
Probab. Theory Relat. Fields (2015) 161:247–266
DOI 10.1007/s00440-014-0548-x

Mixing time of a kinetically constrained spin model
on trees: power law scaling at criticality

N. Cancrini · F. Martinelli · C. Roberto ·
C. Toninelli

Received: 26 November 2012 / Revised: 22 January 2014 / Published online: 16 March 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract On the rooted k-ary tree we consider a 0-1 kinetically constrained spin
model in which the occupancy variable at each node is re-sampled with rate one from
the Bernoulli(p) measure iff all its children are vacant. For this process the following
picture was conjectured to hold. As long as p is below the percolation threshold
pc = 1/k the process is ergodic with a finite relaxation time while, for p > pc, the
process on the infinite tree is no longer ergodic and the relaxation time on a finite
regular sub-tree becomes exponentially large in the depth of the tree. At the critical
point p = pc the process on the infinite tree is still ergodic but with an infinite
relaxation time. Moreover, on finite sub-trees, the relaxation time grows polynomially
in the depth of the tree. The conjecture was recently proved by the second and forth
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author except at criticality. Here we analyse the critical and quasi-critical case and
prove for the relevant time scales: (i) power law behavior in the depth of the tree at
p = pc and (ii) power law scaling in (pc − p)−1 when p approaches pc from below.
Our results, which are very close to those obtained recently for the Ising model at the
spin glass critical point, represent the first rigorous analysis of a kinetically constrained
model at criticality.

Mathematics Subject Classification 60Jxx · 82Cxx

1 Introduction

On the state space {0, 1}Tk
, where T

k is the regular rooted tree with k ≥ 2 chil-
dren for each node, we consider a constrained spin model in which each spin, with
rate one and iff all its children are zero, chooses a new value in {0, 1} with proba-
bility 1 − p and p respectively. This model belongs to the class of kinetically con-
strained spin models which have been introduced in the physics literature to model
liquid/glass transition or, more generally, glassy dynamics (see [12,20] for physical
background and [4] for related mathematical work). As for most of the kinetically
constrained models, the Bernoulli(p) product measure μ is a reversible measure for
the process.

Remark 1.1 It may be useful to compare the above model to the popular heat-bath
Glauber dynamics for the Ising model (see e.g. [18]). In the latter case, with rate one
the spin at a vertex x is replaced by s ∈ {0, 1} with probability proportional to λNx,s ,
λ ≥ 1, where Nx,s is the number of neighbors of x having spin value s. The dynamics
becomes, in some sense, simpler than the one defined above (no hard constraints
and with some very useful monotonicity properties) but it suffers from a much more
complicated reversible stationary measure (the Ising Gibbs measure).

When k = 1 the model coincides with the well known East model [14] (see also
[1,4,5,10,11] for rigorous analysis). As soon as k ≥ 2, the model shares some of the
key features of another well known kinetically constrained system, namely the North
East model [4,15]. More specifically, since above the critical density pc = 1/k the
occupied vertices begin to percolate (under the reversible measure μ), blocked clusters
appear and time ergodicity is lost. It is therefore particularly interesting to study the
relaxation to equilibrium in e.g. finite sub-trees of T

k , when the density p is below,
equal or above the critical density pc = 1/k.

In [19] it was recently proved that, as long as p < pc, the process on the infinite tree
is exponentially ergodic with a finite relaxation time Trel. Under the same assumption,
on a finite tree with suitable boundary conditions on the leaves the mixing time was
also shown to be linear in the depth of the tree. When instead p > pc the ergodicity
on the infinite tree is lost and both the relaxation and the mixing times for finite trees
diverge exponentially fast in the depth of the tree.

In this paper we tackle for the first time the critical case p = pc. Our main
results, answering a question of Aldous-Diaconis [1], can be formulated as follows.
Let Trel(T

k
L), Tmix(T

k
L) be the relaxation and mixing time respectively of the process
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Mixing time of a kinetically constrained spin model on trees 249

on a finite k-ary rooted tree of depth1 L , with no constraints for the spins at the leaves
(cf Definitions 1.4 and 1.5).

