Jointly published by Elsevier Science B.V., Amsterdam and Akadémiai Kiadó, Budapest React.Kinet.Catal.Lett. Vol. 63, No.1, 115-120 (1998)

RKCL3037

IMPROVEMENTS IN SELECTIVITY AND STABILITY OF Rh CATALYSTS MODIFIED BY SnBu₄. DEHYDROGENATION OF ISOBUTANE TO ISOBUTENE

O.A. Ferretti^a, G.J. Siri^a, F. Humblot^b, J.P. Candy^b, B. Didillon^c and J.M. Basset^b

^aCINDECA y Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad Nacional de La Plata, 47 N° 257, C.C.59, 1900-La Plata, Argentina.

^bLaboratory of Surface Organometallic Chemistry, UMR CNRS-CPE 9986, 43 Bd. du 11 Novembre 1918, 69626 Villeurbanne, France.

°Institut Français du Pétrole, 1 et 4 av. de Bois Préau, 92506 Rueil Malmaison, France

Received July 1, 1996 In revised form April 2, 1997 Accepted July 10, 1997

Abstract

RhSn/SiO₂ bimetallic catalysts prepared via an organometallic route have proved to be very active and selective toward several hydrogenation reactions. In this work these catalysts were studied for the dehydrogenation of isobutane to isobutene. It was found that Rh/SiO₂ monometallic catalysts had a null selectivity to isobutene, and this selectivity increased up to more than 90 % after the addition of tin, using SnBu₄ as precursor.

Keywords: $RhSn/SiO_2$, surface organometallic chemistry, $SnBu_4$, isobutane dehydrogenation

INTRODUCTION

Surface organometallic chemistry on metals can be a new route to generate supported bimetallic and organometallic materials, according to previous works [1-3]. For example, the selective reaction of Group 14 organometallic complexes with Group 8 metals supported on silica gave rise to a new generation of bimetallic materials with high activity and selectivity in heterogeneous catalysis. For instance, it has been shown that SnBu₄ reacts with supported rhodium, ruthenium or nickel to give the corresponding bimetallic catalysts (RhSn, RuSn

or NiSn), which are highly selective and active in the hydrogenation of ethyl acetate to ethanol [4]. This fact was interpreted as an isolation of the transition metal by tin neighbors [5]. Bimetallic systems can be obtained as well as phases where several organic fragments are retained by using this preparation method [6]. For these organometallic catalysts the activities and selectivities are much higher than those of the corresponding bimetallic catalysts for selective hydrogenation of citral to geraniol [7].

The aim of this work is to describe the catalytic properties of bimetallic catalysts prepared by the reaction between Rh/SiO_2 and $SnBu_4$, in the dehydrogenation of isobutane to isobutene. This olefin is an intermediate of interest in the production of non-pollutant naphtha (MTBE) or polymeric materials (polyisobutylene). In dehydrogenation reactions of paraffins to olefins, thermodynamic limitations force the reaction to be carried out under severe operating conditions (high temperatures, low H₂ to paraffin ratios) resulting in catalyst deactivation mainly caused by coke formation. Therefore, stability, selectivity and regeneration ability are very important features to be improved in dehydrogenation catalysts.

EXPERIMENTAL

Rh was deposited on silica (Aerosil, Degussa, 380 m² g⁻¹) by cationic exchange of amine complexes $[RhCl(NH_3)_5]^{++}$ at pH=10 [8], and the resultant materials were calcined in air at 623 K and then reduced in H₂ at 623 K to obtain Rh/SiO₂ monometallic catalysts. Bimetallic catalysts were prepared under H₂ atmosphere by reaction of Rh/SiO₂ with SnBu₄ in *n*-C₇H₁₆ between 298 to 363 K, according to:

$$Rh - H / SiO_2 + ySn(C_1 H_0)_4 \xrightarrow{H_2} Rh(Sn(C_1 H_0)_4 \xrightarrow{})_y / SiO_2 + xy(C_1 H_0)$$
(1)

