleccionados correspondan a un único pico de difracción, podrían ser la superposición de varios.

Pico	2θ(°)	θ (°)	FWHM(°)	d(nm)	Mejor ajuste ^{****}	\mathbf{R}^2
1	9,687	4,844	2,54*	3,3	Voigt	0,9451
2	24,31	12,16	0,6809	12,5		
3	25,377	12,69	1,9594	4,3		0,9889
4	27,908	13,95	3,5803	2,4	Gaussiana	
5	32,018	16,01	4,2826	2,0		
6	38,384	19,19	4,4446	2,0		
7	48,379	24,19	0,6164	14,8	Lorontziono	0.0066
8	49,372	24,69	0,9568	9,5	Lorentziana	0,9900

 Tabla 6.4.2-1 – Parámetros de ajuste y resultados del tamaño de dominio cristalino (d) para cada dirección calculados según la ecuación de Scherrer.

* Se calcula según: FWHM = $0.5346 * w_L + (0.2166 * w_L^2 + w_G^2)^{1/2}$, siendo $w_G=1,92575 \text{ y } w_L=1,04027 * \text{Substracción del ancho de pico instrumental.}$

***En el caso de ajuste de picos múltiples (2-6 y 7-8) sólo se compararon ajuste con curvas Gaussianas y Lorentzianas.

En lo que respecta a los máximos 1, 4, 5 y 6, estos definen dimensiones de cristalita en el rango de 2.0 a 3.3nm por lo que podrían asociarse a planos cristalográficos paralelos al eje de los NTs. Este valor, si bien en promedio es menor, concuerda con el valor medio extraído a partir de las microscopías TEM (~3,1nm). Cabe señalar que debido a la morfología tubular de las partículas, a cada familia de planos paralelos al eje del nanotubo puede asociarse una distribución de espaciamientos interplanares. Esto produce un ensanchamiento de los picos observados debido a que corresponden a la superposición de las señales asociadas a dicha distribución. En la Figura 6.4.2-2 se esquematiza este efecto. Lo que es coherente con el menor valor de d obtenido.

Los picos 3 y 8 dan tamaños intermedios (4,3nm y 9,5nm respectivamente). Estos se ven el diagrama como hombros en los picos 2 y 7 por lo que su ajuste resulta menos confiable que el resto por lo tanto no serán tomados en cuenta.

Capítulo 6 - Caracterización de NTs

Figura 6.4.2-2— Esquema que muestra el ensanchamiento de un pico de difracción debido a la distribución de espaciamientos interplanares asociados a una familia de planos cristalográficos en nanopartículas de morfología tubular. Figura extraída de: Estimating Crystallite Size Using XRD, Scott A Speakman, Ph.D., MIT Center for Materials Science and Engineering, <u>http://prism.mit.edu/xray</u>

6.4.3 Influencia de las dimensiones y morfología de las partículas en el patrón de difracción -MODELOS DE NANOTUBOS EN TAMAÑO REAL

Se estudia la influencia de las dimensiones y morfología de los nanotubos en el patrón de difracción rayos X mediante la simulación de diagramas para modelos de tubos. De entre las fases propuestas como constituyentes de los nanotubos sintetizados mediante métodos hidrotermales alcalinos, se seleccionan los titanatos de hidrógeno derivados deH₂Ti₂O₅·H₂O (específicamente H₂Ti₂O₅·0.5H₂O y H₂Ti₂O₅·H₂O) y H₂Ti₃O₇ (específicamente H₂Ti₃O₇·2H₂O). Se trabaja además con el polimorfode dióxido de titanioTiO₂(B), también propuesto como fase de los nanotubos luego de deshidratación mediante tratamiento térmico de los titanatos de hidrógeno.

Cabe señalar que en forma previa, y como se discute en el Capítulo 9, se realizó un estudio mediante DFT para la resolución de las estructuras de los titanatos $H_2Ti_2O_5 \cdot 0.5H_2O$, $H_2Ti_2O_5 \cdot H_2O$ y $H_2Ti_3O_7 \cdot 2H_2O$. En el caso del trititanato $H_2Ti_3O_7$ se

Capítulo 6 – Caracterización de NTs

utiliza la estructura reportada ICSD 41055³. A partir de estas, se realizan modelos de tubos, considerando dirección periódica, superficie expuesta y sentido de enrollamiento reportados en literatura. El diámetro medio y el espesor de pared seleccionados corresponden a los valores observados por microscopía de transmisión. Cabe aclarar que los tubos no fueron optimizados mediante cálculos DFT. Son modelos ideales construidos a partir de cortes de las estructuras en bulk y enrollamiento de las mismas. Estas estructuras podrían resultar estables o no en la naturaleza, pero no es el objetivo en este punto determinarlo. El objetivo concreto de esta sección es aportar en el entendimiento de la influencia de la dimensionalidad en el patrón de difracción y seleccionar cual fase se aproxima más a los resultados experimentales obtenidos en vista a la caracterización estructural.

Se simulan los diagramas de polvo mediante el código Mercury 3.0. Para ello se genera un archivo CIF que incluye el anillo correspondiente a la sección transversal del tubo al que se agrega vacío (aproximadamente 100Å) en las direcciones normales al tubo.

$I - H_2 Ti_2 O_5 \cdot 0.5 H_2 O$

Se construyen nanotubos a partir del polimorfo $H_2Ti_2O_5 \cdot 0.5H_2O$ de superficie expuesta paralela a la superficie (010) tal que la dirección radial coincide con el parámetro de celda b^4 , la dirección tangencial coincide con el parámetro de celda *cy* eje según la dirección [100] según observaciones experimentales[2]. Se comparan los diagramas simulados a partir de nanotubos del tipo enrollamiento en espiral ("scroll-type") y nanotubos concéntricos de pared simple (SW) y doble (DW)⁵. El número de láminas de octaedros [TiO₆] que conforman las paredes de los nanotubos son 2 y 4 en los casos SW y DW respectivamente. En la Figura 6.4.3-1se esquematiza el esquema de construcción a partir de la celda unidad y se comparan los diagramas simulados para el caso de la

 $^{^{3}}$ Esta no incluye los átomos de oxígeno, por lo que el modelo se realiza únicamente con los planos de octaedros [TiO₆].

⁴ Nota: Existe una discrepancia en la nomenclatura de los parámetros de red para esta fase con respecto a la literatura debido a que se respetó la nomenclatura del compuesto $HNaTi_2O_5$ a partir del cual, mediante sustitución y optimización, se obtuvo la estructura utilizada para $H_2Ti_2O_5.0.5H_2O$. *a*corresponde al parámetro *b* y viceversa.

⁵Se refiere a pared simple los generados a partir de un slab de espesor un parámetro de celda (b, lo que implica $e=b*cos(\alpha-90^\circ)$) y pared doble a los generados a partir de un slab del doble de ancho (o en el caso de enrollamiento en espiral a dos vueltas del slab simple).

estructura en bulk, los NT tipo espiral y los datos experimentales. En la Figura 6.4.3-2 se comparan los resultados obtenidos con los modelos de NT concéntricos.

Figura 6.4.3-1 - (a) Celda unidad optimizada de la fase $H_2Ti_2O_5 \cdot 0.5H_2O$. (b) segment de slab (010). Modelos de nanotubos de $H_2Ti_2O_5 \cdot 0.5H_2O$ de enrollamiento en espiral: (c) NT de pared simple, $D_{int}=8.4nm$, $D_{ext}=12nm$ y e=1.6nm, (d) NT de pared doble de $D_{int}=8.4nm$, $D_{ext}=14.8nm$ y e=3.2nm. (e) Comparación del diagrama de difracción de RX experimental y los simulados para el bulk, los modelos de NTs considerando modelo periódico.

Capítulo 6 - Caracterización de NTs

Figura 6.4.3-2 – Modelos de nanotubos de $H_2Ti_2O_5 \cdot 0.5H_2O$ de enrollamiento concéntrico: (a) NT de pared simple $D_{int}=7.4$ nm, $D_{ext}=10.6$ y e=1.6nm, (b) NT de pared doble de $D_{int}=5.7$ nm, $D_{ext}=12.4$ nm y e=3.3nm. (c) Comparación del diagrama de difracción de RX experimental y los simulados para el bulk y los modelos de NTs considerando modelo periódico.

Figura 6.4.3-3- Comparación de los diagramas simulados para los modelos de NTs de H₂Ti₂O₅·0.5H₂O.

Capítulo 6 – Caracterización de NTs

Resulta claro que los modelos obtenidos a partir de la estructura $H_2Ti_2O_5 \cdot 0.5H_2O$ no explican los resultados experimentales (Figura 6.4.3-3).En la zona de ángulos bajos, correspondiente al espaciamiento interplanar de las láminas de octaedros [TiO₆], que coincide con la dirección radial de los tubos, se obtiene una mejor representación considerando los modelos de pared simple. De todas formas, dicha reflexión se encuentra a ángulos menores reflejando que la distancia interplanar modelada es mayor que la experimental. La señal correspondiente a la dirección del eje del tubo (200) también se encuentra corrida a ángulos menores indicando discrepancia en el parámetro de red *a*. Por último, e independientemente de lo que podría explicarse como una contracción de los parámetros de red calculados, la zona en $2\theta = 20-40^{\circ}$ no se asemeja a los datos experimentales siendo evidente las diferencias en posiciones de pico e intensidades relativas.

Para esta fase, se realizó un modelo adicional utilizando los mismos planos (010) de construcción pero cambiando el sentido de enrollamiento tal que la dirección tangencial coincidiera con el parámetro a y la dirección axial con c. La discrepancia en este caso es aún más evidente (Figura 6.4.3-4).

Figura 6.4.3-4 – Diagrama simulado a partir del modelo de nanotubo de $H_2Ti_2O_5 \cdot 0.5H_2O$ de enrollamiento concéntrico, pared simple $D_{int}=7.4$ nm, $D_{ext}=10.6$ y e=1.6nm, dirección tangencial *a* y dirección axial *c*.

De éste ejemplo resulta notoria la dependencia del patrón de difracción con el tipo de nanotubo para determinado polimorfo. Observándose variaciones según el espesor de pared y el tipo de enrollamiento además de las más claras dependientes de la dirección de crecimiento y la dirección radial. Siendo muy limitada la comparación directa del patrón con de difracción del bulk.

II -H₂Ti₂O₅·H₂O

Se estudian nanotubos de dititanatocon mayor contenido de agua estructural $(H_2Ti_2O_5 \cdot H_2O)$ debido a los resultados arrojados por análisis elemental. Nuevamente se construyen a partir del enrollamiento de planos (010), siendo la dirección axial *a* y la dirección tangencial *b*. Se realizan modelos concéntricos debido a la mayor coherencia según la dirección radial en comparación con los tubos enrollados en espiral.

Figura 6.4.3-5 – Modelos de nanotubos de $H_2Ti_2O_5$ · H_2O de enrollamiento concéntrico: (a) NT de pared simple $D_{int}=7.1$ nm, $D_{ext}=11$ nm y e=2.0nm, (b) NT de pared doble de $D_{int}=5.0$ nm, $D_{ext}=13$ nm y e=4.0nm. (c) Comparación del diagrama de difracción de RX experimental y los simulados para el bulk y los modelos de NTs considerando modelo periódico.

Se observaron discrepancias análogas al caso anterior en las señales correspondientes a las direcciones axial y radial, siendo mayor el corrimiento en 2 θ a ángulos menores debido al mayor espaciamiento entre láminas de octaedros asociado al mayor contenido de agua entre láminas.En la zona del diagrama 2 θ = 20-40° se nota un aumento en la intensidad relativa de la señal asociada a los planos (1,2,0) (1,-2,0) del bulk pero que aún no refleja la relación experimental.

$III - H_2 T i_3 O_7$

Para el caso de nanotubos de trititanato ácido $(H_2Ti_3O_7)$ se partió de la estructura bulk del compuesto $D_2Ti_3O_7$ reportada por Feist y Davies (ICSD 41055)[8]. En la misma las posiciones de los de los 8 átomos de deuterio no están determinadas, por lo que estos modelos se realizan plegando las láminas de octaedros [TiO₆] sin incluir a los átomos de H. Debido, al bajo poder de dispersión del H se considera que este punto no va a afectar en forma significativa los resultados.

Los NT son obtenidos mediante el enrollamiento de planos (100) alrededor del [010] siendo la dirección tangencial c, según observaciones de HRTEM reportadas en literatura⁹. Se construyen de diámetro medio 9nm, y espesor de pared de acorde a 2, 3 y 4 capas de octaedros [TiO₆] (SW, 1.5W y DW respectivamente).

Figura 6.4.3-6 – Modelos de nanotubos de $H_2Ti_3O_7$ de enrollamiento concéntrico: (a) NT de pared simple $D_{int}=7.5$ nm, $D_{ext}=11$ nm y e=1.5nm, (b) NT de pared doble de $D_{int}=6.0$ nm, $D_{ext}=12$ nm y e=3.0nm. (c) Comparación del diagrama de difracción de RX experimental y los simulados para el bulk y los modelos de NTs considerando modelo periódico. Las dimensiones del modelo 1.5W son $D_{int}=6.9$ nm, $D_{ext}=11.4$ nm y e=2.2nm.

Cap. 6 - 20/46

Capítulo 6 – Caracterización de NTs

Se obtiene una mejor representación de los datos experimentales en el caso del modelo de nanotubo concéntrico de pared simple. Se observa coincidencia de las señales principales asociadas a las direcciones axial y radial. Por otro lado, existe una buena representación del pico correspondiente a la reflexión (1,1,0) del bulk. La intensidad relativa del pico (0,2,0) se ve aumentada en diagrama simulado. Esto es debido a que para simular el diagrama el modelo es periódico según esa dirección (mientras que experimentalmente se estimó una longitud de coherencia de alrededor de 15nm) lo que también explica el menor ancho de pico observado para el diagrama simulado.

Figura6.4.3-7 – Diagramacorrespondiente al modelo de NT de $H_2Ti_3O_7$ de enrollamiento concéntrico y pared simple.

Figura 6.4.3-8 – Representación esquemática de un segmento de nanotubo concéntrico de pared simple. El mismo consta de seis celdas unidad de la estructura Ti-O del compuesto $H_2Ti_3O_7$ repetidas según la dirección [100] en el que se indican las familias de planos cristalográficos de índices de Miller (110), (020) y (200).

Capítulo 6 – Caracterización de NTs

$IV - H_2Ti_3O_7 \cdot 2H_2O$

Impulsado por el contenido de agua estimado por análisis elemental y análisis termogravimétrico, se optimiza en forma teórica la estructura $H_2Ti_3O_7$ ·2 H_2O para la construcción de tubos concéntricos de pared simple y pared doble en forma análoga a los correspondientes a los de $H_2Ti_3O_7$. Los patrones de difracción simulados se apartan del experimental (Figura 6.4.3-9).

Figura 6.4.3-9 - Modelos de nanotubos de $H_2Ti_3O_7 \cdot 2H_2Ode$ enrollamiento concéntrico: (a) NT de pared simple $D_{int}=7.1$ nm, $D_{ext}=11$ nm y e=2.0nm, (b) NT de pared doble de $D_{int}=5.0$ nm, $D_{ext}=13$ nm y e=4.0nm. (c) Comparación del diagrama de difracción de RX experimental y los simulados para el bulk y los modelos de NTs considerando modelo periódico.

$V - TiO_2(B)$

Se realizan modelos a partir del polimorfo $TiO_2(B)$ mediante el enrollamiento de planos (001) y eje paralelo al parámetro de red *b*. Se selecciona este tipo de enrollamiento de acuerdo a resultados teóricos en los que se observó una excepcionalmente baja energía de formación de los modelos bidimensionales de superficie expuesta paralela a los planos $(001)^6$. La dirección del eje se elige acorde al diagrama experimental. Los tubos así construidos concuerdan con modelos propuestos en la literatura¹⁰.

Como era de esperar, los diagramas simulados no describen adecuadamente los datos experimentales de los nanotubos antes de los tratamientos térmicos (Figura 6.4.3-11Figura...). Sin embargo, representan en parte los diagramas obtenidos luego del calentamiento a 300° C, temperatura a la cual comienzan a coexistir con el polimorfo anatasa. Estos resultados están de acuerdo con el mecanismo de transformación en varios pasos de nanotubos de H₂Ti₃O₇ a nanotubos de TiO₂(B) propuesto por Morgado Jr. y colaboradores¹¹, siendo notoria la aparición de la fase anatasa a temperatura más bajas en el caso en estudio.

Figura 6.4.3-10Modelos de nanotubos de TiO₂(B) de enrollamiento concéntrico: (a)D_{int}=5.6nm, D_{ext}=9.3nm y e=1.9nm, (b) D_{int}=6.0nm, D_{ext}=12.6nm y e=3.3nm. (c) Comparación del diagrama de difracción de RX experimental y los simulados para el bulk y los modelos de NTs considerando modelo periódico.

⁶Estos resultados se muestran en el Capítulo 9.

Capítulo 6 - Caracterización de NTs

Figura 6.4.3-11 – Comparación del diagrama correspondiente al modelo de pared 3.3nm, los diagramas experimentales de los NTs calentados a 300°C y 350°C, y los patrones de la fases bulk anatasa y $TiO_2(B)$. Se indican los índices de Miller de las reflexiones correspondientes a anatasa.

Modificaciones estructurales de los nanotubos de $H_2Ti_3O_7$

De la comparación de los modelos propuestos surge que, a pesar de las discrepancias existentes, el que mejor describe los resultados experimentales es el correspondiente a la fase $H_2Ti_3O_7$ de pared simple. Con el objetivo de mejorar el ajuste se estudia la deformación de la estructura mediante el cálculo del patrón de difracción considerando segmentos de tubos de diferente longitud a lo largo de la circunferencia (Figura 6.4.3-12) con el fin de simular una disminución de la coherencia asociada a posibles distorsiones de la estructura del tubo, acorde con lo expuesto por Bruce [10] y colaboradores para el caso de nanotubos de TiO₂(B). Sin embargo, no se observa una mejora en la descripción del diagrama experimental al considerar los segmentos.

Por otro lado, debido a que los nanotubos sintetizados presentan una distribución de tamaños, se realiza un estudio variando el diámetro medio del tubo (manteniendo el espesor de pared constante) para analizar el efecto de la curvatura en la señal de difracción. La variación en la curvatura del tubo modifica las distancias entre pares de átomos, lo que se ve reflejado en la señal de difracción (Figura 6.4.3-13). Para simular el patrón de difracción con mayor precisión debería considerarse la distribución de tamaños existente en la muestra, superponiendo los diagramas correspondientes.

Capítulo 6 - Caracterización de NTs

Figura 6.4.3-12– (a) Comparación de diagramas calculados para segmentos de tubos de distinta extensión a lo largo de la circunferencia. (b) Vista transversal de los segmentos de tubo utilizados, los mismos son periódicos según la dirección del eje del tubo.

Figura 6.4.3-13 – Comparación de los diagramas obtenidos para tubos de pared simple de diámetro medio entre 2nm y 12nm con el diagrama experimental. Se considera también un modelo bidimensional (slab) como caso límite de radio tendiendo a infinito.

Capítulo 6 – Caracterización de NTs

Validación del método de simulación

Por último, se comparan los resultados por este método de cálculo del patrón de difracción con los arrojados mediante el uso de la ecuación de Debye mediante el código *DEBYE Simulation program for poder diffraction* [12].Para ello se toma el nanotubo de menor diámetro medio (2nm)⁷.

Al simular el patrón de difracción suponiendo una longitud de tubo del orden de coherencia determinado experimentalmente mediante la ecuación de Scherrer (~15nm) mediante la ecuación de Debye se observa que disminuye la intensidad relativa del pico (0,2,0) asociado a los planos perpendiculares al eje. Esto es coherente ya que en el método empleado se asume periódica esta dirección. De la variación de la longitud del tubo calculado por Debye se ve una mejor concordancia entre métodos al emplear tubos de largo 1µm.

Por lo anterior, debe considerarse que en los patrones calculados asumiendo modelo periódico existe un angostamiento de las señales asociadas a la dirección periódica así como un aumento en su intensidad relativa debido al método de cálculo.

Figura 6.4.3-14 – Diagrama obtenido por el método de Debye para el nanotubo de $H_2Ti_3O_7$ de $D_m=2nm$ asumiendo tubo de longitud 40*b*.

⁷Esto se debe a una limitación en el número de átomos que lee el programa utilizado para la simulación.

Capítulo 6 – Caracterización de NTs

Figura 6.4.3-15 - Diagrama obtenido por el método de Debye para el nanotubo de $H_2Ti_3O_7$ de $D_m=2nm$ asumiendo tubo de longitud 250*b*.

Figura6.4.3-16- Diagrama obtenido por el modelo periódico mediante el código Mercury para el nanotubo de $H_2Ti_3O_7$ de $D_m=2nm$

6.4.4 Análisis de orientación preferencial mediante Rocking Curves

Se realizó un barrido en θ el rango θ =14-34° alrededor de la condición de Bragg asociada a la familia de planos perpendicular al eje de los nanotubos (0,2,0), 2 θ fijo en 48.45°, con el objetivo de determinar si la muestra presentaba orientación preferencial que afecte la intensidad relativa de los picos.

Capítulo 6 – Caracterización de NTs

Figura 6.4.4-1 – Rocking curve de la muestra de nanotubos NT15CI. Se realizó un barrido en θ el rango θ =14-34° alrededor de la condición de Bragg seleccionada (2 θ fijo en 48.45°). Las condiciones empleadas 40kV, 30mA, paso de 0.02°.

La forma de la curva no presenta clara evidencia de orientación preferencial de las partículas⁸. Por lo que puede inferirse que la muestra se trata de un polvo de nanotubos, en el cual las partículas (o conglomerados) se encuentran orientados en forma aleatoria.

6.4.5 Dispersión de rayos X a ángulos bajos

Nuestro grupo de investigación dispone de un difractómetro de polvo, multipropósito, Rigaku ULTIMA IV. En el mismo es posible caracterizar thin films (capas finas), mediante reflectometría de rayos X (XRR) y dispersión a ángulo bajo en geometría dispersiva (SAXS). Ambas técnicas son complementarias, por ejemplo mediante el uso de XRR es posible medir el espesor de las capas, densidad promedio y rugosidad superficial. Estos dos últimos parámetros son muy importantes, ya que pueden ser utilizados para los siguientes procesos de refinamiento de datos SAXS, donde se posible

⁸Queda pendiente, y se propone para un trabajo posterior, el análisis de la dependencia de absorción de la muestra con la geometría del experimento que permita entender la variación de la intensidad difractada con el ángulo θ .

refinar morfología, relación de aspecto L/D (largo sobre diámetro), distancia entre objetos y la distribución de tamaños para el sistema en estudio.

Figura 6.4.5-1 - Esquema de información factible de obtener mediante XRR

Mediante análisis por SAXS se obtuvo un diámetro medio de partícula de 2.6nm y una distancia a vecino más cercano de 5.8nm. Debido a que el método es sensible a contraste en la densidad electrónica de la muestra, se infiere que estos valores corresponden a una estimación del espesor de la pared de los tubos y al diámetro interno de los mismos. Ambos números están de acuerdo con lo observado por microscopía electrónica de transmisión (~3.1nm y 5.9nm). El ajuste de la señal SAXS y la distribución de tamaño de poros se muestra en la Figura 6.4.3-1.

Figura 6.4.5-2- Ajuste de la señal SAXS y curva de distribución de tamaño de poros.

6.5 ESPECTROSCOPÍAS INFRARROJA Y RAMAN

6.5.1 Espectroscopía IR

La banda ancha alrededor de 3400cm⁻¹ y la señal en 1630cm⁻¹ se asocian a los modos vibracionales de estiramiento y flexión (δ_{H-O-H}) de moléculas de H₂O (o H₃O⁺) respectivamente. Según literatura, señales cercanas a 3400cm⁻¹ y 3169cm⁻¹ se asocian a modos de estiramiento de grupos OH superficiales. El hombro alrededor de 3169cm⁻¹ es atribuido a la fuerte interacción Ti-OH. En el caso en estudio, este puede observarse pero corrido hacia números de onda superiores (alrededor de 3200cm⁻¹). La señal alrededor de 480cm⁻¹ y hombros en las regiones de 700cm⁻¹ y 910cm⁻¹ se relacionan a vibraciones Ti-O y Ti-O-Ti en la red. El pico cerca de 2360cm⁻¹ es debido al CO₂ del aire.

Figura 6.5.1-1 – Espectro de FTIR de la muestra de nanotubos NT_15CI en la región 400cm⁻¹-4000cm⁻¹. Se marcan los valores aproximados de números de onda de las señales observadas.

6.5.2 Espectroscopía Raman

Se obtuvieron espectros Raman comparativos de nanotubos de titanatos de hidrógeno (NT_15CI) y titanatos de sodio e hidrógeno (NT_18B) (Figura 6.5.2-1). En la Tabla 6.5.2-1 se listan los valores aproximados de número de onda de las seis bandas Raman observadas para cada fase, en conjunto con valores reportados en bibliografía. En ambos se observaron las señales características a 290cm⁻¹, 448cm⁻¹ y un multiplete alrededor de 668cm⁻¹. La asignación de estos picos todavía está bajo discusión. Han sido interpretados los picos en 448cm⁻¹ y 668cm⁻¹ como correspondientes a fonones asociados a las vibraciones Ti-O-Ti del cristal [2].

Comparando los espectros, existe gran similitud en la zona 250-550cm⁻¹. Para el caso de los nanotubos de titanato de sodio, existen dos picos anchos centrados en 296cm⁻¹ y 449cm⁻¹. A su vez se ve un hombro en el segundo pico en número de onda 434cm⁻¹. En el caso de los NTs de titanato de hidrógeno, el primer pico es menos definido y su máximo se encuentra en la región 290-300cm⁻¹. Mientras que el segundo se encuentra levemente corrido a número de ondas mayores 454cm⁻¹ con el hombro respectivo en 433cm⁻¹. Dentro de la resolución obtenida, se podría concluir que esta región es independiente del contenido de sodio y por lo tanto los modos deben asociarse a vibraciones Ti-O-Ti o eventualmente Ti-O-H.

Figura 6.5.2-1 – Espectros Raman de los nanotubos de titanatos.

NT 15CI	NT 18B	H- Ti-NT [13]	NT -L? [14]	NT-L [15]	NT-L [16]	H- Ti-NT [17]	Na/H- Ti-NT [17]	H- Ti-NT [18]
		146	145					146
		197	195	188	180	195		197
300	296	266	280	273	274	285	288	266
		398			396			398
433	434							
454	449	442	450	454	454	458	458	442
	634	639	640					639
652				663	663			
	710		700			700	710	
836		822			835	830	830	822
	905							
940			920		930	926	926	

Tabla 6.5.2-1 – Raman shift correspondiente a los NTs de titanato de hidrógeno y titanato de sodio (cm⁻¹).**NT-L** hace referencia a nanotubos de titanátos protónicos con estructura del tipo lepidocrocita. H-Ti-NT y Na/H-Ti-NT refieren a nanotubos de titanatos protónicos y titanatos de sodio e hidrógeno en forma

6.6 ESTABILIDAD TÉRMICA DE LOS NANOTUBOS

6.6.1 Análisis por microscopía electrónica de transmisión

El análisis por microscopía de transmisión de la muestra NT_15_CI prueba la existencia de nanotubos hasta temperaturas de 400°C donde es clara la coexistencia con material del tipo granular (Figura 6.6.1-1). No se observaron NT a 500°C (Figura 6.6.1-2) lo que implica que la morfología tubular es perdida por completo en el intervalo de temperatura de 400°C a 500°C. Las estructuras finales son del tipo nanorods de pequeña longitud. El diámetro externo promedio (Figura 6.6.1-3) obtenido a partir del análisis de microscopías TEM es de 12.8nm (desviación estándar: 2,7nm) coincide con el diámetro externo de los nanotubos de partida 12.1nm (desviación estándar: 2nm), lo que parecería indicar el colapso y fraccionamiento de los tubos originales.

Capítulo 6 – Caracterización de NTs

Figura 6.6.1-1Imágenes TEM luego de la muestra NT_15CI luego de calcinaciones sucesivas a 150°C (a), 200°C (b), 300°C (c), 350°C (d), 400°C (e) y 500°C (f). Las magnificaciones empleadas fueron 300000x, 200000x, 300000x, 300000x, 150000x y 200000x respectivamente.

Cabe señalar la importancia de este resultado que acota el rango de temperaturas para posibles aplicaciones de estos nanotubos. Específicamente, para el sinterizado de la capa de nanotubos de fotoelectrodos se deberá emplear temperaturas menores a 400°C.

Capítulo 6 - Caracterización de NTs

Figura 6.6.1-2 – Imagen TEM con magnificación 120000x correspondiente a la muestra luego de la calcinación a 500°C. No se observaron estructuras tubulares en este caso.

Figura 6.6.1-3 – Distribución de diámetros externos luego de calcinar a 500°C.

6.6.2 Análisis por DRX

Con respecto a la estabilidad de la estructura cristalográfica de la muestra se observa una evolución del patrón característico de titanatos laminares hacia el correspondiente a la fase anatasa. A partir de 500°C, la muestra está formada prácticamente en su totalidad por anatasa. Esto implica que los NRs obtenidos al calentar a 500°C son de dicha fase, lo que sugiere que en la transformación a la fase anatasa viene asociada a la pérdida de morfología tubular como ya ha sido observado [19]. Entre 600°C y 650°C comienza el cambio de fase al polimorfo rutilo. Los diagramas correspondientes se adjuntan en la Figura 6.6.2-1.

Se observa el corrimiento del primer pico hacia ángulos mayores. Esta reflexión, como ya fue mencionado, está asociada al espaciamiento interplanar entre las láminas de octaedros TiO₆ en los titanatos laminares. Se realizó el análisis por separado de la región $2\theta 5^{\circ}-20^{\circ}$ sustrayendo el background y realizando el ajuste del primer pico mediante curvas Voigt para cada set de datos. En la Figura 6.6.2-2 se muestra el ajuste y en la Tabla 6.6.2-1 los parámetros arrojados por el modelo. Se verifica un corrimiento en 20 de 9.69° a 14,69° asociado a una reducción de esta distancia interplanar desde un valor inicial 9,12Å a 6,24Å. Es esperable la disminución de este parámetro, ya que al aumentar la temperatura ocurre la deshidratación de la muestra disminuyendo la cantidad de agua entre láminas de octaedros. Se observa un comportamiento aproximadamente lineal hasta 350°C, ver Figura 6.6.2-3, Entre 350°C y 450°C se observó un leve aumento de esta distancia a 6,38Å. Para temperaturas la señal es muy débil en esta zona y no parece sufrir nuevas modificaciones.

Capítulo 6 – Caracterización de NTs

Figura 6.6.2-1 – Evolución del patrón de difracción de rayos X con calcinaciones sucesivas.

20(°)

Capítulo 6 - Caracterización de NTs

Figura 6.6.2-2 – (a) Evolución del pico a ángulos bajos con la temperatura. (b) Ajuste de los picos según modelos Voigt luego de sustraído el background.

T-LL-(()1	D. (. 1	X 7. • • • • • • • •	1	/ 1	1
Tabla 6.6.2-1 –	Parametros de	e annste d	e las curvas	Volgt nara	los picos a	angulos	balos
	i ulumettob de	ujuste u	e ius eur ius	, orge para	100 precos a	anguios	oujob

	y ₀	Xc	Α	wG	wL	r^2
NT_15CI	16.7(2.3)	9.687(0.012)	1368(42)	1.93(0.12)	1.04(0.16)	0.95
150°C	39.8(1.7)	10.741(0.032)	399(25)	2.59(0.20)	0.00(0.28)	0.70
200°C	46.1(1.5)	11.015(0.034)	531(15)	3.399(0.093)	0.000(0.056)	0.77
250°C	27.2(2.4)	12.577(0.050)	669(36)	5.00(0.19)	0.00(0.28)	0.71
300°C	41.6(2.2)	13.445(0.046)	644(27)	4.91(0.16)	0.00(0.28)	0.73
350°C	26.2(1.4)	14.191(0.039)	474(15)	3.65(0.11)	0.00()	0.73
400°C	25.3(1.2)	14.166(0.035)	482(14)	3.682(0.097)	0.00()	0.77
450°C	25.6(1.2)	13.865(0.056)	230(14)	3.16(0.19)	0.00(0.22)	0.51

Figura 6.6.2-3 – Evolución de la posición del primer pico (a) y el espaciamiento interplanar asociado (b) con la temperatura.

6.6.3 Análisis térmicos: TGA, DTA y DSC

El análisis termo gravimétrico (TGA) muestra una pérdida de masa continua hasta alcanzar una temperatura entre 350°C y 400°C, siendo la pérdida total 15,4% de la masa inicial (Figura 6.6.3-1). Esta se asocia a la deshidratación de la muestra. Pueden

Capítulo 6 – Caracterización de NTs

diferenciarse dos puntos de inflexión en la curva (a temperaturas 48,5°C y 98,3°C) los que podrían estar marcando la pérdida de dos tipos diferentes de aguas: humedad adsorbida sobre la superficie de la muestra y agua estructural ocupando espacios entre láminas de octaedros TiO₆ en las estructuras de titanatos. Debido a que luego de los lavados las muestras son secadas a una temperatura mayor a 50°C, se considera que al menos la masa de agua perdida hasta esa temperatura no corresponde a agua estructural y se excluye en el análisis composicional de los NTs. Esta corresponde al 2.6% de la masa inicial.Bajo este supuesto, el agua estructural perdida hasta 400°C corresponde al 12.8% en masa de la muestra conteniendo humedad. Esto equivale al 13.1% de la masa inicial de muestra seca, siendo una cota superior de contenido de agua, ya que parte podría estar asociada a humedad eliminada a temperaturas mayores a 50°C (Nota: a 80°C ya se perdió el 5.7% de la masa inicial).

A 622.5°C se detecta un pico adicional en la curva derivada, asociado a una nueva pérdida de masa (0.805% de la masa inicial, equivalente a 0.826% de la masa considerada libre de humedad)y luego para temperaturas mayores la masa se ve incrementada en un 2.54% (2.61% de la muestra seca). Este incremento no queda claro, podría interpretarse como una oxidación de material que presentara vacancias de oxígeno.

Figura 6.6.3-1 – Análisis termo gravimétrico (TGA) de la muestra NT_15CI.
El termograma obtenido mediante DTA presenta dos picos definidos a temperaturas bajas (38,8°C y 103,4°C) según se indica en la Figura 6.6.3-2. Esto concuerda con lo visto por TGA ya que pueden asociarse a procesos endotérmicos asociados a la deshidratación de la muestra. Pérdida de humedad y cambio de fase cristalográfica asociada a la deshidratación del titanato de hidrógeno.La región entre aproximadamente 200°C y 680°C es poco clara, parece caracterizarse por una serie de transformaciones endotérmicas.

Figura 6.6.3-2– Análisis térmico diferencial (DTA) de la muestra NT_15CI.

Capítulo 6 - Caracterización de NTs

Figura 6.6.3-3 – DSC para NT_15CI. En el gráfico inserto corresponde a la ampliación de la zona de temperaturas menores a 150°C.

6.6.4 Análisis elemental para evaluación del contenido de hidrógeno

El contenido porcentual en masa de hidrógeno varió entre 1,98% y 0,757% al calcinar hasta 450°C (Figura 6.6.4-1). Las muestras fueron mantenidas en desecador por lo que se considera despreciable la cantidad de agua de humedad (adsorbida sobre la superficie) y por ende el porcentaje de hidrógeno se asocia al contenido en la estructura. La muestra como fue sintetizada (en ausencia de tratamientos térmicos posteriores) posee 1,98% m/m de H, asumiendo que se trata de un titanato laminar de composición $H_2Ti_2O_5 \cdot nH_2O$, n=0.92, por otro lado si se tratase de un trititanato $H_2Ti_3O_7 \cdot mH_2O$, m=1.9.

Capítulo 6 – Caracterización de NTs

Figura 6.6.4-1 – Contenido porcentual de hidrógeno remanente luego de calcinaciones sucesivas a la temperatura indicada (rampa de 5°/C tiempo en la temperatura marcada de 2hs)

$$\begin{split} H_2 T i_2 \mathcal{O}_5 &\cdot 0.92 H_2 O \xrightarrow{150^\circ C} H_2 T i_2 \mathcal{O}_5 &\cdot 0.55 H_2 O + 0.31 H_2 O \\ H_2 T i_2 \mathcal{O}_5 &\cdot 0.55 H_2 O \xrightarrow{200^\circ C} H_2 T i_2 \mathcal{O}_5 &\cdot 0.40 H_2 O + 0.15 H_2 O \\ H_2 T i_2 \mathcal{O}_5 &\cdot 0.40 H_2 O \xrightarrow{250^\circ C} H_2 T i_2 \mathcal{O}_5 &\cdot 0.20 H_2 O + 0.20 H_2 O \\ H_2 T i_2 \mathcal{O}_5 &\cdot 0.20 H_2 O \xrightarrow{300^\circ C} H_2 T i_2 \mathcal{O}_5 &\cdot 0.14 H_2 O + 0.06 H_2 O \\ H_2 T i_2 \mathcal{O}_5 &\cdot 0.14 H_2 O \xrightarrow{350^\circ C} H_{1.55} T i_2 \mathcal{O}_{4.775} &+ 0.365 H_2 O \\ H_{1.55} T i_2 \mathcal{O}_{4.775} &\xrightarrow{450^\circ C} H_{1.30} T i_2 \mathcal{O}_{4.65} &+ 0.125 H_2 O \end{split}$$

En este caso, la pérdida de masa total asociada a estos pasos corresponde a un 11.2% de la masa total inicial. Para el caso de que se tratase de un trititanato, la deshidratación seguiría los pasos esquematizados a continuación y la pérdida de masa total porcentual sería de 11,9%

$$\begin{aligned} H_2 T i_3 O_7 \cdot 1.9 H_2 O &\xrightarrow{150^{\circ}C} H_2 T i_3 O_7 \cdot 1.35 H_2 O + 0.55 H_2 O \\ H_2 T i_3 O_7 \cdot 1.35 H_2 O &\xrightarrow{200^{\circ}C} H_2 T i_3 O_7 \cdot 1.11 H_2 O + 0.24 H_2 O \\ H_2 T i_3 O_7 \cdot 1.11 H_2 O &\xrightarrow{250^{\circ}C} H_2 T i_3 O_7 \cdot 0.81 H_2 O + 0.30 H_2 O \\ H_2 T i_3 O_7 \cdot 0.81 H_2 O &\xrightarrow{300^{\circ}C} H_2 T i_3 O_7 \cdot 0.71 H_2 O + 0.10 H_2 O \end{aligned}$$

Capítulo 6 – Caracterización de NTs

$$\begin{split} H_2 T i_3 O_7 & \cdot \ 0.71 H_2 O \xrightarrow{350^\circ C} H_2 T i_3 O_7 & \cdot \ 0.16 H_2 O + 0.55 H_2 O \\ H_2 T i_3 O_7 & \cdot \ 0.16 H_2 O \xrightarrow{450^\circ C} H_{1.95} T i_3 O_{6.975} + 0.185 H_2 O \end{split}$$

A 450°C existe un contenido de hidrógeno remanente del 0,757%. Porcentaje que se ajusta bien a la composición $H_{1.30}Ti_2O_{4.65}$ (o $H_2Ti_4O_9\cdot 0.3H_2O$) que equivale a $H_{1.95}Ti_3O_{6.975}$ (o $H_2Ti_6O_{13}\cdot 0.95H_2O$). Esto no explica lo observado en el análisis TGA si se considera que la totalidad de hidrógeno debe perderse mediante un mecanismo de deshidratación de la estructura. Sin embargo este valor es coherente con la pérdida del 0.8% en torno a los 622°C, lo que podría estar indicando que participa el oxígeno del medio en la pérdida de hidrógeno estructural.

6.7 CONCLUSIONES – CARACTERIZACIÓN DE NANOTUBOS

- Los nanotubos de titanato de hidrógeno obtenidos mediante la optimización de la ruta de síntesis (muestra NT_15_CI) presentan un diámetro interno de 5.9±1.4nm y diámetro externo de 12.1±1.4nm, según análisis por TEM. Los presentan alta área superficial (superficie BET de 286m²/g), lo que es favorable pensando en su aplicación en celdas DSSC.
- Medidas de dispersión de rayos X a ángulos bajos (SAXS) arrojaron un diámetro de partícula de 2.6nm y una distancia a partícula más cercana de 5.8nm. Debido a que el método es sensible a contraste en la densidad electrónica de la muestra, se infiere que estos valores corresponden a una estimación del espesor de la pared de los tubos y al diámetro interno de los mismos. Esto concuerda con lo observado por microscopía electrónica de transmisión (~3.1nm y 5.9nm).
- El estudio de las dimensiones de los dominios cristalinos mediante el método de Scherrer refleja la alta relación de aspecto de las cristalitas. Se obtuvieron

Capítulo 6 – Caracterización de NTs

dimensiones de 2.0-3.3nm coherente con el espesor de pared de los tubos y longitudes del orden de 15nm en la dirección.

- De la simulación del patrón de difracción de rayos X considerando modelos de nanotubos de tamaño real (en la dirección radial) de distintas fases de titanatos de hidrógeno se obtiene la mejor representación de los datos experimentales en el caso del modelo de nanotubo concéntrico de pared simple de fase H₂Ti₃O₇.
- En lo que respecta a la estabilidad térmica, se verifica la existencia de morfología tubular hasta temperaturas de 400°C donde es clara la coexistencia con material del tipo granular. No se observaron NT a 500°C lo que implica que la morfología tubular es perdida por completo en el intervalo de temperatura de 400°C a 500°C. Las estructuras finales son del tipo nanorods de pequeña longitud. El diámetro externo promedio obtenido a partir del análisis de microscopías TEM es de 12.8±2.7nm. Cabe señalar que este resultado que acota el rango de temperaturas para posibles aplicaciones de estos nanotubos. Específicamente, para el sinterizado de la capa de nanotubos de fotoelectrodos se deberá emplear temperaturas menores a 400°C.
- Con respecto a la estabilidad de la estructura cristalográfica se observa una evolución del patrón característico de titanatos laminares hacia el correspondiente a la fase anatasa. A partir de 500°C, la muestra está formada prácticamente en su totalidad por anatasa. Esto implica que los NRs obtenidos al calentar a 500°C son de dicha fase, lo que verifica que en la transformación a la fase anatasa viene asociada a la pérdida de morfología tubular. Entre 600°C y 650°C comienza el cambio de fase al polimorfo rutilo. Se verifica un corrimiento de la primera reflexión en 2θ de 9.69° a 14,69° asociado a una reducción de esta distancia interplanar desde un valor inicial 9,12Å a 6,24Å coherente con la deshidratación de la muestra y por lo tanto la disminución de la cantidad de agua entre láminas de octaedros. A partir de 450°C no parece haber más modificaciones en esa zona del diagrama.

Capítulo 6 – Caracterización de NTs

- El análisis termo gravimétrico (TGA) muestra una pérdida de masa continua hasta alcanzar una temperatura entre 350°C y 400°C, siendo la pérdida total 15,4% de la masa inicial. Esta se asocia a la deshidratación de la muestra. Pueden diferenciarse dos puntos de inflexión en la curva (a temperaturas 48,5°C y 98,3°C) los que podrían estar marcando la pérdida de dos tipos diferentes de aguas: humedad adsorbida sobre la superficie de la muestra y agua estructural ocupando espacios entre láminas de octaedros [TiO₆] en las estructuras de titanatos. Se estima que el agua estructural perdida hasta 400°C corresponde al 13.1% de la masa inicial de muestra seca, siendo una cota superior de contenido de agua, ya que parte podría estar asociada a humedad eliminada a temperaturas mayores a 50°C.
- El contenido porcentual en masa de hidrógeno (determinado por análisis elemental) varió entre 1,98% y 0,757% al calcinar hasta 450°C. Según el contenido inicial y asumiendo que se trata de un titanato laminar de composición H₂Ti₃O₇·mH₂O, m=1.9.

REFERENCIAS – CAPÍTULO 6

- [2] Dmitry V. Bavykin y Frank C. Walsh, "Titanate and Titania Nanotubes. Synthesis, Properties and Applications", *RSC Nanoscience & Nanotechnology* No. 12, **2010**
- [3] YangJ. J., JinZ. S., WangX. D., LiW., ZhangJ. W., ZhangS. L., GuoX. Y. y ZhangZ. J., *Dalton Trans*.2003, 20, 3898.
- [4]Nakahira A., Kato W., Tamai M., Isshiki T., Nishio K. y Aritani H., *J.Mater.Sci.* **2004**, 39, 4239.
- [5]Izaiva, H. et al. J. Chem. Phys., 1982,86,5023
- [6]Ma R. Z., Bando Y., Sasaki T., Chem. Phys. Lett. 2003, 380, 577.
- [7]Yang H. G., Zeng H. C., J. Am. Chem. Soc. 2005, 127, 270.
- [8] Feist T. P., Davies P. K., Journal of Solid State Chemistry 1992, 101, 275-295
- [9]Du G. H., Chen Q., Che R. C., Yuan Z. Y., Peng L. -M., Appl. Phys. Lett. 2001, 79, 3702.
- [10] Andreev Y. G., Bruce P. G., J. Am. Soc. 2008, 130,9931-9934
- [11]Morgado Jr E., Jardim P. M., Marinkovic B. A., Rizzo F. C., de Abreu M. A. S.,
- Zotin J. L., Araújo A. S., Nanotechnology 2007, 18, 495710.
- [12] J. Oddershede, **2007**, Ph.D. Thesis, Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
- [13] Qian L., Du Z-L, Yang S-Y, Jin Z-S, Journal of Molecular Structure2005, 749, 103-107
- [14] Ma R., Fukuda K., Sasaki T., Osada M., Bando Y., J. Phys. Chem. B2005, 109, 6210-6214
- [15] Gao T., Wu Q., Fjellvåg, Norby P., J. Phys. Chem. C2008, 112, 8548-8552
- [16] Gao T., Fjellvåg H., Norby P., Inorg. Chem. 2009, 48, 1423-1432
- [17] Kim S-J, Yun Y-U, Oh H-J, Hon S. H., Roberts C. A., Routray K., Wachs I. E., J. *Phys. Chem. Lett.* **2010**, 1, 130-135
- [18] Qian L., Du Z-L, Yang S-Y, Jin Z-S, Journal of Molecular Structure2005, 749, 103-107

^[1]Gregg S. J., Sing K. S. W., Adsorption, Surface Area and Porosity, Academic Press, London, 2nd edn., **1982**.