• Critical case Assume p = pc. Then (cf Theorem 1) Trel(T
k
L) = �(L2) and

Trel(T
k
L) = O(L2+β) for some 0 ≤ β < ∞.

• Quasi-critical case Assume p = pc − ε, 0 < ε � 1, and let Trel be the relaxation
time for the process on the infinite tree T

k . Then (cf. Theorem 2) Trel = �(ε−2)

and Trel = O
(
ε−2−α

)
for some α ≥ 0.

• Mixing time We basically show (cf. Theorem 3) that Tmix(T
k
L) behaves like L ×

Trel(T
k
L). This behavior, which was established for p < pc in [19], pertains to the

critical and quasi-critical regime. When p > pc it should no longer be correct.

Our results, which are identical to those proved for the Ising model on trees at
the spin glass critical point [8], represent the first rigorous analysis of a kinetically
constrained model at criticality. They also confirm what it is believed to be a quite
general phenomenon: when crossing a second order phase transition point (p = pc in
our case), the relaxation time should go from O(1) to critical power-law to exponential.
Unfortunately such a scenario has been proved so far only for the Ising model on trees
[8] and on Z

2 [16], but it should hold not only for the Ising model on Z
d , d ≥ 3,

but for a much larger class of spin models. Finally, as shown in [19], our approach
has a good chance to apply also to other models with an ergodicity phase transition,
notably the North-East model on Z

2 for which the critical density pc coincides with
the oriented percolation threshold [4].

1.1 Model, notation and background

1.1.1 The graph

The model we consider is defined on the infinite rooted k-ary tree T
k with root r

and vertex set V . For each x ∈ V , Kx will denote the set of its k children and dx

its depth, i.e. the graph distance between x and the root r . A generic finite sub-tree
of T

k will be denoted by T . The finite k-ary subtree of T
k with n levels is the set

T
k
n = {x ∈ T

k : dx ≤ n}. For x ∈ T
k
n , T

k
x,n will denote the k-ary sub-tree of T

k
n

rooted at x with depth n − dx , where dx is the depth of x . In other words the leaves of
T

k
x,n are a subset of the leaves of T

k
n . We also set T̂

k
x,n = T

k
x,n\{x} (see Fig. 1 below).

In the sequel, whenever no confusion arises, we will drop the superscripts k, n from
T

k
n and T

k
x,n .

1.1.2 The configuration spaces

We choose as configuration space the set � = {0, 1}V whose elements will usually be
assigned Greek letters. We will often write ηx for the value at x of the element η ∈ �.
We will also write �A for the set {0, 1}A, A ⊆ V . With a slight abuse of notation,

1 We use here the convention that the depth is the graph distance between the root and the leaves.
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for any A ⊆ V and any η, ω ∈ �, we let ηA be the restriction of η to the set A and
ηA · ωAc be the configuration which equals η on A and ω on V \A.

1.1.3 Probability measures

For any A ⊆ V we denote by μA the product measure ⊗x∈A μx where each factor μx

is the Bernoulli measure on {0, 1} with μx (1) = p and μx (0) = q with q = 1 − p.
If A = V we abbreviate μV to μ. Also, with a slight abuse of notation, for any finite
A ⊂ V , we will write μ(ηA) = μA(ηA).

1.1.4 Conditional expectations and conditional variances

Given A ⊂ V and a function f : � → R depending on finitely many variables, in the
sequel referred to as local function, we define the function ηAc �→ μA( f )(ηAc) by the
formula:

μA( f )(ηAc) :=
∑

σ∈�A

μA(σ ) f (σA · ηAc ).

Clearly μA( f ) coincides with the conditional expectation of f given the configuration
outside A. Similarly we write

VarA( f )(ηAc) = μA( f 2)(ηAc) − [μA( f )(ηAc)]2

for the conditional variance of f given ηAc . Usually we will omit writing explicitly the
dependence on ηAc whenever it will be clear from the context. Note that VarA( f ) = 0
iff f does not depend on the configuration inside A. When A = V , respectively
A = {x} for some x ∈ V , we abbreviate VarV ( f ) to Var( f ), respectively Var{x}( f )

to Varx ( f ).