Tetra *n*-butyltin and *n*-butane (the only hydrocarbon detected) were monitored by gas chromatographic analysis. The catalyst was then washed with *n*-heptane and treated under hydrogen at 623 K. After this treatment all the butyl groups evolved as shown by Didillon *et al.* [6], obtaining a RhSn bimetallic catalyst. The content of metals on the resulting materials was determined by atomic absorption. H₂ adsorption was followed in a conventional volumetric equipment [8]. Temperature programmed reductions (TPR) of Rh₂O₃ and Rh₂O₃-SnO₂ / SiO₂ were conducted in a conventional dynamic equipment under flow of a mixture of Ar and H₂ (95/5, 20 cm³ min⁻¹, 10 K min⁻¹). Transmission Electronic Microscopy (TEM) and Scanning Transmission Electronic Microscopy (STEM) experiments were made using JEOL 100 CX and Vacuum Generator HB5 electron microscopes, respectively. Isobutane dehydrogenation was carried out in a dynamic reactor according to the following procedure: 2 h in H₂ flow at 823 K, then the temperature was set to 723 K. The reaction started by feeding a mixture of H₂ and isobutane to the reactor (66/34, flow rate 42 cm³ min⁻¹, mass 0.1 g). The latter temperature was kept for an initial period of 2 h and increased up to 773 K for another 2 h, then up to 823 K for further 2 h and finally decreased to the initial value (723 K) for two additional hours to complete eight hours of reaction and to determine the stability of the samples.

RESULTS AND DISCUSSION

Rh/SiO₂ monometallic material showed high dispersion in the metallic phase. TEM observations indicated that the particle size distribution was centered at about 1.5 nm, in close agreement with the results of H₂ volumetric adsorption (H/Rh=1.2, D \approx 80%, considering H/Rh_s=1.5 for an equilibrium pressure of 150 mbar at room temperature [8]).

Fig. 1. SnBu₄ concentration (filled symbols) and Sn/Rh_s atomic ratio (empty symbols) as a function of time. (Squares) T=298 K; (circles) T=298 K; (diamonds) T=363 K

When reaction (1) is carried out at 298 K, all the SnBu₄ in solution reacts with Rh/SiO₂ monometallic catalysts until a Sn/Rh_s ratio of *ca.* 0.8 is reached. When Sn/Rh_s ratios higher than 0.8 are required, the temperature must be increased [9]. Kinetic results of reaction (1) are shown in Fig. 1.

Previous papers [1,3,9] provided evidence on the interaction of Rh with Sn, and this was confirmed in this work by STEM and TPR. The STEM analyses

always showed the peak of Sn (3.44 keV) associated with that of Rh (2.69 keV). Sn peak was never found alone on the support. TPR of the samples obtained on calcined Rh and RhSn/SiO₂ catalysts, exhibit only one peak at about 370 K and 450 K for monometallic and bimetallic catalysts, respectively. Hydrogen consumption corresponded approximately to the complete reduction of Rh_2O_3 and Rh_2O_3 -SnO₂ to $Rh^{(0)}$ and to $Rh^{(0)}$ -Sn⁽⁰⁾, respectively.

The reaction test led to complete decomposition of isobutane to methane (hydrogenolysis reaction) and coke when using Rh/SiO₂ catalyst. In contrast, the addition of Sn caused noticeable changes in selectivity toward isobutene, as is shown in Table 1. In this sense, the catalyst having Sn/Rh_s= 0.5 produced, besides methane, a small amount of isobutene together with much less coke. The catalyst became as selective to isobutene as it was to methane when increasing the amount of tin to Sn/Rh_s= 0.8. The best results in selectivity to isobutene (>90%) were reached for a catalytic material with Sn/Rh_s=1.4. Moreover, from coke analysis data taken at the end of the tests, a direct relationship was found between the inhibition of coke formation and the tin concentration used.

Fig. 2. Rate of reaction (filled symbols) and selectivity to isobutene (empty symbols) as a function of time. (Diamonds) $Sn/Rh_s=0.8$; (squares) $Sn/Rh_s=1.4$

On the other hand, skeletal isomerization was low on all the catalysts most possibly because of the weak acidity of silica.