Capítulo 6 – Caracterización de NTs

[19] Zhang M., Jin Z., Zhang J., Guo X., Yang J., Li W., Wang X., Zhang Z., *Journal of Molecular Catalysis A: Chemical***2004**, 217, 203–210

Capítulo 5 – Síntesis de nanoestructuras

CAPÍTULO 5 – RESULTADOS Y DISCUSIÓN I

SÍNTESIS DE NANOESTRUCTURAS DE TIO₂ Y TITANATOS

Índice - Capítulo 5

5.1 \$	SÍNTESI	S HIDROTERMAL BAJO PRESIÓN ENDÓGENA2
	5.1.1	Observaciones generales – Etapa I "Barrido inicial de condiciones"2
	5.1.1.1	Influencia de los lavados5
	i –	- Ausencia de lavados
	ii	- Agente de lavado: HCl+H ₂ O vs. H ₂ O10
	iii	- Intensidad del tratamiento con ultrasonido entre lavados12
	5.1.1.2	Influencia del material de partida, la temperatura y el tiempo de reacción14
	5.1.2	Síntesis hidrotermal bajo presión endógena – Etapa II "Diseño de un experiemento"19
5.2 \$	SÍNTESIS	S HIDROTERMAL BAJO PRESIÓN ATMOSFÉRICA27
	5.2.1	Observaciones generales – síntesis hidrotermal bajo presión atmosférica28
	5.2.2	Conclusiones – síntesis hidrotermal bajo presión atmosférica
5.3 I	MÉTODO) SONOQUÍMICO32
5.4	HID	RÓLISIS DE PRECURSORES GLICOLADOS33
5.5	CON	CLUSIONES – SÍNTESIS DE NANOESTRUCTURAS DE TIO ₂ Y TITANATOS34
REFE	ERENCIAS	– CAPÍTULO 5

Capítulo 5 – Síntesis de nanoestructuras

5.1 SÍNTESIS HIDROTERMAL BAJO PRESIÓN ENDÓGENA

5.1.1 Observaciones generales – Etapa I "Barrido inicial de condiciones"

Empleando síntesis hidrotermales bajo presión endógena, se obtuvieron materiales de alta relación de aspecto (HAR, del inglés *"high aspect ratio"*), partiendo tanto de anatasa nanoestructurada, de rutilo micrométrico como de mezclas de ambos. En la Figura 5.1.1-1 se muestra un resumen de microscopías SEM para ejemplificar la diversidad de morfologías obtenidas. La Figura 5.1.1-2 se muestra imágenes TEM de algunas de las muestras para las cuales por SEM no fueron detectadas estructuras del tipo HAR.

Figura 5.1.1-1– Ejemplo de las distintas morfologías obtenidas en el barrido inicial utilizando el método hidrotermal en autoclave. Imágenes obtenidas con microscopía electrónica de barrido.

Capítulo 5 – Síntesis de nanoestructuras

Figura 5.1.1-2 Microscopías TEM de muestras 16A, 16B, 18B, 18C, 19A y 19B con magnificaciones 200000x, 150000x, 200000x, 250000x, 150000x y 300000x respectivamente. El segmento indicado en la escala corresponde a 100nm en todas las imágenes.

Las características de las síntesis de cada muestra se detallan en la Tabla 5.1.1-1. En la misma, la columna TiO₂ indica el precursor (A: anatasa, R: rutilo) siendo *m* la masa inicial. T_r y t_r hacen referencia a la temperatura y el tiempo del tratamiento alcalino respectivamente. N_{HCl} y N_{H2O} indican el número de lavados con ácido clorhídrico 0.1M y agua destilada respectivamente. Por último T_s y t_s corresponden a la temperatura y tiempo de secado de la muestra. Se adoptó como nomenclatura de las muestras la que se indica en el esquema a continuación.

Tiempo Precursor XyZ_N_{HCl}/N_{H2O} Lavados Temperatura

Capítulo 5 – Síntesis de nanoestructuras

X indica el precursor (A= antasa, R=rutilo, AR=mezcla 50% en peso de anatasa-rutilo). El segundo carácter (y) hace referencia a la temperatura del tratamiento hidrotermal, siendo:

- $a = temperatura alta (148 156^{\circ}C)$
- m = temperatura media (140 142°C)
- $b = temperatura baja (120 124^{\circ}C)$

Z es el tiempo de reacción y los números N_{HCl}/N_{H_2O} indican la cantidad de lavados: N_{HCl} lavados con HCl 0.1M y N_{H_2O} lavados con agua destilada.

Batch		Muestra	TiO ₂	m(g)	T _r (°C)	t _r	N _{HCl}	N _{H2O}	T₅ (°C)	ts
1	A B	Aa24_3/1 Aa24_3/1	А	1.001	150	24h	3 3	1 1	145	24h
	A	Am20_0/0					0	0		68h
2	B	$Am20_4/2(s)^{*1}$	Α	1.003	142	20h30min	4	2	115	45h
	С	Am20_4/2					4	2		45h
3	Α	Aa43_4/2(u)* ²	А	1 003	148	43h20min	4	2	115	24h
•	B	Aa43_4/2		1.005	140	45112011111	4	2	115	24h
5	Α	ARa39_4/2	A+R	0 506+0 507	150	39h	4	2	115	23h
-	B	ARa39_0/8	1111	0.50010.507	100	571	0	8	115	23h
6	Α	Ra22_4/2	R	0 999	150	22h30min	4	2	115	70h
Ŭ	B	Ra22_0/8		0.,,,,			0	8		70h
8	Α	Ra47_4/2	R	1.004	156	47h	4	2	115	69h
Ŭ	В	Ra47_0/8		1001	100	.,	0	8	110	69h
9	Α	ARa68_4/2	A+R	A+R 0.508+0.507	150	68h	4	2	80	45h
	B	ARa68_0/8			100		0	8	00	45h
	Α	Rm24_4/4			140	24h	4	4		-
16	B	Rm24_0/8	R	1.003			0	8	70	-
	C	Rm24_0/0					0	0		-
	Α	R'm24_1'/4* ³					1	4		24h
18	B	R'm24_0/8	R	1.503	140	24h40min	0	8	70	-
	C	R'm24_4/4					4	4		-
19	Α	Ab24_4/4	А	1 0147	120	24h	4	4	70	-
	B	Ab24_0/4		1.0117	120	2 111	0	4	70	-
20	Α	ARb24_4/2	A+R	0 5081+0 5005	124	24h	4	2	70	_
	B	ARb24_0/8			147	2	0	8	, ,	
21	A	ARa24_4/2	A+R	0 5060+0 5057	150	24h	4	2	70	_
41	B	ARa24_0/8	1111	0.5000+0.5057	150	<i>∠</i> ⊤11	0	8	70	_

Tabla 5.1.1-1 – Barrido inicial de condiciones, características de las síntesis realizadas por el método hidrotermal bajo presión endógena.

*¹ Corresponde al sobrenadante.

*² La muestra Aa43_4/2(u) fue sometida a una sonicación más extensa entre lavados (15min, 90% Amp, 0.9ciclos)

 $*^{3}$ En esta muestra se sustituyen los 4 lavados estándares con HCl, por un único lavado con el mismo agente pero en baño de ultrasonido (250ml, 0.1M, 1h)

Capítulo 5 – Síntesis de nanoestructuras

Las estructuras de alta relación de aspecto obtenidas pueden subdividirse en estructuras tipo varillas macizas (a las cuales en adelante se referirá como *nanorods*, o en forma abreviada **NR** o **NRs**) del orden de 100-500nm de diámetro y 2-10µm de largo y estructuras tubulares (*nanotubos*, **NT** o **NTs**) del orden de 10-15nm de diámetro externo y 100-200nm de longitud. En el Anexo II se adjuntan microscopías SEM y TEM adicionales para los productos sintetizados en esta etapa y en el Anexo III se recopila la comparación preliminar con la base de datos de los correspondientes diagramas de DRX de polvo. A continuación se discutirán observaciones correspondientes a la influencia de los distintos parámetros de reacción.

5.1.1.1 Influencia de los lavados

Se estudiaron los siguientes aspectos con respecto a los lavados:

- i. Ausencia de lavados
- *ii.* Agente de lavado: HCl+H₂O vs. H₂O
- iii. Intensidad del tratamiento con ultrasonido entre lavados

<u>i – Ausencia de lavados</u>

Para estudiar la influencia en la morfología, se analizaron mediante microscopía electrónica dos alícuotas tomadas en forma previa a los lavados, una correspondiente al Batch 1 (en el cual se obtuvieron NRs como producto final) y otra correspondiente al Batch 18 (en el cual se obtuvieron NTs). En ambas la morfología general difiere significativamente de la obtenida luego del procedimiento de lavado.

La muestra 1 sin lavar presentó características amorfas, con estructuras del tipo membranosas (Figura 5.1.1-3 y pág. 10 de Anexo II). La ausencia de nanorods podría estar indicando la completa disolución del material de partida durante el tratamiento alcalino y sugiriendo un mecanismo de recristalización y crecimiento cristalino en las etapas posteriores. Sin embargo esto contradice el mecanismo más ampliamente aceptado en bibliografía, en el cual la formación de estructuras de alta relación de aspecto se da durante el tratamiento hidrotermal [1]. Cabe señalar que las muestras sin lavar presentan un alto contenido de NaOH 10M, las mismas se carbonatan en contacto

Capítulo 5 - Síntesis de nanoestructuras

con el aire (hecho que se constató por difracción de rayos X). Esta carbonatación podría estar acompañada de una pérdida de morfología.

Figura 5.1.1-3 – Comparación de morfología antes y después del lavado para la muestra 1. (a) Microscopía TEM de la muestra sin lavar. (b) Microscopía SEM de la muestra lavada (3HCl+H₂O).

La muestra de nanotubos revela una morfología fibrosa antes del lavado (Figura 5.1.1-5). Se observaron nanohilos o nanofibras de varias micras de longitud, pero no se detectaron estructuras tubulares. Esto sugiere que los tubos también serían formados durante el proceso de lavado y posterior secado de las muestras. Lo que está de acuerdo con algunos autores [2] pero en contraposición con numerosos trabajos en los que se argumenta que la formación de tubos, al igual que en el caso de los nanorods, se da durante el tratamiento alcalino [1, 3, 4, 5].

Este tipo de fibras antes del procedimiento de lavado fueron observadas por Menzel y colaboradores, quienes obtuvieron nanorods como producto final, concluyendo que la morfología y tamaño de los productos es más dependiente del tratamiento hidrotermal que del método de lavado [4]. Apoyando el mecanismo propuesto por Kukovecs *et al* [6] de crecimiento de las nanoestructuras a partir de precursores curvados (los que denominan "nanoloops") ya existentes en las primeras etapas del tratamiento alcalino, más que al mecanismo de enrollamiento de precursores del tipo nanohojas durante el procedimiento de lavado. Sin embargo, en el caso que se expone, el producto final son

Capítulo 5 – Síntesis de nanoestructuras

tubos por lo que lo anterior no queda claro, ya que debe existir una transformación de fibras a tubos durante el lavado y posterior secado.

Figura 5.1.1-4 – Comparación de morfología antes ((a) y (b)) y después ((c) y (d)) del lavado con agua destilada para muestra correspondiente al batch 18, microscopías SEM.

No fue posible el análisis de la estructura cristalina de las muestras antes del lavado debido a que, como ya fue mencionado, las mismas se carbonatan al molerlas en presencia de aire, dada la alta concentración de soda que presentan (ver Anexo III). Según estas observaciones de muestras sin lavar, no se puede concluir que las estructuras de alta relación de aspecto se formen durante el tratamiento alcalino. Con respecto al mecanismo de enrollamiento de precursores del tipo nanohojas, si bien no hay elementos que lo confirmen directamente, este no se descarta. En algunas muestras se observaron este tipo de estructuras tipo hojas luego de los lavados (ver Figura 5.1.1-6) e incluso pudieron verse pliegues de las mismas (Figura 5.1.1-6 (c)).

Figura 5.1.1-5 – Comparación de morfología antes (a) y después (b) del lavado con agua para muestra correspondiente al batch 18, microscopías TEM.

Figura 5.1.1-6 – Imágenes TEM en las cuales se puede ver existencia de estructuras tipo hojas delgadas, en muestras 18B (R'm24_0/8) (a y c), 15B (c y d) y 4C (e y f). En (c) la flecha indica un pliegue de una de estas estructuras. Nota: las muestras 15B y 4C fueron sintetizadas a presión atmosférica, las mismas serán analizadas más adelante.

Capítulo 5 – Síntesis de nanoestructuras

ii - Agente de lavado: HCl+H₂O vs. H₂O

La estructura cristalina resultante depende fuertemente del agente de lavado (ver Anexo III, batchs 5, 6, 8, 9, 16, 18, 19, 20, y 21). Esto está de acuerdo con el hecho ampliamente aceptado en la literatura de que los lavados ácidos favorecen el intercambio iónico entre los cationes del metal alcalino (en este caso Na^+) e H⁺ en los titanatos laminares.

En particular, se observó para los casos de condiciones de síntesis menos extremas (menores temperaturas y tiempo de reacción o bien presión atmosférica) y partiendo del polvo A (batchs 19, 4 y 15^1) que la estructura cristalina del producto obtenido luego de lavar con HCl y agua es anatasa, mientras que para la muestra lavada sólo con agua se obtienen titanatos laminares. Para estas condiciones, al partir de mezclas de polvos A-R, sólo la fracción de anatasa parece modificarse estructuralmente (20, 21, 7, 11, 13^2), o al menos existe una fracción de rutilo que permanece sin modificarse, lo que es coherente con el menor tamaño de partícula asociado a una mayor reactividad de la anatasa de partida y la mayor estabilidad de la fase rutilo.

Anatasa como fase final también fue observada en los batchs 6 y 18 cuyo material de partida fue rutilo. Si bien la temperatura para el batch 6 fue elevada, el tiempo de reacción fue relativamente pequeño (22,5hs). Por otro lado, el batch 18 fue realizado en autoclave a una temperatura intermedia (140°C) durante 24 horas. En este caso, que la estructura del material obtenido luego de lavar con HCl sea anatasa es un claro indicio de que se está dando un mecanismo de disolución-recristalización. Donde el TiO₂ de partida se disuelve y luego cristaliza como titanato de sodio. Durante los lavados ácidos se obtienen titanatos de hidrógeno y luego se deshidratan formando anatasa.

Con respecto a la dependencia de la morfología, para los casos que se obtuvieron estructuras tipo varillas, se observa que las lavadas sólo con agua presentan, a grandes rasgos, similar geometría pero un mayor tamaño promedio (Figura 5.1.1-7).

En el caso de las muestras que presentan nanotubos, realizadas en condiciones menos agresivas, se tienen microscopías comparativas para los batchs 18 (realizado en autoclave) y 4 (sintetizado utilizando el método de reflujo). En ambas se observa que el material lavado sólo con agua presenta estructuras tubulares más definidas (Figura

¹ Los batch 4 y 15 fueron realizados en reflujo (tratamiento hidrotermal a presión atmosférica).

² Los batchs 7, 11 y 13 corresponden a síntesis en reflujo.

Capítulo 5 – Síntesis de nanoestructuras

5.1.1-8 y págs. 7-9 y 14-16 del Anexo II). Para el caso del batch 18, los tubos coexisten con estructuras tipo hojas o láminas delgadas en la muestra lavada con HCl. En el caso del Batch 4, se ven mayoritariamente partículas de menor tamaño que los tubos observado en la muestra correspondiente lavada con agua.

Figura 5.1.1-7 Imágenes SEM comparativas de muestras del mismo batch variando el agente de lavado.

Los iones de sodio retenidos en las muestras lavadas con agua estabilizan la estructura de titanatos [4]. Luego del tratamiento ácido, los sodios son remplazados por protones

Capítulo 5 – Síntesis de nanoestructuras

y agua los que pueden ser removidos en forma relativamente fácil mediante deshidratación. Por lo que la morfología general luego del calentamiento también depende del contenido de sodio. Las muestras lavadas con agua, en general retienen su estructura de alta relación de aspecto, aunque aparece algo de material granular policristalino. Por otro lado, la respuesta de las muestras lavadas con ácido depende de la morfología de las nanoestructuras de titanatos. La conversión de nanotubos conlleva a una dramática pérdida de relación de aspecto. Observación también reportada por Kolen'ko *et al* [7] quienes sostienen que durante el tratamiento térmico al aire de nanotubos de H₃Ti₃O₇ estos se transforman en anatasa y pierden su morfología. Sin embargo, las estructuras nanofibrosas mantienen su alta relación de aspecto; aparentemente, las fibras son suficientemente largas como para convertirse en anatasa policristalina sin un debilitamiento crítico.

iii - Intensidad del tratamiento con ultrasonido entre lavados

Comparando las muestras 3A (Aa43_4/2(u)) y 3B (Aa43_4/2), si bien no es concluyente, parece haberse obtenido una mayor homogeneidad de morfología general para el caso 3B, comparar imágenes (a) y (b) de Figura 5.1.1-9, siendo varillas de mayor largo. Esto indicaría que el ultrasonicado intenso puede romper las estructuras obteniéndose un material más heterogéneo o amorfo.

No se observan diferencias significativas al aumentar considerablemente el tiempo de ultrasonicado entre lavados, en lo que respecta a la estructura cristalina (ver batch 3, Anexo III).

Figura 5.1.1-8 – Imágenes TEM comparativas de muestras de nanotubos del mismo batch variando el agente de lavado.

Capítulo 5 – Síntesis de nanoestructuras

Figura 5.1.1-9 – Imágenes SEM, de las muestras 3A x2500 (a) y 3B x2500 (b).

5.1.1.2 Influencia del material de partida, la temperatura y el tiempo de reacción

Morfología

En la Figura 5.1.1-10 se esquematiza la morfología obtenida para distintas combinaciones t - T. De la misma surgen las siguientes observaciones:

- Existe un rango de valores t-T para los cuales se observa la formación de nanorods, T≥140°C t≥24hs para anatasa como material de partida y T≥150°C t>24hs para rutilo micrométrico. A altas temperaturas y tiempos prolongados de tratamiento hidrotermal (150°C 68hs), se favorece la formación de mayor tamaño. Por otro lado a temperaturas y tiempos menores (120°C 20-24hs) no se observan este tipo de estructuras.
- Se obtuvieron nanotubos partiendo de rutilo a $T=140^{\circ}C$ y t=24hs.

Estructura cristalina

Con respecto a la estructura cristalográfica, esta presenta gran variabilidad (Anexo III). En la gráfica siguiente (Figura 5.1.1-11) se comparan los resultados obtenidos a partir de anatasa variando el tiempo y la temperatura del tratamiento hidrotermal. La Figura 5.1.1-12 corresponde a mezclas Anatasa/Rutilo, se constata una fracción de rutilo

Capítulo 5 – Síntesis de nanoestructuras

remanente en todos los casos de tratamientos de 24 horas. Por último, los resultados en el caso de rutilo como material de partida se adjuntan en el gráfico de la Figura 5.1.1-13. Cabe señalar que en este caso para todas las condiciones ensayadas se observó la modificación del rutilo de partida inclusive para los casos de tratamientos de 24hs.

Figura 5.1.1-10 – Esquema morfología en función de los parámetros de síntesis T, t.

Los productos obtenidos consisten, en la mayoría de los casos, de una mezcla de fases de óxidos de titanio y titanatos laminares de sodio e hidrógeno (Anexo III). El análisis de los diagramas resulta particularmente dificultoso debido a que se trata de mezclas de fases de materiales nanoestructurados por lo que se observan máximos anchos de difracción que presentan superposición y alto background. Sumado a esto, al tratarse, en mucho de los casos, de materiales tipo varillas pueden ser propensas a orientaciones preferenciales modificando la relación de intensidades de los máximos. La alta relación de aspecto también genera diferencia en la forma y el ancho de los picos asociados a una misma fase, debido a la diferente dimensión del dominio cristalino.

Capítulo 5 – Síntesis de nanoestructuras

Por lo general, para estas muestras, la zona de ángulos bajos $(2\theta < 20^\circ, d > 4\text{\AA})$ corresponde al espaciado entre láminas de octaedros [TiO6] en la estructura cristalina. La presencia de máximos en esta región prueba que los productos tienen una estructura de tipo titanatos laminares.

Por otro lado, gran parte de los diagramas de difracción de polvo presentan un pico definido en 2 θ cercano a 48° ($d \sim 1.89 \dot{A}$) que corresponde al espaciamiento interplanar de la familia de planos (200) de la fase anatasa (ver Figura 5.1.1-14). Resulta importante notar que esta distancia corresponde a la separación Ti-O en el plano ecuatorial de los octaedros [TiO₆] que, como ya fue mencionado, son el bloque de construcción de los titanatos laminares. Por otro lado, en algunos casos este pico es menos ancho que los restantes del diagrama probando la anisotropía de la muestra, verificando la alta relación de aspecto de las estructuras, e indicando la dirección de crecimiento cristalino, eje de los NTs o NRs.

Figura 5.1.1-11 – DRX de muestras que corresponden A de material de partida.

Se analizará la estructura cristalina de nanorods de titanato obtenidos por este método en el Capítulo 7 "*Caracterización de nanorods de dióxido de titanio y titanatos*".

Figura 5.1.1-12- DRX de muestras que corresponden a mezclas A +R de material de partida.

Figura 5.1.1-13 – DRX de muestras que corresponden R de material de partida.

Figura 5.1.1-14 – Celda unidad de la fase anatasa, en verde se esquematiza la familia de planos cristalográficos (200).

Capítulo 5 – Síntesis de nanoestructuras

Resumen - barrido inicial de condiciones

Tabla 5.1.1-2 – Resumen de observaciones durante el barrido inicial de condiciones para el caso de síntesis hidrotermal bajo presión endógena.

Parámetro			Morfología	Estructura cristalina	Batch/s referencia /s	Observaciones	
	Ausen	cia	No se observan NR, en su lugar se ve una estructura membranosa. Tampoco se observan NT, se ven estructuras tipo nanofibras de varias mucras de longitud.	No se determina.	4 (reflujo) 18 (autoclave)	El exceso de soda puede estar interfiriendo en la caracterización por microscopía.	
L A V A D O	Agente		Para el caso de NR, la morfolgía es similar siendo las estructuras lavadas sólo con agua de mayor tamaño. Para el caso de NT, se observó que estos son más definidos en las muestras lavadas con agua, coexistiendo con nanopartículas y hojas delgadas luego de los lavados ácidos.	Existe una clara dependencia de la estructura cristalina con el agente de lavado.	NR: 5, 6, 8, 9, 19, 20, y 21 NT: 16, 18, 4	El lavado ácido es necesario para la remoción de los iones de Na ⁺ .	
	Sonicado		El ultrasonicado intenso entre lavados parece ir en detrimento de la homogeneidad de tamaños de las estructuras tipo NR	No se observa dependencia	3		
Temperatura y tiempo de reacció		Se obtienen NR si $T \ge 140^{\circ}C - t \ge 24hs$ para Acomo material de partida y $T \ge 150^{\circ}C - t \ge 24hs$ para rutilomicrométrico o mezclas AR.A altas temperaturas ytiempos prolongados (150°C- 68hs), se favorece laformación de estructuras degran tamaño.Se observaron NT en lacondición T=140°C y t=24hspartiendo de R.		y ilo AR. $\begin{array}{c} menos extremas se \\ observa anatasa \\ como fase final luego \\ de los lavados ácidos \\ o bien mezclas A/R \\ 0^{\circ}C \\ cuando se parte de \\ mezclas. En estos \\ casos, al lavar con \\ H_2O se observan \\ difractogramas \\ típicos de titanatos \\ laminares \\ nanoestructurados \end{array}$ 19, 20 Esto también se verifica en los batchs: 4, 7, 13 y 15 correspondie ntes al método de regflujo.			
A		A	Se observan NR, nanopartículas y hojas delgadas	Mezclas de titanatos	1, 3 y 19		
Precurs	or	A + R	Se observan NR	Mezclas de titanatos + R	5, 9, 20 y 21		
		R	Se observa NR y NT	Mezclas de titanatos	6, 8, 16 y 18		

Capítulo 5 – Síntesis de nanoestructuras

5.1.2 <u>Síntesis hidrotermal bajo presión endógena – Etapa II "Diseño de un</u> <u>experiemento"</u>

En las figuras Figura 5.1.2-1 y Figura 5.1.2-2 se adjuntan las respuestas (difractogramas y microscopías electrónicas de transmisión) obtenidas para cada corrida, las cuales se resumen en forma cualitativa en la Tabla 5.1.2-1. En el Anexo I se adjuntan microscopías SEM y TEM adicionales para cada muestra. Debido al carácter cualitativo de las respuestas, la interpretación de los resultados en cuanto a los efectos de los distintos factores y su interacción no es tan directa. Sin embargo surgen las siguientes observaciones:

- En todos los casos que el primer factor es (+) (precursor: A+R), se obtiene una fracción de rutilo sin reaccionar. Siendo más notoria en los casos (+--) y (+-+), en menor proporción en el caso (++-) y mucho menor para el caso (+++). Esto indica que una temperatura en el rango de 130-135°C y tiempos de hasta 48hs no son suficientes para disolver totalmente al R inicial cuando se parte de mezclas AR. Y para una temperatura en el rango 150-155°C se requiere de al menos 48hs.
- Se obtuvieron NR sólo en los casos (-++), se observó coexistencia con NT en ambas corridas. Esto estaría indicando que la disolución del precursor A es más rápida y el proceso avanza hacia la formación de NT y posterior formación de NR, siendo necesario mayor tiempo para la conversión completa.
- Se observa por DRX que la respuesta no asociada a las fases iniciales presenta las mismas características en la totalidad de las muestras, con algunas variaciones en los casos (-++), principalmente en la señal a ángulos bajos. En la Figura 5.1.2-4 pueden verse la comparación de diagramas colectados con mayor estadística. El análisis de los mismos se realiza más adelante en el Capítulo 6.
- Con respecto a la reproducibilidad del método, en lo que respecta a la morfología de la muestra, los resultados fueron reproducibles en general. Se observaron algunas diferencias sin embargo por DRX, en los que la señal correspondiente a titanatos laminares es menos evidente y aparecen más claras reflexiones asociadas a la fase A. Comparando las imágenes correspondientes,

Capítulo 5 – Síntesis de nanoestructuras

puede verse que en los casos que la proporción de anatasa es mayor, los NT son de menor longitud y aumenta la proporción de NP.

Debido a que se trata de un proceso en batch de múltiples etapas, existen numerosos factores que no fueron controlados que pueden haber afectado estos resultados. Entre estos se pueden citar, el tiempo de enfriamiento antes de los lavados. El tiempo que permanece la mezcla antes de comenzar los lavados. La cantidad de acúmulos de material que permanecen sin deshacerse durante los lavados. El volumen de agua en la mezcla final que se deja secando y el tiempo de secado.

El tiempo de enfriamiento puede jugar un papel importante en la morfología final si se entiende el proceso como una disolución-recristalización del precursor de TiO_2 en el medio alcalino. Un enfriamiento rápido podría fomentar la nucleación sobre el crecimiento de los cristales y por lo tanto la obtención de cristales más pequeños y menos uniformes.

Por otro lado, bajo esta misma hipótesis, la concentración inicial de precursor determinaría el nivel de sobresaturación de la solución, lo que también juega un rol preponderante en la cristalización.

Queda planteado para un trabajo futuro, el diseño de un experimento adicional fijando los factores estudiados y tomando como nuevos factores la concentración de precursor inicial y el tipo de enfriamiento de la solución.

 Los mejores resultados, en cuanto a morfología y conversión, se obtuvieron en los casos (-+-) y (++-). Debido a las similitudes observadas por DRX y a que en el segundo existe una fracción de rutilo inicial, se selecciona la configuración (-+-) para la caracterización estructural y estudios de estabilidad térmica. Ambas muestras se ensayan en dispositivos DSSC (ver Capítulo 8)

Figura 5.1.2-1 Difractogramas y microscopías TEM para muestras A-D y respectivas réplicas.

Figura 5.1.2-2 Difractogramas y microscopías TEM para muestras E-H y respectivas réplicas.

Tabla 5.1.2-1Resumen de respuestas obtenidas.									
Muestra	Conversión	Morfología	Cristalinidad Fase Tamaño de cristalita Orientación preferencial						
AI() / 9	Se observa al TEM material sin HAR, tipo lamillas.	Existen NT coexistiendo con láminas.	Se observan señales anchas a 2theta: 9, 25, 48. El pico en 48° es el más definido. Leves estructuras en zona 25-35° (H ₂ Ti ₂ O ₅ ·H ₂ O?).						
AII() / 6	Se observa al TEM material sin HAR, tipo lamillas y NP del orden de los 15nm.	Coexisten NT, NP, NS (nanosheets)	Anatasa nano más leves estructuras alrededor de 9° y 25-35°.						
BI(+) / 2	DRX indica rutilo sin reaccionar TEM indica NP del orden de los 15nm	Coexisten NT con NP	Anatasa nano + rutilo micro						
BII(+) / 11	DRX indica rutilo sin reaccionar	Coexisten NT con microP	Anatasa nano más leves estructuras alrededor de 9° y 25-35°+ rutilo micro						
CI(-+-) / 15	NT	NT	Titanatos (H ₂ Ti ₂ O ₅ ·H ₂ O?)						
CII(-+-) / 8	NT+NP	NT+NP	Titanatos ($H_2Ti_2O_5 \cdot H_2O$?) + anatasa nano						
DI(++-) / 16	NT	NT	Titanatos ($H_2Ti_2O_5$ · H_2O ?) + algo de rutilo						
DII(++-) / 1	NP + segmentos de NT	NP + segmentos de NT	Anatasa + algo de rutilo						
EI(+) / 3	NP + segmentos de NT	NP + segmentos de NT	Anatasa						
EII(+) / 13	NT	NT+ membrana	Titanatos (H ₂ Ti ₂ O ₅ ·H ₂ O?)						
FI(+-+) / 5	DRX indica rutilo micro sin reaccionar	NT+NP	A+R						
FII(+-+) /10	DRX indica rutilo micro sin reaccionar	NT+NP Ver imagen	Titanatos $(H_2Ti_2O_5 \cdot H_2O?) + R$						
GI(-++) / 14	No se observan NP	NT+NR	Titanatos (H ₂ Ti ₈ O ₁₇ ? + H ₂ Ti ₂ O ₅ ·H ₂ O?) + anatasa						
GII(-++) /12	No se observan NP	NT+NR	Titanatos (H ₂ Ti ₈ O ₁₇ ? + H ₂ Ti ₂ O ₅ ·H ₂ O?) + anatasa						
HI(+++) /7	NT+NP	Los NT parecen estar más fragmentados y existe alta proporción de NP	Anatasa						
HII(+++) /4	NT+NP	Los NT parecen estar más fragmentados y existe alta proporción de NP	Anatasa + Titanatos						

Figura 5.1.2-3 – Microscopías SEM y TEM de muestras (-++) GII y GI. Coexistencia de NR y NT

Figura 5.1.2-4 - Comparación de patrones de DRX de las muestras DI, CI, GI, GII, y EII.

Cap. 5 - 24/35

Capítulo 5 – Síntesis de nanoestructuras

Con el objetivo de tratar de entender los efectos de los distintos parámetros en lo que respecta a la conversión a NT, se cuantifica la respuesta según 5 niveles del 1 al 5, según se adjunta en la Tabla 5.1.2-2 a continuación.

Nivel	Respuesta
1	No se observan NT
2	Coexisten NP y NT o NL y NT
3	Mayoritariamente NT
4	Coexisten NT y NR
5	Mayoritariamente NR

 Tabla 5.1.2-2 – Definición de niveles de respuesta conversión a estructuras nanométricas HAR.

	Р	Т	t	Réplica I	Réplica II	\overline{x}
Α	-	-	-	2	2	2
B	+	-	-	2	2	2
С	-	+	-	3	2	2.5
D	+	+	-	3	2	2.5
Ε	-	-	+	1	2	1.5
F	+	-	+	2	2	2
G	-	+	+	4	4	4
Н	+	+	+	2	2	2

Tabla 5.1.2-3 – Respuestas obtenidas según los niveles definidos.

Tabla 5.1.2-4 – Ma	triz para el cálc	ulo de efectos	(1, 2, 3) e inter	acción de efe	ectos (12, 13	, 23, 123)	de los
distintos factores							

Promedio	1	2	3	12	13	23	123	\overline{x}
+	-	-	-	+	+	+	-	2
+	+	-	-	-	-	+	+	2
+	-	+	-	-	+	-	+	2.5
+	+	+	-	+	-	-	-	2.5
+	-	I	+	+	-	-	+	1.5
+	+	I	+	1	+	-	-	2
+	-	+	+	-	-	+	-	4
+	+	+	+	+	+	+	+	2

Capítulo 5 – Síntesis de nanoestructuras

Figura 5.1.2-5 – Esquema de las respuestas en función de los factores, resultados de la estimación de efectos e interacciones.

Este análisis cualitativo muestra:

- El uso de mezclas AR disminuye la conversión del precursor a estructuras HAR, pero este efecto es más pronunciado al incrementar la temperatura.
- El aumento de la temperatura de 130-135°C a 150-155°C conlleva a un aumento en la conversión a estructuras HAR. Esto es más significativo cuando el precursor es A y el tiempo de reacción 48hs.
- La mayor conversión a NT (indicada por cercanía al nivel 3 y ausencia de niveles 4 y 5) se observa a 150-155°C con tiempos de reacción de 24hs.
- La mayor conversión a NR (indicada por cercanía al nivel 5) se observa también a 150-155°C con tiempos de reacción de 48hs.

Por lo anterior, se infiere que utilizando la relación relación sólido-líquido, concentración de NaOH(ac), factor de llenado, tratamiento por ultrasonido previo, métodos de lavado y secado especificados, la mejor conversión a NT se obtiene al trabajar manteniendo la temperatura del tratamiento alcalino en el rango 150-155°C (+) por un período de 24hs (-). Si además consideramos los resultados observados por DRX, en los que se evidencia que en el caso de mezclas AR existe una fracción de rutilo que permanece sin reaccionar, el mejor resultado se obtuvo al partir del precursor A. Por otro lado, el tiempo de reacción deberá superar las 48hs para para que la conversión a NR sea total.

Comparando estos resultados con los de la etapa I, surge nuevamente la importancia del método de lavado en la morfología de los productos. Al aumentar los lavados ácidos se

Capítulo 5 – Síntesis de nanoestructuras

redujo significativamente rango de obtención de NR. A su vez, recurre la aparición de NP coexistiendo con NT.

5.2 SÍNTESIS HIDROTERMAL BAJO PRESIÓN ATMOSFÉRICA

Se realizaron 5 batchs según el método hidrotermal a presión atmosférica, cuyas características se listan en la Tabla 5.1.2-1. Los difractogramas de las muestras se adjuntan en el Anexo III. Se disponen de imágenes de microscopías para los batchs 4 y 15, las mismas se incluyen en Anexo II.

Tabla 5.1.2-1 – Caracterí	sticas de las síntesis	realizadas por el método	o hidrotermal bajo presión P _{atm} .
---------------------------	------------------------	--------------------------	---

Batch	Muestra	TiO ₂	m(g)	$T_r(^{\circ}C)$	t _r	Agitac.	N _{HCl}	N _{H2O}	$T_s(^{\circ}C)$
	4 A						0	0	
4	4B	Α	2.010	124	69h	No	4	2	115
	4C						0	8	
7	7A	$\mathbf{A} \perp \mathbf{P}$	0.000 ± 1.002	124	36h	No	4	2	115
/	7B	A+K	0.999+1.002	124	3011	INO	0	8	115
11	11A	A+R	1 002 1 007	120	48h	Sí	1^{*^1}	2	90
11	11B		1.003+1.007				1^{*2}	2	
	13A	A+R		120	44h	Sí	4	2	70
12	13B		1.001+1.005				4	2	
15	13C						4	4* ³	
	13D						4AgNO ₃	2	
	15A	А		120	48h	Sí	4	4	
15	15B		2.007				0	8	70
	15C						3	2^{*^4}	

 $*^{1}$ – 200ml de HCl 0.1M agitando continuamente a temperatura ambiente durante 35min y luego a 70°C durante 5h45min, luego 6h18min, luego otro lavado con 200ml de HCl a Temp. Ambiente. Luego dos lavados estándar con agua.

*² – Idem a anterior sin sonicar entre los lavados estándar con agua destilada.

*3 – Uno de estos fue previo a los de HCl. Luego se realiza un lavado con AgNO3.

*4 - Luego un lavado con AgNO₃ 80mL 0.1M. 20min, 45°C, agitación intermedia.

Capítulo 5 – Síntesis de nanoestructuras

5.2.1 Observaciones generales - síntesis hidrotermal bajo presión atmosférica

i. Morfología

No se observaron estructuras tipo NRs para este método. Las imágenes SEM muestran características similares a las correspondientes a las condiciones menos extremas utilizadas en las síntesis hidrotermales bajo presión endógena (Figura 5.2.1-1). En las mismas se aprecia que las muestras correspondientes a lavados sólo con H₂O (14C, 15B) presentan bordes más irregulares que podrían ser un indicio de estructuras HAR de menor tamaño. Efectivamente, se observó por microscopía TEM la presencia de nanotubos coexistiendo con nanohojas en dichas muestras (Figura 5.2.1-2).

4B

4C

Figura 5.2.1-1 – Imágenes SEM de muestras obtenidas a presión atmosférica.
4C 003 100 nm HV=100kV TEM Mag = 250000x AMT Preferred Customer Print Mag = 13979x 0 6.99999969005585 mm Acquired Feb 7 2013 at 4:42 PM 100 nm HV=100kV TEM Mag = 250000x AMT Preferred Custome Print Mag = 13979x @ 6.999999969005585 mm Acquired Feb 7 2013 at 4:38 PM 4C4C100 nm HV=100kV TEM Mag = 150000x ANT Preferred Custom 100 nm HV=100kV TEM Mag = 150000x AMT Preferred Customer Print Mag = \$388x @ 6.99999969005585 mm Acquired Feb 7 2013 at 5:37 PM Print Mag = 8388x Ø 6.99999969005585 mm Acquired Feb 7 2013 at 5:38 PM 15B 15B

Capítulo 5 – Síntesis de nanoestructuras

Figura 5.2.1-2 – TEM muestras 4C y 15B

En lo que respecta a las muestras lavadas con HCl (ac) 0,1M, se observa coexistencia de nanopartículas con lo que parecerían ser fracciones de materiales HAR, ver Figura 5.2.1-3.

Capítulo 5 - Síntesis de nanoestructuras

Figura 5.2.1-3 – TEM muestras 4B

ii. Estructura cristalina

En este caso, se obtuvo una variación significativamente menor en los resultados vistos por DRX al variar las condiciones de síntesis, en comparación con las síntesis en autoclave. Independientemente del tiempo de reacción, que varió entre 36 y 69 horas, para el caso de material de partida nanopartículas de anatasa, se obtuvo el patrón correspondiente a anatasa en el caso de lavados con HCl y un patrón característico de titanatos laminares nanoestructurados para los casos lavados sólo con agua (Figura 5.2.1-4). Lo mismo se observa cuando se utiliza como precursor una mezcla de rutilo y anatasa, para los cuales se obtiene un diagrama que presenta dos fases claramente diferentes, siendo una rutilo y la otra varía según lo recientemente expuesto, reflejando las modificaciones inducidas en la fracción de anatasa (Figura 5.2.1-5).

En todos los casos que se utiliza rutilo como material de partida (cabe señalar que siempre se trató de mezclas, no se realizó ninguna síntesis en reflujo partiendo de rutilo puro) se revela la presencia de rutilo en el producto. Por lo anterior, resulta que las

Capítulo 5 – Síntesis de nanoestructuras

condiciones del tratamiento no son suficientes para inducir modificaciones en el rutilo o al menos se evidencia que parte del rutilo de partida permanece inalterado.

Por último, no se observa dependencia con el tiempo de tratamiento hidrotermal. Tampoco se evidencian diferencias en lo que respecta al reflujo con agitación con respecto al no agitado.

Figura 5.2.1-4 – DRX para las muestras correspondientes a los batchs 4 y 15.

Figura 5.2.1-5 - DRX para las muestras correspondientes a los batchs 7, 11, y 13.

Capítulo 5 – Síntesis de nanoestructuras

Conclusiones - síntesis hidrotermal bajo presión atmosférica 5.2.2

Según lo expuesto anteriormente se puede concluir que el método hidrotermal a presión atmosférica arroja resultados similares a los casos ensayados bajo presión endógena correspondientes a las condiciones menos extremas (temperaturas bajas y tiempos de reacción bajos). No se logra disolver la totalidad del rutilo micrométrico de partida en las condiciones. No se obtienen nanorods.

5.3 MÉTODO SONOQUÍMICO

En la Figura 5.2.2-1 se observa el material obtenido vía método sonoquímico, realizando los lavados con HCl y agua descritos con anterioridad. No se observaron NR en las microscopías SEM. Con respecto al diagrama de DRX, este es similar al correspondiente a las muestras de reflujo partiendo de anatasa, lavadas sólo con agua.

Figura 5.2.2-1 – Muestra obtenida mediante el método sonoquímico.

Capítulo 5 – Síntesis de nanoestructuras

5.4 HIDRÓLISIS DE PRECURSORES GLICOLADOS

No se obtuvieron buenos resultados a partir de este método. Se observó por SEM una de las muestras, revelando grandes tamaños de partícula y gran heterogeneidad en forma y tamaño de las mismas (Figura 5.2.2-2). No se observaron estructuras de alta relación de aspecto. Por otro lado los diagramas de DRX muestras el bajo grado de cristalinidad de estos productos, siendo necesario el tratamiento térmico posterior (Figura 5.2.2-2).

Figura 5.2.2-1 – SEM muestra 12.

Figura 5.2.2-2 – DRX de muestras sintetizadas a partir de la técnica descrita por Mou Pal et al.

Capítulo 5 – Síntesis de nanoestructuras

5.5 CONCLUSIONES – SÍNTESIS DE NANOESTRUCTURAS DE TIO₂ Y TITANATOS

- Fue posible obtener estructuras de alta relación de aspecto (nanotubos del orden de 10-15nm de diámetro externo y 100-200nm de longitud y nanorods del orden de 100-500nm de diámetro y 2-10μm) de dióxido de titanio y titanatos de hidrógeno y sodio mediante métodos hidrotermales partiendo tanto de anatasa nanoestructurada como de rutilo micrométrico.
- Se observó que se da un mecanismo de disolución-recristalización durante el tratamiento alcalino y la morfología general de las nanoestructuras y su estructura cristalina se ve fuertemente afectada por el método de lavado posterior. Las muestras lavadas con agua, en general presentan estructura de alta relación de aspecto. Por otro lado, en el caso de nanotubos, las muestras lavadas con ácido presentan mayor coexistencia con otro tipo de nanoestructuras como ser nanopartículas y nanohojas, confirmando el papel de los iones Na⁺ en la estabilización de la estructura.
- Se logró acotar los parámetros de reacción (precursor, tiempo y temperatura del tratamiento hidrotermal) para la obtención de estructuras de alta relación de aspecto, identificando condiciones de síntesis que favorecen la conversión a nanotubos y nanorods.

Capítulo 5 – Síntesis de nanoestructuras

REFERENCIAS – Capítulo 5

[1] Dmitry V. Bavykin y Frank C. Walsh, "Titanate and Titania Nanotubes. Synthesis,

Properties and Applications", RSC Nanoscience & Nanotechnology No. 12, 2010

[2] Chien-Cheng Tsai and Hsisheng Teng*, Chem. Mater. 2004, 16, 4352-4358

[3] Das K., Panda S. K., Chaudhuri S., Journal of Crystal Growth 2008, 310, 3792 - 3799

[4] Menzel R., Peiró A. M., Durrant J. R., Shaffer M. S. P., Chem. Mater. 2006, 18, 6059-6068

[5] Morgado Jr. E., de Abreu M. A. S., Pravia O. R. C., Marinkovic B. A., Jardim P. M.,

Rizzo F. C., Araújo A. S., Solid State Sciences 2006, 8, 888–900.