Definition 1.2 (OFA-kf model) The OFA-kf (Oriented Fredrickson-Andersen k-
facilitated) model at density p is a continuous time Glauber type Markov processe
on �, reversible w.r.t. μ, with Markov semigroup Pt = etL whose infinitesimal gen-
erator L acts on local functions f : � �→ R as follows:

L f (ω) =
∑

x∈Tk

cx (ω) [μx ( f )(ω) − f (ω)] . (1.1)

The function cx , in the sequel referred to as the constraint at x, is defined by

cx (ω) =
{

1 if ωy = 0 ∀y ∈ Kx

0 otherwise.
(1.2)

It is easy to check by standard methods (see e.g. [17]) that the process is well
defined and that its generator can be extended to non-positive self-adjoint operators
on L2(Tk, μ).
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The OFA-kf process can of course be defined also on finite rooted trees. In this case
and in order to ensure irreducibility of the Markov chain the constraints cx must be
suitably modified.

Definition 1.3 (Finite volume dynamics) Let T be a finite subtree of T
k and let, for

any η ∈ �T , η0 ∈ � denote the extension of η in � given by

η0
x =
{

ηx if x ∈ T
0 if x ∈ T

k\T .

For any x ∈ T define the finite constraints cT ,x by

cT ,x (η) = cx (η
0). (1.3)

We will then consider the irreducible, continuous time Markov chains on �T with
generator

LT f =
∑

x∈T
cT ,x [μx ( f ) − f ] η ∈ �T . (1.4)

Note that irreducibility of the above defined finite volume dynamics is guaranteed
by the fact that starting from the vacant leaves one can empty any configuration via
allowed spin flips. It is natural to define (see [4]) the critical density for the model by:

pc = sup{p ∈ [0, 1] : 0 is simple eigenvalue of L} (1.5)

The regime p < pc is called the ergodic region and we say that an ergodicity breaking
transition occurs at the critical density. In [19] it has been established that pc coincides
with the percolation threshold 1/k and that for all p < pc the value 0 is a simple
eigenvalue of the generator L. Actually much more is known but first we need to
introduce some relevant time scales.

Definition 1.4 (The relaxation time) Let D( f ) := μ( f,−L f ) be the Dirichlet form
corresponding to the generator L. We define the spectral gap of the process as

gap(L) := inf
f ∈Dom(L)

f 
=const

D( f )

Var( f )
(1.6)

We also define the relaxation time by Trel := gap(L)−1. Similarly, if T is a finite
rooted tree, we define Trel(T ) := gap(LT )−1.

Definition 1.5 (Mixing times) Let T be a finite rooted sub-tree of T
k . For any η ∈ �T

we denote by ν
η
t the law at time t of the Markov chain with generator LT and by hη

t
its relative density w.r.t. μT . Following [21], we define the family of mixing times
{Ta(T )}a≥1 by

Ta(T ) := inf

{
t ≥ 0 : max

η
μT

(|hη
t − 1|a)1/a ≤ 1/4

}
.
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Notice that T1(T ) coincides with the usual mixing time Tmix(T ) of the chain (see e.g.
[18]) and that, for any a ≥ 1, T1 ≤ Ta .

With the above notation it was proved in [19] that

(i) for all p < pc, Trel < +∞ and that the mixing time on a finite regular k-ary
sub-tree of depth L grows linearly in L;

(ii) if p > pc, then both the relaxation time and the mixing time on a finite regular
k-ary sub-tree of depth L grow exponentially fast in L .

1.2 Main results

Our first contribution concerns the critical case p = pc.

Theorem 1 Fix k ≥ 2 and assume p = pc. Then there exist constants c > 0 and
β ≥ 0, with β independent of k, such that for each L

c−1L2 ≤ Trel
(
T

k
L

) ≤ cL2+β.

Remark 1.6 The above result implies, in particular, that the relaxation time for the
critical process on the infinite tree T

k is infinite. However the process is still ergodic in
the sense that 0 is a simple eigenvalue of the generator L. This can be proven following
the same lines of [4, Proposition 2.5] by using the key ingredient that, at p = pc, there
is no infinite percolation of occupied vertices a.s..