The above mentioned geometrical effect of Sn on Rh (isolation of Rh "ensembles") addressed to explain the high activities and selectivities in the reaction of ethyl acetate to ethanol [10] could also explain the inhibition of coke and methane formation (hydrogenolysis reactions are favored by Rh "ensembles").

Concerning the catalyst with Sn/Rh_s ratio =1.4, the stability of these bimetallic catalysts was very high (Fig. 2) almost undoubtedly because of the lower coke formation rate. It was observed that, while the selectivity was not much affected by temperature (above 90% between 723 and 823 K), the activity increased

considerably. For the working conditions covered here, the apparent activation energy was in the order of 80 kJ mol⁻¹, in agreement with those obtained for a Pt-based commercial catalyst. Catalysts with Sn/Rh_s ratios of 0.5 and 0.8 deactivated noticeably during the experimental runs (see behavior of the latter in

Sn/Rh _s	Т (К)	r (mol/h g _{cat})	Si (%)	S_H/S_i	С (%)
0.5	723	0.116	2.3	42.50	
0.5	773	0.123	3.0	32.33	
0.5	823	0.128	3.4	28.41	1.50
0.8	723	0.069	26.3	2.80	
0.8	773	0.088	36.7	2.46	
0.8	823	0.104	45.2	1.22	1.12
1.4	723	0.014	96.2	0.04	
1.4	773	0.041	93,3	0.07	
1.4	823	0.104	90.6	0.09	0.29

Table 1									
Results	of the	catalytic	tests	for	different	Sn/Rh.	ratios		

Si: selectivity to isobutene SH: selectivity to hydrogenolysis

r: reaction rate

C: coke content

Fig. 2). These results evidence the inhibition effect on coke formation produced by tin, but coke still affects the catalytic activity. A very interesting property of this kind of catalysts is their ability to regenerate when treated in a flow of air at 673 K for 8 h, after which coke is eliminated and the activity is restored to the values of fresh catalysts.

In this work the promotion effect of Sn on Rh was observed. Monometallic Rh catalysts are characterized by high hydrogenolysis activity and high rate of coke formation, and, after the addition of tin, switch to excellent selectivity (higher than 90%) and stability in the reaction of isobutane to isobutene. The reaction between transition metals and tin organometallic compounds is a very interesting way to produce catalysts with a controlled amount of promoters. For dehydrogenation reactions of paraffins to olefins, tin could be used to promote other elements (apart from Rh) such as Ni, Ru, Ir, *etc.*, giving rise to a new family of dehydrogenation catalysts.

REFERENCES

- 1. J.P. Candy, O.A. Ferretti, G. Mabilon, J.P. Bournonville, A. El Mansour, J.M. Basset, G. Martino: J. Catal., 112, 210 (1988).
- 2. J. Margitfalvi, E. Kern-Tálas, S. Göbölös: Catal. Today, 6, 73 (1989).
- 3. O.A. Ferretti, M.L.Casella: Lat. Appl. Res., 25, 125 (1995).
- J.M. Basset, J.P. Candy, P. Louessard, O.A. Ferretti, J.P. Bournonville: Wiss. Zeltsch. TH, 32, 657 (1990).
- 5. A. El Mansour, J.P. Candy, J.P. Bournonville, O.A. Ferretti, J.M. Basset: Angew. Chem., Int. Ed. Engl., 29, 805 (1990).
- B. Didillon, C. Houtman, T. Shay, J.P. Candy, J.M. Basset: J. Am. Chem. Soc., 115, 9380 (1993).
- B. Didillon, J.P. Candy, F. Lepeltier, O.A. Ferretti, J.M. Basset: Stud. Surf. Sci. Catal., 78, 205 (1993).
- 8. J.P. Candy, A. El Mansour, O.A. Ferretti, G. Mabilon, J.P. Bournonville, J.M. Basset, G. Martino: J. Catal., 112, 201 (1988).
- 9. O.A. Ferretti, C. Lucas, J.P. Candy, B. Didillon, F. Lepeltier, J.M. Basset: J. Mol. Catal., 103, 125 (1995).
- 10. O.A. Ferretti, J.P. Bournonville, G. Mabilon, G. Martino, J.P. Candy, J.M. Basset: J. Mol. Catal., 67, 283 (1991).