[6] Kukovecz A, Hodos M, Horvath E, Radnoczi G, Konya Z, y Kiricsi I, J. Phys. Chem. B 2005, 109, 17781

[7] Kolen'ko Y. V., Kovnir K. A., Gavrilov A. I., Garshev A. V., Frantti J., Lebedev O.

I., Churagulov B. R., Van Tendeloo G., and Yoshimura M., *J. Phys. Chem. B* **2006**, 110, 4030 - 4038

Capítulo 6 – Caracterización de NTs

CAPÍTULO 6 – RESULTADOS Y DISCUSIÓN II

CARACTERIZACIÓN DE NANOTUBOS DE TiO₂ Y TITANATOS

Índice - Capítulo 6

6 CAI	RACTERIZACIÓN DE NANOTUBOS DE DIÓXIDO DE TITA	NIO Y
TITANATO	9S	6.1-2
6.1 CAR <i>6.1.1</i>	RACTERIZACIÓN MORFOLÓGICA POR MICROSCOPÍA TEM Muestra NT_15CI	6.1-2 6.1-2
6.1.2	Muestra NT_18B	6.1-3
6.1.3	Muestra NT_4C	6.1-4
6.2 CAR <i>6.2.1</i>	RACTERIZACIÓN TEXTURAL NT_15Cl	6.2-4 6.2-4
6.2.2	NT_18B & NT_18C	6.2-7
6.2.3	NT_4C	6.2-7
6.3 ANA 6.4 CAR POLVO	ÁLISIS ELEMENTAL RACTERIZACIÓN ESTRUCTURAL – ANÁLISIS POR DIFRACCIÓI	6.3-8 N DE RAYOS X DE 6.4-8
6.4.1	Introducción	6.4-8
6.4.2	Análisis dimensional de dominios cristalinos en los NT a partir de DR	(utilizando la
ecuació	ón de Scherrer	6.4-11
6.4.3	Influencia de las dimensiones y morfología de las partículas en el pat	rón de difracción -
MODEL	OS DE NANOTUBOS EN TAMAÑO REAL	6.4-14
6.4.4	Análisis de orientación preferencial mediante Rocking Curves	6.4-27
6.4.5	Dispersión de rayos X a ángulos bajos	6.4-28
6.5 ESP 6.5.1	ECTROSCOPÍAS INFRARROJA Y RAMAN Espectroscopía IR	6.5-30 6.5-30
6.5.2	Espectroscopía Raman	6.5-30
6.6 EST <i>6.6.1</i>	ABILIDAD TÉRMICA DE LOS NANOTUBOS Análisis por microscopía electrónica de transmisión	6.6-32 6.6-32
6.6.2	Análisis por DRX	6.6-34
6.6.3	Análisis térmicos: TGA, DTA y DSC	6.6-37
6.6.4	Análisis elemental para evaluación del contenido de hidrógeno	6.6-40
6.7 CON REFEREN	NCLUSIONES – CARACTERIZACIÓN DE NANOTUBOS NCIAS – CAPÍTULO 6	6.7-42 6.7-45

Capítulo 6 – Caracterización de NTs

6 CARACTERIZACIÓN DE NANOTUBOS DE DIÓXIDO DE TITANIO Y TITANATOS

En esta sección se detalla la caracterización morfológica y estructural de las muestras de nanotubos de titanato ácido: NT_15CI (autoclave, -+-), así como su estabilidad térmica. Se analizan también algunos resultados comparativos de las muestras de titanatos de sodio NT_18B/18C (autoclave, rutilo, 140°C, 25hs, lavados sólo con agua y con HCl y agua respectivamente) y NT_4C (reflujo, anatasa, lavados sólo con agua).

6.1 CARACTERIZACIÓN MORFOLÓGICA POR MICROSCOPÍA TEM

6.1.1 Muestra NT_15CI

Mediante la observación al microscopio electrónico de transmisión, se verifica una gran conversión de la muestra a estructuras tubulares los que se encuentran formando agregados microscópicos. La diferencia de contraste en los bordes de las estructuras con respecto al centro es una señal clara de la estructura tubular, ya que el haz de electrones debe atravesar un mayor número de capas atómicas correspondiente a las paredes del tubo. Esto mismo se evidencia al observarse algunos tubos que se encuentran perpendiculares al plano de observación, señalados en Figura 6.1.1-1. Se infiere de las mismas imágenes que se trata de nanotubos abiertos en sus extremos.

Figura 6.1.1-1Imágenes TEM de la muestra 15CI con magnificaciones 250000x (a) y 200000x (b). Se señalan mediante flechas tubos perpendiculares al plano de observación.

Capítulo 6 – Caracterización de NTs

Se analizaron las imágenes mediante el software *ImageJ Image Proccesing and Analysis in Java*¹. Obteniéndose las distribuciones de diámetro interno y diámetro externo que se adjuntan a continuación (Figura6.1.1-2). El diámetro interno promedio obtenido es de 5,9nm (desviación estándar: 1,4nm) y el diámetro externo 12,1nm (desviación estándar: 2,0nm).

Figura6.1.1-2 – Distribuciones de diámetros internos (a) y externos (b) obtenidas analizando imágenes TEM para la muestra NT_15CI.

6.1.2 Muestra NT_18B

De forma análoga se obtuvo un diámetro interno promedio de 4,7nm (desviación estándar: 1,1nm) y diámetro externo promedio de 12,5nm (desviación estándar: 2,4nm) para el caso de la muestra R'm24_0/8 (18B), ver Figura6.1.2-1.

Figura6.1.2-1 - Distribuciones de diámetros internos (a) y externos (b) obtenidas analizando imágenes TEM para la muestra NT_18B.

¹http://rsb.info.nih.gov/ij/

6.1.3 Muestra NT_4C

Para la muestra 4C se obtuvo un diámetro interno promedio de 4,4nm (desviación estándar: 1,3nm) y diámetro externo promedio de 10,1nm (desviación estándar: 2,9nm).

Figura6.1.3-1 - Distribuciones de diámetros internos (a) y externos (b) obtenidas analizando imágenes TEM para la muestra NT_4C.

6.2 CARACTERIZACIÓN TEXTURAL

6.2.1 NT_15CI

Se determinó la superficie específica de los NT mediante el método BET, utilizando un equipo Beckman Coulter SA3100. La temperatura de desgaseo fue de 50°C y el tiempo 10hs, realizando dos réplicas². Se obtuvo un área BET de 286m²/g, volumen total de poros 0.947mL/g y radio promedio de poros 6,7nm utilizando el modelo BJH. No se observó presencia significativa de microporos.

La isoterma de adsorción – desorción de nitrógeno (Figura 6.2.1-1) muestra un ciclo de histéresis característico de sólidos mesoporosos del tipo IV según la clasificación de Brunauer, asociado al fenómeno de condensación capilar. El ciclo de histéresis puede ser clasificado, de acuerdo con la IUPAC, intermedio entre los tipos H1 ($0.5 < \frac{p}{p_0} < 0.8$) y H3 ($\frac{p}{p_0} > 0.8$) [1]. El tipo H1 es característico de poros uniformes en el interior

² El análisis fue llevado a cabo por Angie Quevedo del grupo de Fisicoquímica – DETEMA de Facultad de Química.

Capítulo 6 – Caracterización de NTs

de los agregados de partículas, puede asociarse al volumen hueco de NT abiertos en las dos extremidades. La extensión hacia presiones mayores indica presencia de poros de mayor tamaño que podrían asociarse a poros externos a los tubos en los agregados de partículas [2].

Suponiendo que la totalidad de la muestra está compuesta por estructuras tubulares abiertas en ambos extremos, a partir del valor experimental de superficie específica puede estimarse un espesor promedio de pared. De la ecuación (1) se deriva que la superficie específica (S) dependería, según este supuesto, únicamente del espesor y la densidad del material. En la misma S_{ext} y S_{int} hacen referencia a la superficie externa e interna del tubo respectivamente, V_{tubo} es el volumen no hueco del tubo, R_{int} es el radio interno, *e* es el espesor de pared y ρ la densidad del material.

$$S = \frac{S_{\text{ext}} + S_{\text{int}}}{\rho V_{\text{tubo}}} = \frac{2\pi L(R_{\text{int}} + e) + 2\pi L R_{\text{int}}}{\rho \pi L[(R_{\text{int}} + e)^2 - R_{\text{int}}^2]} = \frac{2}{\rho e}$$
(1)

Considerando una composición $H_2Ti_2O_5 \cdot 0.7(H_2O)$ con 2 fórmulas unidad por celda unidad de volumen aproximado 190.27Å³, la densidad del material sería 2.00uma/Å⁻³ (3322,07g/m³) y el espesor de pared promedio estimado de 2,1nm.

En lo que respecta a la distribución de mesoporos, como puede observarse en las curvas de la Figura 6.2.1-2, estas presentan valores máximos en la zona de diámetros entre 5 y 11nm. Estos valores son del orden de lo observado por microscopía electrónica de transmisión (~6nm). Debido a que en este método se incluyen los poros externos a los nanotubos (cavidades huecas en los conglomerados de NT), se obtiene un valor sobreestimado del radio promedio del tubo. Otra restricción de este método es que, supone que la tensión superficial del nitrógeno líquido no depende del radio del menisco, lo que no es necesariamente cierto en poros de pequeños diámetros (\leq 4nm) [2].

Capítulo 6 - Caracterización de NTs

Figura 6.2.1-1 – Isotermas de adsorción desorción de N₂ a 77K, correspondientes a la muestra NT_15CI.

Figura 6.2.1-2– Distribución de volumen de poros BJH. El gráfico inserto corresponde a un acercamiento en la zona de poros de diámetros promedio (D_p) menores a 14nm.

Capítulo 6 – Caracterización de NTs

6.2.2 NT_18B & NT_18C

Las superficies BET obtenidas en estos casos fueron 115m²/g y 187m²/g y los diámetros promedio según el modelo BJH de 7,8nm y 8,9nm.

Figura 6.2.2-1 - (a) y (c) Isotermas de adsorción desorción de N₂ a 77K y (b) y (d) distribución de volumen de poros BJH correspondientes a las muestras NT_18B y NT_18C respectivamente.

6.2.3 NT_4C

Se obtuvo un área BET de $213m^2/g$ y radio promedio de poros de 5,2nm.

Capítulo 6 - Caracterización de NTs

Figura 6.2.3-1 –(a) Isotermas de adsorción desorción de N_2 a 77K y (b) distribución de volumen de poros BJH correspondientes a la muestra NT_4C.

6.3 ANÁLISIS ELEMENTAL

Se realizó el análisis elemental de la muestra NT_15CI, siendo el porcentaje en masa de H obtenido de 1,727%. Por otro lado los análisis por EDS no revelaron presencia de sodio. Suponiendo en primer lugar que la totalidad de agua medida fuese estructural y en segundo lugar que se trate de un compuesto del tipo $H_2Ti_2O_5 \cdot nH_2O$, se obtiene n=0.63.

6.4 CARACTERIZACIÓN ESTRUCTURAL – ANÁLISIS POR DIFRACCIÓN DE RAYOS X DE POLVO

6.4.1 Introducción

Se observó en primer lugar que la muestra difracta poco lo que está de acuerdo con la baja coherencia principalmente en la dirección radial de las nanoestructuras. Por este motivo, y luego de ensayar varias configuraciones de rendijas, se decide realizar la adquisición de datos con las rendijas en su apertura máxima,

considerandoposteriormente los artefactos introducidos. Por un lado, el alto backgrounden la zona de ángulos bajos asociado a que parte del haz baña el porta muestras. Por otro lado, debido a que no todo el haz está alcanzando a la muestra la intensidad del pico a menor ángulo se ve afectada viéndose su intensidad relativa disminuida.

Figura 6.4.1-1 – Difractograma de la muestra NT_15CI. Se realizó la medida con un paso de 0.02° y 36s por paso, 40kV, 30mA.

El diagrama obtenido presenta características generales típicas de los correspondientes a nanotubos de titanatos laminares. En primer lugar, la señal a ángulos bajos es característica del espaciamiento interplanar asociado a las láminas de octaedros [TiO₆]. El ancho de pico está de acuerdo con cristalitasnanométricas. Por otro lado se observan que dos picos (en 20 aproximadamente 24.2° y 48.4°) son considerablemente más angostos los cuales podrían estar indicando la dirección de crecimiento de los tubos (dirección en la cual el dominio cristalino es mayor). Suponiendo que los nanotubos fuesen de titanatos laminares, el pico en $20 = 48.368^{\circ}$ sugeriría que la dirección de crecimiento sería a lo largo del eje *b*en el caso de las fases H₂Ti₃O₇[3],H₂Ti₂O₄(OH)₂[4], H₂Ti₄O₉·H₂O[5] y H_xTi_{2-x/4}O₄·H₂O[6] o *a* si se tratase H₂Ti₅O₁₁·H₂O [7].

Existe en la literatura un gran número de fases propuestas como constituyente de los nanotubos sintetizados vía métodos hidrotermales, habiendo aún hoy ciertas controversias. De la comparación con la base de datos, surge que dentro de los titanatos laminares reportados el que más se asimila en cuanto al patrón de difracción es la fase cristalográfica $H_2Ti_2O_5$ · H_2O (PDF N°47-124), pudiendo ser alguna de las reflexiones explicadas considerando el polimorfo anatasa de TiO₂. De todas formas el ajuste es muy

pobre y existen notorios problemas con las intensidades relativas y posiciones de algunos picos. Esto se muestra en la Figura 6.4.1-2y en la Tabla 6.4.1-1.

Figura 6.4.1-2 – Resultado de la comparación con la base de datos. Se indican los índices de Miller de los picos principales.

La interpretación de los diagramas obtenidos por difracción de rayos X, resulta compleja debido a una sumatoria de factores. Por un lado, como ya fue mencionado, se encuentran las características morfológicas de las muestras. Las dimensiones nanométricas y el carácter tubular de alta relación de aspecto. Por otro lado, debido a que por lo general se trata de titanatos ácidos hidratados se suma el hecho de que es difícil determinar la cantidad de agua "estructural" de la muestra y la cantidad de agua correspondiente a humedad adsorbida sobre las superficies de las partículas. Más aún, los átomos de hidrógeno poseen muy bajo factor de dispersión atómico por lo que se hace imposible poder determinar su posición mediante difracción de rayos X convencional. Esto genera que un porcentaje de las fases que aparecen en la base de datos no se encuentren resueltas (se dispone de indizados de las mismas). Por lo que se dificulta la interpretación, sobre todo a la hora de entender mecanismos de formación, intercambio iónico y transformaciones estructurales al realizar tratamientos térmicos. Por último, debido a que se trata de agregado de NT y que existe cierta distribución en

los diámetros de tubos y espesor de paredes, no se descarta que el intercambio iónico y grado de hidratación difiera entre partículas, por lo que el diagrama podría contener la suma de estas fases.

2θ(°)	d(Å)	I(u.a.)	Match	(hkl)	Observaciones
9.726	9.0862	876			Cercana a la reflexión (200) con d=9.0400Å para H ₂ Ti ₂ O ₅ ·H ₂ O
24.235	3.6694	1023	$H_2Ti_2O_5$ · H_2O	(110)	
25.552	3.4832	984	Anatasa	(101)	
28.050	3.1784	502	$H_2Ti_2O_5$ · H_2O	(310)	
32.215	2.7764	118			$H_2Ti_2O_5 \cdot H_2O$ presenta reflexión en d=2.6840 Å, correspondiente a (301)
38.337	2.3459	165			$H_2Ti_2O_5$ · H_2O presenta una reflexión en d=2.3060 Å, asociada a (501)
48.368	1.8803	1250	H ₂ Ti ₂ O ₅ ·H ₂ O & Anatasa	(020) _H & (200) _A	
49.331	1.8458	414	$H_2Ti_2O_5$ · H_2O	(220)	Cercana a (220) con d= 1.8510 Å correspondiente a H₂Ti₂O₅∙H₂O
50.206	1.8156	59			
54.037	1.6956	55	Anatasa	(211)	
59.242	1.5584	57			
62.699	1.4806	60	Anatasa	(204)	
68.155	1.3747	57			
69.780	1.3466	53			
76.192	1.2485	41			

 Tabla 6.4.1-1 Interpretación preliminar de reflexiones observadas.

A pesar de los números estudios existentes, el entendimiento sobre la estructura cristalina de los nanotubos aún es incompleto. En el acápite 6.4.3 se realiza un estudio teórico con el objetivo de aportar en la interpretación de este tipo de diagramas.

6.4.2 Análisis dimensional de dominios cristalinos en los NT a partir de DRX utilizando la ecuación de Scherrer

Para este análisis se ajustan los picos principales de difracción correspondientes al patrón de NT, según se enumeran en la Figura 6.4.2-1(a), se ensayan ajustes mediante curvas Voigt, Gaussianas y Lorentzianas para la estimación del ancho de pico a media altura (FWHM).

Capítulo 6 - Caracterización de NTs

Figura 6.4.2-1– Numeración de picos principales (NT_15CI) (a) y mejor ajuste correspondiente a los picos 1 (b), 2, 3, 4, 5 y 6 (c), 7 y 8(d).

En la tabla a continuación se listan los parámetros de ajuste y el tamaño del dominio cristalino obtenido empleando la ecuación de Scherrer (1). La dimensión dada por esta ecuación (d) corresponde al tamaño de la cristalita según la dirección normal a la familia de planos cristalinos correspondiente a la reflexión de Bragg analizada.

$$d = \frac{0.94*\lambda}{FWHM*\cos(\theta)} \tag{1}$$

Los tamaños calculados reflejan la alta relación de aspecto de las cristalitas. Los picos 2 y 7 se asocirían a familias de planos perpendiculares (o al menos no paralelos) al eje de los NTs, si bien los valores obtenidos (12,5nm y 14,8nm) son un orden de magnitud por debajo de lo esperado (según imágenes TEM el largo de los NT es del orden de los 100nm). Esto implica la existencia de otros efectos contribuyendo al ancho de pico. Dislocaciones, fallas de apilamiento e inhomogeneidades cristalinas según la dirección de crecimiento podrían explicar estos resultados. Por otro lado, y esto es válido para la

totalidad de las señales ajustadas, debido a las características del diagrama no puede afirmarse con certeza que los máximos anchos seleccionados correspondan a un único pico de difracción, podrían ser la superposición de varios.

Pico	2θ(°)	θ (°)	FWHM(°)	d(nm)	Mejor ajuste ^{****}	\mathbf{R}^2
1	9,687	4,844	2,54*	3,3	Voigt	0,9451
2	24,31	12,16	0,6809	12,5		
3	25,377	12,69	1,9594	4,3		
4	27,908	13,95	3,5803	2,4	Gaussiana	0,9889
5	32,018	16,01	4,2826	2,0		
6	38,384	19,19	4,4446	2,0		
7	48,379	24,19	0,6164	14,8	Lorontziono	0.0066
8	49,372	24,69	0,9568	9,5	Lorentziana	0,9900

 Tabla 6.4.2-1 – Parámetros de ajuste y resultados del tamaño de dominio cristalino (d) para cada dirección calculados según la ecuación de Scherrer.

* Se calcula según: FWHM = $0.5346 * w_L + (0.2166 * w_L^2 + w_G^2)^{1/2}$, siendo $w_G = 1,92575 \text{ y } w_L = 1,04027$ **Substracción del ancho de pico instrumental.

***En el caso de ajuste de picos múltiples (2-6 y 7-8) sólo se compararon ajuste con curvas Gaussianas y Lorentzianas.

En lo que respecta a los máximos 1, 4, 5 y 6, estos definen dimensiones de cristalita en el rango de 2.0 a 3.3nm por lo que podrían asociarse a planos cristalográficos paralelos al eje de los NTs. Este valor, si bien en promedio es menor, concuerda con el valor medio extraído a partir de las microscopías TEM (~3,1nm). Cabe señalar que debido a la morfología tubular de las partículas, a cada familia de planos paralelos al eje del nanotubo puede asociarse una distribución de espaciamientos interplanares. Esto produce un ensanchamiento de los picos observados debido a que corresponden a la superposición de las señales asociadas a dicha distribución. En la Figura 6.4.2-2 se esquematiza este efecto. Lo que es coherente con el menor valor de d obtenido.

Los picos 3 y 8 dan tamaños intermedios (4,3nm y 9,5nm respectivamente). Estos se ven el diagrama como hombros en los picos 2 y 7 por lo que su ajuste resulta menos confiable que el resto por lo tanto no serán tomados en cuenta.

Capítulo 6 - Caracterización de NTs

Figura 6.4.2-2— Esquema que muestra el ensanchamiento de un pico de difracción debido a la distribución de espaciamientos interplanares asociados a una familia de planos cristalográficos en nanopartículas de morfología tubular. Figura extraída de: Estimating Crystallite Size Using XRD, Scott A Speakman, Ph.D., MIT Center for Materials Science and Engineering, <u>http://prism.mit.edu/xray</u>

6.4.3 Influencia de las dimensiones y morfología de las partículas en el patrón de difracción -MODELOS DE NANOTUBOS EN TAMAÑO REAL

Se estudia la influencia de las dimensiones y morfología de los nanotubos en el patrón de difracción rayos X mediante la simulación de diagramas para modelos de tubos. De entre las fases propuestas como constituyentes de los nanotubos sintetizados mediante métodos hidrotermales alcalinos, se seleccionan los titanatos de hidrógeno derivados deH₂Ti₂O₅·H₂O (específicamente H₂Ti₂O₅·0.5H₂O y H₂Ti₂O₅·H₂O) y H₂Ti₃O₇ (específicamente H₂Ti₃O₇·2H₂O). Se trabaja además con el polimorfode dióxido de titanioTiO₂(B), también propuesto como fase de los nanotubos luego de deshidratación mediante tratamiento térmico de los titanatos de hidrógeno.

Cabe señalar que en forma previa, y como se discute en el Capítulo 9, se realizó un estudio mediante DFT para la resolución de las estructuras de los titanatos $H_2Ti_2O_5 \cdot 0.5H_2O$, $H_2Ti_2O_5 \cdot H_2O$ y $H_2Ti_3O_7 \cdot 2H_2O$. En el caso del trititanato $H_2Ti_3O_7$ se

Capítulo 6 – Caracterización de NTs

utiliza la estructura reportada ICSD 41055³. A partir de estas, se realizan modelos de tubos, considerando dirección periódica, superficie expuesta y sentido de enrollamiento reportados en literatura. El diámetro medio y el espesor de pared seleccionados corresponden a los valores observados por microscopía de transmisión. Cabe aclarar que los tubos no fueron optimizados mediante cálculos DFT. Son modelos ideales construidos a partir de cortes de las estructuras en bulk y enrollamiento de las mismas. Estas estructuras podrían resultar estables o no en la naturaleza, pero no es el objetivo en este punto determinarlo. El objetivo concreto de esta sección es aportar en el entendimiento de la influencia de la dimensionalidad en el patrón de difracción y seleccionar cual fase se aproxima más a los resultados experimentales obtenidos en vista a la caracterización estructural.

Se simulan los diagramas de polvo mediante el código Mercury 3.0. Para ello se genera un archivo CIF que incluye el anillo correspondiente a la sección transversal del tubo al que se agrega vacío (aproximadamente 100Å) en las direcciones normales al tubo.

$I - H_2 Ti_2 O_5 \cdot 0.5 H_2 O$

Se construyen nanotubos a partir del polimorfo $H_2Ti_2O_5 \cdot 0.5H_2O$ de superficie expuesta paralela a la superficie (010) tal que la dirección radial coincide con el parámetro de celda b^4 , la dirección tangencial coincide con el parámetro de celda *cy* eje según la dirección [100] según observaciones experimentales[2]. Se comparan los diagramas simulados a partir de nanotubos del tipo enrollamiento en espiral ("scroll-type") y nanotubos concéntricos de pared simple (SW) y doble (DW)⁵. El número de láminas de octaedros [TiO₆] que conforman las paredes de los nanotubos son 2 y 4 en los casos SW y DW respectivamente. En la Figura 6.4.3-1se esquematiza el esquema de construcción a partir de la celda unidad y se comparan los diagramas simulados para el caso de la

 $^{^{3}}$ Esta no incluye los átomos de oxígeno, por lo que el modelo se realiza únicamente con los planos de octaedros [TiO₆].

⁴ Nota: Existe una discrepancia en la nomenclatura de los parámetros de red para esta fase con respecto a la literatura debido a que se respetó la nomenclatura del compuesto $HNaTi_2O_5$ a partir del cual, mediante sustitución y optimización, se obtuvo la estructura utilizada para $H_2Ti_2O_5.0.5H_2O$. *a*corresponde al parámetro *b* y viceversa.

⁵Se refiere a pared simple los generados a partir de un slab de espesor un parámetro de celda (b, lo que implica $e=b*cos(\alpha-90^\circ)$) y pared doble a los generados a partir de un slab del doble de ancho (o en el caso de enrollamiento en espiral a dos vueltas del slab simple).

estructura en bulk, los NT tipo espiral y los datos experimentales. En la Figura 6.4.3-2 se comparan los resultados obtenidos con los modelos de NT concéntricos.

Figura 6.4.3-1 - (a) Celda unidad optimizada de la fase $H_2Ti_2O_5 \cdot 0.5H_2O$. (b) segment de slab (010). Modelos de nanotubos de $H_2Ti_2O_5 \cdot 0.5H_2O$ de enrollamiento en espiral: (c) NT de pared simple, $D_{int}=8.4nm$, $D_{ext}=12nm$ y e=1.6nm, (d) NT de pared doble de $D_{int}=8.4nm$, $D_{ext}=14.8nm$ y e=3.2nm. (e) Comparación del diagrama de difracción de RX experimental y los simulados para el bulk, los modelos de NTs considerando modelo periódico.

Capítulo 6 - Caracterización de NTs

Figura 6.4.3-2 – Modelos de nanotubos de $H_2Ti_2O_5 \cdot 0.5H_2O$ de enrollamiento concéntrico: (a) NT de pared simple $D_{int}=7.4$ nm, $D_{ext}=10.6$ y e=1.6nm, (b) NT de pared doble de $D_{int}=5.7$ nm, $D_{ext}=12.4$ nm y e=3.3nm. (c) Comparación del diagrama de difracción de RX experimental y los simulados para el bulk y los modelos de NTs considerando modelo periódico.

Figura 6.4.3-3- Comparación de los diagramas simulados para los modelos de NTs de H₂Ti₂O₅·0.5H₂O.

Capítulo 6 – Caracterización de NTs

Resulta claro que los modelos obtenidos a partir de la estructura $H_2Ti_2O_5 \cdot 0.5H_2O$ no explican los resultados experimentales (Figura 6.4.3-3).En la zona de ángulos bajos, correspondiente al espaciamiento interplanar de las láminas de octaedros [TiO₆], que coincide con la dirección radial de los tubos, se obtiene una mejor representación considerando los modelos de pared simple. De todas formas, dicha reflexión se encuentra a ángulos menores reflejando que la distancia interplanar modelada es mayor que la experimental. La señal correspondiente a la dirección del eje del tubo (200) también se encuentra corrida a ángulos menores indicando discrepancia en el parámetro de red *a*. Por último, e independientemente de lo que podría explicarse como una contracción de los parámetros de red calculados, la zona en $2\theta = 20-40^{\circ}$ no se asemeja a los datos experimentales siendo evidente las diferencias en posiciones de pico e intensidades relativas.

Para esta fase, se realizó un modelo adicional utilizando los mismos planos (010) de construcción pero cambiando el sentido de enrollamiento tal que la dirección tangencial coincidiera con el parámetro a y la dirección axial con c. La discrepancia en este caso es aún más evidente (Figura 6.4.3-4).

Figura 6.4.3-4 – Diagrama simulado a partir del modelo de nanotubo de $H_2Ti_2O_5 \cdot 0.5H_2O$ de enrollamiento concéntrico, pared simple $D_{int}=7.4$ nm, $D_{ext}=10.6$ y e=1.6nm, dirección tangencial *a* y dirección axial *c*.

De éste ejemplo resulta notoria la dependencia del patrón de difracción con el tipo de nanotubo para determinado polimorfo. Observándose variaciones según el espesor de pared y el tipo de enrollamiento además de las más claras dependientes de la dirección de crecimiento y la dirección radial. Siendo muy limitada la comparación directa del patrón con de difracción del bulk.

II -H₂Ti₂O₅·H₂O

Se estudian nanotubos de dititanatocon mayor contenido de agua estructural $(H_2Ti_2O_5 \cdot H_2O)$ debido a los resultados arrojados por análisis elemental. Nuevamente se construyen a partir del enrollamiento de planos (010), siendo la dirección axial *a* y la dirección tangencial *b*. Se realizan modelos concéntricos debido a la mayor coherencia según la dirección radial en comparación con los tubos enrollados en espiral.

Figura 6.4.3-5 – Modelos de nanotubos de $H_2Ti_2O_5$ · H_2O de enrollamiento concéntrico: (a) NT de pared simple $D_{int}=7.1$ nm, $D_{ext}=11$ nm y e=2.0nm, (b) NT de pared doble de $D_{int}=5.0$ nm, $D_{ext}=13$ nm y e=4.0nm. (c) Comparación del diagrama de difracción de RX experimental y los simulados para el bulk y los modelos de NTs considerando modelo periódico.

Se observaron discrepancias análogas al caso anterior en las señales correspondientes a las direcciones axial y radial, siendo mayor el corrimiento en 2 θ a ángulos menores debido al mayor espaciamiento entre láminas de octaedros asociado al mayor contenido de agua entre láminas.En la zona del diagrama 2 θ = 20-40° se nota un aumento en la intensidad relativa de la señal asociada a los planos (1,2,0) (1,-2,0) del bulk pero que aún no refleja la relación experimental.

$III - H_2 T i_3 O_7$

Para el caso de nanotubos de trititanato ácido $(H_2Ti_3O_7)$ se partió de la estructura bulk del compuesto $D_2Ti_3O_7$ reportada por Feist y Davies (ICSD 41055)[8]. En la misma las posiciones de los de los 8 átomos de deuterio no están determinadas, por lo que estos modelos se realizan plegando las láminas de octaedros [TiO₆] sin incluir a los átomos de H. Debido, al bajo poder de dispersión del H se considera que este punto no va a afectar en forma significativa los resultados.

Los NT son obtenidos mediante el enrollamiento de planos (100) alrededor del [010] siendo la dirección tangencial c, según observaciones de HRTEM reportadas en literatura⁹. Se construyen de diámetro medio 9nm, y espesor de pared de acorde a 2, 3 y 4 capas de octaedros [TiO₆] (SW, 1.5W y DW respectivamente).

Figura 6.4.3-6 – Modelos de nanotubos de $H_2Ti_3O_7$ de enrollamiento concéntrico: (a) NT de pared simple $D_{int}=7.5$ nm, $D_{ext}=11$ nm y e=1.5nm, (b) NT de pared doble de $D_{int}=6.0$ nm, $D_{ext}=12$ nm y e=3.0nm. (c) Comparación del diagrama de difracción de RX experimental y los simulados para el bulk y los modelos de NTs considerando modelo periódico. Las dimensiones del modelo 1.5W son $D_{int}=6.9$ nm, $D_{ext}=11.4$ nm y e=2.2nm.

Cap. 6 - 20/46

Capítulo 6 – Caracterización de NTs

Se obtiene una mejor representación de los datos experimentales en el caso del modelo de nanotubo concéntrico de pared simple. Se observa coincidencia de las señales principales asociadas a las direcciones axial y radial. Por otro lado, existe una buena representación del pico correspondiente a la reflexión (1,1,0) del bulk. La intensidad relativa del pico (0,2,0) se ve aumentada en diagrama simulado. Esto es debido a que para simular el diagrama el modelo es periódico según esa dirección (mientras que experimentalmente se estimó una longitud de coherencia de alrededor de 15nm) lo que también explica el menor ancho de pico observado para el diagrama simulado.

Figura6.4.3-7 – Diagramacorrespondiente al modelo de NT de $H_2Ti_3O_7$ de enrollamiento concéntrico y pared simple.

Figura 6.4.3-8 – Representación esquemática de un segmento de nanotubo concéntrico de pared simple. El mismo consta de seis celdas unidad de la estructura Ti-O del compuesto $H_2Ti_3O_7$ repetidas según la dirección [100] en el que se indican las familias de planos cristalográficos de índices de Miller (110), (020) y (200).

Capítulo 6 – Caracterización de NTs

$IV - H_2Ti_3O_7 \cdot 2H_2O$

Impulsado por el contenido de agua estimado por análisis elemental y análisis termogravimétrico, se optimiza en forma teórica la estructura $H_2Ti_3O_7$ ·2 H_2O para la construcción de tubos concéntricos de pared simple y pared doble en forma análoga a los correspondientes a los de $H_2Ti_3O_7$. Los patrones de difracción simulados se apartan del experimental (Figura 6.4.3-9).

Figura 6.4.3-9 - Modelos de nanotubos de $H_2Ti_3O_7 \cdot 2H_2Ode$ enrollamiento concéntrico: (a) NT de pared simple $D_{int}=7.1$ nm, $D_{ext}=11$ nm y e=2.0nm, (b) NT de pared doble de $D_{int}=5.0$ nm, $D_{ext}=13$ nm y e=4.0nm. (c) Comparación del diagrama de difracción de RX experimental y los simulados para el bulk y los modelos de NTs considerando modelo periódico.

$V - TiO_2(B)$

Se realizan modelos a partir del polimorfo $TiO_2(B)$ mediante el enrollamiento de planos (001) y eje paralelo al parámetro de red *b*. Se selecciona este tipo de enrollamiento de acuerdo a resultados teóricos en los que se observó una excepcionalmente baja energía de formación de los modelos bidimensionales de superficie expuesta paralela a los planos $(001)^6$. La dirección del eje se elige acorde al diagrama experimental. Los tubos así construidos concuerdan con modelos propuestos en la literatura¹⁰.

Como era de esperar, los diagramas simulados no describen adecuadamente los datos experimentales de los nanotubos antes de los tratamientos térmicos (Figura 6.4.3-11Figura...). Sin embargo, representan en parte los diagramas obtenidos luego del calentamiento a 300° C, temperatura a la cual comienzan a coexistir con el polimorfo anatasa. Estos resultados están de acuerdo con el mecanismo de transformación en varios pasos de nanotubos de H₂Ti₃O₇ a nanotubos de TiO₂(B) propuesto por Morgado Jr. y colaboradores¹¹, siendo notoria la aparición de la fase anatasa a temperatura más bajas en el caso en estudio.

Figura 6.4.3-10Modelos de nanotubos de TiO₂(B) de enrollamiento concéntrico: (a)D_{int}=5.6nm, D_{ext}=9.3nm y e=1.9nm, (b) D_{int}=6.0nm, D_{ext}=12.6nm y e=3.3nm. (c) Comparación del diagrama de difracción de RX experimental y los simulados para el bulk y los modelos de NTs considerando modelo periódico.

⁶Estos resultados se muestran en el Capítulo 9.

Capítulo 6 - Caracterización de NTs

Figura 6.4.3-11 – Comparación del diagrama correspondiente al modelo de pared 3.3nm, los diagramas experimentales de los NTs calentados a 300°C y 350°C, y los patrones de la fases bulk anatasa y $TiO_2(B)$. Se indican los índices de Miller de las reflexiones correspondientes a anatasa.

Modificaciones estructurales de los nanotubos de $H_2Ti_3O_7$

De la comparación de los modelos propuestos surge que, a pesar de las discrepancias existentes, el que mejor describe los resultados experimentales es el correspondiente a la fase $H_2Ti_3O_7$ de pared simple. Con el objetivo de mejorar el ajuste se estudia la deformación de la estructura mediante el cálculo del patrón de difracción considerando segmentos de tubos de diferente longitud a lo largo de la circunferencia (Figura 6.4.3-12) con el fin de simular una disminución de la coherencia asociada a posibles distorsiones de la estructura del tubo, acorde con lo expuesto por Bruce [10] y colaboradores para el caso de nanotubos de TiO₂(B). Sin embargo, no se observa una mejora en la descripción del diagrama experimental al considerar los segmentos.

Por otro lado, debido a que los nanotubos sintetizados presentan una distribución de tamaños, se realiza un estudio variando el diámetro medio del tubo (manteniendo el espesor de pared constante) para analizar el efecto de la curvatura en la señal de difracción. La variación en la curvatura del tubo modifica las distancias entre pares de átomos, lo que se ve reflejado en la señal de difracción (Figura 6.4.3-13). Para simular el patrón de difracción con mayor precisión debería considerarse la distribución de tamaños existente en la muestra, superponiendo los diagramas correspondientes.

Capítulo 6 - Caracterización de NTs

Figura 6.4.3-12– (a) Comparación de diagramas calculados para segmentos de tubos de distinta extensión a lo largo de la circunferencia. (b) Vista transversal de los segmentos de tubo utilizados, los mismos son periódicos según la dirección del eje del tubo.

Figura 6.4.3-13 – Comparación de los diagramas obtenidos para tubos de pared simple de diámetro medio entre 2nm y 12nm con el diagrama experimental. Se considera también un modelo bidimensional (slab) como caso límite de radio tendiendo a infinito.

Capítulo 6 – Caracterización de NTs

Validación del método de simulación

Por último, se comparan los resultados por este método de cálculo del patrón de difracción con los arrojados mediante el uso de la ecuación de Debye mediante el código *DEBYE Simulation program for poder diffraction* [12].Para ello se toma el nanotubo de menor diámetro medio (2nm)⁷.

Al simular el patrón de difracción suponiendo una longitud de tubo del orden de coherencia determinado experimentalmente mediante la ecuación de Scherrer (~15nm) mediante la ecuación de Debye se observa que disminuye la intensidad relativa del pico (0,2,0) asociado a los planos perpendiculares al eje. Esto es coherente ya que en el método empleado se asume periódica esta dirección. De la variación de la longitud del tubo calculado por Debye se ve una mejor concordancia entre métodos al emplear tubos de largo 1µm.

Por lo anterior, debe considerarse que en los patrones calculados asumiendo modelo periódico existe un angostamiento de las señales asociadas a la dirección periódica así como un aumento en su intensidad relativa debido al método de cálculo.

Figura 6.4.3-14 – Diagrama obtenido por el método de Debye para el nanotubo de $H_2Ti_3O_7$ de $D_m=2nm$ asumiendo tubo de longitud 40*b*.

⁷Esto se debe a una limitación en el número de átomos que lee el programa utilizado para la simulación.

Capítulo 6 – Caracterización de NTs

Figura 6.4.3-15 - Diagrama obtenido por el método de Debye para el nanotubo de $H_2Ti_3O_7$ de $D_m=2nm$ asumiendo tubo de longitud 250*b*.

Figura6.4.3-16- Diagrama obtenido por el modelo periódico mediante el código Mercury para el nanotubo de $H_2Ti_3O_7$ de $D_m=2nm$

6.4.4 Análisis de orientación preferencial mediante Rocking Curves

Se realizó un barrido en θ el rango θ =14-34° alrededor de la condición de Bragg asociada a la familia de planos perpendicular al eje de los nanotubos (0,2,0), 2 θ fijo en 48.45°, con el objetivo de determinar si la muestra presentaba orientación preferencial que afecte la intensidad relativa de los picos.

Capítulo 6 – Caracterización de NTs

Figura 6.4.4-1 – Rocking curve de la muestra de nanotubos NT15CI. Se realizó un barrido en θ el rango θ =14-34° alrededor de la condición de Bragg seleccionada (2 θ fijo en 48.45°). Las condiciones empleadas 40kV, 30mA, paso de 0.02°.

La forma de la curva no presenta clara evidencia de orientación preferencial de las partículas⁸. Por lo que puede inferirse que la muestra se trata de un polvo de nanotubos, en el cual las partículas (o conglomerados) se encuentran orientados en forma aleatoria.

6.4.5 Dispersión de rayos X a ángulos bajos

Nuestro grupo de investigación dispone de un difractómetro de polvo, multipropósito, Rigaku ULTIMA IV. En el mismo es posible caracterizar thin films (capas finas), mediante reflectometría de rayos X (XRR) y dispersión a ángulo bajo en geometría dispersiva (SAXS). Ambas técnicas son complementarias, por ejemplo mediante el uso de XRR es posible medir el espesor de las capas, densidad promedio y rugosidad superficial. Estos dos últimos parámetros son muy importantes, ya que pueden ser utilizados para los siguientes procesos de refinamiento de datos SAXS, donde se posible

⁸Queda pendiente, y se propone para un trabajo posterior, el análisis de la dependencia de absorción de la muestra con la geometría del experimento que permita entender la variación de la intensidad difractada con el ángulo θ .

refinar morfología, relación de aspecto L/D (largo sobre diámetro), distancia entre objetos y la distribución de tamaños para el sistema en estudio.

Figura 6.4.5-1 - Esquema de información factible de obtener mediante XRR

Mediante análisis por SAXS se obtuvo un diámetro medio de partícula de 2.6nm y una distancia a vecino más cercano de 5.8nm. Debido a que el método es sensible a contraste en la densidad electrónica de la muestra, se infiere que estos valores corresponden a una estimación del espesor de la pared de los tubos y al diámetro interno de los mismos. Ambos números están de acuerdo con lo observado por microscopía electrónica de transmisión (~3.1nm y 5.9nm). El ajuste de la señal SAXS y la distribución de tamaño de poros se muestra en la Figura 6.4.3-1.

Figura 6.4.5-2- Ajuste de la señal SAXS y curva de distribución de tamaño de poros.
6.5 ESPECTROSCOPÍAS INFRARROJA Y RAMAN

6.5.1 Espectroscopía IR

La banda ancha alrededor de 3400cm⁻¹ y la señal en 1630cm⁻¹ se asocian a los modos vibracionales de estiramiento y flexión (δ_{H-O-H}) de moléculas de H₂O (o H₃O⁺) respectivamente. Según literatura, señales cercanas a 3400cm⁻¹ y 3169cm⁻¹ se asocian a modos de estiramiento de grupos OH superficiales. El hombro alrededor de 3169cm⁻¹ es atribuido a la fuerte interacción Ti-OH. En el caso en estudio, este puede observarse pero corrido hacia números de onda superiores (alrededor de 3200cm⁻¹). La señal alrededor de 480cm⁻¹ y hombros en las regiones de 700cm⁻¹ y 910cm⁻¹ se relacionan a vibraciones Ti-O y Ti-O-Ti en la red. El pico cerca de 2360cm⁻¹ es debido al CO₂ del aire.

Figura 6.5.1-1 – Espectro de FTIR de la muestra de nanotubos NT_15CI en la región 400cm⁻¹-4000cm⁻¹. Se marcan los valores aproximados de números de onda de las señales observadas.

6.5.2 Espectroscopía Raman

Se obtuvieron espectros Raman comparativos de nanotubos de titanatos de hidrógeno (NT_15CI) y titanatos de sodio e hidrógeno (NT_18B) (Figura 6.5.2-1). En la Tabla 6.5.2-1 se listan los valores aproximados de número de onda de las seis bandas Raman observadas para cada fase, en conjunto con valores reportados en bibliografía. En ambos se observaron las señales características a 290cm⁻¹, 448cm⁻¹ y un multiplete alrededor de 668cm⁻¹. La asignación de estos picos todavía está bajo discusión. Han sido interpretados los picos en 448cm⁻¹ y 668cm⁻¹ como correspondientes a fonones asociados a las vibraciones Ti-O-Ti del cristal [2].

Comparando los espectros, existe gran similitud en la zona 250-550cm⁻¹. Para el caso de los nanotubos de titanato de sodio, existen dos picos anchos centrados en 296cm⁻¹ y 449cm⁻¹. A su vez se ve un hombro en el segundo pico en número de onda 434cm⁻¹. En el caso de los NTs de titanato de hidrógeno, el primer pico es menos definido y su máximo se encuentra en la región 290-300cm⁻¹. Mientras que el segundo se encuentra levemente corrido a número de ondas mayores 454cm⁻¹ con el hombro respectivo en 433cm⁻¹. Dentro de la resolución obtenida, se podría concluir que esta región es independiente del contenido de sodio y por lo tanto los modos deben asociarse a vibraciones Ti-O-Ti o eventualmente Ti-O-H.

Figura 6.5.2-1 – Espectros Raman de los nanotubos de titanatos.

NT 15CI	NT 18B	H- Ti-NT [13]	NT -L? [14]	NT-L [15]	NT-L [16]	H- Ti-NT [17]	Na/H- Ti-NT [17]	H- Ti-NT [18]
		146	145					146
		197	195	188	180	195		197
300	296	266	280	273	274	285	288	266
		398			396			398
433	434							
454	449	442	450	454	454	458	458	442
	634	639	640					639
652				663	663			
	710		700			700	710	
836		822			835	830	830	822
	905							
940			920		930	926	926	

Tabla 6.5.2-1 – Raman shift correspondiente a los NTs de titanato de hidrógeno y titanato de sodio (cm⁻¹).**NT-L** hace referencia a nanotubos de titanátos protónicos con estructura del tipo lepidocrocita. H-Ti-NT y Na/H-Ti-NT refieren a nanotubos de titanatos protónicos y titanatos de sodio e hidrógeno en forma

6.6 ESTABILIDAD TÉRMICA DE LOS NANOTUBOS

6.6.1 Análisis por microscopía electrónica de transmisión

El análisis por microscopía de transmisión de la muestra NT_15_CI prueba la existencia de nanotubos hasta temperaturas de 400°C donde es clara la coexistencia con material del tipo granular (Figura 6.6.1-1). No se observaron NT a 500°C (Figura 6.6.1-2) lo que implica que la morfología tubular es perdida por completo en el intervalo de temperatura de 400°C a 500°C. Las estructuras finales son del tipo nanorods de pequeña longitud. El diámetro externo promedio (Figura 6.6.1-3) obtenido a partir del análisis de microscopías TEM es de 12.8nm (desviación estándar: 2,7nm) coincide con el diámetro externo de los nanotubos de partida 12.1nm (desviación estándar: 2nm), lo que parecería indicar el colapso y fraccionamiento de los tubos originales.