Our second main result deals with the quasi-critical regime, p = pc − ε with
0 < ε � 1, on the infinite tree T

k .

Theorem 2 Fix k ≥ 2 and assume 0 < p < pc. Then there exist constants a > 0 and
α ≥ 0, with α independent of k, such that

a−1(pc − p)−2 ≤ Trel ≤ a(pc − p)−(2+α)

The last result implies some consequences of the above theorems for the mixing
time on a finite sub-tree.

Theorem 3 Fix k ≥ 2 and p ∈ (0, 1). There exists c > 0 such that, for all L,

1

c
L Trel

(
T

k
�L/2�

) ≤ T1(T
k
L) ≤ T2(T

k
L) ≤ cL Trel(T

k
L). (1.7)

In particular:

(i) if p = pc , then

c−1L3 ≤ T1(T
k
L) ≤ cL3+β.
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(ii) If p < pc ,

1

c
(pc − p)−2 L ≤ T1(T

k
L) ≤ cL(pc − p)−(2+α)

for some constants α, β ≥ 0 independent of k, L.

1.3 Additional notation and technical preliminaries

We first introduce the natural bootstrap map for the model.

Definition 1.7 The bootstrap map B : {0, 1}Tk → {0, 1}Tk
associated to the OFA-kf

model is defined by

B(η)x =
{

0 if either ηx = 0 or cx (η) = 1
1 otherwise

(1.8)

with cx defined in (1.2).

Remark 1.8 Notice that: (i) if after n-iterations of the bootstrap map cx (Bn(η)) = 1
then, even if ηx = 1, the percolation cluster of 1’s attached to x is contained in the
first n-levels below x and (ii) the bootstrap critical point, i.e. the largest value of p
such that, π -a.s., infinitely many iteration of the bootstrap map are able to make the
root vacant, (see e.g. [2]), coincides with the percolation threshold pc = 1/k.

Secondly we formulate two technical results which will be useful in the sequel. Let
E (n)

x = {η : Bn(η)x = 1} and define pn := μ(E (n)
r ). Notice that pn is increasing in

p and that pn ≤ p for all n.

Lemma 1.9 (i) If p ≤ pc then pn ≤ 2
(k−1)n for all n ≥ 1.

(ii) Assume p = pc − ε with ε ∈ [0, 1/k]. Then pn ≤ p(1 − εk)n for all n ≥ 1.

Proof (i) We start from

μ
(

E (n+1)
r

)
= pμ

(
∪x∈Kr E (n)

x

)
, (1.9)

or, equivalently,

pn+1 = p(1 − (1 − pn)k).

Using the monotonicity in p of the pn’s it is enough to prove the statement for p = pc.
The inclusion-exclusion inequalities (1.9) imply that (recall that now p = 1/k)

pn+1 ≤ 1

k

[
kpn −

(
k

2

)
p2

n +
(

k

3

)
p3

n

]

= pn − (k − 1)

2
p2

n + (k − 1)(k − 2)

6
p3

n . (1.10)
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One readily checks that the r.h.s. of (1.10) is increasing in pn ∈ [0, 1/k]. Thus, if we
assume inductively that pn ≤ 2

(k−1)n , n ≥ 2, we obtain

pn+1 ≤ 2

(k − 1)

[
1

n
− 1

n2 + 2(k − 2)

3(k − 1)n3

]
≤ 2

(k − 1)(n + 1)
n ≥ 2.

The base case p2 follows from the trivial observation that p2 ≤ p1 ≤ 1
k < 1

k−1 .

(ii) Taking union bound in (1.9) gives

pn+1 ≤ pkpn = (1 − εk)pn ≤ · · · ≤ (1 − εk)n p.

��
The second technical ingredient is the following monotonicity result for the spectral

gap (see [4, Lemma 2.11] for a proof).

Lemma 1.10 Let T1 ⊂ T2 be two sub-trees of T
k . Then,

gap(LT1) ≥ gap(LT2).

2 The critical case: proof of Theorem 1

2.1 Upper bound of the relaxation time

Let T ≡ T
k
L , Tx ≡ T k

x,L and T̂x ≡ T̂ k
x,L . We divide the proof of on the upper bound

of Trel(T) into three steps.

2.1.1 First step

(Comparison with a long-range auxiliary dynamics). Motivated by [19] we introduce
auxiliary long range constraints as follows.

Definition 2.1 For any integer � ≥ 1 we set

c(�)
x (η) =

{
1 if cx (B�−1(η)) = 1
0 otherwise.

Remark 2.2 One can use the functions c(�)
x to define an auxiliary long range dynam-

ics with generator given by (1.1) with cx replaced by c(�)
x . For this new constrained

dynamics a vertex x is free to flip iff, by a sequence of at most � flips satisfying the
original constraints (1.2) all the children of x can be made vacant.

Fix now δ ∈ (0, 1/9) and choose � = (1 − δ)L (neglecting integer parts). Let
also c(�)

T,x (η) := c(�)
x (η0) where η0 is given in Definition 1.3 respectively. Notice that

c(�)

T,x (η) ≡ 1 iff dx > L − �.
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We will establish the inequality

VarT( f ) ≤ λ
∑

x∈T

μT

(
Varx (μT̂x

(c(�)

T,x f ))
)

∀ f (2.1)

with λ = 2( 1−δ
1−9δ

).

Remark 2.3 Inequality (2.1) will be proven following the strategy of [19]. Notice
however that here we don’t perform another Cauchy-Schwarz inequality to pull out
the constraint c(�)

T,x and get the Dirichlet form with long range constraints.

We start from
VarT( f ) ≤

∑

x∈T

μT

(
Varx (μT̂x

( f ))
)

. (2.2)

The above inequality follows easily from a repeated use of the formula for conditional
variance and we refer to section 4.1 in [19] for a short proof. We now examine a generic

term μ
(

Varx

(
μ

T̂x
( f )
))

in the r.h.s. of (2.2). We write

μ
T̂x

( f ) = μ
T̂x

(
c(�)

T,x f
)

+ μ
T̂x

(
[1 − c(�)

T,x ] f
)

so that

Varx

(
μ

T̂x
( f )
)

≤ 2 Varx

(
μ

T̂x

(
c(�)

T,x f
))

+ 2 Varx

(
μ

T̂x

(
(1 − c(�)

T,x ) f
))

. (2.3)

We now consider the second term Varx

(
μ

T̂x

(
(1 − c(�)

T,x ) f
))

. Without loss of gen-

erality we can assume μ
T̂x

( f ) = 0. Recall that the constraint c(�)

T,x depends only on
the spin configuration in the first � levels below x , in the sequel denoted by �x (see
Fig. 1).

Fig. 1 For k = 3, the tree T rooted at r , of depth L i.e. with L levels below r ), the set �x and the sub-set
T̂y
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Thus

μ
T̂x

(
(1 − c(�)

T,x ) f
)

= μ
T̂x

(
(1 − c(�)

T,x )μT̂x \�x
( f )
)

and

Varx

(
μ

T̂x

(
(1−c(�)

T,x ) f
))

≤ μTx

(
μ

T̂x

(
(1−c(�)

T,x )μT̂x \�x
( f )
)2
)

≤ μTx (1−c(�)

T,x )μTx

(
μ

T̂x \�x
( f )2
)

= μTx (1−c(�)

T,x ) VarTx

(
μ

T̂x \�x
( f )
)

≤ μTx (1−c(�)

T,x )
∑

y∈�x ∪x

μTx

(
Vary(μT̂y

( f ))
)

(2.4)

where we used Cauchy-Schwarz inequality, the fact that c(�)

T,x does not depend on ηx

and (2.2) in the last inequality. From the definition of c(�)

T,x on the finite tree T it holds

μTx (1 − c(�)

T,x ) =
{

0 if dx > δL
p�/p otherwise

(2.5)

In conclusion, using (2.3), (2.4) and (2.5),

∑

x∈T

μT

[
Varx (μT̂x

( f ))
]

(2.6)

≤ 2
∑

x∈T

μT

[
Varx (μT̂x

(c(�)

T,x f )
]

+ 2
p�

p

∑

x :
dx ≤δL

∑

y∈�x ∪x

μT[Vary(μT̂y
( f ))]

≤ 2
∑

x∈T

μT

[
Varx (μT̂x

(c(�)

T,x f )
]

+ 2
p�

p

[
max

z
Nz

]∑

y

μT[Vary(μT̂y
( f ))] (2.7)

where

Nz := #{x : �x � z, dx ≤ δL} ≤ min(δL , � + 1).