Capítulo 6 – Caracterización de NTs

Figura 6.6.1-1Imágenes TEM luego de la muestra NT_15CI luego de calcinaciones sucesivas a 150°C (a), 200°C (b), 300°C (c), 350°C (d), 400°C (e) y 500°C (f). Las magnificaciones empleadas fueron 300000x, 200000x, 300000x, 300000x, 150000x y 200000x respectivamente.

Cabe señalar la importancia de este resultado que acota el rango de temperaturas para posibles aplicaciones de estos nanotubos. Específicamente, para el sinterizado de la capa de nanotubos de fotoelectrodos se deberá emplear temperaturas menores a 400°C.

Capítulo 6 - Caracterización de NTs

Figura 6.6.1-2 – Imagen TEM con magnificación 120000x correspondiente a la muestra luego de la calcinación a 500°C. No se observaron estructuras tubulares en este caso.

Figura 6.6.1-3 – Distribución de diámetros externos luego de calcinar a 500°C.

6.6.2 Análisis por DRX

Con respecto a la estabilidad de la estructura cristalográfica de la muestra se observa una evolución del patrón característico de titanatos laminares hacia el correspondiente a la fase anatasa. A partir de 500°C, la muestra está formada prácticamente en su totalidad por anatasa. Esto implica que los NRs obtenidos al calentar a 500°C son de dicha fase, lo que sugiere que en la transformación a la fase anatasa viene asociada a la pérdida de morfología tubular como ya ha sido observado [19]. Entre 600°C y 650°C comienza el cambio de fase al polimorfo rutilo. Los diagramas correspondientes se adjuntan en la Figura 6.6.2-1.

Se observa el corrimiento del primer pico hacia ángulos mayores. Esta reflexión, como ya fue mencionado, está asociada al espaciamiento interplanar entre las láminas de octaedros TiO₆ en los titanatos laminares. Se realizó el análisis por separado de la región $2\theta 5^{\circ}-20^{\circ}$ sustrayendo el background y realizando el ajuste del primer pico mediante curvas Voigt para cada set de datos. En la Figura 6.6.2-2 se muestra el ajuste y en la Tabla 6.6.2-1 los parámetros arrojados por el modelo. Se verifica un corrimiento en 20 de 9.69° a 14,69° asociado a una reducción de esta distancia interplanar desde un valor inicial 9,12Å a 6,24Å. Es esperable la disminución de este parámetro, ya que al aumentar la temperatura ocurre la deshidratación de la muestra disminuyendo la cantidad de agua entre láminas de octaedros. Se observa un comportamiento aproximadamente lineal hasta 350°C, ver Figura 6.6.2-3, Entre 350°C y 450°C se observó un leve aumento de esta distancia a 6,38Å. Para temperaturas la señal es muy débil en esta zona y no parece sufrir nuevas modificaciones.

Capítulo 6 – Caracterización de NTs

Figura 6.6.2-1 – Evolución del patrón de difracción de rayos X con calcinaciones sucesivas.

20(°)

Capítulo 6 - Caracterización de NTs

Figura 6.6.2-2 – (a) Evolución del pico a ángulos bajos con la temperatura. (b) Ajuste de los picos según modelos Voigt luego de sustraído el background.

TT 11 ((A 1	D (1	• , •	1 1		T 7 • 1	1	•	/ 1	1 .
Tabla 6.6.2-1 –	Parametros de	e anuste c	ie las	curvas	Voigt na	ara los i	DICOS A	angulos	balos.
	1 41411101100 44			••••	· • 5 • 6		p1000 4	angaios.	04100

	y ₀	Xc	Α	wG	wL	r^2
NT_15CI	16.7(2.3)	9.687(0.012)	1368(42)	1.93(0.12)	1.04(0.16)	0.95
150°C	39.8(1.7)	10.741(0.032)	399(25)	2.59(0.20)	0.00(0.28)	0.70
200°C	46.1(1.5)	11.015(0.034)	531(15)	3.399(0.093)	0.000(0.056)	0.77
250°C	27.2(2.4)	12.577(0.050)	669(36)	5.00(0.19)	0.00(0.28)	0.71
300°C	41.6(2.2)	13.445(0.046)	644(27)	4.91(0.16)	0.00(0.28)	0.73
350°C	26.2(1.4)	14.191(0.039)	474(15)	3.65(0.11)	0.00()	0.73
400°C	25.3(1.2)	14.166(0.035)	482(14)	3.682(0.097)	0.00()	0.77
450°C	25.6(1.2)	13.865(0.056)	230(14)	3.16(0.19)	0.00(0.22)	0.51

Figura 6.6.2-3 – Evolución de la posición del primer pico (a) y el espaciamiento interplanar asociado (b) con la temperatura.

6.6.3 Análisis térmicos: TGA, DTA y DSC

El análisis termo gravimétrico (TGA) muestra una pérdida de masa continua hasta alcanzar una temperatura entre 350°C y 400°C, siendo la pérdida total 15,4% de la masa inicial (Figura 6.6.3-1). Esta se asocia a la deshidratación de la muestra. Pueden

Capítulo 6 – Caracterización de NTs

diferenciarse dos puntos de inflexión en la curva (a temperaturas 48,5°C y 98,3°C) los que podrían estar marcando la pérdida de dos tipos diferentes de aguas: humedad adsorbida sobre la superficie de la muestra y agua estructural ocupando espacios entre láminas de octaedros TiO₆ en las estructuras de titanatos. Debido a que luego de los lavados las muestras son secadas a una temperatura mayor a 50°C, se considera que al menos la masa de agua perdida hasta esa temperatura no corresponde a agua estructural y se excluye en el análisis composicional de los NTs. Esta corresponde al 2.6% de la masa inicial.Bajo este supuesto, el agua estructural perdida hasta 400°C corresponde al 12.8% en masa de la muestra conteniendo humedad. Esto equivale al 13.1% de la masa inicial de muestra seca, siendo una cota superior de contenido de agua, ya que parte podría estar asociada a humedad eliminada a temperaturas mayores a 50°C (Nota: a 80°C ya se perdió el 5.7% de la masa inicial).

A 622.5°C se detecta un pico adicional en la curva derivada, asociado a una nueva pérdida de masa (0.805% de la masa inicial, equivalente a 0.826% de la masa considerada libre de humedad)y luego para temperaturas mayores la masa se ve incrementada en un 2.54% (2.61% de la muestra seca). Este incremento no queda claro, podría interpretarse como una oxidación de material que presentara vacancias de oxígeno.

Figura 6.6.3-1 – Análisis termo gravimétrico (TGA) de la muestra NT_15CI.

El termograma obtenido mediante DTA presenta dos picos definidos a temperaturas bajas (38,8°C y 103,4°C) según se indica en la Figura 6.6.3-2. Esto concuerda con lo visto por TGA ya que pueden asociarse a procesos endotérmicos asociados a la deshidratación de la muestra. Pérdida de humedad y cambio de fase cristalográfica asociada a la deshidratación del titanato de hidrógeno.La región entre aproximadamente 200°C y 680°C es poco clara, parece caracterizarse por una serie de transformaciones endotérmicas.

Figura 6.6.3-2– Análisis térmico diferencial (DTA) de la muestra NT_15CI.

Capítulo 6 - Caracterización de NTs

Figura 6.6.3-3 – DSC para NT_15CI. En el gráfico inserto corresponde a la ampliación de la zona de temperaturas menores a 150°C.

6.6.4 Análisis elemental para evaluación del contenido de hidrógeno

El contenido porcentual en masa de hidrógeno varió entre 1,98% y 0,757% al calcinar hasta 450°C (Figura 6.6.4-1). Las muestras fueron mantenidas en desecador por lo que se considera despreciable la cantidad de agua de humedad (adsorbida sobre la superficie) y por ende el porcentaje de hidrógeno se asocia al contenido en la estructura. La muestra como fue sintetizada (en ausencia de tratamientos térmicos posteriores) posee 1,98% m/m de H, asumiendo que se trata de un titanato laminar de composición $H_2Ti_2O_5 \cdot nH_2O$, n=0.92, por otro lado si se tratase de un trititanato $H_2Ti_3O_7 \cdot mH_2O$, m=1.9.

Capítulo 6 – Caracterización de NTs

Figura 6.6.4-1 – Contenido porcentual de hidrógeno remanente luego de calcinaciones sucesivas a la temperatura indicada (rampa de 5°/C tiempo en la temperatura marcada de 2hs)

$$\begin{split} H_2 T i_2 \mathcal{O}_5 &\cdot 0.92 H_2 O \xrightarrow{150^\circ C} H_2 T i_2 \mathcal{O}_5 &\cdot 0.55 H_2 O + 0.31 H_2 O \\ H_2 T i_2 \mathcal{O}_5 &\cdot 0.55 H_2 O \xrightarrow{200^\circ C} H_2 T i_2 \mathcal{O}_5 &\cdot 0.40 H_2 O + 0.15 H_2 O \\ H_2 T i_2 \mathcal{O}_5 &\cdot 0.40 H_2 O \xrightarrow{250^\circ C} H_2 T i_2 \mathcal{O}_5 &\cdot 0.20 H_2 O + 0.20 H_2 O \\ H_2 T i_2 \mathcal{O}_5 &\cdot 0.20 H_2 O \xrightarrow{300^\circ C} H_2 T i_2 \mathcal{O}_5 &\cdot 0.14 H_2 O + 0.06 H_2 O \\ H_2 T i_2 \mathcal{O}_5 &\cdot 0.14 H_2 O \xrightarrow{350^\circ C} H_{1.55} T i_2 \mathcal{O}_{4.775} &+ 0.365 H_2 O \\ H_{1.55} T i_2 \mathcal{O}_{4.775} &\xrightarrow{450^\circ C} H_{1.30} T i_2 \mathcal{O}_{4.65} &+ 0.125 H_2 O \end{split}$$

En este caso, la pérdida de masa total asociada a estos pasos corresponde a un 11.2% de la masa total inicial. Para el caso de que se tratase de un trititanato, la deshidratación seguiría los pasos esquematizados a continuación y la pérdida de masa total porcentual sería de 11,9%

$$\begin{aligned} H_2 T i_3 O_7 \cdot 1.9 H_2 O &\xrightarrow{150^{\circ}C} H_2 T i_3 O_7 \cdot 1.35 H_2 O + 0.55 H_2 O \\ H_2 T i_3 O_7 \cdot 1.35 H_2 O &\xrightarrow{200^{\circ}C} H_2 T i_3 O_7 \cdot 1.11 H_2 O + 0.24 H_2 O \\ H_2 T i_3 O_7 \cdot 1.11 H_2 O &\xrightarrow{250^{\circ}C} H_2 T i_3 O_7 \cdot 0.81 H_2 O + 0.30 H_2 O \\ H_2 T i_3 O_7 \cdot 0.81 H_2 O &\xrightarrow{300^{\circ}C} H_2 T i_3 O_7 \cdot 0.71 H_2 O + 0.10 H_2 O \end{aligned}$$

Capítulo 6 – Caracterización de NTs

$$\begin{split} H_2 T i_3 O_7 & \cdot \ 0.71 H_2 O \xrightarrow{350^\circ C} H_2 T i_3 O_7 & \cdot \ 0.16 H_2 O + 0.55 H_2 O \\ H_2 T i_3 O_7 & \cdot \ 0.16 H_2 O \xrightarrow{450^\circ C} H_{1.95} T i_3 O_{6.975} + 0.185 H_2 O \end{split}$$

A 450°C existe un contenido de hidrógeno remanente del 0,757%. Porcentaje que se ajusta bien a la composición $H_{1.30}Ti_2O_{4.65}$ (o $H_2Ti_4O_9\cdot 0.3H_2O$) que equivale a $H_{1.95}Ti_3O_{6.975}$ (o $H_2Ti_6O_{13}\cdot 0.95H_2O$). Esto no explica lo observado en el análisis TGA si se considera que la totalidad de hidrógeno debe perderse mediante un mecanismo de deshidratación de la estructura. Sin embargo este valor es coherente con la pérdida del 0.8% en torno a los 622°C, lo que podría estar indicando que participa el oxígeno del medio en la pérdida de hidrógeno estructural.

6.7 CONCLUSIONES – CARACTERIZACIÓN DE NANOTUBOS

- Los nanotubos de titanato de hidrógeno obtenidos mediante la optimización de la ruta de síntesis (muestra NT_15_CI) presentan un diámetro interno de 5.9±1.4nm y diámetro externo de 12.1±1.4nm, según análisis por TEM. Los presentan alta área superficial (superficie BET de 286m²/g), lo que es favorable pensando en su aplicación en celdas DSSC.
- Medidas de dispersión de rayos X a ángulos bajos (SAXS) arrojaron un diámetro de partícula de 2.6nm y una distancia a partícula más cercana de 5.8nm. Debido a que el método es sensible a contraste en la densidad electrónica de la muestra, se infiere que estos valores corresponden a una estimación del espesor de la pared de los tubos y al diámetro interno de los mismos. Esto concuerda con lo observado por microscopía electrónica de transmisión (~3.1nm y 5.9nm).
- El estudio de las dimensiones de los dominios cristalinos mediante el método de Scherrer refleja la alta relación de aspecto de las cristalitas. Se obtuvieron

Capítulo 6 – Caracterización de NTs

dimensiones de 2.0-3.3nm coherente con el espesor de pared de los tubos y longitudes del orden de 15nm en la dirección.

- De la simulación del patrón de difracción de rayos X considerando modelos de nanotubos de tamaño real (en la dirección radial) de distintas fases de titanatos de hidrógeno se obtiene la mejor representación de los datos experimentales en el caso del modelo de nanotubo concéntrico de pared simple de fase H₂Ti₃O₇.
- En lo que respecta a la estabilidad térmica, se verifica la existencia de morfología tubular hasta temperaturas de 400°C donde es clara la coexistencia con material del tipo granular. No se observaron NT a 500°C lo que implica que la morfología tubular es perdida por completo en el intervalo de temperatura de 400°C a 500°C. Las estructuras finales son del tipo nanorods de pequeña longitud. El diámetro externo promedio obtenido a partir del análisis de microscopías TEM es de 12.8±2.7nm. Cabe señalar que este resultado que acota el rango de temperaturas para posibles aplicaciones de estos nanotubos. Específicamente, para el sinterizado de la capa de nanotubos de fotoelectrodos se deberá emplear temperaturas menores a 400°C.
- Con respecto a la estabilidad de la estructura cristalográfica se observa una evolución del patrón característico de titanatos laminares hacia el correspondiente a la fase anatasa. A partir de 500°C, la muestra está formada prácticamente en su totalidad por anatasa. Esto implica que los NRs obtenidos al calentar a 500°C son de dicha fase, lo que verifica que en la transformación a la fase anatasa viene asociada a la pérdida de morfología tubular. Entre 600°C y 650°C comienza el cambio de fase al polimorfo rutilo. Se verifica un corrimiento de la primera reflexión en 2θ de 9.69° a 14,69° asociado a una reducción de esta distancia interplanar desde un valor inicial 9,12Å a 6,24Å coherente con la deshidratación de la muestra y por lo tanto la disminución de la cantidad de agua entre láminas de octaedros. A partir de 450°C no parece haber más modificaciones en esa zona del diagrama.

Capítulo 6 – Caracterización de NTs

- El análisis termo gravimétrico (TGA) muestra una pérdida de masa continua hasta alcanzar una temperatura entre 350°C y 400°C, siendo la pérdida total 15,4% de la masa inicial. Esta se asocia a la deshidratación de la muestra. Pueden diferenciarse dos puntos de inflexión en la curva (a temperaturas 48,5°C y 98,3°C) los que podrían estar marcando la pérdida de dos tipos diferentes de aguas: humedad adsorbida sobre la superficie de la muestra y agua estructural ocupando espacios entre láminas de octaedros [TiO₆] en las estructuras de titanatos. Se estima que el agua estructural perdida hasta 400°C corresponde al 13.1% de la masa inicial de muestra seca, siendo una cota superior de contenido de agua, ya que parte podría estar asociada a humedad eliminada a temperaturas mayores a 50°C.
- El contenido porcentual en masa de hidrógeno (determinado por análisis elemental) varió entre 1,98% y 0,757% al calcinar hasta 450°C. Según el contenido inicial y asumiendo que se trata de un titanato laminar de composición H₂Ti₃O₇·mH₂O, m=1.9.

REFERENCIAS – CAPÍTULO 6

- [2] Dmitry V. Bavykin y Frank C. Walsh, "Titanate and Titania Nanotubes. Synthesis, Properties and Applications", *RSC Nanoscience & Nanotechnology* No. 12, **2010**
- [3] YangJ. J., JinZ. S., WangX. D., LiW., ZhangJ. W., ZhangS. L., GuoX. Y. y ZhangZ. J., *Dalton Trans*.2003, 20, 3898.
- [4]Nakahira A., Kato W., Tamai M., Isshiki T., Nishio K. y Aritani H., *J.Mater.Sci.* **2004**, 39, 4239.
- [5]Izaiva, H. et al. J. Chem. Phys., 1982,86,5023
- [6]Ma R. Z., Bando Y., Sasaki T., Chem. Phys. Lett. 2003, 380, 577.
- [7]Yang H. G., Zeng H. C., J. Am. Chem. Soc. 2005, 127, 270.
- [8] Feist T. P., Davies P. K., Journal of Solid State Chemistry 1992, 101, 275-295
- [9]Du G. H., Chen Q., Che R. C., Yuan Z. Y., Peng L. -M., Appl. Phys. Lett. 2001, 79, 3702.
- [10] Andreev Y. G., Bruce P. G., J. Am. Soc. 2008, 130,9931-9934
- [11]Morgado Jr E., Jardim P. M., Marinkovic B. A., Rizzo F. C., de Abreu M. A. S.,
- Zotin J. L., Araújo A. S., Nanotechnology 2007, 18, 495710.
- [12] J. Oddershede, **2007**, Ph.D. Thesis, Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
- [13] Qian L., Du Z-L, Yang S-Y, Jin Z-S, Journal of Molecular Structure2005, 749, 103-107
- [14] Ma R., Fukuda K., Sasaki T., Osada M., Bando Y., J. Phys. Chem. B2005, 109, 6210-6214
- [15] Gao T., Wu Q., Fjellvåg, Norby P., J. Phys. Chem. C2008, 112, 8548-8552
- [16] Gao T., Fjellvåg H., Norby P., Inorg. Chem. 2009, 48, 1423-1432
- [17] Kim S-J, Yun Y-U, Oh H-J, Hon S. H., Roberts C. A., Routray K., Wachs I. E., J. *Phys. Chem. Lett.* **2010**, 1, 130-135
- [18] Qian L., Du Z-L, Yang S-Y, Jin Z-S, Journal of Molecular Structure2005, 749, 103-107

^[1]Gregg S. J., Sing K. S. W., Adsorption, Surface Area and Porosity, Academic Press, London, 2nd edn., **1982**.

Capítulo 6 – Caracterización de NTs

[19] Zhang M., Jin Z., Zhang J., Guo X., Yang J., Li W., Wang X., Zhang Z., *Journal of Molecular Catalysis A: Chemical***2004**, 217, 203–210

Capítulo 7 – Caracterización de NRs

CAPÍTULO 7 – RESULTADOS Y DISCUSIÓN III

CARACTERIZACIÓN DE NANORODS DE TIO₂ Y TITANATOS

Índice - Capítulo 7

7. CARACT	ERIZACIÓN DE NANORODS DE DIÓXIDO DE TITANIO Y TITANATOS2
7.1 CAR	RACTERIZACIÓN POR MICROSCOPÍA ELECTRÓNICA DE BARRIDO2
7.1.1	Imágenes Muestra 3A2
7.1.2	Análisis químico por espectroscopía de energía dispersa de rayos X (EDS) – Muestra 3A 3
7.1.3	Imágenes - Muestra 5A4
7.1.4	Análisis químico por espectroscopía de energía dispersa de rayos X (EDS) – Muestra 5A 5
7.2 CAR	RACTERIZACIÓN POR MICROSCOPÍA ELECTRÓNICA DE TRANSMISIÓN6
7.2.1	Imágenes de campo claro – Muestra 3A7
7.2.2	Imágenes de HRTEM – Muestra 3A7
7.2.3	Patrones de difracción – Muestra 3A10
7.2.4	Análisis químico por nano-EDS – Muestra 3A12
7.2.5	MET100 Patrones de difracción de electrones y distancias interplanares – Muestra 3A 12
7.2.6	Imágenes de campo claro – Muestra 5A13
7.2.7	Imágenes de HRTEM – Muestra 5A14
7.2.8	Análisis químico por nano-EDS – Muestra 5A16
7.2.9	MET100 Patrones de difracción de electrones y distancias interplanares – Muestra 5A 17
7.3 ANA	ÁLISIS POR DIFRACCIÓN DE RAYOS X DE POLVO19
7.4 Est	ABILIDAD TÉRMICA DE LOS NANORODS19
7.4.1	Muestra 3A
7.4.2	Muestra 5A
7.5 COI	NCLUSIONES – CARACTERIZACIÓN DE NANORODS
REFERENC	CIAS – CAPÍTULO 7

Capítulo 7 - Caracterización de NRs

7. CARACTERIZACIÓN DE NANORODS DE DIÓXIDO DE TITANIO Y TITANATOS

Se seleccionaron para su caracterización, las muestras de nanorods 3A (**Aa43_4/2(u**), A, autoclave, 148°C, 43hs, lavados: 4HCl + 2H₂O) y 5A (**ARa39_4/2**, A+R, 150°C, 39hs, lavados: 4HCl + 2H₂O).

Si bien se dispone de detallada información de microscopía electrónica de transmisión y de difracción de electrones para el caso de los nanorods, el análisis por difracción de rayos X revela la característica multifásica de las muestras por lo que la caracterización cristalográfica por el método expuesto en el capítulo anterior se vio frustrada. A continuación se listan los resultados obtenidos.

7.1 Caracterización por microscopía electrónica de barrido

El análisis de estas muestras fue llevado a cabo por el Dr. J. Javier S. Acuña en el Laboratório Central de Microscopia Eletrônica de la Universidad Federal de Santa Catarina (UFSC). Se utilizó un microscopio electrónico de barrido con cañón de electrones con emisión por efecto del campo eléctrico (FEG-SEM), JEOL JSM-6701F Scanning Electron Microscope, con análisis químico por detección de rayos X (EDS).

7.1.1 Imágenes Muestra 3A

Se constata una alta conversión a nanorods del orden de 50-200nm de diámetro y varios micrómetros de largo (Figura 7.1.1-1), los cuales pueden observarse en conglomerados micrométricos (Figura 7.1.1-1 (a) y (c)).

Capítulo 7 – Caracterización de NRs

Figura 7.1.1-1- Imágenes SEM de electrones secundarios, muestra 3A.

7.1.2 Análisis químico por espectroscopía de energía dispersa de rayos X (EDS) – Muestra 3A

Figura 7.1.2-1 – Espectro de dispersión de energía EDS para la muestra 3A.

Capítulo 7 – Caracterización de NRs

Figura 7.1.2-2 – Espectro de dispersión de energía EDS para la muestra 3A.

En promedio de las medidas realizadas se obtuvo O K 69% At, Na K 4%At, Ti K 27%, lo que indicaría una composición Na_{0.24}Ti_{3.1}O_{6.8}. Aunque debe considerarse que estos valores pueden verse afectados de hasta un 10% de error asociado al método de análisis.

7.1.3 Imágenes - Muestra 5A

La muestra presenta una morfología general análoga a la anterior, presentando también un alto grado de conversión a nanorods.

Figura 7.1.3-1 – Imágenes de electrones secundarios, muestra 5A.

Capítulo 7 – Caracterización de NRs

7.1.4 Análisis químico por espectroscopía de energía dispersa de rayos X (EDS) – Muestra 5A

Figura 7.1.4-1 - Espectro de dispersión de energía EDS para la muestra 5A.

Figura 7.1.4-2 - Espectro de dispersión de energía EDS para la muestra 5A.

Capítulo 7 - Caracterización de NRs

Figura 7.1.4-3 - Espectro de dispersión de energía EDS para la muestra 5A.

En promedio de las medidas realizadas se obtuvo O K 61% At, Na K 5%At, Ti K 34%, lo que indicaría una composición $Na_{0.5}Ti_{3.4}O_{6.1}$. Aunque debe considerarse que estos valores pueden verse afectados de hasta un 10% de error asociado al método de análisis.

7.2 Caracterización por microscopía electrónica de transmisión

Al igual que para el caso de microscopía de barrido, el análisis por microscopía electrónica de transmisión fue realizado por el Dr. Javier S. Acuña en el Laboratório Central de Microscopia Eletrônica de la Universidad Federal de Santa Catarina (UFSC). Se utilizaron dos microscopios ambos con emisión por efecto termiónico, uno de 200kV de aceleración de voltaje y cañón de electrones de LaB6 (JEOL JEM-2100), se hará referencia a este como MET200. El segundo es de 100kV y cañón de W (JEOL JEM-1011), se referirá a este como MET100. El primero está acoplado con análisis químico por EDS. Se realizó el análisis por difracción de electrones utilizando el microscopio MET100 y se realizó HRTEM utilizando el MET200. Las muestras fueron suspendidas en alcohol etílico y esparcidas sobre grillas conductoras de Cu con film de C.

Capítulo 7 – Caracterización de NRs

7.2.1 Imágenes de campo claro – Muestra 3A

Figura 7.2.1-1 – Imágenes de campo claro de NRs aislados de la muestra 3A.

7.2.2 Imágenes de HRTEM – Muestra 3A

Figura 7.2.2-1– Imagen HRTEM de la muestra 3A. Se indica los espaciamientos observados.

Capítulo 7 – Caracterización de NRs

Figura 7.2.2-2 Patrón de difracción de electrones obtenido matemáticamente mediante la Transformada de Fourier de la imagen encerrada en el cuadrante rojo.

Spot#	d(nm)	Rec. Pos. (1/nm)	Grados en ref. a spot 1	Grados en ref. a x	Amplitud
1	0.7494	1.334	0.00	118.87	6590807.50
2	0.7252	1.379	179.47	-60.59	6590807.50
3	0.3530	2.833	109.53	9.35	7626883.29
4	0.3556	2.812	71.33	-169.80	7626883.29

Tabla 7.2.2-1 -	- Distancias interplanares	obtenidas mediante	FFT de la imagen en la
	2 istantias interprana es	ooreinaas meanice	i i ao na ninagon on na

Se obtiene una distancia interplanar de 3,54Å formando un ángulo de aproximadamente 70° con respecto a la dirección de crecimiento.

Capítulo 7 – Caracterización de NRs

Figura 7.2.2-3 – Secuencia de imágenes para obtener imagen de alta resolución para realizar la transformada de Fourier.

Figura 7.2.2-4 – FFT de la imagen obtenida en Figura 7.2.2-3.

Capítulo 7 – Caracterización de NRs

Spot#	d(nm)	Rec. Pos. (1/nm)	Grados en ref. a spot 1	Grados en ref. a x	Amplitud
1	0.6179	1.618	0.00	150.64	8974014.78
2	0.5681	1.760	177.48	-26.84	9738113.28
3	0.3679	2.718	75.15	75.49	9776135.62
4	0.3485	2.870	111.72	-97.64	9888538.19
5	0.3529	2.834	110.99	39.65	6573067.21
6	0.3533	2.831	69.72	-139.64	6573067.21
7	0.1912	5.231	89.65	60.99	3801861.06
8	0.2007	4.983	90.10	-119.26	4107963.10
9	0.3041	3.289	1.27	151.92	17084845.16
10	0.3005	3.328	178.87	-28.23	17084845.16

 Tabla 7.2.2-2 - Distancias interplanares.

Según estos resultados la mayor distancia interplanar (Spots 1 y 2) es de 6.06Å. Se estima que estas medidas pueden estar afectadas de hasta 0.25Å de error.

7.2.3 Patrones de difracción – Muestra 3A

Figura 7.2.3-1 – Patrón de difracción muestra 3A.

Capítulo 7 – Caracterización de NRs

Sm o 4#	d()	Rec. Pos.	Grados en	Grados en	A
Spot#	d(nm)	(1/nm)	ref. a spot 1	ref. a x	Amplitud
1	0.1994	5.016	26.00	89.95	1083.00
2	0.2007	4.982	138.18	-74.23	172.00
3	0.1978	5.057	42.13	106.07	359.00
4	0.1977	5.057	125.43	-61.49	155.00
5	0.2021	4.948	54.62	118.57	386.00
6	0.3746	2.670	157.19	-93.24	790.00
7	0.3738	2.675	22.40	86.34	704.00
8	0.3802	2.630	118.15	-54.21	389.00
9	0.3753	2.664	59.99	123.93	344.00
10	0.3763	2.657	75.68	-11.73	316.00
11	0.3937	2.540	104.10	168.04	256.00
12	0.2872	3.482	35.48	99.43	309.00
13	0.2816	3.551	142.14	-78.20	380.00
14	0.2880	3.473	128.06	-64.12	196.00
15	0.2848	3.511	51.97	115.92	189.00
16	0.1617	6.186	89.48	-25.54	172.00
17	0.1637	6.110	90.39	154.33	153.00
18	0.1543	6.479	37.69	101.64	143.00
19	0.1526	6.554	141.82	-77.88	80.00
20	0.1433	6.978	110.55	-46.60	97.00
21	0.1453	6.883	68.64	132.59	89.00
22	0.1481	6.751	0.42	64.36	66.00
23	0.1481	6.752	178.69	-114.75	97.00
24	0.1256	7.963	172.12	-108.17	81.00
25	0.1248	8.014	7.47	71.41	70.00
26	0.1265	7.905	50.85	114.79	85.00
27	0.1259	7.944	128.52	-64.58	76.00
28	0.09955	10.05	179.46	-115.52	289.00
29	0.09858	10.14	0.62	64.56	88.00
30	0.1994	5.016	26.00	89.95	1083.00
31	0.2007	4.982	138.18	-74.23	172.00
32	0.1978	5.057	42.13	106.07	359.00
33	0.1977	5.057	125.43	-61.49	155.00
34	0.2021	4.948	54.62	118.57	386.00

A partir de este patrón de difracción se obtienen experimentalmente las distancias interplanares: 3.79, 2.85, 1.99, 1.63, 1.49, 1.26 y 0.99Å.

Capítulo 7 – Caracterización de NRs

7.2.4 Análisis químico por nano-EDS – Muestra 3A

El detector utilizado para estas medidas fue de Si(Li) de 30mm², con resolución de energía de 143eV y ventana ultrafina de Norvar. El alineado fue tal que el spot del haz utilizado fue de aproximadamente 15nm de diámetro. Se realizaron seis mediciones en distintos lugares de la muestra. Los porcentajes atómicos se resumen en la tabla a continuación. La concentración de oxígeno estructural obtenida se ve afectada por la contribución del oxígeno presente en la superficie de la muestra.

Tabla 7.2.4-1 - Resumen de concentraciones atómicas obtenidas por nano-EDS para la muestra 3A.

Línea		% Atómico (+/- Error)									
	1	2	3	4	5	6					
O K	97.85(1.93)	98.14(1.90)	98.24(1.28)	97.71(4.28)	98.33(1.48)	96.08(1.46)					
Na K	0.52(0.36)	0.00(0.00)	0.22(0.21)	0.62(0.23)	0.42(0.26)	2.21(0.35)					
Ti K	1.63(0.02)	1.86(0.02)	1.54(0.01)	1.67(0.01)	1.25(0.01)	1.72(0.02)					
Ti L											
TOTAL	100.00	100.00	100.00	100.00	100.00	100.00					

7.2.5 MET100 Patrones de difracción de electrones y distancias interplanares – Muestra 3A

Figura 7.2.5-1 – Patrón de difracción de la muestra 3A obtenido con el microscopio MET100.

Capítulo 7 – Caracterización de NRs

Tabla 7.2.5-1 - Distancias interplanares extraidas del patron de la Figura 7.2.5-1.								
Spot#	d(nm)	Rec. Pos.	Grados en	Grados en	Amplitud			
Spor#	u(IIII)	(1/nm)	ref. a spot 1	ref. a x	Ampiltuu			
1	0.3551	2.816	0.00	124.06	1130.00			
2	0.3527	2.836	174.57	-50.52	1328.00			
3	0.3414	2.929	97.60	26.46	808.00			
4	0.3794	2.636	78.30	-157.64	831.00			
5	0.3772	2.651	136.08	-99.87	729.00			
6	0.3486	2.869	54.78	69.28	734.00			
7	0.1875	5.333	43.98	80.07	1470.00			
8	0.1948	5.134	133.20	-102.74	1544.00			
9	0.1885	5.306	151.22	-27.17	861.00			
10	0.1914	5.225	26.24	150.30	733.00			
11	0.1887	5.299	13.02	111.04	915.00			
12	0.1914	5.226	169.19	-66.75	817.00			
13	0.09555	10.47	132.22	-103.72	220.00			
14	0.09359	10.68	44.16	79.89	279.00			
15	0.09331	10.72	131.68	-7.62	187.00			
16	0.09455	10.58	45.14	169.19	159.00			
17	0.09497	10.53	88.05	-147.89	235.00			
18	0.09275	10.78	91.91	32.15	167.00			

Se obtienen las distancias interplanares medias de 3.59, 1.90 y 0.94Å con una incertidumbre de ± 0.05 Å.

7.2.6 Imágenes de campo claro – Muestra 5A

Figura 7.2.6-1 – Imágenes de campo claro de la Muestra 5A.

Capítulo 7 – Caracterización de NRs

7.2.7 Imágenes de HRTEM – Muestra 5A

Cap. 7 - 14/29

Figura 7.2.7-1 – Imágenes HRTEM de NRs de la muestra 5A (a), (c) y (e), y Transformadas de Fourier correspondientes (b), (d) y (f).

Spot#	d(nm)	Rec. Pos. (1/nm)	Grados en ref. a spot 1	Grados en ref. a x	Amplitud		
1	0.3590	2.785	0.00	-4.25	718467.32		
2	0.3632	2.754	178.99	176.76	718467.32		
3	0.3571	2.800	36.42	-40.66	734310.17		
4	0.3648	2.741	143.81	139.56	734310.17		
5	0.1902	5.257	18.36	-22.61	118077.92		
6	0.1933	5.175	162.00	157.75	118077.92		
7	0.6146	1.627	70.89	66.64	718265.20		
8	0.6012	1.663	107.23	-111.48	718265.20		

 Tabla 7.2.7-1 - Distancias interplanares obtenidas a partir de FFT de la imagen (a) de la Figura 7.2.7-1.

Las distancias medias son 3.61 y 1.92Å.

Tabla 7.2.7-2 - Distancias interplanares obtenidas a partir de FFT de la imagen (c) de la Figura 7.2.7-1.

Spot#	d(nm)	Rec. Pos. (1/nm)	Grados en ref. a spot 1	Grados en ref. a x	Amplitud
1	0.3749	2.667	0.00	142.75	1685571.88
2	0.3638	2.749	179.67	-37.58	1685571.68

En este caso el resultado fue 3.69Å.

 Tabla 7.2.7-3 - Distancias interplanares obtenidas a partir de FFT de la imagen (e) de la Figura 7.2.7-1.

Spot#	d(nm)	Rec. Pos. (1/nm)	Grados en ref. a spot 1	Grados en ref. a x	Amplitud
1	0.6194	1.614	0.00 -	-11.50	203030.31
2	0.6304	1.586	179.16	169.34	203030.31
3	0.3734	2.678	73.73	62.24	107835.04
4	0.3692	2.708	103.25	-114.75	66131.86
5	0.3272	3.056	122.32	110.83	38789.47
6	0.3098	3.228	57.25	-68.75	43494.12

La distancia media obtenida es de 3.45Å.

Capítulo 7 – Caracterización de NRs

7.2.8 Análisis químico por nano-EDS – Muestra 5A

Figura 7.2.8-1 – Imagen de nanorod aislado sobre el cual se realiza el análisis por nanoEDS.

Figura 7.2.8-2 – Análisis químico por nanoEDS de la muestra 5A

Capítulo 7 – Caracterización de NRs

7.2.9 MET100 Patrones de difracción de electrones y distancias interplanares – Muestra 5A

Figura 7.2.9-1 – Imagen de campo claro obtenida con el MET 100 y área seleccionada para la difracción (SAD)

Figura 7.2.9-2 – Patrón de difracción correspondiente a la SAD de la Figura 7.2.9-1.

Capítulo 7 – Caracterización de NRs

Tabla 7.2.9-1 – Distancias interplanares – Muestra 5A								
Spot#	d(nm)	Rec. Pos.	Grados en	Grados en	Amplitud			
		(1/nm)	ref. a spot 1	ref. a x	Ampiltuu			
1	0.3775	2.649	0.00	53.03	207.00			
2	0.3714	2.693	179.36	-126.33	172.00			
3	0.3756	2.663	43.07	96.10	198.00			
4	0.3726	2.684	137.12	-84.09	211.00			
5	0.3689	2.711	115.99	169.02	264.00			
6	0.3772	2.651	64.30	-11.27	192.00			
7	0.1905	5.251	53.44	-0.41	410.00			
8	0.1890	5.290	126.79	179.82	216.00			
9	0.1910	5.235	16.81	36.22	185.00			
10	0.1893	5.282	162.77	-144.20	110.00			
11	0.1910	5.236	33.02	86.05	197.00			
12	0.1907	5.243	151.33	-98.30	152.00			
13	0.1894	5.280	99.32	152.35	196.00			
14	0.1899	5.267	80.06	-27.03	230.00			
15	0.09437	10.60	53.69	-0.66	120.00			
16	0.09425	10.61	126.29	179.32	59.00			
17	0.09488	10.54	11.75	41.28	43.00			
18	0.09364	10.68	160.26	-146.71	41.00			
19	0.09441	10.59	36.97	90.00	54.00			
20	0.09391	10.65	142.13	-89.10	39.00			
21	0.09398	10.64	80.11	133.14	48.00			
22	0.09454	10.58	98.51	-45.48	39.00			
23	0.1537	6.506	153.93	-100.90	108.00			
24	0.1541	6.490	17.34	70.37	94.00			
25	0.1549	6.455	106.49	159.52	131.00			
26	0.1552	6.444	73.99	-20.96	96.00			

Table 7 2 9-1 - Distancias interplanares Muestra 5 A

Los valores promedio obtenidos son: 3.74, 1.90, 0.94 y 1.54Å.

Capítulo 7 – Caracterización de NRs

7.3 Análisis por difracción de rayos X de polvo

Los diagramas de difracción rayos X presentan numerosos picos (Figura 7.3-1) evidenciando que se trata de muestras multifásicas. Su comparación con la base de datos puede verse en el Anexo III.

Figura 7.3-1 – Patrones de difracción de rayos X de muestras de nanorods.

7.4 Estabilidad térmica de los nanorods

7.4.1 Muestra 3A

La muestra 3A calcinada hasta 800°C resulta en una mezcla de fases: anatasa (pdf. No 65-5714) y $Na_2Ti_6O_{13}$ (pdf. No 73-1398), siendo anatasa la fase mayoritaria (ver Figura 7.4.1-1).
Capítulo 7 – Caracterización de NRs

Figura 7.4.1-1 - Evolución de los máximos de difracción al calentar la muestras 3A. Diagrama correspondiente a la muestra 3A luego de los sucesivos tratamientos térmicos, siendo el último a 800° C durante 2 hs (A= anatasa, H=Na₂Ti₆O₁₃).

A 600°C (ver diagrama en Figura 7.4.1-3) la muestra consiste de una mezcla de anatasa y TiO2 – (B), observando la diferencia de intensidades relativas en los dos picos a ángulo bajo, se evidencia una posible orientación preferencial en la fase TiO₂ - (B) según (001).

Yendo para atrás hasta 450°C (Figura 7.4.1-4) no se evidencia anatasa en el diagrama, la posición de los picos podrían asociarse a la fase $TiO_2 - (B)$ aunque no se descarta la posible co-existencia con Na_{0.23}TiO₂. Como ya fue mencionado, existen varios trabajos ([1] [2]) en los que se discute la aparición de la fase metaestable $TiO_2 - (B)$ por descomposición térmica de H₂Ti₃O₇. Así mismo, estudios en los que se interpreta que los productos obtenidos luego del lavado con HCl en las síntesis hidrotermales de nanotubos y otras nanoestructuras presentan esta fase.

En el caso en estudio, la muestra calentada a 250° C, previo a la aparición de la fase TiO_2 - (B), presenta un patrón con máximos poco definidos por lo que no resultan evidentes las fases presentes en la fracción cristalina de la misma. De la comparación con la base de datos aparecen las fases anatasa (71-1169), Na₂Ti₅O₁₁ (11-289), NaTi₈O₁₃ (80-1284) y H₂Ti₅O₁₁!H₂O (44-131), aunque el ajuste es muy poco satisfactorio (Figura 7.4.1-5).

Por último, el diagrama de la muestra después del secado y antes del tratamiento térmico presentan señales, como ya fue mencionado, que podrían asociarse a las fases

Capítulo 7 – Caracterización de NRs

Na₂Ti₅O₁₁ (11-289), H₂Ti₅O₁₁!H₂O (44-131), H₂Ti₃O₇ (41-192) y Na_{0.8}H_{1.2}Ti₃O₇ (48-693). En el esquema siguiente (Figura 7.4.1-2) se resume el análisis anterior.

Figura 7.4.1-2 – Esquema posible de cambios de fases de la muestra 3A durante el tratamiento térmico.

Figura 7.4.1-3 – Muestra 3A calcinada a 600°C.

Capítulo 7 – Caracterización de NRs

Figura 7.4.1-4 – Muestra 3A calcinada a 450°C.

Cap. 7 - 22/29

Capítulo 7 – Caracterización de NRs

Figura 7.4.1-6 - Muestra 3A luego del secado.

Con respecto a la microestructura, como se puede ver en la Figura 7.4.1-7, la muestra pierde su morfología al ser calentada hasta una temperatura final de 800°C, disminuyendo claramente su relación de aspecto, presentando menores longitudes y mayores espesores. No se dispone de microscopías a temperaturas intermedias.

Capítulo 7 – Caracterización de NRs

Figura 7.4.1-7 – Muestra 3A luego de la serie de calcinaciones.

7.4.2 Muestra 5A

Muestra 5A Figura 7.4.2-1 – Tratamientos térmicos, muestra 5A.

Capítulo 7 – Caracterización de NRs

Figura 7.4.2-2 – DRX muestra 5A luego del tratamiento térmico a 250°C.

Figura 7.4.2-3 – DRX muestra 5A luego del tratamiento a 450°C.

Cap. 7 - 25/29

Capítulo 7 – Caracterización de NRs

Figura 7.4.2-4 – DRX muestra 5A luego del tratamiento a 600°C.

Figura 7.4.2-5 – DRX muestra 5A luego del tratamiento a 600°C.

Capítulo 7 – Caracterización de NRs

Figura 7.4.2-6 - Evolución de la estructura cristalina al calentar la muestra 5A.

Figura 7.4.2-7 – Morfología de la muestra 5A antes (a), después del tratamiento térmico 8hs a 250°C (b) y después de calcinar 2hs a 600°C (c) y (d).

Capítulo 7 – Caracterización de NRs

Se observa que aun calentando a 600°C se mantiene la relación de aspecto apareciendo estructuras tipo cintas o placas.

7.5 CONCLUSIONES – CARACTERIZACIÓN DE NANORODS

- Se constata una alta conversión a nanorods del orden de 10-200nm de diámetro y varios micrómetros de largo, los cuales pueden observarse en conglomerados micrométricos. Las muestras son cristalinas, verificándose un carácter multifásico correspondiente a mezclas de titanatos de sodio e hidrógeno.
- Con respecto a la estabilidad térmica, no se observa pérdida de morfología de alta relación de aspecto al calentar. Los cambios de fase crsitalográfica posibles propuestos para ambas muestras se esquematizan a continuación. En ambos se observa el polimorfo TiO₂(B) como intermediario.