Part (i) of Lemma 1.9 implies that p� ≤ 2
(k−1)�

= 2
(k−1)(1−δ)L so that

∑

x∈T

μT

(
Varx (μT̂x

( f ))
)

≤ 2
∑

x∈T

μT

[
Varx (μT̂x

(c(�)

T,x f ))
]
+ 4δ

p(1−δ)(k−1)

∑

x∈T

μT[Varx (μT̂x
( f ))] (2.8)

Since p = 1/k and k/(k − 1) ≤ 2, inequality (2.1) holds with λ = 2(1 − δ)/(1 − 9δ)

provided 8δ/(1 − δ) < 1.
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2.1.2 Second step

[Analysis of the auxiliary dynamics]. Let hi = αi , α > 1 to be fixed later on, and let

Ti := Trel(T
k
hi ∧�). (2.9)

We shall now prove that

∑

x∈T

μT

(
Varx (μT̂x

(c(�)

T,x f ))
)

≤
⎡

⎣2 + 4α

p(k − 1)

(
n−1∑

i=1

√
Ti

)2⎤

⎦DT( f ), (2.10)

with n such that hn−1 < � ≤ hn .
The starting point is (2.1). For any x ∈ T we introduce a scale decomposition of the

constraint c(�)

T,x as follows c(�)

T,x = ∑n−1
i=0 χi + cT,x , where χi := c(hi+1∧�)

T,x − c(hi ∧�)

T,x .
Thus

∑

x∈T

μT

(
Varx (μT̂x

(c(�)

T,x f ))
)

≤ 2
∑

x∈T

μT

(
Varx (μT̂x

(cT,x f ))
)

+ 2
∑

x∈T

μT

(

Varx

(

μ
T̂x

(
n−1∑

i=0

χi f

)))

≤ 2DT( f ) + 2
∑

x∈T

μT

(

Varx

(

μ
T̂x

(
n−1∑

i=0

χi f

)))

,

where in the last inequality we used convexity to conclude that

μT

(
Varx (μT̂x

(cT,x f ))
)

≤ μT

(
cT,x Varx ( f )

)
.

We now examine the key term
∑

x∈T
μT

(
Varx (μT̂x

(
∑n−1

i=0 χi f ))
)

.

Observe first that χi = 0 if hi ≥ � and that χi = 1 implies the number of iterations
of the bootstrap map necessary to make the node x flippable is at least hi but no more
than hi+1 ∧ �. In particular, if χi (η) = 1, there exists a “line” of zeros of η within
hi+1 ∧ � levels below x . For such an η we denote by �(η) the “lowest” such line
constructed as follows.

Consider the nodes in Tx at distance hi+1 ∧ � from x . Let us order them from
left to right as z1, z2, . . . ; start from z1 and find the first vacant site on the branch
leading to x . Call this vertex y1 and forget about all the zi ’s having y1 as an ancestor.
Say that the remaining nodes are zk1 , zk1+1, . . . ; repeat the construction for zk1 to
get a new vacant node y2 and so forth. At the end of this procedure some of the
yi may have some other yk as an ancestor. In this case we remove the former from
our collection and we relabel accordingly. The line �(η) is then the final collection
(y1, y2, . . . ).
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Fig. 2 For k = 3, the sub-tree Tx rooted at x and a configuration η such that χi (η) = 1. The line of vacant
sites corresponds to a set γ ∈ Gi

We denote by Gi the space of all possible realization of �. Moreover, given γ ∈ Gi ,
we denote by T̂

γ,+
x all the nodes in T̂x which have no ancestor in γ , i.e. the part of

the tree “above” γ . Note that the above construction of � is made without looking at
the configuration above � (Fig. 2). This observation together with the definition of the
variance and Cauchy-Schwarz inequality gives