Capítulo 7 – Caracterización de NRs

REFERENCIAS – CAPÍTULO 7

- [1] Morgado Jr. E., de Abreu M. A. S., Pravia O. R. C., Marinkovic B. A., Jardim P. M.,
- Rizzo F. C., Araújo A. S., Solid State Science 2006, 8, 888 900
- [2] Kolen'ko Y. V., Kovnir K. A., Gavrilov A. I., Garshev A. V., Frantti J., Lebedev O.
- I., Churagulov B. R., Van Tendeloo G., and Yoshimura M., *J. Phys. Chem. B* **2006**, 110, 4030 4038

Capítulo 8 – Ensamblado de prototipos DSSC

CAPÍTULO 8 – RESULTADOS Y DISCUSIÓN IV

ENSAMBLADO DE PROTOTIPOS DE CELDAS SOLARES DE SENSIBILIZACIÓN ESPECTRAL (DSSC)

Índice - Capítulo 8

8.1]	INTRODUCCIÓN	2
8.	1.1	Esquema de los dispositivos	2
8.	1.2	ENSAMBLADO DE PROTOTIPOS	3
	SEI	RIE I	6
	SEI	RIE II	6
	SEI	RIE III	7
8.2	(CARACTERIZACIÓN ELÉCTRICA	9
	SEI	RIE I	9
	SEI	RIE II	0
	SEI	RIE III 1	2
8.3	(CONCLUSIONES SOBRE EL ENSAMBLADO DE PROTOTIPOS DE	
DIS	POS	ITIVOS FOTOVOLTAICOS DEL TIPO DSSC 1	3
REF	FER	ENCIAS – CAPÍTULO 8 1	5

Capítulo 8 - Ensamblado de prototipos DSSC

8.1 INTRODUCCIÓN

Fueron ensamblados prototipos de celdas solares sensibilizadas con el objetivo de obtener medidas comparativas de eficiencias empleando las nanoestructuras sintetizadas como componentes del fotoelectrodo. Se realizaron tres series de dispositivos. En la primera oportunidad (SERIE I) se trató de celdas selladas. Luego se optó por trabajar con celdas abiertas de dimensiones menores debido a dificultades asociadas a la degradación del sello y a la uniformidad de los filmes de semiconductor.

Los resultados obtenidos en términos de reproducibilidad y eficiencia fueron pobres. Los mismos se presentan junto con un análisis de dificultades con el fin de aportar a futuros trabajos en la temática.

8.1.1 Esquema de los dispositivos

En la Tabla 8.1.1-1 se esquematiza un corte de una celda sellada, y en la Figura 8.1.1-2 se muestra una foto de uno de estos prototipos. Las dimensiones son 5.5cm*3.3cm*4.5mm, siendo el área activa del fotoelectrodo de 9.8cm² (3.5cm*2.8cm). Ambos electrodos son vidrios conductores del tipo FTO, y se encuentran desfasados 5mm, por lo que los contactos se realizan directamente sobre los mismos, como se muestra en la Figura 8.1.1-2. En la Tabla 8.1.1-1 se resumen los materiales utilizados para cada parte del dispositivo.

Tabla 8.1.1-1 – Materiales constituyentes de las celdas					
Sustrato	Vidrios recubiertos con una capa fina de óxido de estaño dopado				
de electrodes	con flúor (FTO, del inglés: Fluorine doped Tin Oxide). El cátodo, a				
ue electrouos	su vez, es recubierto por una capa de grafito.				
Semiconductor	Nanopartículas y otras nanoestructuras de TiO ₂ y titanatos.				
	Dyesol N719. RuL ₂ (NCS) ₂ :(TBA) ₂				
Colorante	L=2,2'-bipyridine-4,4'- dicarboxylic acid,				
	TBA=tetrabutylammonium				
	Dyesol EL-141EL-141 (gamma butyrolacetone > 60%, organic				
Electrolito	iodide salt 10 -<30%, iodine <10%, inorganic iodide salt <10%,				
	imidazole compound <10%,)				
Sello	Parafilm				

Tabla 8.1.1-1 – Materiales constituyentes de las celdas

Capítulo 8 - Ensamblado de prototipos DSSC

Figura 8.1.1-1- Esquema de corte de una celda sellada

Figura 8.1.1-2 – (a) Imagen de un dispositivo, mostrando aberturas de llenado de electrolito cubiertas con parafina. (b) Contactos, directamente sobre el vidrio conductor.

8.1.2 Ensamblado de prototipos

Para el armado de los prototipos de celdas solares fotovoltaicas se siguieron los pasos descritos por Greg P. Smestad y Michael Grätzel [1] en conjunto con las instrucciones disponibles en la página de Solaronix [2].

Para la elaboración de los fotoelectrodos se simplifica la técnica de preparación de pastas de TiO₂ para *Screen-Printing* optimizada por Ito *el al* [3]. La deposición del film de dióxido de titanio sobre el vidrio conductor se realizó partiendo de mezclas de TiO₂ (y titanatos sintetizados) y HAc. Se realizaron pruebas por tres métodos distintos: distribución manual, con ayuda de una varilla de vidrio ("doctor blade"), spin coating y dip coating. El último método es el que permitió films más homogéneos y de menor espesor.

Capítulo 8 - Ensamblado de prototipos DSSC

En la Figura 8.1.2-1 se esquematiza el proceso de ensamblado. Luego de secado, el film es sinterizado a 450°C durante 30 min, posteriormente se sumerge el mismo en la solución del colorante a 80°C durante 2 horas (o a temperatura ambiente por 24hs) (Figura 8.1.2-1 (d)) y luego se lava con alcohol. Por su parte, el contra electrodo se pinta con grafito, lo que es necesario para catalizar la reacción de reducción del par redox (Figura 8.1.2-1 (f)). La celda es sellada cuidadosamente con parafilm, directamente aplicando calor y presión (Figura 8.1.2-1 (g)). Se dejan dos aberturas de forma de permitir el posterior llenado con el electrolito por capilaridad. Las mismas son luego selladas con silicona.

H (a) **(b)** (c) (**d**) **(e)** (g) (**f**)

Capítulo 8 – Ensamblado de prototipos DSSC

Figura 8.1.2-1–Esquema de ensamblado de celdas selladas. (a) dip coating, (b) celda luego de la aplicación de la primera capa, (c) celda luego de la aplicación de la segunda capa, (d) celdas embebidas en solución de colorante, (e) film de nanopartículas embebidas en colorante, (f) contraelectrodo pintado con grafito con marco de parafilm y separadores en orificios de entrada del electrolito, (g) celda sellada sin el agregado de electrolito.

Capítulo 8 - Ensamblado de prototipos DSSC

SERIE I

Se realizó una serie de 8 celdas de electrodos de doble capa. En todas, la primera capa se aplicó mediante dip coating de una pasta de anatasa¹. La segunda capa se depositó según el método doctor blade, siendo la pasta en este caso formada a partir de mezclas de anatasa-titanatos 50% peso. Luego de la aplicación de cada capa, se realiza un tratamiento térmico a 450°C durante 30 minutos, con una rampa de 5°C/min en atmósfera de aire.

1	Tabla 0.1.2-1 Composición de la segunda capa del fotocicentodo.					
Celda #	Capa 2	Observaciones				
1	А	Anatasa				
2	A/4B	Anatasa + Nanotubos de titanato de sodio				
3	A/4C	Anatasa + NT/NP de anatasa				
4		Celda de una sola capa				
5	A/5A	Anatasa + NRs de bajo contenido de sodio				
6	A/5B	Anatasa + NRs de alto contenido de sodio				
7	A(dip)	Doble capa de anatasa depositadas con dipcoating				
8	3A _{600°C}	NRs de TB				

 Tabla 8.1.2-1 – Composición de la segunda capa del fotoelectrodo.

SERIE II

Se realizaron electrodos de doble capa. La primera capa se aplicó en forma análoga a la de la serie anterior mediante dip coating de una pasta de anatasa preparada simplificando la técnica optimizada por Ito *et al* [3]. La segunda capa se depositó según el método doctor blade, siendo la pasta en este caso formada a partir anatasa comercial (anatasa nanopolvo de d<25nm ALDRICH, Titanium(IV) oxide, nanopowder, 99.7%, anatase) en el Prototipo I y nanotubos de TiO₂ preparados según método hidrotermal alcalino en el Prototipo II. Al igual que en la serie anterior, luego de la aplicación de cada capa, se realiza un tratamiento térmico a 450°C durante 30 minutos, con una rampa de 5°C/min en atmósfera de aire.

¹ 6g anatasa + 30mL HAc pH 3,2 (agregado de a 1mL en mortero) + tritón x100.

Capítulo 8 – Ensamblado de prototipos DSSC

Figura 8.1.2-2– Prototipos abiertos correspondientes a la serie II (izquierda), pinzas utilizadas durante las medidas de curvas I-V (derecha).

SERIE III

Se ensamblaron 8 prototipos con electrodos de doble capa. La primera capa se aplicó en forma análoga a las series anteriores. La segunda capa se depositó de la misma manera pero realizando la pasta con nanotubos de titanatos de hidrógeno (NT_16DI), mezcla 50% en peso de anatasa y nanotubos de titanatos de hidrógeno (A+NT_15CI), mezcla 50% de anatasa y nanorods de titanatos de hidrógeno (A+NR). También se realizaron celdas con las dos capas de anatasa (A). Se realiza una réplica de cada celda.

En lo que respecta al sinterizado de los films, el primero se realiza a 450°C (5°C/min, 30 minutos). Luego de la aplicación de la segunda capa, se trabaja con una temperatura menor (350°C, 5°C/min, 30min) debido a que los nanotubos de hidrógeno pierden la morfología tubular a temperaturas mayores.

Observaciones relativas al ensamblaje:

i. En lo que respecta a la deposición manual de las pastas

- La deposición manual del film es un proceso muy poco reproducible en el que resulta extremadamente difícil lograr capas uniformes.
- La distribución de la pasta sobre el sustrato (o sobre la primera capa de semiconductor) debe ser un proceso rápido. Esto se debe a que la mezcla comienza a secarse y se genera el agrietado del film.

Capítulo 8 - Ensamblado de prototipos DSSC

- La cantidad de pasta a depositar es difícil de controlar principalmente debido a la viscosidad de la misma. Por más que se toma el cuidado de agregar igual volumen de pasta, este está afectado de error debido a la cantidad de pasta que queda en el recipiente de trasvaso y en la varilla o accesorio utilizado para esparcir la pasta.
- Las características de la pasta varían según el sólido utilizado. Se observó cualitativamente que las pastas realizadas con nanorods resultaron más espesas lo que se vio reflejado en films notoriamente menos transparentes.

ii. En lo que respecta al *dip coating*

- Se debe re-suspender la pasta entre cada deposición, debido que ocurre sedimentación. Se agrega tritón x100 como tensoactivo. Se debe tener cuidado de que no queden burbujas en la pasta.
- Debido a que se utiliza cinta papel para enmascarar las zonas del sustrato que deben permanecer limpias (Figura 8.1.2-3 (a)), se generan volúmenes muertos en el proceso de deposición. Esto genera acúmulos de material en los vértices y aristas del film provocando capas no uniformes (Figura 8.1.2-3 (b)).

(a)

(b)

Figura 8.1.2-3 – Sustrato enmascarado con cinta (a), acúmulos de material en los bordes del film de semiconductor (b).

Capítulo 8 - Ensamblado de prototipos DSSC

8.2 CARACTERIZACIÓN ELÉCTRICA

SERIE I

Se realizaron curvas I-V en el *Grupo Energía Solar* de la Comisión Nacional de Energía Atómica, Argentina. Utilizando una lámpara dicroica (OSRAM, 250W xenophot, 64653 HLX ELC, 24V GX 5.3) a una distancia tal que la intensidad de luz en el plano de la celda era de 1000W/m² (calibrada con celda de silicio).

Los resultados extraídos de las curvas I-V se listan en la tabla a continuación. Como se ve claramente reflejado en la baja eficiencia obtenida, si bien se constató la actividad fotovoltaica para todas las celdas ensayadas (generación de corriente bajo iluminación), los resultados no fueron satisfactorios.

Celda	Capa 1	Capa 2	I _{sc} (mA)	$J_{sc}(mA/cm^2)$	V _{oc} (mV)	FF (%)	η(%)
1	А	А	7.14	0.73	613	24.1	0.11
2	А	A/4B	1.82	0.19	566	35.1	0.04
3	А	A/4C	3.47	0.35	589	33.3	0.07
4	А		0.48	0.049	420	35.2	0.007
5	А	A/5A	0.82	0.043	343	29.2	0.009
6	А	A/5B	0.49	0.050	343	36.5	0.006
7	A	A(dip)	4.32	0.44	612	30.6	0.08
8	A	3A _{600°C}	3.25	0.33	553	31.2	0.06

Tabla 8.1.2-1 - Resultados extraídos de las curvas I – V para la serie de celdas ensavadas.

 $1\ 7\ 8\ 3\ 2\ 6\ 5\ 4$

- Baja corriente, puede estar indicando ausencia del catalizar en el contraelectrodo o contaminación del electrolito que dañe el par redox (I-/I3-)
- Las eficiencias bajas obtenidas reflejan un error sistemático en el ensamblaje de los dispositivos.
- A pesar, de estos valores, comparativamente se obtuvo mejores resultados con las celdas elaboradas a partir de anatasa comercial, seguido de las que incorporan TiO₂(B).
- Estos resultados motivaron a montar celdas de menor tamaño y sin sello.

Capítulo 8 – Ensamblado de prototipos DSSC

SERIE II

La caracterización eléctrica de las celdas se realizó utilizando el simulador *Solar Cell Testing 1000W Light Source – Model LS1000* de Solar Light el cual provee $1000W/m^2$ AM 1,5 en el plano de trabajo.

Prototipo I

Figura 8.1.2-1 – Curva I-V correspondiente al prototipo I.

Figura 8.1.2-2 – Curva de potencia correspondiente al prototipo I.

Capítulo 8 – Ensamblado de prototipos DSSC

Prototipo II

Figura 8.1.2-3 – Curva I-V correspondiente al prototipo II.

Figura 8.1.2-4 – Curva de potencia correspondiente al prototipo II.

Tabla 8.1.2-2 - Resumen de resultados Serie	e II.
---	-------

Prototipo	I _{sc} (mA)	$J_{sc}(mA/cm^2)$	V _{oc} (mV)	FF(%)	n(%)
1	9.0	3.1	680	39	0.82
2	0.62	0.22	590	46	0.06

Nota: Las dimensiones del fotoelectrodo en ambos casos es de 1.6cm*1.8cm

Capítulo 8 – Ensamblado de prototipos DSSC

SERIE III

La caracterización eléctrica de las celdas se realizó utilizando el simulador *Solar Cell Testing 1000W Light Source – Model LS1000* de Solar Light el cual provee $1000W/m^2$ AM 1,5 en el plano de trabajo.

Capítulo 8 - Ensamblado de prototipos DSSC

Tabla 8.1.2-3 – Resumen de resultados.

Prototipo	$J_{sc}(mA/cm^2)$	V _{oc} (mV)	FF(%)	n(%)
NT_16DI_1	0,20	475	32	0,031
NT_16DI_2	0,30	540	41	0,066
A+NT_15CI_1	0,22	500	33	0,036
A+NT_15CI_2	0,13	340	25	0,011
A+NR_3B_1	0,69	580	78	0,31
A+NR_3B_2	0,24	620	48	0,072
A_1	0,18	580	33	0,034
A2	0,19	520	35	0,035

8.3 CONCLUSIONES SOBRE EL ENSAMBLADO DE PROTOTIPOS DE DISPOSITIVOS FOTOVOLTAICOS DEL TIPO DSSC

Fueron ensamblados prototipos de celdas solares sensibilizadas con el objetivo de obtener medidas comparativas de eficiencias empleando las nanoestructuras sintetizadas como componentes del fotoelectrodo. Los resultados obtenidos en términos

Capítulo 8 - Ensamblado de prototipos DSSC

de reproducibilidad y eficiencia no fueron los mejores. Los mismos se presentan junto con un análisis de dificultades con el fin de aportar a futuros trabajos en la temática. Los mejores resultados, en términos de eficiencia, se obtuvieron para el caso de electrodos doble capa de anatasa y anatasa/NR. Alcanzando una eficiencia de 0.82%, $(J_{sc}=3.1\text{mA/cm}^2, V_{oc}=680\text{mV}, FF=39\%)$ y 0.69% $(J_{sc}=0.69\text{mA/cm}^2, V_{oc}=580\text{mV},$ FF=78%) respectivamente.

Capítulo 8 – Ensamblado de prototipos DSSC

REFERENCIAS – CAPÍTULO 8

[2] Dye Solar Cell Assembly Instructions & Dye Solar Cells for Real "*The Assembly Guide for Making Your Own Solar Cells*", David Martineau REV. 03.04.12 http://www.solaronix.com/technology/assembly/

^[1] Smestad G. P., Grätzel M., Journal of Chemical Education 1998, 75, 752-756.

^[3] Ito S., Chen P., Comte P., Nazeeruddin M. K., Liska P., Péchy P., Grätzel M., *Prog. Photovolt: Res. Appl.* **2007**, 15, 7, 603-612

Capítulo 9 – Modelado de nanoestructuras

CAPÍTULO 9 – RESULTADOS Y DISCUSIÓN V

MODELADO DE NANOESTRUCTURAS DE DIÓXIDO DE TITANIO Y TITANATOS

Índice - Capítulo 9

9.1 ESTUDIO ESTRUCTURAL Y ELECTRÓNICO DE LOS POLIMORFOS ANATASA, RUTILO, Y TIO ₂ (B) EN							
BULK 3							
9.1.1 Optimización estructural							
9.1.2 Estimación de gaps	4						
9.2 MODELOS BIDIMENSIONALES	5						
9.2.1 Introducción	5						
9.2.2 Superficies ultrafinas	5						
9.2.2.1 Superficies de anatasa	7						
9.2.2.2 Superficies de rutilo	9						
9.2.2.3 Superficie de TiO ₂ (B)	9						
9.2.2.4 Consideraciones finales del estudio de superficies ultrafinas1	1						
9.2.3 Nanohojasultrafinas1	2						
9.2.3.1 Nanohojas de anatasa y rutilo1	.3						
9.2.3.2 Nanohojas de TiO ₂ (B)1	4						
9.2.3.3 Estructura electronica de las nanohojasultrafinas de anatase, rutilo y Ti $O_2(B)$ 1	4						
9.3 ADSORCIÓN DE HCOOH SOBRE HOJAS ULTRAFINAS DE TIO ₂ (B)1	.5						
9.3.1 Adsorción de HCOOH sobre superficiesultrafinas de TB(001) y TB(100) empleando bases							
atómicas localizadas1	6						
9.3.2 Validación del método2	?1						
9.3.3 Adsorción de HCOOH sobre hojas ultrafinas de TB(001) y TB(100) empleando ondas plano	as						
23							
9.4 SUPERFICIE (001) DEL POLIMORFO TIO ₂ (B)2	24						
9.5 NANOHILOS2	25						
9.5.1 Introducción2	?5						
9.5.2 Nanohilo de anatasa [001]2	?6						
9.5.3 NanohilosTBx y TBy2	29						
9.5.4 Estructura electrónica de los nanohilos3	9.5.4 Estructura electrónica de los nanohilos						
9.6 NANOTUBOS							

Capítulo 9 – Modelado de nanoestructuras

9.7 ESTUDIO DE LA INTERACCIÓN COLORANTE-SEMICONDUCTOR	36
9.8 OPTIMIZACIÓN ESTRUCTURAL DE TITANATOS LAMINARES DEL TIPO NA _x H _{2-x} TI ₃ O ₇ Y H ₂₋	
_x Na _x Ti ₂ O ₅ -γH ₂ O	39
9.8.1 Na _x H _{2-x} Ti3O7	39
9.8.2 $H_{2-x}Na_xTi_2O_5$ ·y H_2O	40
9.9 CONCLUSIONES SOBRE EL MODELADO TEÓRICO DE NANOESTRUCTURAS DE DIÓXIDO DE	
TITANIO	43
Modelos bidimensionales	43
Modelos unidimensionales	43
INTERACCIÓN CLÚSTER – COLORANTE	44
REFERENCIAS – CAPÍTULO 9	45

Capítulo 9 - Modelado de nanoestructuras

9.1 ESTUDIO ESTRUCTURAL Y ELECTRÓNICO DE LOS POLIMORFOS ANATASA, RUTILO, Y TiO₂(B) EN BULK

9.1.1 Optimización estructural

En la Tabla 9.1.1-1se listan los parámetros de red obtenidos en comparación con los valores experimentales. En la misma PW (del inglés, *planewaves*) hace referencia a los resultados arrojados al emplear ondas planas (utilizando el código VASP), mientras que LCAO (del inglés, *localizedatomicorbitals*) corresponde a los cálculos con bases numéricas de orbitales atómicos (utilizando SIESTA).

Tabla 9.1.1-1- Parámetros de red.									
	Base $a(\mathring{A}) b(\mathring{A}) c(\mathring{A}) \beta(\degree)$								
	PW	3.818	3.818	9.617	-				
Anatasa	LCAO	3.790	3.790	9.629	-				
	Exp [1]	3.784	3.784	9.515					
	PW	4.594	4.594	2.959	-				
Rutilo	LCAO	4.595	4.595	2.965	-				
	Exp [1]	4.593	4.593	2.959	-				
	PW	12.302	3.763	6.632	106.97				
TiO ₂ (B)	LCAO	12.206	3.732	6.557	107.12				
	Exp [2][3]	12.179	3.741	6.525	107.10				

Se obtuvo concordancia entre los valores arrojados por los distintos códigos tanto para las posiciones atómicas como paro los parámetros de celda.

Se observó, ver Figura 9.1.1-1, que a diferencia de lo que ocurre en los polimorfos anatasa y rutilo, en los cuales los bloques de construcción son octaedros [TiO₆], en el caso de TiO₂(B) algunos átomos de Ti pueden ser mejor descritos mediante una coordinación del tipo piramidal de base cuadrada distorsionada. Las distancias calculadas para el par Ti-O en cuestión es del orden de 2.34 Å la cual es mayor que la correspondiente a la longitud típica del enlace Ti-O (2.20-2.25Å). Esta apreciación está

de acuerdo con observaciones previas reportadas en bibliografía[4][5] y, como se discutirá más adelante, influye en la estabilidad relativa de las diferentes superficies estudiadas.

Figura 9.1.1-1 – Celda unidad de los polimorfos anatasa (a), rutilo (b) y $TiO_2(B)$ luego de la optimización.

Tabla 9.1.2-1- Energía de banda prohibida (eV) para los distintos polimorfo								
		LCAO-	PW-	PW-	Exp.			
		GGA	GGA	mBJ	(eV)			
	Rutile	2.2	2.1	2.7	3.0[1]			
	Anatase	2.4	2.3	3.0	3.2 [1]			
	TiO ₂ (B)	3.1	3.1	3.4	3.22[3][6]			

9.1.2 Estimación de gaps

Los valores de gaps, listados en laTabla 9.1.2-1, obtenidos bajo la aproxima GGA muestran una buena correlación entre los distintos métodos, siendo el apartamiento menor al 5% para los tres polimorfos.La reproducibilidad obtenida entre métodos, tanto en los parámetros estructurales como en la energía de banda prohibida, fue utilizada como forma de validación del conjunto de bases numéricas empleadas para los átomos de Ti y O al utilizar el código SIESTA.Por otro lado, se verifica que al introducir la versión modificada por Becke-Johnson (mBJ) se observa una marcada mejora en la estimación de los gaps en las estructuras en bulk.

Capítulo 9 - Modelado de nanoestructuras

9.2 MODELOS BIDIMENSIONALES

9.2.1 Introducción

Se aproxima al problema del modelado de nanoestructuras de dióxido de titanio mediante la simulación de estructuras periódica bidimensionales planas (slabs) a las que se denomina superficies ultrafinas o nanohojasultrafinas (según el método), partiendo de diferentes polimorfos de dióxido de titanio.

Se elige dicho modelo debido a que existen evidencias experimentales de la presencia de este tipo de láminas en el proceso de formación de los nanotubos[7] [8]. Por otro lado, los nanotubos pueden entenderse como láminas de arreglos de octaedros [TiO6] enrolladas alrededor de determinada dirección (eje del tubo) por lo que la información extraída podría aplicarse a los mismos.

A su vez, se han obtenido este tipo de nanohojasultrafinas mediante el desenrollado de nanotubos [9] o como producto final de síntesis en el caso de varios polimorfos Ti₁. ${}_{\delta}\Box_{\delta}O_{2}^{4\delta-}(\sim 6\text{\AA})[10]$ [11], Ti₄O₉, Ti₅O₁₁ [12] and TiO₂(B) (~10-12Å) [13] [14]. En lo que respecta a los nanotubos de TiO₂(B), existen evidencias que sugieren la superficie (001) como superficie expuesta [15], pero también fueron propuestas las superficies (200) y (110) [16] [17].

Se realizaron modelos bidimensionales periódicos de los polimorfos anatasa, rutilo y TiO₂(B). En una primera instancia se trabajó manteniendo los parámetros de red contenidos en el plano fijos a sus valores experimentales. A estos modelos se les denominó "*superficies ultrafinas*" (Acápite 9.2.2). En una segunda etapa se relajaron los parámetros de red, las estructuras así obtenidas fueron llamadas "*nanohojasultrafinas*" (Acápite 9.2.3).

9.2.2 Superficies ultrafinas

Los modelos bidimensionales generados fueron TB(001), TB(100), A(101), A(100), A(001), R(100), R(110), R(101) (ver Figura 9.2.2-1 y Figura 9.2.2-2). La nomenclatura utilizada es la/s letra/s que hace referencia al polimorfo (TB: TiO₂(B), A: anatasa, R:

rutilo) seguida del plano cristalográfico al cual la superficie expuesta es paralela. Para la construcción de estos modelos (en adelante *slabs*) se transformó la celda unidad agregando una región de vacío de 10 Å en la dirección no periódica. Se trabajó con un espesor de slab coincidente con el parámetro de celda en esa dirección.Los parámetros de red correspondientes a las direcciones periódicas se mantuvieron fijos, mientras que las posiciones atómicas de todos los átomos fueron optimizadas. Se tomaron como parámetro de celdas los valores experimentales.

Figura 9.2.2-1- (a) Celda unidad del TiO₂(B) mostrando dos opciones de cribado paralelas al plano (001),
(b) modelo TB(001) elegido con vacío según la dirección *c*, (c) slab TB(100) con vacío según la dirección *a*.

Figura 9.2.2-2- Slabs de antasa y rutilo optimizados. La dirección de vacío es según la vertical en todos los casos. Se indica la coordinación de los átomos de las superficies, X_{nc} refiere a que el átomo X está enlazado a n átomos Y. Nota: En los esquemas se muestran superceldas para mejor visualización de la geometría.

Las energías superficiales calculadas se listan en la Tabla 9.2.2-1. Se verifica nuevamente concordancia entre los resultados obtenidos entre ambos métodos al adicionar el conjunto de bases flotantes. Las superficies A(101) y TB(001) arrojaron los menores valores de energía superficial. En el caso de A(101) los valores obtenidos fueron de 0.31 y 0.40 J/m² utilizando LCAO y PW respectivamente. Mientras que en el caso de TB(001) las energías respectivas dieron 0.35 y 0.33J/m². Esto demuestra que, bajo el supuesto de superficies ultrafinas, estas fases presentarían una estabilidad comparativa.

	#	#	SE	SE
Slabs	átomos	capas	(J/m ²)	(J/m^2)
	Ti	TiO ₂	LCAO	PW
A(101)	8	2	0.31	0.40
A(100)	12	2	0.57	0.64
A(001)	5	4	0.89	0.90
R (110)	6	3	0.70	0.77
R(101)	6	3	1.09	1.14
R(100)	27	3	0.76	0.77
TB(001)	24	2	0.35	0.33
TB(100)	8	4	0.67	0.69

Tabla 9.2.2-1- Energía de superficie (SE) para los slabs simulados. Los modelos resaltados (A(101) yTB(001)) son los que muestran menor energía de superficie.

9.2.2.1 Superficies de anatasa

Las energías superficiales calculadas están de acuerdo con las reportadas por Vittadini*et al.* [18], 0.36 J/m² para un modelo A(101) de dos capas, 0.63 J/m² para uno de tres capas A(100), y 0.91 J/m² en el caso A(001) de cuatro capas (denominando capas a los planos de Ti).

Se observó que estos valores son afectados por el grado de "insaturación" de los átomos de Ti de la superficie y por la posibilidad de reconstrucción (o reordenamiento) de los átomos en la superficie o incluso en las capas interiores.De igual modo que fue discutido porPerron y colaboradores [19], se puede cuantificar del algún modo el grado

de insaturación de determinada superficie contando el número de enlaces rotos por unidad de superficie (bb, del inglés *brokenbonds*) relativo a la coordinación original de los átomos en el bulk. En el caso de TiO₂bulk, en su fase anatasa, cada átomo de Ti se encuentra coordinado a seis átomos de oxígeno, mientras que cada átomo de oxígeno coordina con tres de Ti. La Tabla 9.2.2-2muestra que la energía de superficie sigue la tendencia general del grado de insaturación superficial (definida como el número de enlaces rotos por unidad de superficie).

SE (J/m ²) Unsaturation	
SIESTA	$(bb/Å^2)$
0.31	0.103
0.57	0.111
0.89	0.279
	SE (J/m ²) SIESTA 0.31 0.57 0.89

Tabla 9.2.2-2 – Insaturación superficial en los modelos de anatasa.SE (J/m^2) Unsaturation

Adicionalmente, es interesante notar la reconstrucción debido al desplazamiento atómico que ocurre en A(100) donde los átomos de Ti pertenecientes a las capas interiores se reordenan de modo que la mitad permanecen en coordinación octaédrica, mientras que los restantes quedan en un entorno hexaédrico distorsionado. Estos movimientos están asociados a la relajación hacia adentro de los átomos de oxígeno superficiales involucrados. La distancia entre dichos átomos de oxígeno, situados en superficies opuestas del slab, varía de 3.79 Å (correspondiente al parámetro de celda a) en la estructura bulk a 3.22 Å. Esto conlleva a una variación en el ángulo O-Ti-O de 156.13° a 124.40° ver Figura 9.2.2-2. Esta insaturación extra con respecto al bulk podría estar explicando el mayor valor del cociente entre la energía superficial y la insaturación superficial relativo a los otros dos modelos.

En el caso A(001) los cationes de la superficie se reordenan de modo que los Ti pueden ser considerados como de coordinación 4, debido a la dilatación de uno de los enlaces Ti-O. Como se muestra en Figura 9.2.2-2, en la superficie de arriba la distancia es de 2.31 Å, mientras que en la inferior es 2.27 Å alternándose la distancia alongada en sentidos opuestos para cationes de Ti adyacentes¹.

¹ Cabe señalar que si para el cálculo de la insaturación se hubiesen considerado los Ti como Ti5c distorsionados en lugar de Ti4c, de todas formas se hubiese mantenido la tendencia $(0.140 \text{ bb/}\text{Å}^2)$.

9.2.2.2 Superficies de rutilo

Con respecto a las energías de superficie estimadas con estos modelos (o energía de formación del slab), tomando en cuenta el número de capas utilizado, los valores obtenidos concuerdan con los reportados por Perron*et al.* [19]. Estos también obedecen la tendencia en instauración (ver Tabla 9.2.2-3). No se observaron cambios en la coordinación de los átomos del interior del modelo, mientras que los Ti no saturados en la superficie adquieren entornos tipo piramidal de base cuadrada distorsionado.

Tabla 9.2.2-3 – Insaturación superficial en los modelos de rutilo.							
	Slab	$SE(J/m^2)$	Unsaturation				
		SIESTA	$(bb/Å^2)$				
	R110	0.70	0.106				
	R100	0.76	0.149				
	R101	1.09	0.161				

La similitud entre los valores de energía superficial obtenidos para las superficies R(110) y R(100) se debe al pequeño espesor de los slabs estudiados. Debido a que se utilizaron modelos ultra delgados para el cálculo de las energías de superficie, los valores obtenidos no reflejan a los correspondientes a filmes macroscópicos reportados en bibliografía 0.50 J/m² para R(110) y 0.69 J/m² para R(100) [19].

9.2.2.3 Superficie de TiO₂(B)

La estructura y estabilidad de las superficies de $TiO_2(B)$ fueron investigadas por Vittadini y colaboradores $[5]^2$. En su trabajo reportan la mayor estabilidad relativa de la superficie TB(001) con una energía de superficie de 0.40 J/m² y la menor para la superficie TB(100) con una energía de 0.76 J/m².

²Cabe aclarar que este trabajo fue realizado en forma simultánea con el estudio reportado por Vittadini y colaboradores. Resultados preliminares de la estabilidad de la superficie TB(001) fueron presentados por nuestro grupo en el póster titulado "ElectronicStructure of TiO₂ and titanates: a systematicstudy" en ComputationalNanoscienceforRenewableEnergySolution a psi-k SummerSchool, Universidad de Helsinki, Finlandia, setiembre de 2009.

Los resultados de este trabajo $(0.35 \text{ J/m}^2 \text{ y } 0.67 \text{ J/m}^2 \text{ para TB}(001) \text{ y TB}(100)$ respectivamente) concuerdan con la literatura, lo que confirma la excepcionalmente baja energía de superficie de la cara TB(001). Este resultado es coherente con lo observado experimentalmente, al obtener nanoestructuras del polimorfo TiO₂(B) por métodos como la síntesis hidrotermal partiendo de anatasa y rutilo.

En lo que respecta a la insaturación, se contabilizan los "enlaces rotos" en relación al bulk considerando que parte de los Ti originalmente ya tenían coordinación 5 y parte de los átomos de O tenían coordinación inicial 2. En este caso los valores de insaturación no explican la estabilidad relativa de estas superficies (ver Tabla 9.2.2-4), lo que fue previamente observado por Liu*et al.*[20].

Tabla 9.2.2-4 – Insaturación superficial en los modelos de TiO ₂ (B).							
C1	ah (SE (J/m^2)	Unsaturation				
51	aD	SIESTA	$(bb/Å^2)$				
TBO	001	0.35	0.0879				
TB	100	0.67	0.0819				

Luego de la optimización, la bicapa TB(001) sufre un reordenamiento tal que los átomos alcanzan una configuración muy simétrica. Los átomos de Ti que inicialmente (en la estructura bulk) presentaban diferentes entornos, alcanzan la misma coordinación del tipo piramidal de base cuadrada (Figura 9.2.2-3).Esto actúa estabilizando la estructura en comparación con TB(100). Cabe señalar que esta estructura, como fue observado por Vittadini*et al.*, presenta similitudes con la encontrada por el mismo grupo al relajar un filme de A(101) de cuatro capas de Ti, la que fue denominada "*pentacoordinatednanosheet*", la cual representa la nanohoja más estable de TiO₂ luego de lepidocrocita [5], [18].

Capítulo 9 – Modelado de nanoestructuras

Figura 9.2.2-3– (a) Representación del bulkTiO₂(B), (b) TB(100), (c) y (d) TB(001). Ti y Ti* hacen referencia a los titanios que en el bulk presentaban coordinación octaédrica y tipo pirámide de base cuadrada respectivamente. En el caso de los slabs (001) todos los Ti presentan coordinación 5c, los que llevan asterisco son los que originalmente (en el bulk) presentaban dicho entorno.

Por otro lado, los átomos insaturados en la superficie pueden permitir la unión con especies donoras de electrones, jugando un papel importante en la reactividad de esta superficie. Por lo cual podría ser una superficie apta para el anclaje de diversos colorantes.

Los valores estimados de energía de banda prohibida para estos modelos Eg=2.61 eV yEg=2.84 eV para TB(001) y TB(100) respectivamente son cercanos al calculado utilizando el mismo método para anatasa bulk (Eg=2.40 eV). En lo que respecta a la evaluación de este modelo como semiconductor de DSSCs, otros puntos a estudiar serían el anclaje del colorante sobre la superficie así como la alineación de los niveles energéticos.

9.2.2.4 Consideraciones finales del estudio de superficies ultrafinas

El uso de bases flotantes al emplear el método basado en orbitales atómicos localizados permitió obtener resultados concordantes con os arrojados utilizando ondas planas. Los valores obtenidos enfatizan la baja energía de formación del modelo bidimensional de
bicapaTB(001), la cual es comparable con A(101). Esto es un indicio de la estabilidad relativa de estos polimorfos a escala nanométrica y motiva la investigación de esta estructura como bloque constructor de otras estructuras nanométricas de alta relación de aspecto como ser nanotubos y nanohilos. En lo que respecta a la comparación entre los modelos TB(001) y TB(100), es clara la menor estabilidad del segundo modelo por lo que es de esperar una mayor reactividad de esta superficie.

9.2.3 Nanohojasultrafinas

Se define la energía de formación de superficie equivalente (ESFE, del inglés *EnergySurfaceFormationEnergy*) como la energía de formación de la nanohojaultrafina por unidad de área y se determina según la expresión (9.2.3.1). E_{slab} corresponde a la energía total del slab, N_{Ti} indica el número de unidades TiO₂ contenidos en el modelo, $E_{TiO2-bulk}$ es la energía total correspondiente a la estructura en bulk por unidad de TiO₂ y S el área de la supercelda.

$$E_{ESFE} = \frac{E_{slab} - N_{Ti} E_{TiO_2 - bulk}}{2S} (9.2.3.1)$$

En la

Tabla 9.2.3-1se listan los valores de ESFE y E_{gap} calculados y en la Figura 9.2.3-1 se muestran las nanohojas de anatasa A(100) y A(001) para los cuales se vieron cambios en la coordinación de los átomos en la superficie con respecto al estudio anterior debido a la optimización de los parámetros de red.

Cap. 9 - 12/46

Figura 9.2.3-1– NanohojasultrafinasA(100) y A(001) luego de la optimización estructural.

Slabs	# átomos	# capas TiO ₂	ESFE (J/m ²)	Egap (eV)
A(101)	8	2	0.41	2.86
A(100)	12	2	0.64	2.29
A(001)	5	5	0.93	2.12
R (110)	6	3	0.64	1.53
R(101)	6	3	1.07	1.87
R(100)	27	3	0.66	1.99
TB(001)	24	2	0.38	2.61
TB(100)	8	4	0.83	2.80

Tabla 9.2.3-1 – Energía superficial equivalente y energía de banda prohibida para las nanohojas.

9.2.3.1 Nanohojas de anatasa y rutilo

La energía superficial equivalente obtenida paralasnanohojas de anatasa: 0.41 J/m^2 , 0.64 J/m^2 y 0.93 J/m² para A(101), A(100) y A(001). En la Tabla 9.2.3-2se muestra que la ESFE sigue la tendencia de la insaturación de la superficie.

- 1	- insaturación de atómos supermetates en las hanonojas										
	Slob	ESFE	Insaturación								
	A (101)	(J/m ²)	$(bb/Å^2)$								
	A(101)	0.41	0.103								
	A(100)	0.64	0.111								
	A(001)	0.93	0.144								

Tabla 9.2.3-2 – Insaturación de átomos superficiales en las nanohojas de anatasa.

Capítulo 9 - Modelado de nanoestructuras

Tabla 9.2	.3-3 – Insatu	ración superfi	cial de las nanohojas d	le rutilo.
	01.1	ESFE	Insaturación	
	Slab	(J/m ²)	$(bb/Å^2)$	
	R(110)	0.64	0.106	
	R(100)	0.66	0.149	
	R(101)	1.07	0.161	

En el caso de las nanohojas de rutilo no se observaron cambios en la coordinación de los átomos de la superficie al relajar los parámetros de red (Tabla 9.2.3-2).

9.2.3.2 <u>Nanohojas de TiO₂(B)</u>

Los resultados obtenidos para las nanohojas de $TiO_2(B)$ se listan en la Tabla 9.2.3-4. Sigue siendo válida la discusión hecha para el caso de las superficies ultrafinas de $TiO_2(B)$.

9.2.3.3 Estructura electronica de las nanohojasultrafinas de anatase, rutilo y TiO₂(B)

Al igual que para el caso de las estructuras en bulk, la densidad de estados electrónica en las hojas ultra delgadas presenta una importante contribución de los estados O-2p en la banda de valencia, mientras que la banda de conducción presenta la contribución de los estados con carácter Ti-3d ().

Capítulo 9 - Modelado de nanoestructuras

Figura 9.2.3-2 – Densidad de estados por unidad de TiO_2 para la estructura en bulk (a), nanohojas de $TiO_2(B)$ (b), nanohojas de anatasa (c) y nanohojas de rutilo (d).

9.3 ADSORCIÓN DE HCOOH SOBRE HOJAS ULTRAFINAS DE TiO₂(B)

En este capítulo se estudia la reactividad de hojas ultrafinas $TiO_2(B)$ de superficie expuesta paralela a los planos cristalográficos (001) y (100) (TB(001) y TB(100) respectivamente). La baja energía de formación observada para TB(001), coherente con la baja energía superficial de esta superficie en TiO₂(B), sugiere una mayor exposición relativa de esta superficie en nanoestructuras del polimorfo en estudio. Vittadini y colaboradores estudiaron las energías superficiales mediante DFT y a partir de estas calcularon las abundancias fraccionales de las distintas caras obteniendo 0.45, 0.36 y

0.19 para (001), (110) y (100) respectivamente [5].Se ha explicado satisfactoriamente el patrón de difracción de rayox X de nanotubos de TiO₂(B) a partir de modelos realizados suponiendo el enrollamiento de los planos ab según *a*, en los cuales el eje de los tubos es paralelo a la dirección cristalográfica *b* y la dirección radial es paralela a *c* [21]. En dicho modelo, la superficie expuesta corresponde al plano (001) y el espesor de pared es de aproximadamente 2.5nm. Por otro lado existen observaciones por HRTEM que sugieren que las paredes de los nanotubos de TiO₂(B) corresponden a planos (200) y (110) [16] [17].

El ácido fórmico (HCOOH) es la molécula más simple que contiene el grupo carboxilo, el cual es uno de los grupos funcionales más utilizado para el anclaje de colorante en TiO₂nanoestructurado en celdas solares sensibilizadas [22]. Es por eso que la adsorción de ácido fórmico sobre TiO₂(B) puede verse como un primer paso en la evaluación de este polimorfo para su aplicación en celdas de sensibilización espectral, brindando información sobre el tipo de interacción con los grupos de anclaje. Se evalúa solamente el isómero *trans* debido a la mayor estabilidad relativa con respecto al isómero *cis* [23].

9.3.1 Adsorción de HCOOH sobre superficiesultrafinas de TB(001) y TB(100) empleando bases atómicas localizadas

Para el estudio de la adsorción de la molécula de ácido fórmico sobres superficies secas de $TiO_2(B)$ fueron evaluados los modelos bidimensionales TB(001) y TB(100). Los resultados anteriores revelaron la mayor estabilidad de TB(001), indicando mayor probabilidad de superficie expuesta de este plano en nanoestructuras de pocos planos atómicos. El segundo modelo fue incluido debido a que la mayor reactividad asociada a la menor estabilidad puede hacer que su contribución no sea despreciable a la hora de evaluar la reactividad global de las nanoestructuras de este polimorfo.

Las geometrías de interacción analizadas para la superficie TB(001) se muestran en la Tabla 9.3.1-1. La notación utilizada se basa en la empleada por Vittadini*et al*.[24]. En la misma, MH denota una coordinación monodentada y BBH refiere a una coordinación bidentada, siendo el número de oxígenos de la molécula HCOOH que coordinan con los Ti no saturados de la superficie 1 y 2 respectivamente. MHa es una configuración

monodentada mediante el grupo carbonilo y MHb es una configuración monodentada mediante el grupo hidroxilo. A su vez, cuando la configuración estudiada implica la disociación de la molécula de ácido se incluye en la nomenclatura un guión bajo separando el H (M_H y BB_H).

 Tabla 9.3.1-1- Geometrías de adsorción que permanecen estables durante la optimización para el caso del modelo TB(001).

Inicialmente, se consideró una geometría adicional en la que se colocó la molécula en posición inicial BBH, en la misma el H inicialmente apuntaba a un Ti superficial. Se observó una rotación de la molécula durante la optimización (y no un cambio conformacional de la molécula) tal que en la posición final el H queda enfrentado a un oxígeno 3c superficial, ver Tabla 9.3.1-2. Esta configuración se denomina MHa_3c.

MHa_3c Tabla 9.3.1-2 - Adsorción monodentada mediante el grupo carbonilo involucrando un O_{3c} .

En lo que respecta a la configuración monodentada disociada (M_H), se observó que al colocar inicialmente el H del anión HCOO⁻ apuntando en sentido opuesto al slab, la geometría evoluciona a una del tipo BB_H, mientras que si inicialmente el H apunta hacia el slab, la geometría permanece monodentada pero pobremente estabilizada lo que se ve reflejado por su casi nula energía de adsorción (Tabla 9.3.1-3).

TB(100) difiere de TB(001) en la cantidad de átomos de Ti y O no equivalentes en la superficie, lo que aumenta el número de configuraciones posibles de interacción molécula-slab. De las opciones estudiadas estas se esquematizan en la Tabla 9.3.1-4 aquellas que permanecieron estables luego del proceso de optimización.

Config	Fia	E _{ads}	C-01	C-O2	θ	01-Ti(5c)	O2-Ti(5c)	H-O(2c)
Comig.	rig.	(eV)	(Å)	(Å)	(°)	(Å)	(Å)	(Å)
MHa	3	0.60	1.31	1.25	125.6		2.23	1.51
MHb	3	0.15	1.38	1.21	123.4	2.40		2.52*
MHa_3c	4	0.55	1.31	1.25	125.7		2.22	1.47
M_H_2	3	0.02	1.35	1.22	124.3	1.94		0.99
BB_H_1	3	0.76	1.28	1.27	128.0	2.12	2.09	0.99

Tabla 9.3.1-3- Energías de adsorción, longitudes de enlaces y ángulos C-O-C (θ) para las diferentes configuración estudiadas sobre la superficie TB(001).

* Esta distancia es considerablemente mayor que la longitud convencional del enlace de hidrógeno (1.97Å)

Tabla 9.3.1-4 - Geometrías de adsorción que permanecen estables durante la optimización para el slabTB(001).

Los valores de energía de adsorción, longitud de enlace, y ángulos C-O-C (θ) de la moléculas de HCOOH calculados se listan en las Tabla 9.3.1-3. La longitud de enlace C-O y el ángulo C-O-C obtenidos para la molécula aislada se listan en la Tabla 9.3.1-6.

configuraci												
Config	Fig	Eads	C-01	C-02	θ	01-Ti(5c)	O2-Ti(5c)	H-O(2c)				
Coning.	rıg.	(eV)	(Å)	(Å)	(°)	(Å)	(Å)	(Å)				
MHa_1	5	0.81	1.30	1.26	126.2		2.13	1.49				
MHa_2	5	0.19	1.35	1.23	126.2		3.61* ²	1.71				
MHb_1	5	0.38	1.40	1.21	122.0	2.28		2.38^{*^3}				
BB_H_1	5	1.06	1.28	1.27	128.6	2.06	2.05	0.98				
BB_H_2	5	1.35	1.29	1.27	128.8	2.02	2.06	0.98				
M_H_1	5	0.40	1.37	1.22	122.7	1.89		1.00				
<i>M_H_2</i>	5	0.69	1.38	1.22	122.3	1.84		0.98				

Tabla 9.3.1-5- Energías de adsorción, longitudes de enlaces y ángulos C-O-C (θ) para las diferentes configuración estudiadas sobre la superficie TB(100).

*² Este valor no se aproxima a la longitud de enlace Ti-O típica.

*³ Este valor es mucho mayor que la longitud de enlace de hidrógeno convencional (1.97Å).

Config	C-01	C-02	θ
Comig.	(Å)	(Å)	(°)
TB001_L	1.37	1.22	125.4
TB100_L	1.37	1.22	125.2

Tabla 9.3.1-6 - Longitudes de enlace y ángulo C-O-C (θ) para la molécula aislada (situada lejos de la

Para ambas superficies se obtuvo que la configuración más estable es la bidentada disociada (BB_H), seguida de la monodentada mediante el grupo carbonilo (MHa). Esto implicaría que el ácido fórmico se adsorbe en una configuración bidentada sobre las superficies limpias TB(001) y TB(100) de filmes ultradelgados de TiO₂(B).

Se observó que la configuración BB_H conlleva a una distorsión de la superficie. En el caso de TB(001), ver Tabla 9.3.2-2, hay una marcada disminución de la distancia entre los Ti_{5c} adyacentes (de 3.19 Å a 3.06 Å) mientras que el ángulo C-O-C se ve levemente incrementado con respecto a la molécula aislada. Conjuntamente, existe un desplazamiento hacia afuera del O_{2c} enlazado al H disociado de la mano con una dislocación del átomo de Ti_{5c} adyacente, modificando el ángulo Ti_{5c}-O_{2c}-Ti_{5c} de 146.0°

a 140.8°. Para TB(100) la distorsión es menor, siendo la contracción de 0.06Å. En este caso el tamaño de la supercelda seleccionada permite que una única molécula se adsorba en configuración BB_H a lo largo de la dirección b (Tabla 9.3.1-4), saturando de este modo la correspondiente columna de O_{2c} . Para evaluar el efecto de esta saturación se estudió la misma configuración para una supercelda duplicando el parámetro b. No se obtuvo diferencia significativa en la energía de adsorción (-0.07eV).

Tabla 9.3.1-7 - Distorción de la superficie TB(001) inducida en la configuración BB_H.

El resultado obtenido difiere de lo que ocurre en anatase A(101) donde la adsorción molecular monodentada se favorece. Esto podría explicarse observando la diferencia entre la distancia de los Ti_{5c} involucrados, siendo en TB(001) d=3.19Å similar a la de rutilo R(110) donde d=2.96 Å en la cual también prevalece la configuración BB_H. Estas distancias se ajustan mejor a la separación O-O (~2.30Å) de la molécula [24]. Mientras que en A(101) esta distancia es mayor 3.71 Å. Sin embargo, este factor no explica el caso de TB(100) en el cual d=3.74 Å entre los oxígenos superficiales y se favorece la configuración BB_H.

En lo que respecta al resto de las configuraciones estudiadas sobre la superficie TB(001) la se obtuvo la estabilidad relativa MHa_2c~MHa_3c>MHb>M_H. La diferencia entre las dos opciones MHaes de 0.05eV, mientras que la configuración monodentada a través del grupo hidroxilo es más marcada 0.45-0.40eV. Esto concuerda con lo observado para anatasa A(101) [24] lo que refleja que el oxígeno favorece la coordinación 2. Por último, como fue mencionado con anterioridad, la configuración M_H no se ve estabilizada, siendo la energía de adsorción calculada de 0.02eV.

Considerando la opción más estable de cada tipo de configuración para TB(100), la tendencia se modifica a:MHa>M_H>MHb. Si bien no se observó la disociación espontánea de la molécula HCOOH durante la optimización, el hecho de que la

geometría M_H se estabiliza con respecto a MHb podría estar indicando la mayor basicidad de los oxígenos en esta superficie. Más aún, es clara la diferencia en la basicidad entre los dos oxígenos no equivalentes, ya que la configuración en la cual el H se enlaza a O^*_{2c} es alrededor de 0.29 eV mayor en energía comparado con la cual este se une al O_{2c} . Esta misma diferencia de energía es encontrada al comparar las dos opciones de geometrías bidentadas. Por otro lado, esto no explica la diferencia de energía de 0.62eV entre MHa_1 y MHa_2, ya que en este caso es la primera es la más estable y es la que involucra el enlace de H con O_{2c} . Lo que ocurre en MHa_2 es que la geometría de la superficie impide la coordinación del oxígeno del carbonilo con O^*_{2c} , siendo la distancia final O(2)-Ti_{5c}de alrededor de 3.61Å. Por lo que no es verdaderamente una configuración monodentada mediante el grupo carbonilo, sino que es una interacción molécula superficie mediada por un enlace de hidrógeno.

La diferencia en los valores obtenidos para las mismas configuraciones entre TB(001) y TB(100), indican la mayor reactividad de TB(100), lo que está de acuerdo con la menor estabilidad encontrada en el acápite anterior.

Cabe señalar que en este estudió no fue incluido ningún efecto de hidratación de la superficie lo cual podría afectar la estabilidad relativa entre configuraciones debido a la formación de geometrías de coordinación como fue observado previamente para el caso de anatasa A(101) [24].

9.3.2 Validación del método

Por último, para validar la metodología utilizada, se calcularon las energías de adsorción de HCOOH en A(101) para las configuraciones MHa y BB_H (Tabla 9.3.2-1). En este caso, se realizaron los cálculos empleando LCAO, LCAO + bases flotantes y PW. Se obtuvo coherencia en la estabilidad relativa entre las configuraciones (Tabla 9.3.2-2). Sin embargo los valores obtenidos difieren significativamente con los reportados: 0.92eV para la configuración MHa_2 y 0.68eV para BB_H.

Capítulo 9 - Modelado de nanoestructuras

Tabla 9.3.2-1 - Geometrías de adsorción evaluadas para A(101).

 Tabla 9.3.2-2- Energías de adsorción para las diferentes configuración estudiadas sobre la superficie

 A(101).

	11(101).										
Config.	Fig.	E _{ads} LCAO	E _{ads} LCAO_FB	E _{ads} PW	E _{ads} REF						
MHa_1	8	0.68	0.82	0.75							
MHa_2	8	0.63	0.88	0.76	0.92						
BB_H	8	0.28	0.65	0.56	0.68						

Debido a las diferencias de energía obtenidas al emplear LCAO en comparación con PW, se realizaron cálculos adicionales agregando bases flotantes (LCAO_FB). Al igual que para el caso del estudios de los modelos se seleccionaron bases correspondientes a una monocapa de TiO₂ sobre las superficies. Cómo se observa en la Tabla 9.3.2-2, esto permitió una mejor relajación de la superficie aumentando la energía de adsorción. Si bien este método parece arrojar resultados más precisos, la tendencia general se mantiene si se considera una tolerancia de 0.05eV.

Por lo anterior, se considera que el hecho de haber usado LCAO sin incluir bases flotantes en el presente estudio no afecta las conclusiones sobre la estabilidad relativa de las diferentes configuraciones de adsorción.

Capítulo 9 - Modelado de nanoestructuras

9.3.3 Adsorción de HCOOH sobre hojas ultrafinas de TB(001) y TB(100) empleando ondas planas

Se vuelve a realizar el estudio pero utilizando ondas planas como bases. En este caso, además de las posiciones de los iones, se optimizan las dimensiones de la supercelda (se trabaja sobre las nanohojas). Se utilizan como criterios de convergencia una fuerza residual menor a 0.02 eV/Å y los componentes del tensor de estrés menores a 5kbar.

El cálculo de la energía de adsorción se simplifica según la ecuación (i), en la cual E_T representa la energía total del slab con la molécula en la superficie y E_{ni} corresponde a la energía total calculada para el slab y la molécula no interactuante en conformación trans.

$$E_{form} = -(E_T - E_{ni})(i)$$

Los resultados recalculados para las distintas configuraciones sobre TB(001), TB(100) y A(101), se muestran en las Tabla 9.3.3-1Tabla9.3.3-2 y Tabla9.3.3-3. Se observa un cambio importante en la tendencia pasando a ser la configuración monodentadaMHa la más estable para el caso de TB(001).

Config.	$\mathbf{E}_{\mathrm{ads}}$	C-01	C-O2	heta	01-Ti(5c)	O2-Ti(5c)	H-O(2c)
	(eV)	(Å)	(Å)	(°)	(Å)	(Å)	(Å)
МНа	0.51	1.31	1.24	125.3		2.35	1.57
MHb	0.09	1.37	1.21	124.0	2.64		2.65*
MHa_3c	0.35	1.32	1.24	125.2		2.35	1.63
M_H_2	-0.28	1.33	1.22	124.8	2.00		0.99
BB_H_1	0.38	1.27	1.27	127.2	2.17	2.14	0.98

Tabla 9.3.3-1 – Energías de adsorción, distancias de enlace y ángulos de enlace para las diferentes configuraciones de adsorción sobre TB(001).

* This distance is much larger than the conventional hydrogen bond length (1.97Å)

Capítulo 9 - Modelado de nanoestructuras

configurati	configurations on TB(100) surface.											
Config	Fig	E _{ads}	C-01	C-O2	θ	01-Ti(5c)	O2-Ti(5c)	H-O(2c)				
Comig.	rıg.	(eV)	(Å)	(Å)	(°)	(Å)	(Å)	(Å)				
MHa_1	5	0.85	1.29	1.25	125.7		2.15	1.48				
MHa_2	5	0.29	1.34	1.22	126.3		3.99* ²	1.83				
MHb_1	5	0.46	1.39	1.20	122.4	2.28		2.46^{*3}				
BB_H_1	5	1.48	1.28	1.26	127.9	2.07	2.07	0.98				
BB_H_2	5	1.22	1.28	1.26	127.9	2.07	2.07	0.98				
M_H_1	5	0.52	1.35	1.21	123.3	1.90		0.98				
M_H_2	5	0.79	1.36	1.21	123.3	1.87		0.97				

Tabla9.3.3-2- Adsorption energies, bond distances and bond angles for the different adsorption

*² This does not represent a typical Ti-O bond length.

*³This distance is much larger than the conventional hydrogen bond length (1.97Å)

Tabla9.3.3-Adsorption energies (eV), bond distances and bond angles for the different adsorption configurations on anatase A(101) surface.

Initial	Fig.	E _{ads}	C-01	C-O2	θ	01-Ti(5c)	O2-Ti(5c)	H-O(2c)
Comig.		(\mathbf{ev})	(\mathbf{A})	(\mathbf{A})	()	(\mathbf{A})	(\mathbf{A})	(\mathbf{A})
MHa_1	8	0.75	1.31	1.24	125.6	2.22		1.55
MHa_2*	8	0.56	1.27	1.27	128.1	2.11	2.08	0.98
BB_H	8	0.56	1.27	1.27	128.1	2.11	2.08	0.98

*MHa_2 changed to BB_H

9.4 SUPERFICIE (001) DEL POLIMORFO TiO₂(B)

Se realiza un estudio sistemático con el fin de estudiar la energía superficial de la superficie (001) del polimorfo $TiO_2(B)$. Se investigó la variación de la energía con el número de capas Ti-O considerado y el número capas centrales fijas según las posiciones en el bulk.Se emplearon modelos de n capas con $n=\{2,4,6,8\}$ y variando el número de capas fijas desde 0 a n-2. El motivo por el cual se consideraron números de capas pares es para asegurar que la superficie expuesta a ambos lados sea siempre equivalente a la correspondiente a la hoja ultra delgada TB(001) estudiada. Se

emplearon bases flotantes en todos los casos y los parámetros de red del bulk optimizados previamente.

Los resultados obtenidos muestran escasa variación de la energía superficial con la variación del número de capas en el rango y del número de capas centrales fijas estando la energía en el rango de 0.40-0.42J/m² (Figura 9.3.3-1).

Figura 9.3.3-1 – Variación de la energía suprficial con el número de capas del slab y el número de capas centrales fijas.

N° Capas	N° Capas fijas	N _{átomos}	N _{TiO2}	k _p	MC	E _{KS} /TiO ₂	Sup (Å ²)	E _{sup} (eV/Å ²)	E _{sup} (J/m ²)
2	0	132	24	120	700	-970,4625	136,7992	0,0251	0,40
4	0	204	48	120	800	-970,6015	136,7992	0,0258	0,41
4	2	204	48	120	800	-970,5991	136,7992	0,0262	0,42
6	0	276	72	120	700	-970,6517	136,7992	0,0254	0,41
6	2	276	72	120	800	-970,6513	136,7992	0,0256	0,41
6	4	276	72	120	800	-970,6496	136,7992	0,0260	0,42
8	0	348	96	120	700	-970,6762	136,7992	0,0253	0,41
8	2	348	96	120	800	-970,6764	136,7992	0,0253	0,40
8	4	348	96	120	800	-970,6760	136,7992	0,0254	0,41
8	6	348	96	120	700	-970,6746	136,7992	0,0259	0,41

9.5 NANOHILOS

9.5.1 Introducción

A partir de la fragmentación de la hoja más estable obtenida para el polimorfo B, TB(001) se obtienen los hilos atómicos iniciales TBx, TBy y TBz según se esquematiza en la Figura 9.5.1-1. En los cuales direccionesperiódicasson[100], [010] y [001]respectivamente.

Por otro lado, se decide trabajar con un nanohilo de anatasa en la dirección [001] (denominado Az) dado que es el sistema del cual se tiene la referencia experimental más próxima a la obtención de hilos atómicos [25]. Se tomó el corte respectivo a partir de la estructura de bulk.

Capítulo 9 – Modelado de nanoestructuras

Figura 9.5.1-1 – Esquema de corte de los nanohilos a partir del film TB(001).

9.5.2 Nanohilo de anatasa [001]

En una primera instancia se obtuvieron las condiciones de convergencia para el citado nanohilo, correspondiendo a una energía de corte de 500eV y muestra de espacio-k 1x1x21. Si bien la optimización estructural concluyó satisfactoriamente, con fuerzas debajo de 0.0005 eV/Ang y elementos de tensor de stress con debajo de 0.25 kBar, los estudios vibracionales arrojaron en primera instancia 22 ramas de frecuencia imaginaria en sus funciones de dispersión fonónica, ver Figura 9.5.2-1.

Acorde al diagrama de dispersión, es claro que la inestabilidad mayor ocurre para autovectoresproyectados a punto Γ , y por tanto siguiendo los desplazamientos atómicos correspondientes a dicho autovector sería posible llegar más rápidamente al mínimo local. Por lo tanto, se estudió el efecto de la modulación de las estructuras de anatasa, en primera instancia teniendo en cuenta la modulación de los autovectores de la rama de frecuencia imaginaria en punto Γ . En la Figura 9.5.2-1 se presenta la densidad de estados fonónica y el nuevo diagrama de dispersión para la estructura modulada. Dado

que la modulación en Γ los desplazamientos quedan conmensurados en la celda unidad original se trabaja con la original, ver Figura 9.5.2-2.

Figura 9.5.2-1- Esquema de nanohilos de Anatasa (001) y su correspondiente diagrama de dispersión con densidad de estados fonónica.

La estructura modulada es nuevamente sometida a un estudio de optimización estructural, tanto en fuerzas como en esfuerzos, utilizando los mismos criterios que el caso anterior. El cálculo de fonones arrojó en este caso solo tres modos de frecuencia imaginaria, facilmente atribuibles a las correspondientes ramas acústicas de la estructura. De todas formas, se plantea una subsecuente modulación, pero ahora a punto X, ya que es la zona de mayor frecuencia imaginaria. El resultado de esta modulación se denomina m Γ -mX, ver Figura 9.5.2-3, y nuevamente debido a que la modulación se conmensura a la celda unidad original se representan con la misma unidad.

Tal como se observa en la Figura 9.5.2-3 hay cierto grado de distorsión en la estructura, pero limitado. El diagrama de dispersión es muy similar al obtenido anteriormente confirmando de esta forma el carácter local del mínimo estructural. Este será el procedimiento a utilizar para las nuevas estructuras basadas en $TiO_2(B)$.

Capítulo 9 – Modelado de nanoestructuras

Figura 9.5.2-2- Esquema de nanohilos de Anatasa (001) modulada- Γ y su correspondiente diagrama de dispersión con densidad de estados fonónica.

Figura 9.5.2-3- Esquema de nanohilos de Anatasa (001) modulada- Γ / modulada-X y su correspondiente diagrama de dispersión con densidad de estados fonónica.

Capítulo 9 – Modelado de nanoestructuras

9.5.3 NanohilosTBx y TBy

Se obtiene solamente una rama acústica imaginaria, lo cual se considera razonable para definir una estructura localmente estable.

Figura 9.5.3-1- Esquema de nanohilos de $TiO_2(B)_x$ y su correspondiente diagrama de dispersión con densidad de estados fonónica.

Capítulo 9 – Modelado de nanoestructuras

Figura 9.5.3-2- Esquema de nanohilos de $TiO_2(B)_y$ su correspondiente diagrama de dispersión con densidad de estados fonónica.

En términos energéticos podemos decir que las energías de formación por unidad de TiO_2 corresponden a 1.16, 0.41 y 0.95 eV/P.F para TB_x, TB_y y Az respectivamente (Tabla 9.5.3-1), lo cual es relativamente bajo. Más aun teniendo en cuenta las evidencias experimentales de ocurrencia para el sistema de anatasa.

Capítulo 9 – Modelado de nanoestructuras

Figura 9.5.3-3 – Reconstrucción estructural de los hilos estudiados.

Tabla 9.5.3-2-	 Energías de 	formación y	y de gap p	oara hilos de	$TiO_2(B)$	y Anatasa.
----------------	---------------------------------	-------------	------------	---------------	------------	------------

Sistema	E _{form} (eV)	E _{gap} (eV)	$E_{gap_bulk}(eV)$
TBx	1.16	3.19	2.73
ТВу	0.41	3.62	2.73
Az	0.95	2.71	2.23

Una vez obtenidas las densidades de estado fonónicas es posible obtener las propiedades térmicas del sistema. Esto surge al poder determinar la entropía (S[J/K/mol]), la energía de vibración armónica (E[kJ/mol]) y las correspondiente energía libre de Helmholtz(F[kJ/mol]), acorde a las siguientes expresiones:

$$F = E - TS$$

$$E = \sum_{qv} \hbar \omega(qv) \left[\frac{1}{2} + \frac{1}{\exp\left(\frac{\hbar \omega(qv)}{k_B T}\right) - 1} \right]$$
$$S = -\frac{\partial F}{\partial T} = \frac{1}{2T} \sum_{qv} \hbar \omega(qv) \coth\left(\frac{\hbar \omega(qv)}{2k_B T}\right) - k_B \sum_{qv} \ln\left[2\sinh\left(\frac{\hbar \omega(qv)}{2k_B T}\right)\right]$$

Capítulo 9 - Modelado de nanoestructuras

Finalmente, la capacidad calorífica a volumen constante C_v puede obtenerse también gracias a:

$$C_{v} = \left(\frac{\partial E}{\partial T}\right)_{v} = \sum_{qv} k_{B} \left(\frac{\hbar \omega(qv)}{k_{B}T}\right)^{2} \left(\frac{\exp\left(\frac{\hbar \omega(qv)}{k_{B}T}\right)}{\left[\exp\left(\frac{\hbar \omega(qv)}{k_{B}T}\right) - 1\right]^{2}}\right)$$

Este es un paso importante, ya que permite extrapolar las propiedades del sólido a temperaturas mayores a T=0K, mediante aproximación armónica de las vibraciones.A continuación se presentan los resultados para estas cuatro magnitudes E, S, F y Cv.

Figura 9.5.3-4. Energía vibracional E, entropía vibracional S y energía libre de Helmholtz F para los sistemas TiO₂(B), TBx y TBy.

Si bien la Figura 9.5.3-4 es instructiva en el sentido que muestra la temperatura a la cual la energía libre se vuelve negativa, particularmente en la proximidad de T=500K, es claro que la comparación más razonable surge al normalizar por el número de unidas de TiO₂ en cada supercelda. Cuando esto se realiza, se obtiene la Figura 9.5.3-5. En ella se observa que a T=0K el bulk de TiO₂(B) es más estable que TBx y TBy, en ese mismo

orden. Dado que la energía libre incluye ahora el efecto térmico se puede observar que la relación anterior se mantiene hasta T=100K, donde las fase de TiO2(B) y TBx se vuelven comparables en términos termodinámicos. El siguiente cruce de curvas ocurre para T=400 K, donde se equipara la función F para TBx y TBy. Por tanto podemos decir que ambas fases presentan una energía libre comparable a la de su fase bulk, con lo cual es posible afirmar que su ocurrencia sería factible en el rango de T=0-500 K.

Figura 9.5.3-5- Energía Libre de Helmholtz normalizada F[kJ/mol/TiO2] y la respectiva capacidad calorífica.

Por otra se pude obtener la capacidad calorífica de los tres sistemas, donde se observa que en el régimen a bajas temperaturas TBx y TBy son similares, en particular en el denominado régimen T^3 de Debye. Por otra parte, a altas temperaturas se observa que TBx y TiO₂(B) se aproximan al régimen asintótico. De todas formas, y al igual que ocurre con la energía libre de Helmholtz, las diferencias no son tan importantes entre los tres sistemas.

9.5.4 Estructura electrónica de los nanohilos

En términos electrónicos, se puede observar que las energías de gap se incrementarían. Esto claramente a priori se traduce en un incremento en la energía de los fotones a absorber, pero hay que tener en cuenta que en realidad para sistemas DSSC, la verdadera energía de gap corresponderá con la posición del HOMO de la tinta y la

banda de conducción del semiconductor. Con ello queda abierta la posibilidad de regular el rango espectral de absorción del sistema TiO₂-colorante, sumado al hecho de que estas estructuras de baja dimensionalidad serían más reactivas. Esto permite además un mayor número de puntos de anclaje del colorante, traduciéndose en un incremento de la corriente Jsc.

Figura 9.5.4-1 – Densidad de estados electrónicos correspondientes a los distintos modelos

Del estudio electrónico se observa la presencia de estados de no enlace a nivel de la superficie, presentando picos en la DOS y bandas planas a nivel de Fermi. La mayor dispersión en el caso de TBy refleja la mayor estabilidad de este modelo.

Figura 9.5.4-2 Diagrama de densidad de estados, densidad de estados local para el tope de la banda de valencia y banda de conducción, con el respectivo esquema de bloques de hibridación para TB_y. En las densidades de estado local los átomos de oxígeno aparecen en rojo mientras que Ti en azul.

La Figura 9.5.4-2 muestra el diagrama de densidad de estados, donde puede observarse una conformación similar a la que ocurre con el TiO2 bulk en sus tres polimorfos. La banda de valencia se conforma de estados con mayor componente de electrones provenientes del oxígeno, al tiempo que la banda de conducción tiene un mayor aporte por parte de los electros d del titanio. Esta información es además confirmado mediante el análisis de función de onda, graficada a punto Γ en espacio recíproco. Allí puede observarse que en la banda de valencia las iso-superficies se localizan en torno a los átomos de oxígeno con componente orbital tipo p. Por otra parte la banda de conducción muestra una localización de lóbulos entorno a los átomos de Ti, que a su vez poseen una componente orbital tipo d.

9.6 NANOTUBOS

Capítulo 9 – Modelado de nanoestructuras

Se realizaron modelos de nanotubos mediante el enrollamiento de la nanohoja ultra delgada de $TiO_2(B)$ TB(001). Los tubos construidos presentan el eje paralelos a la dirección [010], superficie expuesta (001) y diámetros medios 2nm y 4nm. Las energías totales calculadas se listan en la

Tabla 9.5.46-1.

Se observó que las estructuras iniciales propuestas sufren importante reconstrucción estructural que da lugar a fragmentación de los tubos (Figura 9.5.46 -1). Lo que refleja grandes tensiones iniciales.

Tabla 9.5.46-1 – Energía total calculada para los modelos de nanotubos de $TiO_2(B)$ de diámetros medios 2nm y 4nm de eje según la dirección [010] y superficie expuesta (001). BF indica el uso de bases flotantes sobre las superficies.

NT	<u>N°</u> átomos	E (eV/TiO ₂)	$\frac{\Delta E_{\text{bulk}}}{(eV/TiO_2)}$	
TB_001y_D40	240	-972.26	0.49	
TB_001y_D20	120	-970.19	0.56	
TB_001y_D20_BF	120	-970.32	0.43	

Figura 9.5.46 -1 – Reconstrucción estructural observada en el caso de tubos de $TiO_2(B)$ de diámetros medios 2nm y 4nm.

9.7 ESTUDIO DE LA INTERACCIÓN COLORANTE-SEMICONDUCTOR

Capítulo 9 - Modelado de nanoestructuras

Tal como se mencionó en la sección de métodos, la simulación consistió en optimizar un clúster basado en $TiO_2(B)$ (001) y la molécula de colorante N719. Una vez optimizadas las estructuras se pusieron en contacto ambos sistemas y se procedió a su optimización global.

Figura 9.5.4-1- Clúster $Ti_{36}O_{64}$ luego de su optimización con SIESTA en proyección superior (a) y lateral (b).

El clúster de TiO₂(B) consiste en 36 átomos de Ti y 64 átomos O, que se seleccionaron asegurando una razonable conectividad, evitando dejar átomos de O mono-coordinados. Todos los átomos de Ti se encuentran coordinados de forma tetra- o penta-coordinados.

Figura 9.5.4-2 - Proyecciones de la estructura final optimizada N719-Ti $_{36}O_{64}$

Capítulo 9 - Modelado de nanoestructuras

Figura 9.5.4-3 - Densidad de estados local proyectada para HOMO (a),(b) y LUMO (c), (d) en diferentes proyecciones.

Figura 9.5.4-4. - Diagrama de densidad de estados local (LDOS) proyectado sobre Ti, O, Ru y ligando N719. Nota: el nivel de Fermi se encuentra en E=-5.62 eV.

La estructura final del sistema se presenta a través de la densidad de estados, tal como luce en la Figura 9.5.4-3.

El LDOS muestra claramente a través de las curvas proyectadas en Ti y O, pertenecientes a la nanopartículas, que el clúster de $Ti_{36}O_{64}$ es un semiconductor cuyo gap al nivel GGA-PBE corresponde a $E_{gap}=1.7$ eV. Cuando el clúster es sensibilizado con la molécula de N719 el HOMO se ubica en el medio de la banda prohibida del semiconductor, a una energía E= -6 eV. El HOMO corresponde a un orbital molecular que comprende estados π del SCN y niveles d del Ru. El LUMO molecular coincide con el límite de la banda de conducción del semiconductor a E= -5.4 eV. La posición del LUMO para este sistema tiene características que lo hacen ideal para su uso como

colorante de celdas solares. En primer lugar los estados π -SCN y d-Ru al ubicarse en el centro del gap del semiconductor, reducen la energía de gap de este sistema, siendo en este caso 0.6 eV, aumentando el poder de absorción en la porción visible del espectro electromagnético. En segundo lugar, el LUMO se ubica rasante a la banda de conducción del Ti₃₆O₆₄, esto permitirá que ante un proceso de foto-excitación, el fotolectrón se eyecte de forma rápida, y además sin sufrir decaimientos vibracionales. Este proceso de decaimiento vibracional o térmico ocurre cuando el LUMO molecular se ubica a niveles energéticos superiores al LUMO del semiconductor, teniendo así lugar para reducir su energía.

Por todo ello se considera que este modelo, si bien es limitado en el número de átomos, presenta de forma clara las ventajas de utilizar una nanopartícula basada en $TiO_2(B)$. Demostrando así la posibilidad de su uso como colorante en celdas solares.

9.8 OPTIMIZACIÓN ESTRUCTURAL DE TITANATOS LAMINARES DEL TIPO Na_xH_{2-x}Ti₃O₇ y H_{2-x}Na_xTi₂O₅·yH₂O

Esta sección surge como un estudio auxiliar previo a la realización de modelos de tubos de tamaño real en la dirección radial para la caracterización de nanotubos mediante la simulación de diagramas de difracción de rayos X de polvo que se presentó en el Capítulo 6.

9.8.1 Na_xH_{2-x}Ti3O7

Se tomó como base la estructura de la fase $Na_2Ti_3O_7[26]$, el resto de las estructuras iniciales se obtuvieron mediante la sustitución de átomos de Na por átomos de H. Se optimizaron las posiciones atómicas y los parámetros de red (

Tabla 9.8.1-1). Se alcanzó convergencia en todos los casos con 216KP y MC500.

				r			
Titanato	X	a	b	c	α	β	γ
$H_2Ti_3O_7$	0	8,57356	3,38602	9,4461	90,4143	98,809	78,329
NaHTi ₃ O ₇ (a)	1	10,3849	3,28809	9,40115	90,675	102,2797	109,453
NaHTi ₃ O ₇ (b)	1	8,09017	3,74838	9,3334	90,0002	93,7465	89,9997
Na _{1.5} H _{0.5} Ti ₃ O ₇	1,5	8,63835	3,77584	9,18999	90,1039	101,6216	91,7135
Na ₂ Ti ₃ O ₇	2	8,49543	3,79917	9,11711	90,0000	101,2693	89,9997
			-			ç .	
	Та	abla9.8.1-2-	Parámetros d	le celda expe	rimentales (A	4).	
Titanato	X	а	b	c	α	β	γ
H ₂ Ti ₃ O ₇ [27]	0	35.466	3.7568	9.759	90	101.46	90
H ₂ Ti ₃ O ₇ [28]	0	16.023	3.749	9.191	-	-	-
Na ₂ Ti ₃ O ₇ [26]	2	8.571(2)	3.804(2)	9.135(2)	90.	101.57(5)	90.

Tabla 9.8.1-1-Parámetros de celda obtenidos al optimizar los bulks de titanatos de Na/H.

9.8.2 $H_{2-x}Na_xTi_2O_5$ ·y H_2O

Las estructuras optimizadas en bulk de las fases $H_2Ti_2O_5$, $H_2Ti_2O_5 \cdot 0.5H_2O$ y $H_2Ti_2O_5 \cdot H_2O$ se muestran en la Figura 9.8.2-2, y los parámetros de red obtenidos se listan en la Tabla 9.8.2-1. Se observa que la estructura de $H_2Ti_2O_5 \cdot H_2O$ presenta un apilamiento de láminas de octaedros [TiO6] del tipo AAA, no ABA como la estructura de partida HNaTi₂O₅. La conversión de ABA a AAA ocurre mediante el desplazamiento de la estructura $\frac{\vec{a}}{2}$ a lo largo del eje *a*. Conversiones similares mediante este tipo de desplazamiento relativo de las láminas de octaedros han sido observadas experimentalmente luego del intercambio iónico en el caso del trititanato de sodio. Na₂Ti₃O₇ posee un secuencia de apilamiento del tipo AAA mientras que H₂Ti₃O₇ se convierte a ABA [29].

Por otro lado, la estructura optimizada $H_2Ti_2O_5$ presenta una secuencia ABA al igual que los titanatos reportados $H_2Ti_3O_7$, $H_2Ti_4O_9$ y $H_2Ti_5O_{11}$ presentan secuencias ABA.

	Х	У	а	b	с	α	β	γ	
HNaTi ₂ O ₅	1	0	3,722160	18,857885	3,081708	92,021	89,997	88,667	
EXP [30]	1	0	3,6414(3)	17,286(6)	3.025(2)	91.2	89.9	88.2	
$H_2Ti_2O_5$	0	0	3,774710	17,412853	3,039901	91,253	89,816	88,128	
$H_2Ti_2O_5$ ·0.5 H_2O	0	0.5	3,819545	17,165006	3,098313	92,943	89,989	89,522	
H ₂ Ti ₂ O ₅ ·H ₂ O	0	0	1	3,826072	20,577871	3,030877	90,996	89,941	90,001
EXP[30]		1	3,784(b)	18,03 (a)	2,998(c)				

Tabla 9.8.2-1 – Parámetros de red optimizados H_{2-x}Na_xTi₂O₅·yH₂O.

Cap. 9 - 41/46

Capítulo 9 – Modelado de nanoestructuras

Figura 9.8.2-1 – Comparación estructura experimental (a) y (b), y optimizada teóricamente a partir de la experimental (c) y (d). Las imágenes muestran la supercelda 2axbx2c para mejor visualización de la estructura laminar.

Cap. 9 - 42/46

Capítulo 9 - Modelado de nanoestructuras

(e)

Figura 9.8.2-2 – Estructuras optimizadas de las fases $H_2Ti_2O_5$ (a) y (b), $H_2Ti_2O_5$ ·0.5 H_2O (c) y (d), y $H_2Ti_2O_5$ · H_2O (e) y (f).

9.9 CONCLUSIONES SOBRE EL MODELADO TEÓRICO DE NANOESTRUCTURAS DE DIÓXIDO DE TITANIO

Modelos bidimensionales

- El uso de bases flotantes al emplear el método basado en orbitales atómicos localizados permitió obtener resultados concordantes con los arrojados utilizando ondas planas. Los valores obtenidos enfatizan la baja energía de formación del modelo bidimensional de bicapa TB(001), la cual es comparable con A(101). Esto es un indicio de la estabilidad relativa de estos polimorfos a escala nanométrica y motiva la investigación de esta estructura como bloque constructor de otras estructuras nanométricas de alta relación de aspecto como ser nanotubos y nanohilos. En lo que respecta a la comparación entre los modelos TB(001) y TB(100), es clara la menor estabilidad del segundo modelo por lo que es de esperar una mayor reactividad de esta superficie.
- El estudio de la adsorción de HCOOH sobre nanohojas ultra delgadas secas de TiO₂(B) muestra que la configuración más estable es la monodentada mediante el grupo carbonilo (MHa) para el caso TB(001) y la configuración bidentada disociada (BB_H) para TB(100).
- Las características en lo que respecta a la energía de superficie, reactividad y energía de banda prohibida evaluadas son comparables con las correspondientes al polimorfo anatasa.

Modelos unidimensionales

 Se lograron converger estructuras estables de hilos atómicos derivados de anatasa y TiO₂(B) y fueron caracterizados desde el punto de vista estructural y electrónico. A su vez se describen sus propiedades vibracionales que permiten predecir propiedades termodinámicas como ser energía libre, entropía y

capacidad calorífica. Cabe señalar que, dentro de nuestro conocimiento, no hay resultados reportados al respecto

- Se dilucidó una estructura comparativamente más estable: *TBy* que se obtiene del corte de la superficie TB(001) a lo largo de la dirección [010]
- Con respecto a los NT, se observó que las estructuras iniciales propuestas sufren importante reconstrucción estructural que da lugar a fragmentación de los tubos. Lo que refleja grandes tensiones iniciales.

Interacción clúster – colorante

- Se observó que cuando el clúster es sensibilizado con la molécula de N719 el HOMO se ubica en el medio de la banda prohibida del semiconductor. Por otro lado, la posición del LUMO de la molécula de N719 tiene características que lo hacen ideal para su uso como colorante de celdas solares. En primer lugar los estados π -SCN y d-Ru al ubicarse en el centro del gap del semiconductor, reducen la energía de gap de este sistema, siendo en este caso 0.6 eV, aumentando el poder de absorción en la porción visible del espectro electromagnético. En segundo lugar, el LUMO se ubica rasante a la banda de conducción del Ti₃₆O₆₄. En principio, esto permitiría que ante un proceso de foto-excitación, el fotoelectrón se eyecte de forma rápida, y además sin sufrir decaimientos vibracionales.

Capítulo 9 - Modelado de nanoestructuras

REFERENCIAS – CAPÍTULO 9

- [2] Feist T. P., Davies P. K., Journal of Solid State Chemistry1992, 101, 275-295
- [3] Procházka J., Kavan L., Zukalova M., Frank O., Kalbac M., Zukal A., Klementova
- M., Carbone D., Grätzel M., Chem Mater 2009, 21, 1457-1464
- [4] Ben Yahia M., Lemoigno F., Beuvier T., Filhol J.S., Richard-Plouet M., Brohan L., Doublet M. L., *J ChemPhy*2009, 130, 204501
- [5] Vittadini A., Casarin M., Selloni A., J. Phys. Chem. C2009, 113 (44), 18973-18977
- [6] Betz G., Tributsch H., Marchand R., J. Appl. Electrochem. 1984, 14, 315
- [7] Yao B. D., Chan Y. F., Zhang X. Y., Zhang W. F., Yang Z. Y., Wang N., *Applied Physics Letters* **2003**, 82, 2, 281-283
- [8] Ma R., Bando Y., Sasaki T., Chemical Physics Letters2003, 380, 577-582
- [9] Gao T., Wu Q., Fjellvåg, Norby P. J. Phys. Chem. C 2008, 101, 10159-10161
- [10] Sasaki, T.; Watanabe, M.; Hashizume, H.; Yamada, H.; Nakazawa, H. J. Am. Chem. Soc. **1996**, *118*, 8329.
- [11]Sasaki T., Watanabe M., J. Phys. Chem. B 1997, 101, 10159-10161
- [12] Ma R., Fukuda K., Sasaki T., Osada M., Bando Y., J. Phys. Chem. B 2005, 109, 6210-6214
- [13] Xiang G., Li T., Zhuang J., Wang X., Chem. Commun., 2010, 46, 6801-6803
- [14] Liu S., Jia H., Han L., Wang J., Gao P., Xu D., Yang J., Che S., Advanced Materials 2012, 24, 3201-3204
- [15] Andreev Y. G., Bruce P. G., J. Am. Chem. Soc. 2008, 130, 9931-9934
- [16] Morgado Jr. E., Jardim P. M., Marinkovic B. A., Rizzo F. C., de Abreu M. A. S.,
- Zotin J. L., Araújo A. S., Nanotechnology2007, 18,495710 495719
- [17]Dmitry V. Bavykin y Frank C. Walsh, "Titanate and Titania Nanotubes. Synthesis, Properties and Applications", *RSC Nanoscience & Nanotechnology No. 12*, **2010**
- [18] Vittadini A., Casarin M., Theor Chem Account 2008, 120, 551-556
- [19] Perron H., Domain C., Roques J., Drot R., Simoni E., Catalette H., *Theor Chem* Account**2007**, 117, 565-574

^[1] Chen X., Mao S. S., *Chem. Rev.* 2007, 107, 2891-2959 y referencias citadas en dicho trabajo.

Capítulo 9 - Modelado de nanoestructuras

- [20] Liu W., Wang J-g, Li W., Guo X., Lu L., Lu X., Feng X., Liu C., Yang Z., Physical Chemistry Chemical Physics **2010**, 12, 8721-8727
- [21] Andreev Y. G., Bruce P. G., J. Am. Chem. Soc. 2008, 130, 9931-9934
- [22] Faccio R., Fernández-Werner L., Pardo H., Mombrú A. W., *Recent Patents on Nanotechnology* **2011**, *5*, 046-061
- [23] Citas incluidas en Vittadini A., SelloniA,Rotzinger F. P., Grätzel M., J. Phys. Chem. B 2000, 104, 1300-1306
- [24] Vittadini A., Selloni A., Rotzinger F. P., Grätzel M., J. Phys. Chem. B2000, 104, 1300-1306
- [25] Liu C., Yang S., ACS Nano 2009, 3,4, 1025–1031
- [26] Andersson, S., Wadsley, A.D, ActaCrystallographica1961, 14, 1245-1249
- [27] Gateshki, M.; Chen Qing; Peng Lianmao; Chupas, P.; Petkov, V., *Zeitschriftfuer Kristallographie* **2007**, 222, 11, 612-616
- [28] Feist, T., Univ. of Pennsylvania, Philadelphia, PA, USA., Dissertation, 1991
- [29] Feist T. P., Mocarski S. J., Davies P. K., Jacobson A. J., Lewandowski J. T., Solid State Ionics 1988, 28-30, 1338 - 1343
- [30] Peng Chihwei; Richard-Plouet, M.; Ke Tsungyin; Lee Chiyoung; Chiu Hsintien;
 Marhic, C.; Puzenat, E.; Lemoigno, F.; Brohan, L. *Chemistry of Materials* 2008, 20, 23
 7228-7236

Capítulo 10–Conclusiones y perspectivas

CAPÍTULO 10

CONCLUSIONES Y PERSPECTIVAS

Índice - Capítulo 10

10. 1. CONCLUSIONES SOBRE LA SÍNTESIS DE NANOESTRUCTURAS DE
DIÓXIDO DE TITANIO Y TITANATOS
10. 2. CONCLUSIONES SOBRE LA CARACTERIZACIÓN ESTRUCTURAL Y
LA ESTABILIDAD TÉRMICA DE LAS NANOESTRUCTURAS
10. 2. 1. Caracterización y estabilidad térmica de nanotubos
10. 2.1. Caracterización y estabilidad térmica de nanorods
10. 3. CONCLUSIONES SOBRE EL ENSAMBLADO DE PROTOTIPOS DE
DISPOSITIVOS FOTOVOLTAICOS DEL TIPO DSSC
10. 4. CONCLUSIONES SOBRE EL MODELADO TEÓRICO DE
NANOESTRUCTURAS DE DIÓXIDO DE TITANIO 6
10. 4. 1. Modelos bidimensionales
10. 4. 2. Modelos unidimensionales
10. 4. 3. Interacción clúster – colorante
10. 5. RESULTADOS GENERALES
10.5.1. Presentaciones en eventos
10.5.2. Trabajos enviados para su publicación9
10.5.2. Trabajos en preparación9
10.5.3. Trabajos relacionados
10. 6. PERSPECTIVAS
Capítulo 10–Conclusiones y perspectivas

10. 1. CONCLUSIONES SOBRE LA SÍNTESIS DE NANOESTRUCTURAS DE DIÓXIDO DE TITANIO Y TITANATOS

- Fue posible obtener estructuras de alta relación de aspecto (nanotubos del orden de 10-15nm de diámetro externo y 100-200nm de longitud y nanorods del orden de 100-500nm de diámetro y 2-10µm) de dióxido de titanio y titanatos de hidrógeno y sodio mediante métodos hidrotermales partiendo tanto de anatasa nanoestructurada como de rutilo micrométrico.
- Se observó que se da un mecanismo de disolución-recristalización durante el tratamiento alcalino y la morfología general de las nanoestructuras y su estructura cristalina se ve fuertemente afectada por el método de lavado posterior. Las muestras lavadas con agua, en general presentan estructura de alta relación de aspecto. Por otro lado, en el caso de nanotubos, las muestras lavadas con ácido presentan mayor coexistencia con otro tipo de nanoestructuras como ser nanopartículas y nanohojas, confirmando el papel de los iones Na⁺ en la estabilización de la estructura.
- Se logró acotar los parámetros de reacción (precursor, tiempo y temperatura del tratamiento hidrotermal) para la obtención de estructuras de alta relación de aspecto y identificando condiciones de síntesis que favorecen la conversión a nanotubos y nanorods.

10. 2. CONCLUSIONES SOBRE LA CARACTERIZACIÓN ESTRUCTURAL Y LA ESTABILIDAD TÉRMICA DE LAS NANOESTRUCTURAS

10. 2. 1. Caracterización y estabilidad térmica de nanotubos

 Los nanotubos de titanato de hidrógeno obtenidos mediante la optimización de la ruta de síntesis (muestra NT_15_CI) presentan un diámetro interno de 5.9±1.4nm y diámetro externo de 12.1±1.4nm, según análisis por TEM. Los presentan alta área superficial (superficie BET de 286m²/g), lo que es favorable pensando en su aplicación en celdas DSSC.

Capítulo 10-Conclusiones y perspectivas

- Medidas de dispersión de rayos X a ángulos bajos (SAXS) arrojaron un diámetro de partícula de 2.6nm y una distancia a partícula más cercana de 5.8nm. Debido a que el método es sensible a contraste en la densidad electrónica de la muestra, se infiere que estos valores corresponden a una estimación del espesor de la pared de los tubos y al diámetro interno de los mismos. Esto concuerda con lo observado por microscopía electrónica de transmisión (~3.1nm y 5.9nm).
- El estudio de las dimensiones de los dominios cristalinos mediante el método de Scherrer refleja la alta relación de aspecto de las cristalitas. Se obtuvieron dimensiones de 2.0-3.3nm coherente con el espesor de pared de los tubos y longitudes del orden de 15nm en la dirección.
- De la simulación del patrón de difracción de rayos X considerando modelos de nanotubos de tamaño real (en la dirección radial) de distintas fases de titanatos de hidrógeno se obtiene la mejor representación de los datos experimentales en el caso del modelo de nanotubo concéntrico de pared simple de fase H₂Ti₃O₇.
- En lo que respecta a la estabilidad térmica, se verifica la existencia de morfología tubular hasta temperaturas de 400°C donde es clara la coexistencia con material del tipo granular. No se observaron NT a 500°C lo que implica que la morfología tubular es perdida por completo en el intervalo de temperatura de 400°C a 500°C. Las estructuras finales son del tipo nanorods de pequeña longitud. El diámetro externo promedio obtenido a partir del análisis de microscopías TEM es de 12.8±2.7nm. Cabe señalar que este resultado que acota el rango de temperaturas para posibles aplicaciones de estos nanotubos. Específicamente, para el sinterizado de la capa de nanotubos de fotoelectrodos se deberá emplear temperaturas menores a 400°C.
- Con respecto a la estabilidad de la estructura cristalográfica se observa una evolución del patrón característico de titanatos laminares hacia el correspondiente a la fase anatasa. A partir de 500°C, la muestra está formada prácticamente en su totalidad por anatasa. Esto implica que los NRs obtenidos al calentar a 500°C son de dicha fase, lo que verifica que en la transformación a la fase anatasa viene asociada a la pérdida de morfología tubular. Entre 600°C y 650°C comienza el cambio de fase al polimorfo rutilo. Se verifica un corrimiento de la primera reflexión en 2θ de 9.69° a 14,69° asociado a una

Capítulo 10–Conclusiones y perspectivas

reducción de esta distancia interplanar desde un valor inicial 9,12Å a 6,24Å coherente con la deshidratación de la muestra y por lo tanto la disminución de la cantidad de agua entre láminas de octaedros. A partir de 450°C no parece haber más modificaciones en esa zona del diagrama.

- El análisis termo gravimétrico (TGA) muestra una pérdida de masa continua hasta alcanzar una temperatura entre 350°C y 400°C, siendo la pérdida total 15,4% de la masa inicial. Esta se asocia a la deshidratación de la muestra. Pueden diferenciarse dos puntos de inflexión en la curva (a temperaturas 48,5°C y 98,3°C) los que podrían estar marcando la pérdida de dos tipos diferentes de aguas: humedad adsorbida sobre la superficie de la muestra y agua estructural ocupando espacios entre láminas de octaedros [TiO₆] en las estructuras de titanatos. Se estima que el agua estructural perdida hasta 400°C corresponde al 13.1% de la masa inicial de muestra seca, siendo una cota superior de contenido de agua, ya que parte podría estar asociada a humedad eliminada a temperaturas mayores a 50°C.
- El contenido porcentual en masa de hidrógeno (determinado por análisis elemental) varió entre 1,98% y 0,757% al calcinar hasta 450°C. Según el contenido inicial y asumiendo que se trata de un titanato laminar de composición H₂Ti₃O₇·mH₂O, m=1.9.

10. 2.2. Caracterización y estabilidad térmica de nanorods

- Se constata una alta conversión a nanorods del orden de 10-200nm de diámetro y varios micrómetros de largo, los cuales pueden observarse en conglomerados micrométricos. Las muestras son cristalinas, verificándose un carácter multifásico correspondiente a mezclas de titanatos de sodio e hidrógeno.
- Con respecto a la estabilidad térmica, no se observa pérdida de morfología de alta relación de aspecto al calentar. Los cambios de fase crsitalográfica posibles propuestos para ambas muestras se esquematizan a continuación. En ambos se observa el polimorfo TiO₂(B) como intermediario.

Capítulo 10-Conclusiones y perspectivas

10. 3. CONCLUSIONES SOBRE EL ENSAMBLADO DE PROTOTIPOS DE DISPOSITIVOS FOTOVOLTAICOS DEL TIPO DSSC

Fueron ensamblados prototipos de celdas solares sensibilizadas con el objetivo de obtener medidas comparativas de eficiencias empleando las nanoestructuras sintetizadas como componentes del fotoelectrodo. Los resultados obtenidos en términos de reproducibilidad y eficiencia no fueron los mejores. Los mismos se presentan junto con un análisis de dificultades con el fin de aportar a futuros trabajos en la temática. Los mejores resultados, en términos de eficiencia, se obtuvieron para el caso de electrodos

Capítulo 10-Conclusiones y perspectivas

doble capa de anatasa y anatasa/NR. Alcanzando una eficiencia de 0.82%, $(J_{sc}=3.1mA/cm^2, V_{oc}=680mV, FF=39\%)$ y 0.69% $(J_{sc}=0.69mA/cm^2, V_{oc}=580mV, FF=78\%)$ respectivamente.

10. 4. CONCLUSIONES SOBRE EL MODELADO TEÓRICO DE NANOESTRUCTURAS DE DIÓXIDO DE TITANIO

10. 4. 1. Modelos bidimensionales

- El uso de bases flotantes al emplear el método basado en orbitales atómicos localizados permitió obtener resultados concordantes con los arrojados utilizando ondas planas. Los valores obtenidos enfatizan la baja energía de formación del modelo bidimensional de bicapa TB(001), la cual es comparable con A(101). Esto es un indicio de la estabilidad relativa de estos polimorfos a escala nanométrica y motiva la investigación de esta estructura como bloque constructor de otras estructuras nanométricas de alta relación de aspecto como ser nanotubos y nanohilos. En lo que respecta a la comparación entre los modelos TB(001) y TB(100), es clara la menor estabilidad del segundo modelo por lo que es de esperar una mayor reactividad de esta superficie.
- El estudio de la adsorción de HCOOH sobre nanohojas ultra delgadas secas de TiO₂(B) muestra que la configuración más estable es la monodentada mediante el grupo carbonilo (MHa) para el caso TB(001) y la configuración bidentada disociada (BB_H) para TB(100).
- Las características en lo que respecta a la energía de superficie, reactividad y energía de banda prohibida evaluadas son comparables con las correspondientes al polimorfo anatasa.

10. 4. 2. Modelos unidimensionales

 Se lograron converger estructuras estables de hilos atómicos derivados de anatasa y TiO₂(B) y fueron caracterizados desde el punto de vista estructural y

Capítulo 10-Conclusiones y perspectivas

electrónico. A su vez se describen sus propiedades vibracionales que permiten predecir propiedades termodinámicas como ser energía libre, entropía y capacidad calorífica. Cabe señalar que, dentro de nuestro conocimiento, no hay resultados reportados al respecto

- Se dilucidó una estructura comparativamente más estable: *TBy* que se obtiene del corte de la superficie TB(001) a lo largo de la dirección [010]
- Con respecto a los NT, se observó que las estructuras iniciales propuestas sufren importante reconstrucción estructural que da lugar a fragmentación de los tubos. Lo que refleja grandes tensiones iniciales.

10. 4. 3. Interacción clúster – colorante

- Se observó que cuando el clúster es sensibilizado con la molécula de N719 el HOMO se ubica en el medio de la banda prohibida del semiconductor. Por otro lado, la posición del LUMO de la molécula de N719 tiene características que lo hacen ideal para su uso como colorante de celdas solares. En primer lugar los estados π -SCN y d-Ru al ubicarse en el centro del gap del semiconductor, reducen la energía de gap de este sistema, siendo en este caso 0.6 eV, aumentando el poder de absorción en la porción visible del espectro electromagnético. En segundo lugar, el LUMO se ubica rasante a la banda de conducción del Ti₃₆O₆₄. En principio, esto permitiría que ante un proceso de foto-excitación, el fotoelectrón se eyecte de forma rápida, y además sin sufrir decaimientos vibracionales.

10.5. RESULTADOS GENERALES

10.5.1. Presentaciones en eventos

El presente trabajo de tesis ha permitido las siguientes presentaciones en eventos:

"Titania atomic wires and tubes derived from TiO₂(B) (001): a DFT study", Fernández-Werner, L.; Ricardo Faccio; Helena Pardo; Álvaro W. Mombrú, Internacional, 4th Workshop on novel methods for electronic structure

Capítulo 10-Conclusiones y perspectivas

calculations, and first southamerican congress on materials , La Plata, Bs. As., Argentina , 2 - 4 de noviembre de 2011 (Presentación de póster).

- "Construcción de estructuras de dióxido de titanio de alta relación de aspecto a escala nanométrica y subnanométrica utilizando comoprecursores nanohojas de TiO₂(B) de orientación (001)", Fernández-Werner, L.; Ricardo Faccio; Helena Pardo; Álvaro W. Mombrú,Segundo Encuentro Nacional de Ciencias Químicas, ENAQUI 2011, Montevideo, Uruguay, 24-26 de octubre de 2011 (Presentación oral breve)
- *"Estudio estructural y electrónico del polimorfo TiO₂(B), evaluación de la absorción de ácido fórmico sobre las superficies (001) y (100)mediante cálculos DFT",* Fernández-Werner, L.; Ricardo Faccio; Helena Pardo; Álvaro W. Mombrú, XII Reunión de la SUF y 96 Reunión Nacional de la AFA, Montevideo, Uruguay, 20 23 de setiembre de 2011 (Presentación de póster).
- *"Electronic structure study of TiO₂ polymorphs, evaluation of formic acid adsorption on dry (001) and (100) TiO₂(B) facets by DFT calculations", Fernández-Werner, L.; Ricardo Faccio; Helena Pardo; Álvaro W. Mombrú, Sao Paulo Advanced School on Computational Materials Science for Energy and Environmental Applications, Universidad Federal do ABC ICTP, Santo André, SP, Brasil, 5 16 de setiembre de 2011 (Presentación de póster).*
- "Síntesis, caracterización estructural y simulación de nanoestructuras de TiO₂ con potencial aplicación en celdas solares sensibilizadas.", L. Fernández Werner, R. Faccio, H. Pardo, C. Goyenola, & A. W. Mombrú. Primer encuentro nacional de ciencias químicas (ENAQUI), Montevideo, Uruguay, 3 y 4 de diciembre de 2009 (presentación de póster).
- *"Electronic Structure of TiO₂ and titanates: a systematic study"*, L. Fernández Werner, R. Faccio, H. Pardo, C. Goyenola & A. W. Mombrú. Psi-K Summer School "Computational Nanoscience for Renewable Energy Solutions" Espoo, Finlandia, 14-17 de setiembre 2009 (presentación de póster)

Capítulo 10-Conclusiones y perspectivas

10.5.2. Trabajos enviados para su publicación

Se ha enviado el siguiente trabajo para su publicación:

"Formic acid adsorption on dry (001) and (100) ultrathin TiO2(B) sheets", L. Fernández-Werner, R. Faccio*, A. Pasa, H. Pardo, B. Montenegro y A. W. Mombrú, 2013. Applied Surface Science, Manuscript Number: APSUSC-D-13-03872.

10.5.2. Trabajos en preparación

- "Combining PXRD and theoretical modeling for structural characterization of titanate nanotubes", L. Fernández-Werner, R. Faccio*, A. Pasa, M. Romero-Olivera, H. Pardo y A. W. Mombrú.
- -
- "Electronic and vibrational characterization of TiO2(B) atomic wires", L. Fernández-Werner, R. Faccio*, A. Pasa, A. Juan, H. Pardo y A. W. Mombrú.

10.5.3. Trabajos relacionados

Durante el transcurso de la tesis fue publicado el trabajo:

 "Current trends in materials for dye sensitized solar cells", Faccio R., Fernández-Werner L., Pardo H., Mombrú A.W., Recent Patents on Nanotechnology 2011, 5 (1), 46-61

Adicionalmente, este trabajo de tesis permitió la presentación del siguiente proyecto, el cual ha sido financiado y se está llevando a cabo.

Proyecto de Iniciación a la Investigación CSIC 710 - I+D 2011 (24 meses):
 "Estudio estructural y electrónico de nanotubos y nanohilos de dióxido de

Capítulo 10–Conclusiones y perspectivas

titanio derivados de anatasa y TiO₂(B) mediante simulaciones por primeros principios, evaluación de propiedades ópticas pensando en su aplicación en celdas solares del tipo DSSC". (Responsable: Luciana Fernández Werner, Docente tutor designado por el grupo: Ricardo Faccio)

10.6. PERSPECTIVAS

- El conocimiento adquirido para la obtención de nanoestructuras de alta relación de aspecto, basados en titanatos, permitirá proseguir el estudio de ensamblados.
- Se propone proseguir hacia la modificación estructural y dopado de los titanatos para evaluar su desempeño como sistemas de almacenamiento de energía. Por ejemplo el dopado con Li⁺. Esta línea está actualmente apoyada en un proyecto FSE-ANII, responsable R. Faccio.
- En lo que respecta a la caracterización, se espera proseguir hacia la sistematización de la metodología utilizada para la caracterización estructural de nanoestructuras de alta relación de aspecto mediante el uso de difracción de rayos X de polvo.
- Debido a las modificaciones estructurales observadas, se plantea como trabajo futuro el modelado de nanotubos con mayor número de átomos, utilizando esquemas multi-escala para una mejor aproximación a las situaciones experimentales.
- Utilizando las estructuras ya optimizadas se seguirá hacia la simulación de las propiedades ópticas de nanotubos y nanohilos, para evaluar su desempeño como semiconductor en sistemas DSSC. Cabe señalar que esta actividad está enmarcada en el proyecto CSIC mencionado en el punto 10.5.3.

ANEXO I

TITANATOS LAMINARES, TiO₂ (B) Y ESTRUCTURA DE TNTs

Existen numerosos trabajos de síntesis y caracterización de nanoestructuras de dióxido de titanio en los que se postulan diversos titanatos laminares como fases constituyentes de los productos sintetizados por métodos hidrotermales. En estos se hace alusión a las estructuras tipo láminas corrugadas de octaedros [TiO₆] compartiendo aristas. Dichas láminas están formadas por cintas de n octaedros (se denomina de "step n") en el caso de un titanato $A_2Ti_nO_{2n+1}$ siendo $3 \le n \le 5$ y A: H, Na, K, Rb, Cs. Las cintas adyacentes comparten vértices definiendo una lámina tipo escalonada. Este hecho parece ser algo aceptado en bibliografía [1][2] así como el intercambio iónico por protones que tiene lugar al en soluciones acuosas ácidas. Si bien, muchas de estas fases aparecen en bases de datos como indexadas [3], resulta algo difícil encontrar en literatura las estructuras resueltas para este tipo de compuestos. Esta dificultad motivó el estudio teórico de algunas de las familias reportadas como constituyentes de estructuras obtenidas mediante métodos hidrotermales.

En este apartado se presenta una revisión del tipo de estructuras encontradas en bibliografía, sumando las fases correspondientes a otros metales alcalinos que podrían por analogía ser un punto de partida en los modelos a considerar.

Índice – Anexo I

I. 1 ESTRUCTURAS DE COMPUESTOS TIPO [H,A]₂Ti_nO_{2n+1}.yH₂O RESUELTAS EN LA BASE DE DATOS 3

I. 1. 1	n=2	3
l. 1. 2	n=3	4
l. 1. 3	n=4	5
I. 1. 4	n=5	7
l. 1. 5	n=6	9
I. 1. 6	n≥7	10
l. 1. 7	n=1	12
I. 2 REL	ACIONES ESTRUCTURALES, MECANISMOS PROPUESTOS DE FORMACIÓN DEL	
POLIMORF	O TiO2 (B)	14
I. 3 CAF	RACTERIZACIÓN ESTRUCTURAL DE NANOTUBOS DE TIO $_2$ Y TITANATOS OBTENIDO)S
POR EL MÉ	TODO HIDROTERMAL ALCALINO	15
REFERENCI	IAS – Anexo I	18

ANEXO I

I. 1 ESTRUCTURAS DE COMPUESTOS TIPO $[H,A]_2 Ti_n O_{2n+1}$.yH₂O RESUELTAS EN LA BASE DE DATOS¹

I. 1. 1 n=2

Tabla 1 – Parán	netros estructu	rales de compu	estos del tipo [H,	A] ₂ Ti ₂ O ₅ .yH ₂ O				
Compuesto	Grupo Espacial	a(Å)	b(Å)	c(Å)	α(°)	β(°)	γ(°)	Ref.
HNaTi ₂ O ₅	I 1	3.6414(3)	17.286(6)	3.025(2)	91.2	89.9	88.2	[4]
H _{1.22} Cs _{0.48} Ti _{1.825} O _{4.5}	Immm	3.8019(2)	17.7200(10)	2.9680(2)	90	90	90	[5]
K ₂ Ti ₂ O ₅	C 1 2/m 1	11.37	3.8	6.62	90	100.1	90	[6]

Figura 1 – Estructuras de titanatos laminares con n~2 encontradas en base de datos. $HNaTi_2O_5$ (a) y (b), $H_{1.22}Cs_{0.48}$ Ti_{1.825} $O_{4.5}$ (c) y (d). En ambas se observa un apilamiento del tipo ABA según la dirección cristalográfica b. En este caso los octaedros adyacentes según c comparten aristas, no se observa una estructura tipo escalonada.

¹ En los casos que existen varias estructuras resultas se menciona sólo una una de ellas para ejemplificar.

ANEXO I

Figura 2 – Estructura del compuesto $K_2 Ti_2 O_5$. A diferencia de los casos anteriores, el bloque de construcción en esta estructura son pirámides de base cuadrada unidas por aristas y vértices.

I. 1. 2 n=*3*

Tabla 2 - Parámetros	estructurales de c	compuestos del	tipo	[H,A] ₂ Ti ₃ O ₇ .yH ₂ O
		1		

Compuesto	Grupo Espacial	a(Å)	b(Å)	c(Å)	α(°)	β(°)	γ(°)	Ref.
Na ₂ Ti ₃ O ₇	P 121/m 1	8.571(2)	3.804(2)	9.135(2)	90	101.57(5)	90	[7]
H ₂ Ti ₃ O ₇ *	C 1 2/m 1	35.466	3.7568	9.759	90	101.46	90	[8]
D ₂ Ti ₃ O ₇ **	C 1 2/m 1	16.0250(30)	3.747(1)	9.188(1)	90	101.457(10)	90	[9]

*Nota: Las posiciones de los átomos de H no están determinadas.

**Nota: Las posiciones de los átomos de D no están determinadas.

Luego del intercambio iónico, se observa una traslación según la dirección cristalográfica *b*, de medio parámetro de red entre láminas de octaedros contiguas. Por lo que el compuesto protonado presenta un apilamiento del tipo ABA (según la dirección cristalográfica *a*, Figura 3) mientras que el trititanato de sodio de partida presenta un apilamiento del tipo AAA (Figura 4)[9].

Figura 3 - (a) y (b) estructura laminar del trititanato de sodio vista según las direcciones cristalográficas b y c

Figura 4 – Estructuras reportadas para $H_2Ti_3O_7$.

I. 1. 3 n=4

Tabla 3 - Parám	etros estructu	rales de compu	iestos del tipo [$H,A]_2Ti_4O_9.yH$	I_2O			
Compuesto	Grupo Espacial	a(Å)	b(Å)	c(Å)	α(°)	β(°)	γ(°)	Referencia
Na _{2.08} Ti ₄ O ₉	C 1 2/m 1	23.10799	2.9392(6)	10.653(4)	90	102.54	90	[10]

No se encontraron estructuras del tipo laminar resueltas en la base de datos para los compuestos tipo A₂Ti₄O₉ siendo A: Na, K, Rb, Cs. Sin embargo, en literatura se reporta el isomorfismo entre los titanatos $M_2Ti_4O_9$ con M = Tl, Li, Na, K, Rb, Cs y Ag (Tabla 5) [1]. En ese trabajo también se observa que en el caso de los tetratitanatos de metales

ANEXO I

alcalinos la fijación de agua es lenta y da lugar a productos poco cristalinos. A su vez, esta es reversible, calentando a 100°C se remueve el agua y se restablece la estructura original. La estructura de $Tl_2Ti_4O_9$ está reportada [11] y se trata de un titanato laminar de "step 4".

Tabla 4 - Parámetros estructurales del tetratitanato de talio.

Compuesto	Grupo Espacial	a(Å)	b(Å)	c(Å)	α(°)	β(°)	γ(°)	Referencia
Tl ₂ Ti ₄ O ₉	C 1 2/m 1	18.98	3.776	12.05	90	106.8	90	[11]

ANEXO I

Figura 6 – Estructura de $Tl_2Ti_4O_9$.

Tabla 5 - Isomorfismo entre los titanatos $M_2Ti_4O_9$ con M = Tl, Li, Na, K, Rb, Cs y Ag

	-			, , ,		
Grupo Espacial	a(Å)	b(Å)	c(Å)	β(°)	Radio iónico M ⁺	Ref.
C2/m	15.89(5)	3.84(1)	12.06(2)	105.7(1)	0.92	[1]
C2/m	17.38(2)	3.784(2)	11.99(1)	106.2(1)	1.18	[1]
C2/m	18.25(1)	3.791(1)	12.01(1)	106.4(1)	1.51	[1]
C2/m	18.92(1)	3.797(5)	12.05(1)	106.2(1)	1.61	[1]
C2/m	20.16(2)	3.789(4)	12.03(1)	107.0(1)	1.74	[1]
C2/m	17.34(3)	3.794(4)	12.04(1)	107.4(1)	1.28	[1]
C2/m	19.03(1)	3.784(1)	12.05(1)	106.8(2)	1.59	[1]
	Grupo Espacial C2/m C2/m C2/m C2/m C2/m C2/m	Grupo Espacial a(Å) C2/m 15.89(5) C2/m 17.38(2) C2/m 18.25(1) C2/m 18.92(1) C2/m 20.16(2) C2/m 17.34(3) C2/m 19.03(1)	Grupo Espaciala(Å)b(Å)C2/m15.89(5)3.84(1)C2/m17.38(2)3.784(2)C2/m18.25(1)3.791(1)C2/m18.92(1)3.797(5)C2/m20.16(2)3.789(4)C2/m17.34(3)3.794(4)C2/m19.03(1)3.784(1)	Grupo Espaciala(Å)b(Å)c(Å)C2/m15.89(5)3.84(1)12.06(2)C2/m17.38(2)3.784(2)11.99(1)C2/m18.25(1)3.791(1)12.01(1)C2/m18.92(1)3.797(5)12.05(1)C2/m20.16(2)3.789(4)12.03(1)C2/m17.34(3)3.794(4)12.04(1)C2/m19.03(1)3.784(1)12.05(1)	Grupo Espaciala(Å)b(Å)c(Å)β(°)C2/m15.89(5)3.84(1)12.06(2)105.7(1)C2/m17.38(2)3.784(2)11.99(1)106.2(1)C2/m18.25(1)3.791(1)12.01(1)106.4(1)C2/m18.92(1)3.797(5)12.05(1)106.2(1)C2/m20.16(2)3.789(4)12.03(1)107.0(1)C2/m17.34(3)3.794(4)12.04(1)107.4(1)C2/m19.03(1)3.784(1)12.05(1)106.8(2)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

I. 1. 4 n=5

Tabla 6 - Parámetros estructurales de compuestos del tipo $[H,A]_2Ti_5O_{11}.yH_2O$

Compuesto	Grupo Espacial	a(Å)	b(Å)	c(Å)	α(°)	β(°)	γ(°)	Ref.
$Cs_2Ti_5O_{11}$	C 1 2/m 1	19.7180(80)	3.808(1)	15.023(6)	90	106.93(3)	90	[12]
Cs _{1.948} Ti ₅ O ₁₁ (H ₂ O)	C 1 2/m 1	23.849(8)	3.800(1)	14.918(6)	90	121.27(3)	90	[12]
$\begin{array}{c} Cs_{1.8} Ti_5 O_{11} \\ (D_2 O) \end{array}$	C 1 2/m 1	23.849(8)	3.800(1)	14.918(6)	90	121.27(3)	90	[12]

ANEXO I

 $\label{eq:Figura 8-Estructuras de los compuestos Cs_{1.948} Ti_5 O_{11} \left(H_2 O\right) (a \ y \ b) \ y \ Cs_{1.8} Ti_5 \ O_{11} \left(D_2 O\right) (cy \ d).$

I. 1. 5 n=6

Tabla 7 - Parám	etros estructu	rales de compu	estos del tipo	[H,A] ₂ Ti ₆ O ₁₃	.yH ₂ O.			
Compuesto	Grupo Espacial	a(Å)	b(Å)	c(Å)	α(°)	β(°)	γ(°)	Ref.
Na ₂ Ti ₆ O ₁₃	C 1 2/m 1	15.131(2)	3.745(2)	9.159(2)	90	99.30(5)	90	[13]
$K_2 Ti_6 O_{13}$	C 1 2/m 1	15.582(6)	3.82(1)	9.112(1)	90	99.764(8)	90	[14]
$Rb_2Ti_6O_{13}$	C 1 2/m 1	15.89	3.82	9.11	90	100.4	90	[13]

ANEXO I

Figura 9 – Estructuras de los titanatos Na₂Ti₆O₁₃ (a y b), K₂Ti₆O₁₃ (c y d), Rb₂Ti₆O₁₃ (e y f).

I. 1. 6 *n*≥7

Compuesto	Grupo Espacial	a(Å)	b(Å)	c(Å)	α(°)	β(°)	γ(°)	Ref.
Na ₂ Ti ₇ O ₁₅	C 1 2/m 1	14.9(1)	3.74(1)	20.9(1)	90	96.5(5)	90	[15]
K ₂ Ti ₈ O ₁₇	C 1 2/m 1	15.68(1)	3.809(3)	12.06(1)	90	95.	90	[16]
Na ₂ Ti ₉ O ₁₉	C 1 2/m 1	12.2	3.78	15.6	90	105.	90	[17]
Na ₂ Ti ₁₂ O ₂₅	P 1 2/m 1	14.449(3)	3.776(1)	9.234(2)	90	106.06(8)	90	[18]

Tabla 8 - Parámetros estructurales de compuestos del tipo $[H,A]_2Ti_nO_{2n+1}.yH_2O$ con $n \ge 7$.

Obs.: Como menciona Marchand en su trabajo [19], la estructura de $Na_2Ti_9O_{19}$ puede verse como láminas de $TiO_2(B)$ unidas con octaedros TiO_6 como puentes.

Figura 11 – Estructuras de los compuestos $Na_2Ti_9O_{19}$ y $Na_2Ti_{12}O_{25}$.

ANEXO I

I. 1. 7 n=1

Si bien los compuestos de fórmula general A_2TiO_3 no corresponden a titanatos laminares, se incluyen en esta revisión debido a que se observa que los arreglos de Ti (de diferente coordinación que en los casos anteriores) en algunos casos presentan naturaleza unidimensional. Se considera que esto podría ser de interés para la comparación con los modelos propuestos de hilos atómicos y con resultados experimentales reportados.

<i>a i</i>	Grupo				(0)	0.00	(0)	D A	
Compuesto	Espacial	a(A)	b(A)	c(A)	α(°)	β(°)	γ(°)	Ref.	
$K_2 T i_1 O_3$	C m c m	10.0283(2)	6.9346(2)	5.4534(1)	90	90	90	[20]	
HKTLO	P 63/m	5 7096(3)	5 7096(3)	9.5574(4)	90	90	120	[21]	
1111103	m c	5.7070(5)	5.7070(5)).5574(4)	70	70	120	[21]	
HKTi ₁ O ₃	P 61 2 2	9.8889(5)	9.8889(5)	28.671(1)	90	90	120	[21]	
Rb ₂ Ti ₁ O ₃	Cmca	6.015	11.936	13.366	90	90	90	[22]	

 $\label{eq:tables} \textbf{Tabla 9} \textbf{-} Parámetros estructurales de compuestos del tipo [H,A]_2 Ti_1 O_3 \mbox{ con } A=Na, K, Cs, Rb.$

ANEXO I

Figura 12 – Estructuras de compuestos del tipo K₂Ti₁O₃ (a y b), HKTi₁O₃ (c-f), Rb₂Ti₁O₃ (g y h)

I. 2RELACIONES ESTRUCTURALES, MECANISMOS PROPUESTOS DE FORMACIÓN DEL POLIMORFO TiO2 (B)

El polimorfo TiO₂(B) fue introducido por primera vez por Marchand y colaboradores [19], preparado a partir de la hidrólisis de K₂Ti₄O₉ en una solución de ácido nítrico (N<0.5) seguida de tratamiento térmico a 500°C. Se observó que el producto del intercambio iónico, luego de la extracción total del K y el secado en vacío a temperatura ambiente, correspondía a H₂Ti₄O₉·H₂O. El agua es removida por completo al calentar hasta 500°C. Observaron también que la hidrólisis es reversible por lo que la estructura laminar del compuesto no es destruida en el proceso.

El mecanismo de transformación estructural de $K_2Ti_4O_9$ a $TiO_2(B)$ fue estudiado luego por Wallenberg y colaboradores [23]. Ellos propusieron un intermediario de composición $K_2Ti_2O_5$, en el cual los átomos de potasio estarían reemplazados por H_3O^+ luego de la hidrólisis. A su vez, postularon para dicho compuesto la estructura hipotética que se muestra en la figura a continuación. La misma difiere de la del polimorfo $K_2Ti_2O_5$ reportado (ver Tabla 1 y Figura 2)

 $\label{eq:Figura 13} Figura 13 - Mecanismo de transformación estructural de K_2 Ti_4 O_9 a TiO_2(B) incluyendo intermediario hipotético de composición K_2 Ti_2 O_5 [23].$

Por otro lado, fue reportado que durante el calentamiento al aire de $H_2Ti_4O_9$ n H_2O , este se transforma en $H_2Ti_4O_9$ H_2O , $H_2Ti_4O_9$ 0.5 H_2O , $H_2Ti_4O_9$, $H_2Ti_8O_{17}$ a 70, 120, y 250°C respectivamente. Y luego al seguir aumentando la temperatura se transforma en TiO₂(B), anatasa y rutilo [24].

Posteriormente, Feist y colaboradores demostraron que la deshidratación de otros titanatos laminares obtenidos luego del intercambio iónico de titanatos de la fórmula $A_2Ti_nO_{2n+1}$ (A = Na, K, Cs; $3 \le n \le 6$) también lleva al polimorfo TiO₂(B) [9].

ANEXO I

Específicamente trabajaron con los siguientes titanatos de partida: Na₂Ti₃O₇, Na₂Ti₆O₁₃, K₂Ti₄O₉ y Cs₂Ti₅O₁₁. El titanato obtenido luego del tratamiento ácido de Na₂Ti₃O₇, tienen una secuencia de apilamiento de láminas ABA resultante de enlaces de hidrógeno estables entre láminas. La deshidratación muestra una pérdida de masa según múltiples pasos asociada a la aparición de intermediarios estructurales. Según los autores, esta prosigue según tres pasos, una condensación topotáctica inicial endotérmica que genera estructuras del tipo tunel, seguida de nucleación y crecimiento exotérmico que resulta en un intermediario que denominan "tipo TiO₂(B)" y luego una transformación de baja energía que termina en la estructura de TiO₂(B). Estos intermediarios estarían formados de slabs con estructura tipo TiO₂(B) conectados por otras unidades estructurales capaces de contener Ti u O no estequiométrico. Luego de la deshidratación completa se obtiene TiO₂(B) según un único paso. Se observó que el grado de cristalinidad del TiO₂(B) decrece con el largo del "step" del titanato de partida.

Las transformaciones de fase de $H_2Ti_4O_9$ durante el calentamiento, también fueron estudiada además de en aire, variando el medio mediante reacción solvotermal con agua, etanol y metanol [25]. Para el caso de tratamiento térmico en aire parten de $H_2Ti_4O_9I.75H_2O$ e identifican varios intermediarios: $H_2Ti_4O_9H_2O$, $H_2Ti_4O_9O.25H_2O$, $H_2Ti_8O_{17}$ (200°C), TiO₂(B) (aproximadamente a 250°C), anatasa (650°C) y rutilo (1100°C).

I. 3 CARACTERIZACIÓN ESTRUCTURAL DE NANOTUBOS DE TiO₂ Y TITANATOS OBTENIDOS POR EL MÉTODO HIDROTERMAL ALCALINO

Debido a dificultades intrínsecas asociadas a la morfología tubular, el tamaño nanométrico y el contenido de átomos de hidrógeno, existe en literatura una controversia en lo que respecta a la estructura cristalográfica exacta de los nanotubos de dióxido de titanio y/o ácidos polititánicos obtenidos mediante métodos hidrotermales. Se presenta un resumen de las fases propuestas en literatura en el texto "*Titanate and Titania Nanotubes Synthesis, Properties and Applications*" escrito por Dmitry V. Bavykin y Frank C. Walsh [26] el cual se resumirá a continuación.

ANEXO I

En la Tabla 10 se listan las estructuras cristalinas de titanatos laminares y polimorfos de TiO_2 propuestas como fases constituyentes de nanotubos obtenidos mediante síntesis hidrotermales.

F	ase cristalográfica	Simetría	a(nm)	b(nm)	c(nm)	β(°)
	$H_2Ti_3O_7$	Monoclínico	1.602	0.375	0.919	101.5°
	$H_2Ti_2O_4(OH)_2$	Ortorrómbico	1.926	0.378	0.300	90°
	$H_2Ti_4O_9$ · H_2O	Monoclínico	1.825	0.379	1.201	106.4°
H	$H_{x}Ti_{2-x/4}\square_{x/4}O_{4}\cdot H_{2}O$	Ortorrómbico	0.378	1.834	0.298	90°
	$TiO_2(B)$	Monoclínico	1.218	0.374	0.652	107.1°

 Tabla 10 - Comparación de estructura cristalina de titanatos laminares propuestos como fases constituyentes de NTs.

Tabla 11 - Reflexiones asociadas a cada fase asignadas al comparar con patrones de difracción NTs experimentales.

Fase cristalográfica			Reflexiones en DRX, 2θ (°)							
$H_2Ti_3O_7$	11		24.4	29	33	38		48.4	60	62
$H_2Ti_2O_4(OH)_2$	9		24.3	28	34	38		48		62
$H_2Ti_4O_9$ · H_2O	10		24	28				48		
$H_{x}Ti_{2\text{-}x/4}\square_{x/4}O_{4}\cdot H_{2}O$	9.5		24.5	28				48		62
TiO ₂ (B)		15	25	29.5			44	48	57	62

El trititanato laminar H₂Ti₃O₇ fue propuesto como estructura cristalina de los nanotubos por Peng y colaboradores [27][28]. Proponen que la estructura tubular corresponde al enrollamiento de planos paralelos a la familia de planos cristalográficos (100) alrededor del eje [010]. Por lo que el eje del nanotubo es paralelo a la dirección *b* de la H₂Ti₃O₇, mientras que la dirección tangencial al tubo coincide con *c* y la radial con a. Por otro lado, también se ha propuesto que los planos (100) podrían enrollarse alrededor de la dirección [001] [29]. En ambos modelos, las paredes se componen de láminas de octaedros [TiO6] con la estructura correspondiente a las observadas según (100) en titanato laminar H₂Ti₃O₇, separadas una distancia de 0.72nm.

El ácido tetratitánico de fórmula $H_2Ti_4O_9 \cdot H_2O$ fue propuesto por Nakahira y colaboradores [30]. El diagrama experimental presenta señales muy anchas cuyas posiciones son similares a las correspondientes al trititanato (Tabla 11).

Por su parte, Jin y colaboradores, propusieron la fase $H_2Ti_2O_4(OH)_2$ como constituyente de los nanotubos [31]. En este caso se propone un enrollamiento de los planos paralelos a (100) alrededor del eje b. En este caso, el eje de los nanotubos coincide con la dirección *b*, mientras que la dirección radial es paralela a *a* y la tangencial se corresponde con *c*. Estructuras del tipo lepidocrocitas $H_xTi_{2-x/4}\Box_{x/4}O_4 \cdot H_2O$ (donde \Box representa una vacancia) fueron observadas en mezclas de nanotubos titanatos laminares [32][33] y luego verificadas por difracción de electrones [34].

Tanto la estructura tipo lepidocrocita como la estructura correspondiente al dititanato, a diferencia del resto, corresponden a arreglos bidimensionales de octaedros compartiendo aristas, no presentan estructuras "escalonadas" como en el caso de trititanato (step 3) y tetratitanato (step 4) que se generan debido a octaedros que comparten aristas. Las estructuras lepidocrocita y $H_2Ti_2O_4(OH)_2$ son similares, salvo que los ejes a y b están intercambiados. Por lo anterior, en el caso de H_xTi_2 . _{x/4 $\Box_{x/4}O_4$ ·H₂O la dirección radial corresponde a la dirección [010]. Sin embargo existen evidencias de estructuras tipo escalonadas en las paredes de los tubos [35].}

Se ha reportado que luego del tratamiento térmico de los nanotubos, estos adquieren la estructura del polimorfo TiO_2 (B) [36].

REFERENCIAS – Anexo I

[1] M. Dion, Y. Piffard, M. Tournoux, J. inorg, nucl. Chem. 1978, 40, 917-918

[2] Feist T.P., Mocarski S. J., Davies P. K., Jacobson A. J., Lewandowski J. T., Solid State Ionics 1988, 28-30, 1338-1343

[3] Se utiliza la base de datos *PDF-2* de la ICDD (International Centre for Diffraction Data)

[4] Peng Chih-Wei, Richard-Plouet M., Ke Tsungyin, Lee Chiyoung, Chiu Hsintien, Marhic C., Puzenat E., Lemoigno F., Brohan L., *Chemistry of Materials* **2008**, 20, 23, 7228-7236

[5] Sasaki, T.; Watanabe, M.; Michiue, Y.; Komatsu, Y.; Izumi, F.; Takenouchi, S., *Chemistry of Materials* **1995**, 7, 1001-1007

[6] Andersson, S.; Wadsley, A.D., Acta Chemica Scandinavica 1961, 15, 663-669

[7] Andersson, S.; Wadsley, A.D., Acta Crystallographica 1961, 14, 1245-1249

[8] Gateshki, M.;Chen Qing;Peng Lianmao;Chupas, P.;Petkov, V., Zeitschrift fuer Kristallographie 2007, 222, 11,612-616

[9] Feist, T.P.; Davies, P.K., Journal of Solid State Chemistry 1992, 101, 275-295

[10] Marsh, R.E., Journal of Solid State Chemistry **1990**, 86, 1, 135 & Journal of Solid State Chemistry **1989**, 83, 1, 132-139

[11] Verbaere A.; Tournoux M., Bull. Soc. Chim. 1973, i, 1237.

[12] Kwiatkowska, J.; Grey, I.E.; Madsen, I.C.; Bursill, L.A., *Acta Crystallographica B* **1987**, 43, 258-265

[13] Andersson, S.; Wadsley, A.D., Acta Crystallographica 1962, 15, 194-201

[14] Cid-Dresdner, H.; Buerger, M.J., Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie **1962**, 117, 411-430

[15] Wadsley, A.D.; Mumme, W.G., Acta Crystallographica B 1968, 24, 392-396

[16] Watts, J. A., Journal of Solid State Chemistry 1970, 1, 319-325

[17] Bando, Y., Acta Crystallographica A 1982, 38, 211-214

[18] Range, K.J.; Fischer, H.; Ketterl, South African Journal of Chemistry 1987, 40, 233-236

[19] Marchand R., Brohan L., Tournox M, Materials Research Bulletin 1980, 15, 8, 1129-1133.

[20] Khalsa, H.S.; Smith, M.D.; zur Loye, H.C.primary, *Materials Research Bulletin* 2009, 44, 91-94

[21] Masaki, N.; Uchida, S.; Yamane, H.; Sato, T., *Chemistry of Materials* 2002, 14, 419-424

[22] Schartau, W.; Hoppe, R.primary, Zeitschrift fuer Anorganische und Allgemeine Chemie **1974**, 408, 60-74

[23] Wallenberg L. R., Sanati M., Andersson A., *Microsc. Microanal. Microstruct.*1990, 1, 357-364

[24] Ohta N., Fujiki Y., Yogyo-Kyokai-Shi, 1980, 88, 1.

[25] Yin S., Uchida S., Fujishiro Y., Aki M., Sato T., *Journal of Material Chemistry* 1999, 9, 1191-1195

[26] Dmitry V. Bavykin and Frank C. Walsh, Titanate and Titania Nanotubes Synthesis, Properties and Applications, *RSC Nanoscience & Nanotechnology* **2010**, No. 12

[27] Du G. H., Chen Q., Che R. C., Yuan Z. Y., Peng L. -M., *Appl. Phys. Lett.* 2001, 79, 3702.

[28] Chen Q., Du G. H., Zhang S., Peng L. M., Acta Crystallogr. Sect B: Struct. Sci.2002, 58, 587.

[29] Wu D., Liu J., Zhao X., Li A., Chen Y., Ming N., Chem. Mater. 2006, 18, 547.

[30] Nakahira A., Kato W., Tamai M., Isshiki T., Nishio K., Aritani H., *J. Mater. Sci.* **2004**, 39, 4239.

[31] Yang J. J., Jin Z. S., Wang X. D., Li W., Zhang J. W., Zhang S. L., Guo X. Y., Zhang Z. J., *Dalton Trans.* 2003, 20, 3898.

[32] Ma R. Z., Bando Y., Sasaki T., Chem. Phys. Lett. 2003, 380, 577.

[33] Ma R. Z., Fukuda K., Sasaki T., Osada M., Bando Y., J. Phys. Chem. B 2005, 109, 6210.

[34] Kubota Y., Kurata H., Isoda S., Mol. Cryst. Liq. Cryst. 2006, 445, 107.

[35] Chen Q., Peng L. M., Int. J. Nanotechnol. 2007, 4, 44.

[36] Armstrong G., Armstrong A. R., Canales J., Bruce P. G., Chem. Commun. 2005, 19, 2454.

ANEXO II – Microscopías SEM y TEM

ANEXO II

MICROSCOPÍAS SEM Y TEM

Se utiliza el Servicio de Microscopía de Facultad de Ciencias-UdelaR, el cual dispone de un microscopio electrónico de barrido JEOL JSM-5900LV y un microscopio electrónico de transmisión JEOL JEM 1010. Las micrografías SEM fueron tomadas utilizando un voltaje acelerador de 20 kV, mientras que el TEM operaba a un voltaje acelerador de 80kV – 100kV (el mismo se encuentra identificado en el pie de cada imagen).

Índice del Anexo II

II – 1. MÉTODO HIDROTERMAL BAJO PRESIÓN ENDÓGENA
II – 1.1 Barrido Inicial
Batch 1 (A, 150°C, 24hs) Lavados: 3HCl+1H ₂ O 3
Batch 2 (A, 142°C, 20hs) Lavados: 4HCl+1H ₂ O 3
Batch 3 (A, 148°C, 43hs)
Batch 5 (A+R, 150°C, 39hs)
Batch 6 (R, 150°C, 22hs)
Batch 8 (R, 156°C, 47hs)5
Batch 9 (A+R, 150°C, 68hs)
Batch 16 (R, 140°C, 24hs)7
Batch 18 (R, 1,5g, 140°C, 25hs)9
Batch 19 (A, 120°C, 24hs) 12
II – 1.2 Diseño de un experimento14
AI() Corrida 9
AII() Corrida 6

	BI(+) Corrida 2	16
	BII(+) Corrida 11	17
	CI(-+-) Corrida 15	18
	CII Corrida 8	19
	DI(++-) Corrida16	21
	DII(++-) Corrida 1	22
	EI(+) Corrida 3	23
	EII(+) Corrida 13	24
	FI(+-+) Corrida 5	25
	FII(+-+) Corrida 10	26
	GI(-++) Corrida 14	27
	GII(-++) Corrida 12	28
	HI(+++) Corrida 7	29
	HII(+++) Corrida 4	30
II - 2	2. MÉTODO HIDROTERMAL BAJO PRESIÓN ATMOSFÉRICA	31
	Batch 4 (A, 69hs, s/a)	31
	Batch 15 (A, 48hs, c/a) – Muestra 15A	33
	Batch 15 (A, 48hs, c/a) – Muestra 15B	34
II - 3	3. MÉTODO SONOQUÍMICO	36

ANEXO II – Microscopías SEM y TEM

II – 1. MÉTODO HIDROTERMAL BAJO PRESIÓN ENDÓGENA

II – 1.1 Barrido Inicial

Batch 1 (A, 150°C, 24hs) Lavados: 3HCl+1H₂O – (Aa24_3/1)

Batch 2 (A, 142°C, 20hs) Lavados: 4HCl+2H₂O - (Am20_4/2)

Batch 3 (A, 148°C, 43hs) (Aa43_4/2(u) y Aa43_4/2(u))

ANEXO II – Microscopías SEM y TEM

16A Lavados: 4HCl+4H₂O

16B Lavados: 8H₂O

Print Mag = 8388x p 6.99999969005585 mm Acquired Nov 7 2012 at 3:53 PM

100 nm HV-100kV TEM Mag - 150000x AMT Preferred Customer

16A - Microscopía TEM

Print Mag - 8388x 6 6.99999969005585 mm Acquired Mar 6 2013 at 2:45 PM 100 nm HV-180kV TEM Mag - 150000x AMT Preferred Customer

16B - Microscopía TEM
ANEXO II – Microscopías SEM y TEM

Frint Mag - 11184x © 6.99999969005585 mm Acquired Nov 7 2012 at 3:54 PM 100 nm HV-100kV TEM Mag = 200000x AMT Preferred Customer

Print Mag — 16775x p 6.99999969005585mm Acquired Mar 6 2013 at 2:53 PM 100 nm HV-180kV TEM Mag - 300000x AMT Preferred Customer

16B - Microscopía TEM

Batch 18 (R, 1,5g, 140°C, 25hs) (R'm24_0/8 y R'm24_4/4)

18B Lavados: 8H₂O

18B Lavados: 8H₂O

ANEXO II – Microscopías SEM y TEM

Print Mag = 6710x p 6.99999969005585 mm Acquired Nov 7 2012 at 4:05 PH

100 nm HV-100kV TEM Mag - 120000x AMT Preferred Customer

18B - Microscopía TEM

Print Mag = 11184x p 6.99999969005585 mm Acquired Nov 7 2012 at 4:06 PM

HV-100kV TEM Mag - 200000x AMT Preferred Customer

Print Mag - 11184x © 6.99999969805585 mm Acquired Nov 7 2012 at 4:12 PM

18B - Microscopía TEM

Print Mag = 11184x Ø 6.99999969005585 mm Acquired Nov 7 2012 at 4:16 PM

100 nm HV-100kV TEM Mag = 200000x AMT Preferred Customer

18B - Microscopía TEM

ANEXO II - Microscopías SEM y TEM

Print Mag = 11184x © 6.99999969805585 mm Acquired Nov 7 2012 at 4:17 PM 100 nm HV-lonkV TEM Mag - 200000x λMT Preferred Customer

18B - Microscopía TEM

Print Mag = 5592x G 6.9999969005585 mm Acquired Nov 7 2012 at 4:20 PM

Print Mag — 13979x Ø 6.99999969005585 mm Acquired Feb 7 2013 at 5:24 PM 100 nm HV-100kV TEM Hag = 250000x AMT Preferred Customer

HV-180kV TEM Mag - 100000x AMT Preferred Customer

18C - Microscopía TEM (Lavados: 4HCl+4H₂O)

 100 nm
 100 nm

 Print Mag = 8388x pl 6.9999965085585 mm
 HV-1008V

 Acquired Feb 7 2013 of 5:22 FM
 TEM Mag = 150080x

 AMT Preferred Customer
 AMT Preferred Customer

18C - Microscopía TEM (Lavados: $4HCl{+}4H_2O)$

Print Mag = 1118x p 6.99999969085585 mm Acquired Feb 7 2013 at 3:56 FM 500 nm HV-100kV TEH Mag - 20000x AMT Preferred Customer

18 - Microscopía TEM, muestra sin lavar

18 - Microscopía TEM, muestra sin lavar

HV-180kV TEM Mag - 40000x AMT Preferred Customer

Print Mag - 2237x © 6.99999969005585 mm Acquired Feb 7 2013 at 3:59 PM

Batch 19 (A, 120°C, 24hs) (Ab24_4/4 y Ab24_0/4)

A II - **12/36**

ANEXO II – Microscopías SEM y TEM

Print Mag = 2237x 0 6.99999969005585 mm Acquired Mar 6 2013 at 4:01 PM 500 nm HV=100kV TEM Mag = 40000x AMT Preferred Costomer

Print Mag = 839x @ 6.99999969005585 mm Acquired Mar 6 2013 at 4:05 PM

500 nm HV=100kV TEM Mag = 15000x AMT Preferred Customer

Print Mag = 6710x 0 6.99999969005585 mm Acquired Mar 6 2013 at 3:58 PM 100 nm HV=100kV TEM Mag = 120000x AMT Preferred Customer

Print Mag = 11184x 0 6.99999969005585 mm Acquired Mar 6 2013 at 4:07 PM

100 nm HV=100kV TEM Mag = 200000x AMT Preferred Customer

A II - 13/36

ANEXO II – Microscopías SEM y TEM

Print Mag = 8388x Ø 6.99999969085585 mm Acquired Mar 6 2013 at 4:02 PM

100 nm HV-100kV TEM Mag - 150000x AMT Preferred Customer

Print Mag = 11184x Ø 6.99999969085585mm Acquired Mar 6 2013 at 4:12 PM

100 nm HV-100kV TEM Mag - 200000x AMT Preferred Customer

TEM 19B

II – 1.2 Diseño de un experimento

GII(-++) Corrida 12 ×10,000 1.5 12 001 2 microns HV-100kV TEM May = 6000x AMT Preferred Customer Print Mag - 336x @ 6.99999969005585 mm Acquired Oct 2 2012 at 12:49 PM 005 100 nm HV-100kV TEM Mag = 250000x AMT Preferred Customer 100 nm HV-100kV TEM Mag = 150000x ANT Preferred Customer Print Mag = 8388x ß 6.99999969005585 mm Acquired Oct 2 2012 at 12:53 PM Print Mag = 13979x Ø 6.99999969005585 mm Acquired Oct 2 2012 at 1:04 PM

ANEXO II – Microscopías SEM y TEM

A II - **28/36**

ANEXO II – Microscopías SEM y TEM

II – 2. MÉTODO HIDROTERMAL BAJO PRESIÓN ATMOSFÉRICA

Batch 4 (A, 69hs, s/a)

4B 002

Print Mag = 16775x @ 6.99999969805585 mm Acquired Feb 7 2013 at 4:57 PM

100 nm HV=100kV TEM Mag - 300000x AMT Preferred Customer

Print Mag - 142032x @ 7 in Acquired May 11 2009 at 3:14 PM

100 nm HV-80kV TEM Mag = 100000x AMT Preferred Customer

ANEXO II – Microscopías SEM y TEM

Print Mag - 8368x 0 6.99999969005585 mm Acquired Feb 7 2013 at 4:55 PM 100 nm HV-100kV TEM May = 150000x AMT Preferred Customer

Print Mag = 213047x 0 7 in Acquired May 11 2009 at 3:06 PM

HV-80kV TEM Mag = 150000x ANT Preferred Customer

Print Mag = 13979x Ø 6.99999969005585 mm Acquired Feb 7 2013 at 5:04 PM

100 nm HV=100kV TEM Mag = 250000x ANT Preferred Customer

Print Mag = 13979x µ 6.99999969085585mm Acquired Feb 7 2013 at 4:38 PM

100 nm HV=100kV TEM Mag = 250000x AMT Preferred Customer

ANEXO II – Microscopías SEM y TEM

Print Mag - 16775x @ 6.99999969005585 mm Acquired Pob 7 2013 at 4:58 PM 100 nm HV-100kV TEM May = 300000x ANT Preferred Customer

Print Mag - 13979x p 6.99999969085585 mm Acquired Feb 7 2013 at 4:42 PM 100 nm HV-100kV TEM Mag = 250000x AMT Preferred Customer

Print Mag = 16775x @ 6.99999969005585 mm Acquired Feb 7 2013 at 5:02 PM

100 nm HV=100kV TEM Mag - 300000x AMT Preferred Customer

Print Mag - 13979x 0 6.99999969005585mm Acquired Feb 7 2013 at 4:47 PM

100 nm HV-100kV TEM Mag = 250000x AMT Preferred Customer

Batch 15 (A, 48hs, c/a) – Muestra 15A

ANEXO II – Microscopías SEM y TEM

Print Mag = 1678x p 6.9999969005585 mm Acquired Mar 6 2013 at 3:39 PM 500 nm HV-100kV TEM Mag - 30000x AMT Preferred Customer

Print Mag = 8388x @ 6.99999969005585 mm Acquired Mar 6 2013 at 3:41 PM 100 nm HV-180kV TEM Mag - 150000x AMT Preferred Customer

Batch 15 (A, 48hs, c/a) – Muestra 15B

Print Mag = 8388x 6 6.99999969005585 mm Acquired Peb 7 2013 at 5:29 PM 100 nm HV-100kV TEM Hag = 150000x AMT Preferred Customer

ANEXO II – Microscopías SEM y TEM

Print Mag = 8388x 0 6.99999999005585 mm Acquired Feb 7 2013 at 5:38 PM

100 nm HV=100kV TEH Mag - 150000x AMT Preferred Customer

Print May = 8388x @ 6.9999999999005585 mm Acquired Feb 7 2013 at 5:37 FM

100 nm HV=100kV TEM Mag = 150000x AMT Preferred Customer

Print Mag = 11184x © 6.00000060005585 mm Acquired Feb 7 2010 at 5:30 PM

100 nm HV-100kV TEN Mag = 200000x AMT Preferred Customer

Print Mag - 11184x Ø 6.99999969005585 mm Acquired Peb 7 2013 at 5:31 PM

HV-100kV TEM Mag = 200000x AMT Preferred Customer

ANEXO II – Microscopías SEM y TEM

II – 3. MÉTODO SONOQUÍMICO

Anexo III – Diagramas de difracción de rayos X de polvo

ANEXO III

DIAGRAMAS DE DIFRACCIÓN DE RAYOS X DE POLVO

Índice – Anexo III

- III. 1 MÉTODO HIDROTERMAL BAJO PRESIÓN ENDÓGENA 2
- III. 2 MÉTODO HIDROTERMAL BAJO PRESIÓN ATMOSFÉRICA 31

Anexo III – Diagramas de difracción de rayos X de polvo

III. 1 MÉTODO HIDROTERMAL BAJO PRESIÓN ENDÓGENA

Muestras 1, 2A, 2B

Las muestras 1, 2A y 2B corresponden al mismo batch siendo el material de partida A, la temperatura de reacción de 142°C, tiempo de reacción 20h30min. La diferencia entre estas es que la primera es el producto del tratamiento hidrotermal sin lavados, mientras que las otras dos tienen 4 lavados ácidos y 2 con agua destilada, siendo 2A el sobrenadante de los lavados y 2B el sólido precipitado. A continuación se muestran los resultados de DRX para las tres.

Figura 1-1 – DRX del precipitado sin lavar (a) y del precipitado lavado junto con el sobrenadante (b).

Se observó que la muestra 1 se hidrató hasta formar una pasta en el proceso de montado para DRX. Esto explica el background característico de materiales amorfos que se ve en el diagrama. Al comparar con la base de datos¹ se identificaron picos concordantes con Na₂CO₃ (Pdf Nos. 1-1166 & 72-628) y NaHCO₃ (Pdf No 1-909), se piensa que esta carbonatación sucede justamente al morterear la muestra en presencia de aire para colocar en el porta muestras del difractómetro. El pico, no muy intenso, en la región de

Anexo III – Diagramas de difracción de rayos X de polvo

 $2\theta \cong 11^{\circ}$ no es explicado por ninguna de las fases anteriores, este ajusta con la reflexión (200) correspondiente a H₂Ti₃O₇ (Pdf. No 47-561).

Figura 1-2 – Ajuste para muestra 1 utilizando Crystallographica Search - Match

Anexo III – Diagramas de difracción de rayos X de polvo

Figura 1-3 – Comparación 2A-2B por DRX.

Para el caso del sobrenadante se observan claramente picos correspondientes a NaCl $(2\theta = 27,367, 31.707, 45.442, 53.860, 56.461, 66.225, 75.286)$. Por lo que para las muestras subsecuentes se opta por descartarlo (salvo para casos de difícil separación). Con respecto al resto del diagrama, existen grandes dificultades a la hora de dilucidar a que fase se deben los máximos de intensidad encontrados. El pico en $2\theta \cong 10^{\circ}$ parece ajustar bien con la reflexión correspondiente al plano (200) algunos titanatos de sodio (Na₂Ti₇O₁₅ pdf. No 76-1648, Na₂Ti₆O₁₃ pdf. No 37-951, Na₂Ti₅O₁₁² pdf No. 11-289) pero no hay coincidencia con el resto de los patrones correspondientes a estas fases. Cabe señalar que este pico es el más intenso y quizás debido a un problema de orientación preferencial de la muestra no se están viendo el resto de los máximos. Por último, en la búsqueda también aparece la fase hidratada H₂Ti₂O₅!H₂O (pdf No 47-124) la que podría explicar los picos en 24°, 28° y 29°.

² Este no está indizado por lo que no se tiene el dato de a que plano corresponde la reflexión.

Anexo III – Diagramas de difracción de rayos X de polvo

Obs.: Se observan diferencias entre la parte del diagrama del sobrenadante que no es debida al NaCl y el diagrama del precipitado (ver Figura 1-3). También se verifica que el pico en $2\theta \cong 10^\circ$ es más intenso para el caso del sobrenadante.

Figura 1-4

En este caso el pico más intenso coincide con la reflexión [110] de $Na_{0.57}Ti_2O_4$ (pdf. No 80-1281), $H_2Ti_8O_{17}$ (pdf. No 36-656).

Muestras 3A y 3B

El batch correspondiente a las muestras 3A y 3B difiere básicamente del anterior en que se aumenta significativamente el tiempo de reacción. A su vez, la diferencia entre ambas (3A y 3B) radica en que la primera fue fuertemente ultrasonicada entre lavados (15min 90% Amp 0.9ciclos) y la segunda no.

Anexo III – Diagramas de difracción de rayos X de polvo

Anexo III – Diagramas de difracción de rayos X de polvo

Figura 1-6

Como se ilustra en la figura anterior, estas estructuras podrían estar compuestas de las fases $Na_2Ti_5O_{11}$ (pdf. No 11-289³), $H_2Ti_3O_7$ (pdf. No 41-192), $H_2Ti_5O_{11}$! H_2O (pdf. No 44-131), TiO₂ anatasa (pdf. No 71-1165).

Por otro lado, excluyendo Na₂Ti₅O₁₁ aparecen las siguientes:

- Anatasa (pdf. No 71-1169) coincide el pico (1,0,1)

- Na₂Ti₆O₁₃ (pdf. No 37-951) Coincide el pico (2,0,0)

- H₂Ti₃O₇ (pdf. No 47-561) Coincide el pico (2,0,0) y pico con d=1.8773 aprox. (2θ =4 8.45)

- $H_2Ti_5O_{11}!H_2O$ (pdf. No 44-131) y reflexión asociada a d=1.8773 aprox. (2 θ =48.45)

Muestras 160809.2 y 160809.3

En estas muestras se vuelve a constatar la presencia de NaCl en el sobrenadante de los lavados.

³ Esta fase fue borrada de la base de datos porque aparentemente era mezcla.

Anexo III – Diagramas de difracción de rayos X de polvo

 $H_2Ti_3O_7$ (47-561), $Na_2Ti_4O_9$ (33-1294), TiO_2 anatasa (65-5714), TiO_2 B (46-1237). Se observan, para este caso, picos más intensos y de menor ancho. Esto puede asociarse a un mayor tamaño de cristalita y mayor grado de cristalinidad del producto obtenido.

Muestras 5A y 5B

A diferencia que en los tres casos anteriores en estas muestras se parte de una mezcla de los polvos **A** y **R**. Recordemos que las diferencias entre las muestras A y B, salvo que se indique específicamente alguna otra variante, es en el procedimiento de lavado, mientras que a la primera se le practican lavados con ácido diluido, la segunda se lava únicamente con agua destilada.

Anexo III – Diagramas de difracción de rayos X de polvo

Figura 1-7 – Diagramas de DRX para las muestras 5A y 5B.

De la figura anterior, se desprende que el procedimiento de lavado juega un rol preponderante en la estructura del producto final. Cabe señalar que las muestras 5A y 5B pertenecen al mismo batch y únicamente difieren en los lavados posteriores al tratamiento térmico.

Las fases encontradas en el caso 5A fueron $H_2Ti_8O_{17}$ (pdf. No. 36-656), $Na_2Ti_5O_{11}$ (pdf. No. 11-289), Na_2TiO_3 (pdf. No. 37-345). Estas no explican la totalidad de los picos, siendo el máximo más notorio de los que no pertenecen a ninguna de las tres, el ubicado en 39°.

Anexo III – Diagramas de difracción de rayos X de polvo

Al comparar con la base de datos surgen las siguientes fases: anatasa (pdf. N° 89-4203), Na₂Ti₉O₁₉ (pdf. N° 78-1590), H₂Ti₅O11!3H₂O (pdf. N° 44-130), H₂Ti₅O₁₁!H₂O (pdf. N° 44-131), H₂Ti₂O₅!H₂O (47-124), Na₂Ti₄O₉ (pdf. N° 33-1294).

Muestras 6A y 6B

Estas muestras fueron preparadas partiendo de **R** el tratamiento fue hecho a 150° C durante 22h30min. Al igual que en los casos anteriores el producto A es el obtenido a la lavar con HCl mientras que el B fue lavado sólo con agua destilada. Cabe señalar que, para este caso, la autoclave no quedó herméticamente cerrada y en consecuencia se evaporó la totalidad del líquido durante el tratamiento hidrotermal. Esto trajo aparejado el hecho de que para extraer el sólido del recipiente de reacción se utilizaran grandes cantidades de agua destilada.

Resulta particularmente interesante para este batch las notorias diferencias indicadas por DRX para los dos procedimientos de lavado (Figura 1-8). Mientras que para el caso de lavados ácidos se obtiene el patrón característico de anatasa nanoestructurada con algunos máximos que podrían deberse a las fases rutilo y brookita (Figura 1-9) para el caso de lavado con agua se ve un diagrama sin máximos definidos indicando un material más amorfo. Para este caso, el difractograma presenta un hombro en ángulos bajos alrededor de 10° que, según lo analizado para los casos anteriores, podría estar relacionado con la presencia de titanatos laminares. Sumado a ello se distinguen picos bien definidos, aunque de baja intensidad, correspondientes a la fase rutilo.

Figura 1-8 – DRX de muestras 6A y 6B.

Figura 1-9

Anexo III – Diagramas de difracción de rayos X de polvo

Yury V. Kolen'ko⁴ y colaboradores sostienen que durante el tratamiento térmico al aire de nanotubos de $H_3Ti_3O_7$ estos se transforman en anatasa y pierden su morfología. Considerando que esta muestra fue lavada con HCl es de esperar que se de el intercambio iónico entre Na⁺ y H⁺ y que la fase de las nanoestructuras antes del secado sea justamente $H_2Ti_3O_7$.

El color blanco amarillento de la muestra lavada con HCl en conjunto con el ancho de los picos de difracción, indican que la obtención de nanopartículas de anatasa de pequeño tamaño.

En ambos diagramas se identificó la fase rutilo lo que podría estar indicando que hay material de partida que no reaccionó. Esto puede deberse a que se utilizaron las mismas condiciones que las síntesis a partir de anatasa pero el tamaño de partícula inicial es mucho mayor.

Por otro lado, estos resultados están de acuerdo con el mecanismo de disolución recristalización ya que a partir de rutilo se obtiene anatasa.

⁴ Kolen'ko Y. V., Kovnir K. A., Gavrilov A. I., Garshev A. V., Frantti J., Lebedev O. I., Churagulov B. R., Van Tendeloo G., and Yoshimura M., *J. Phys. Chem. B* **2006**, 110, 4030 - 4038

Anexo III – Diagramas de difracción de rayos X de polvo

Muestras 8A y 8B

En este caso se parte nuevamente de rutilo variando el tiempo de reacción alcalina a 46h 55min.

Figura 1-10

Figura 1-11 – DRX muestra 8A.

Anexo III – Diagramas de difracción de rayos X de polvo

Figura 1-12 - DRX muestra 8B.

Muestras 9A y 9B

Esta muestra es preparada a partir de una mezcla de $\mathbf{A} + \mathbf{R}$, la principal diferencia con el batch 5 radica en el mayor tiempo de reacción. A diferencia de todos los casos anteriores, mediante microscopía SEM, se observan en este caso, varillas claramente facetadas. Si bien es bastante heterogénea la muestra en lo que respecta a tamaño y geometría de las partículas, se observan varillas rígidas de gran tamaño con aristas definidas, por lo que es de suponer cierto ordenamiento cristalino de los átomos que las constituyen. Por lo anterior, resulta inesperado el diagrama obtenido por DRX en el cual se observa un alto background y picos poco definidos.

Con respecto a la muestra lavada sólo con agua destilada (9B), también se observaron partículas de gran tamaño siendo en este caso de morfología tipo placas. El diagrama de DRX presenta un pico sensiblemente más intenso que el resto, clara señal de la textura de la muestra.

Figura 1-13 – Comparación DRX de muestras 9A y 9B.

Figura 1-14 – DRX de muestra 9A.

Figura 1-15 – DRX muestra 9B.

Anexo III – Diagramas de difracción de rayos X de polvo

Figura 1-15 corresponde a la muestra 9B por más que diga 8B en el gráfico.

Muestras 16A, 16B y 16C

El batch 16 corresponde a \mathbf{R} como condición de partida y temperatura y tiempo de reacción similares al batch 6. Nuevamente no se observan estructura de gran relación de aspecto.

16A 16B 16C

Figura 1-16 – DRX batch 16.

AIII - 21/37

Figura 1-18 – DRX muestra 16B.

Figura 1-19 – DRX muestra 16C.

Anexo III – Diagramas de difracción de rayos X de polvo

Muestras 18A, 18B y 18C

Nuevamente se parte de rutilo, dejando idénticas la temperatura y el tiempo de reacción que en el caso anterior. La diferencia es que se aumentó la relación sólido líquido.

Figura 1-20 – DRX del batch 18

En este caso las muestras A y C fueron lavadas con HCl y H2O mientras que la muestra B sólo con H2O. A la muestra A se le realizó un único lavado con 250mL de HCl 0.1M en baño de ultrasonido, y a la muestra C se le realizó el procedimiento estándar con 4 lavados de HCl y 4 de H2O.

Figura 1-21

Anexo III – Diagramas de difracción de rayos X de polvo

Figura 1-22 – Superposición del DRX para la muestra 18C con el diagrama de la fase anatasa (PDF N° 1-562)

Muestras 19A y 19B

Este batch corresponde a anatasa como material de partida, siendo la temperatura de reacción 120°C. Los resultados obtenidos son similares a los que se obtienen utilizando el medio de reflujo, en lo que refiere a estructura cristalina (DRX). No se tienen imágenes SEM para estas muestras.

Anexo III – Diagramas de difracción de rayos X de polvo

Figura 1-23 – DRX batch 19.

Observación: La muestra 19B aparentemente no estaba bien seca cuando se le hizo difracción de polvo.

Figura 1-24 – DRX muestra 19A.

Anexo III – Diagramas de difracción de rayos X de polvo

Figura 1-25 – DRX muestra 19B.

Muestras 20A y 20B

Se parte de A + R, siendo el tiempo de reacción de 24hs y la temperatura de 124°C.

Anexo III – Diagramas de difracción de rayos X de polvo

Muestra 21

Anexo III – Diagramas de difracción de rayos X de polvo

En este caso, el material de partida es también una mezcla de A y R, el tiempo de reacción es nuevamente 24hs, pero se eleva la temperatura a 150°C.

Figura 1-28 – DRX muestra 21A.

	Tabla	1 – Fases que surgen al comparar con la base de datos.
Muestra		Fases
160908	-	47-561 H ₂ Ti ₃ O ₇ , 33-1294 Na ₂ Ti ₄ O ₇ , 65-5714 TiO ₂ anatasa, 46-1237 TiO ₂ B
2	Α	-
	В	36-656 H2Ti8O17, 37-345 Na2Ti3O7, 47-121 H2Ti2O5!H2O, 80-1281
		Na0.57Ti2O4
3	Α	11-289 Na2Ti5O11, 41-192 H2Ti3O7, 44-131 H2Ti5O11!H2O
	В	Idem 3A
5	Α	36-656 H2Ti8O17, 11-289 Na2Ti5O11, 37-345 Na2TiO3
	В	89-4203 TiO2 Anatasa, 78-1590 Na2Ti9O19, 44-130 H2Ti5O11!3H2O, 44-
		131 H2Ti5O11!H2O, 47-124 H2Ti2O5!H2O, 33-1294 Na2Ti4O9
6	А	4-477 TiO2 Anatasa, 78-1509 TiO2 Rutilo
		3-380 TiO2 Brookita
	В	83-2242 TiO2 Rutilo
8	Α	88-1173 TiO2, 76-1648 Na2Ti7O15, 49-1433 TiO2
	В	28-1153 Na4Ti0.3O2.6, 74-1940 TiO2 B
		44-131 H2Ti5O11!H2O, 44-130 H2Ti5O11!3H2O, 1-562 TiO2 Anatasa
9	Α	72-148 Na2Ti3O7, 72-1209 NaOH.H2O
		81-1949 H0.572Ti0.858O2, 83-2243 TiO2 Anatasa
	В	89-4733 Ti3O5, 75-2497 Na4Ti5O12
		37-345 Na2TiO3, 38-699 (H2O)Ti4O7(OH)2
		48-1278 TiO2 Monoclínico, 86-1155 Ti0.784O2
16	Α	38-699 (H2O)Ti4O7(OH)2, 71-650 TiO2 Rutilo, 1-562 TiO2 Anatasa
	В	33-1294 Na2Ti4O9, 65-191 TiO2 Rutilo
		38-699 (H2O)Ti4O7(OH)2
	С	1-562 TiO2 Anatasa, 89-8301 TiO2 Rutilo
		7-271 NaNO3, 72-2101 Ti3O5
18	Α	38-699 (H2O)Ti4O7(OH)2, 44-130 H2Ti5O11!3H2O, 47-124 H2Ti2O5!H2O
	В	Idem 18 ^a
	С	1-562 TiO2 Anatasa
19	Α	21-1272 TiO2 Anatasa
	В	44-130 H2Ti5O11!3H2O, 47-124 H2Ti2O5!H2O
20	Α	86-147 TiO2 Rutilo, 89-4921 TiO2 Anatasa
	В	38-699 (H2O)Ti4O7(OH)2, 86-1157 TiO2 Anatasa, 78-1509 TiO2 Rutilo

Anexo III – Diagramas de difracción de rayos X de polvo

III. 2 MÉTODO HIDROTERMAL BAJO PRESIÓN ATMOSFÉRICA

Muestras 4A, 4B y 4C

Reflujo sin agitación partiendo de anatasa, en este caso la muestra A es el producto es el precipitado sin lavar, B es lavado con ácido diluido y agua, mientras que la C fue lavada sólo con agua. Por DRX se verifica que la fase presente en el producto obtenido del lavado con ácido clorhídrico y agua es anatasa, mientras que según la base de datos la muestra lavada sólo con agua podría estar compuesta por una mezcla de titanatos laminares.

Los resultados obtenidos para la muestra lavada con ácido, al igual que en algunos de los casos mostrados para la síntesis bajo presión endógena, están de acuerdo con los reportados por Kolen'ko y colaboradores. Nuevamente, la muestra presenta un color beige indicador del tamaño nanométrico de la misma.

El diagrama obtenido para el caso de la muestra 4C es claramente diferente, siendo identificadas una mezcla de fases de titanatos de hidrógeno. Esto resulta un poco inesperado, ya que debido a que el agente de lavado fue únicamente agua, se esperaría mayor contenido de sodio en estas muestras y por lo tanto encontrar fases de titanatos de sodio en lugar de titanatos de hidrógeno.

Figura 2-1 – DRX para la muestra 4.

Figura 2-2 – DRX muestra 4B.

Anexo III – Diagramas de difracción de rayos X de polvo

Figura 2-3 – DRX muestra 4C.

Las fases que surgen de la base de datos, son las siguientes: H₂ Ti₂ O₅ ! H₂ O (PDF N° 47-124), H₂ Ti₅ O₁₁ ! H₂ O (PDF N° 44-131) y H₂ Ti₅ O₁₁ ! 3 H₂ O (PDF N° 44-130).

Figura 2-4 – DRX muestra 4A.

Anexo III – Diagramas de difracción de rayos X de polvo

Muestras 7A y 7B

Estas corresponden también a un reflujo sin agitación, pero se parte de una mezcla A+Ry el tiempo de reacción disminuyó prácticamente a la mitad. Es interesante notar que para este caso el rutilo no reacciona mientras que la fracción inicial de anatasa parece sufrir los mismos cambios que en el caso anterior, esto se ve claramente en los diagramas de DRX.

Figura 2-5 – DRX muestra 7.

Muestras 11A y 11B

La diferencia principal entre esta síntesis y las anteriores es que se implementó agitación continua mediante el uso de un agitador de paleta. Adicionalmente, se practicó en esta muestra una variante en la forma de lavar, según la técnica descrita en San Hua Lim *et al*, realizando un primer lavado con agitación a temperatura ambiente en 200mL de HCl por 35 min, luego dos lavados a 73°C con el mismo volumen de HCl durante 6

Anexo III – Diagramas de difracción de rayos X de polvo

horas cada uno, por último se practica un nuevo lavado a temperatura ambiente durante 6 horas. Finalmente se realizan dos lavados convencionales con agua destilada.

No se observan diferencias significativas entre los resultados de las muestras A y B cuya diferencia radica en que la muestra B fue sonicada entre los lavados con agua mientras que la A no.

Observación: existieron considerables tiempos muertos en los cuales la mezcla de partida queda en contacto con la solución de NaOH y/o con el agente de lavado (HCl).

Figura 2-6 – DRX muestra 11.

Obs.: El pico en 18° no fue identificado, ajusta bien con LiVO2, se plantea la incógnita de que hubiere alguna fase isoestructural de titanio: HTiO2.

Muestras 13A, 13B, 13C y 13D

Se repite la síntesis anterior pero practicando los lavados convencionales (A y B). A la muestra C se le realizó un ultrasonicado intenso en soda (29 min, amplitudo 0.9, 90% de amplitud) y luego se le realizaron los siguientes lavados estándar (según el orden en que

AIII - 35/37

Anexo III – Diagramas de difracción de rayos X de polvo

aparecen): 1 con H₂O, 4 con HCl, 1 con AgNO₃, y 3 con H₂O. La muestra D fue lavada con una solución diluida de AgNO₃ según el procedimiento estándar 4 veces y luego con agua destilada (2 veces).

Obs.: Al igual que en casos anteriores, la muestra 13A presenta un color amarillento (beige).

Para el caso 13D, las fases que aparecen al realizar la búsqueda son las siguientes: rutilo (PDF N° 87-920), Ag (PDF N° 87-717), Ag2O (PDF N° 75-1532).

Figura 2-7 – DRX muestra 13.

Muestras 15A y 15B

Por último se practica un reflujo con agitación partiendo de anatasa pero disminuyendo el tiempo de reacción con respecto al primero que se practicó (de 69hs a 46hs).

Anexo III – Diagramas de difracción de rayos X de polvo

Figura 2-8 – DRX de muestra 15 (derecha) y DRX de anatasa de partida (izquierda).

Notar la diferencia en la relación de intensidades en los picos correspondientes a este caso en comparación con los de la anatasa de partida.

ANEXO IV

DFT

Índice – Anexo IV

IV.1 Teoría de Funcionales de la Densidad	2
IV.1.1 Introducción	2
La aproximación de Oppenheimer	2
Producto de Hartree	3
Densidad electrónica	3
IV.1.2 Teoremas de Kohn y Hohenberg	4
Figura 1. Algoritmo para el cálculo de n(r)	7
IV.1.3 Funcional de correlación e intercambio	7
REFERENCIAS – Anexo IV	10

IV.1 Teoría de Funcionales de la Densidad

IV.1.1 Introducción

Los cálculos de estructura electrónica realizados a lo largo de este trabajo de tesis se basaron en la Teoría de Funcionales de la Densidad (DFT, del inglés *Density Functional Theory*). Se dará una breve introducción a la misma en los párrafos subsecuentes.

La aproximación de Oppenheimer

Debido a que cada protón o neutrón en un núcleo tiene una masa 1800 veces mayor que la de un electrón, para calcular la energía de un material puede resolverse la ecuación que describe el movimiento de los electrones considerando a los núcleos en posiciones fijas. Entonces, se puede calcular la configuración de mínima energía (estado basal) para un conjunto dado de electrones que se mueven en un campo asociado a un conjunto dado de núcleos. Si se trata de M núcleos, entonces la energía del estado basal, E, Será una función de la posición de estos núcleos, $E(\mathbf{R}_1, ..., \mathbf{R}_M)$. Esta función recibe el nombre de superficie de energía potencial adiabática. Una vez calculada dicha superficie de energía potencial, se puede evaluar su variación al variar las posiciones de los núcleos.

Ecuación de Schrödinger independiente del tiempo, no relativista:

$$H\psi = E\psi \tag{1}$$

El Hamiltoniano correspondiente a múltiples electrones interactuando con múltiples núcleos contiene tres términos correspondientes a: la energía cinética de los electrones, la energía de interacción entre cada electrón y el conjunto de núcleos y la interacción entre los distintos electrones.

$$\left[\frac{h^2}{m}\sum_{i=1}^N \nabla_i^2 + \sum_{i=1}^N V(\mathbf{r}_i) + \sum_{i=1}^N \sum_{j < i} U(\mathbf{r}_i, \mathbf{r}_j)\right] \boldsymbol{\psi} = E \boldsymbol{\psi}$$
(2)

Anexo IV - DFT

En la ecuación anterior, m es la masa del electrón, ψ es la función de onda electrónica, la cual es una función de las coordenadas espaciales de los electrones, $\psi = \psi(\mathbf{r}_1, ..., \mathbf{r}_N)$, y E es la energía del estado basal de los electrones¹.

Producto de Hartree

 ψ es una función de las coordenadas de los N electrones, sin embargo, esta se puede aproximar como un producto de funciones de onda de electrones individuales, lo que se conoce como el producto de Hartree.

$$\boldsymbol{\psi} = \boldsymbol{\psi}_1(\mathbf{r})\boldsymbol{\psi}_2(\mathbf{r}), \dots, \boldsymbol{\psi}_N(\mathbf{r})$$
(3)

Densidad electrónica

En este punto, cabe recordar que la función de onda para un conjunto dado de coordenadas no puede ser observada físicamente. La cantidad que si podría ser medida es la probabilidad de que N electrones estén en un conjunto particular de coordenadas $\mathbf{r}_1, ..., \mathbf{r}_N$. Esta probabilidad es igual a $\psi^*(\mathbf{r}_1, ..., \mathbf{r}_N) \psi(\mathbf{r}_1, ..., \mathbf{r}_N)$. Más aún, la cantidad de interés físico es la probabilidad de que un conjunto de N electrones en cualquier orden tengan las coordenadas $\mathbf{r}_1, ..., \mathbf{r}_N$. Una magnitud estrechamente relacionada es la densidad de electrones en una posición particular del espacio, n(\mathbf{r}). Esta puede escribirse en términos de funciones de onda electrónicas individuales como:

$$n(\mathbf{r}) = 2\sum_{i} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r})$$
(4)

En la ec. 4, la sumatoria es según todas las funciones de ondas electrónicas individuales que son ocupadas por electrones, y el término dentro de la sumatoria es la probabilidad de que un electrón en una función de onda individual $\psi_i(\mathbf{r})$ se localice en la posición \mathbf{r} . El factor 2 se debe a los dos espines que pueden tener los electrones asociados a cada función de onda.

Es importante notar que la densidad electrónica es función de solamente tres coordenadas y contiene gran parte de la información físicamente observable que surge

¹ En esta descripción no se consideró el espín de los electrones. En una descripción más completa, cada electrón está definido por tres variables espaciales y su espín.

de la función de onda total obtenida resolviendo la ecuación de Schrödinger, que es función de 3N variables.

IV.1.2 Teoremas de Kohn y Hohenberg

Existen dos teoremas fundamentales matemáticos desarrollados por Kohn y Hohenberg, en conjunto con un conjunto de ecuaciones desarroladas por Kohn y Sham, en los que se basa toda la teoría DFT.

i. <u>Primer teorema de Hohenberg y Kohn:</u>

La función de onda correspondiente al estado basal obtenida mediante la ecuación de Schrödinger es un funcional único de la densidad electrónica.

Esto significa que existe una correspondencia biunívoca entre la función de onda del estado basal y la densidad electrónica del estado basal. Por lo tanto la energía del estado basal, E, puede expresarse como E[n(r)], donde n(r) es la densidad electrónica. Aunque este primer teorema dice que existe un funcional de la densidad electrónica que puede utilizarse para resolver la ecuación de Schrödinger, este teorema no dice nada de cómo es este funcional.

ii. <u>Segundo teorema de Hohenberg y Kohn:</u>

La densidad electrónica que minimiza la energía del funcional total es la densidad electrónica real correspondiente a la solución completa de de la ecuación de Schrödinger.

Por lo anterior, si la forma del funcional fuera conocida, se podría variar la densidad electreónica hasta minimizar la energía del funcional. Este *principio variacional* es utilizado en la práctica pero con <u>formas aproximadas del funcional</u>.

Anexo IV - DFT

Una forma útil de escribir el funcional descrito por el teorema de Hogenber-Kohn es en términos de las funciones de ondas individuales $\psi_i(r)^2$.

$$E[\{\psi_i\}] = E_{known}[\{\psi_i\}] + E_{XC}[\{\psi_i\}]$$
(5)

En la ecuación 5, E_{known} representa el conjunto de términos que se pueden expresar en forma analítica y todos los demás se agrupan en E_{xc} . El primer término contempla la energía cinética de los electrones, las interacciones de Coulomb entre los electrones y núcleos, interacciones de Coulomb entre pares de electrones e interacciones de Coulomb entre pares de núcleos. Por otro lado, E_{xc} , se denomina *funcional de correlación e intercambio* e incluye todo los efectos mecano cuánticos no incluidos en los términos anteriores.

$$E_{known}[\{\boldsymbol{\psi}_i\}] = \frac{h^2}{m} \sum_i \int \boldsymbol{\psi}_i^* \nabla^2 \boldsymbol{\psi}_i d^3 r + \int V(\mathbf{r}) n(\mathbf{r}) d^3 r + \frac{e^2}{2} \iint \frac{n(\mathbf{r}) n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3 r d^3 r' + E_{ion} \quad (6)$$

Suponiendo que el potencial de correlación e intercambio (no conocido) puede expresarse de alguna forma útil, todavía quedaría la incógnita de cómo encontrar la densidad electrónica que minimice el funcional total. Para resolver este problema, Kohn y Sham plantean que para encontrar dicha densidad pueden resolverse un conjunto de ecuaciones que involucran las funciones de onda de electrones individuales, del tipo que se muestra a continuación.

$$\left[\frac{h^2}{m}\nabla^2 + V(\mathbf{r}) + V_H(\mathbf{r}) + V_{XC}(\mathbf{r})\right] \psi_i(\mathbf{r}) = \varepsilon_i \psi_i(\mathbf{r})$$
(7)

Estas ecuaciones son similares a la ecuación de Schrödinger, pero debido a que se trata de ecuaciones para partículas individuales no incluye sumatorias. Las soluciones de esta ecuación, $\psi_i(\mathbf{r})$ representan funciones de onda de electrones individuales, y son función de únicamente tres variables espaciales. El potencial V(r), como ya fue mencionado, contempla la interacción entre el electrón y el conjunto de núcleos. Por su parte V_H(r), denominado *potencial de Hartree*, describe la repulsión de Coulomb entre el electrón que está siendo considerado y la densidad electrónica total definida por el total de electrones del problema.

$$V_{H}\left(\mathbf{r}\right) = e^{2} \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^{3}r'$$
(8)

² Las que colectivamente definen la densidad electrónica.

Anexo IV - DFT

Según la definición anterior, este término también contempla la interacción de Coulomb de un electrón consigo mismo (*self-interaction*) ya que el electrón que está siendo considerado en la ecuación de Kohn y Sham también forma parte de la densidad electrónica total. Esto no tiene sentido físico, por lo que la corrección del mismo es uno de los efectos que está en glonado en el último término de la ecuación de Kohn y Sham: V_{XC} , que define efectos de intercambio e interacción en las ecuaciones de partículas individuales. Matemáticamente, el potencial de correlación e intercambio puede expresarse según la ecuación 9, en la cual E_{XC} es la energía de correlación e intercambio.

$$V_{xC}(\mathbf{r}) = \frac{\delta E_{xC}(\mathbf{r})}{\delta n(\mathbf{r})}$$
(8)

Es importante notar en este punto que por más que $V_{XC}(\mathbf{r})$ fuera conocido, para poder resolver el problema utilizando las ecuaciones de Kohn y Sham, habría que utilizar un método iterativo (ver esquema en Figura 1). Esto es debido a que para resolver las ecuaciones de Kohn y Sham es necesario saber el potencial de Hartree y para definir dicho potencial se necesita conocer la densidad electrónica, por último para saber la densidad electrónica se necesitan la funciones de onda de electrones individuales que son las soluciones de las ecuaciones de Kohn y Sham.

Anexo IV - DFT

Figura 1. Algoritmo para el cálculo de n(**r**).

Este algoritmo representa um método autoconsistente de resolver las ecuaciones de Kohn y Sham.

IV.1.3 Funcional de correlación e intercambio

Para poder resolver el problema según el método descrito en el punto anterior es necesario conocer la función de correlación e intercambio que aparaece en las ecuaciones de Kohn y Sham, $E_{\rm XC}[\{\psi_i(\mathbf{r})\}]$.

La forma exacta de este funcional no es conocida. Sin embargo, este puede ser deducido en forma exacta para un gas homogéneo de electrones. En este sistema, la densidad electrónica es uniforme en el espacio ($n(\mathbf{r}) = constante$). Se puede construir un potencial de correlación e intercambio considerando el potencial de correlación e intercambio de un gas uniforme de electrones a cada posición teniendo en cuenta la densidad electrónica observada del material en dicha posición:

$$V_{XC}(\mathbf{r}) = V_{XC}^{\text{gas eletrónico}} \left[n(\mathbf{r}) \right]$$
(9)
Anexo IV - DFT

Debido a que esta aproximación sólo utiliza la densidad local para definir el potencial de correlación e intercambio aproximado, se le denomina LDA del inglés *local density approximation*.

Existen implementadas variadas aproximaciones adicionales para el funcional de correlación e intercambio con las cuales se obtienen buenos resultados para diferentes sistemas. Una de las más utilizadas es la denominada GGA, *generalizad gradient approximation*, en la cual además de la información sobre la densidad local se incorpora la información local sobre el gradiente de densidad electrónica. Dentro de esta aproximación, existen numerosas parametrizaciones ya que existen numerosas maneras de incluir la información sobre el gradiente de la densidad. Entre las más utilizadas para cálculos de sólidos se encuentran la PW91 de Perdew-Wang y la PBE de Perdew-Burke-Ernzerhof.

De todas formas, uno de los grandes inconvenientes de la teoría DFT es la estimación de las energías de banda prohibida. Esto se debe en términos generales a que DFT es una teoría de estado basal, que no es capaz de describir adecuadamente fenómenos tale de excitación como la generación de excitones hueco-electrón. En ese sentido mucho esfuerzo se ha puesto para poder disponer de nuevos funcionales con la capacidad de describir de mejor manera magnitudes tan importantes como la brecha de energía prohibida. En este sentido hay muchas aproximaciones, que podríamos clasificar en dos grandes grupos. Por un lado las metodologías que incluyen efectos perturbativos tales como TDDFT y GW. Y por otro lado los funcionales híbridos, que son aquellos que incluyen de alguna forma una fracción de intercambio exacto (exact exchange) obtenido mediante Hartree-Fock.

La metodología TDDFT permite estudiar aspectos dinámicos, y así la evolución de la función de onda en la medida que el sistema interactúa con un potencial dependiente del tiempo [2].

Otra aproximación exitosa, pero costosa, hacia la descripción de estados excitados consiste en la metodología many-body perturbation theory GW [3]. En el esquema DFT la respuesta de un sistema de electrones interactuando con un potencial externo es independiente de las partículas respondiento a un potencial efectivos. La idea es que las interacciones de largo alcance, y relativamente itensas, fuerzs de Coulomb puden apantallar a los electrones individuales, generandose una nube de carga alrededor de otros electrones. Esto es lo que se denomina cuasi-partículas, ya que consiste de un

Anexo IV - DFT

electrón con su nube de apantallamiento dinámico. Por lo tanto la aproximación describe la respuesta de un sistema que interacciona fuertemente, como un sistema de cuasi-partículs pero que interacciona de forma débil. La descripción matemática se basa en funciones de Green de mono-partícula G(r,t,r',t'), también denominado propagador, que describe la probabilidad de propagación de un electrón desde la posición r' y tiempo t' hacia la posición r en tiempo t. Las auto energías se calculan mediante expansión perturbativa, con respecto a la interacción entre cuasi-partículas. Esta auto energía se computa mediante el producto GW, donde el término W que describe la interacción de Coulomb apantallada entre las cuasipartículas, de allí que la aproximación se denomine GW[3]. Esta metodología si bien es costosa en términos computacionales, arroja resultados excelentes en la determinación de los brechas de energía prohibida.

Finalmente describiremos un funcional híbrido de excelente desempeño a la hora de describir las energías de gap. Se trata de la serie de funcionales de Heyd-Scuseria-Ernzerhof HSE03 y HSE06 [4], que se basan en la parametrización PBE-GGA pero que incorpora un término de corto alcance para la incorporación de la fracción de intercambio exacto. Síntesis, caracterización estructural y modelado de nanoestructuras de dióxido de titanio y titanatos con potencial aplicación en DSSC.

REFERENCIAS – Anexo IV

[1] DENSITY FUNCTIONAL THEORY A Practical Introduction, David S. Sholl & Janice A. Steckel. Wiley, John Wiley & Sons, Inc. **2009**

[2] E. Runge, E.K.U Gross, E. K. U, Phys. Rev. Lett. 52 (12), 997 (1984)

[3] L. Hedin. Phys. Rev. 139, A796 (1965).

[4] J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003) & J. Chem. Phys. 124, 219906 (2006)