Varx

(

μ
T̂x

(
n−1∑

i=0

χi f

))

= p(1 − p)

[
n−1∑

i=0

μ
T̂x

(χi∇x f )

]2

= p(1 − p)

⎡

⎣
n−1∑

i=0

∑

γ∈Gi

μ
T̂x \T̂ γ,+

x

(
1�=γ μT̂ γ,+

x
(χi∇x f )

)
⎤

⎦

2

≤ p(1− p)

⎡

⎣
n−1∑

i=0

∑

γ∈Gi

μ
T̂x \T̂ γ,+

x

(
1�=γ

√
μT̂ γ,+

x
(χi )μT̂ γ,+

x
(|∇x f |2)

)
⎤

⎦

2

. (2.11)

where ∇x f (η) = f (ηx ) − f (η) with ηx
y = ηy if y 
= x and ηx

x = 1 − ηx . Consider
now the last factor inside the square root and multiply it by p(1 − p). It satisfies

p(1 − p)μT γ,+
x

(|∇x f |2) = μT γ,+
x

(Varx ( f )) ≤ Var
T

γ,+
x

( f ) ≤ Trel(T
γ,+
x )D

T
γ,+
x

( f )

where we used the convexity of the variance and the Poincaré inequality. Lemma 1.10
now gives Trel(T

γ,+
x ) ≤ Ti+1. In conclusion

p(1 − p)μT γ,+
x

(|∇x f |2) ≤ Ti+1DT
γ,+
x

( f ).
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To bound the first factor inside the square root of (2.11) we note that 1�=γ c(hi )

T,x =
1�=γ c(hi )

T
γ,+
x ,x

. Indeed the finite volume constraints cT γ,+
x ,y are defined with zeros on

the set γ of the leaves of T γ,+
x [see (1.3)] and in turn 1�(η)=γ guarantees the presence

of such zeros for the configuration η. Thus, using the monotonicity on the volume of
the probability that the root x is connected to the level hi ,

1{�=γ }μT γ,+
x

(χi ) ≤ 1{�=γ }μT γ,+
x

(1 − c(hi )
x ) = 1{�=γ }μT γ,+

x

(
1 − c(hi )

T γ,+
x ,x

)

≤ μ(1 − c(hi )
x ) = phi /p.

In conclusion, the r.h.s. of (2.11) is bounded from above by

1

p

⎛

⎝
n−1∑

i=0

√
Ti+1 phi μ

T̂x

⎛

⎝
∑

γ∈Gi

1�=γ

√
D

T
γ,+
x

( f )

⎞

⎠

⎞

⎠

2

≤ 1

p

⎛

⎜
⎝

n−1∑

i=0

√
Ti+1 phi

√√√√√μ
T̂x

⎛

⎝
∑

γ∈Gi

1�=γ D
T

γ,+
x

( f )

⎞

⎠

⎞

⎟
⎠

2

≤ 1

p

(
n−1∑

i=0

√
Ti+1

)⎛

⎝
n−1∑

i=0

√
Ti+1 phi μ

T̂x

⎛

⎝
∑

γ∈Gi

1�=γ D
T

γ,+
x

( f )

⎞

⎠

⎞

⎠

≤ 1

p

(
n−1∑

i=0

√
Ti+1

)
⎛

⎜⎜⎜⎜
⎝

n−1∑

i=0

√
Ti+1 phi

∑

y∈T̂x

dy≤dx +hi+1

μ
T̂x

(cy Vary( f ))

⎞

⎟⎟⎟⎟
⎠

(2.12)

where we used the Cauchy-Schwarz inequality in the first and second inequality
together with

μ
T̂x

⎛

⎝
∑

γ∈Gi

1�=γ D
T

γ,+
x

( f )

⎞

⎠ ≤
∑

y∈T̂x

dy≤dx +hi+1

μ
T̂x

(cT,y Vary( f ))

because 1{�(η)=γ }cT γ,+
x ,y(η) = 1{�(η)=γ }cT,y(η). If we now average over μT and sum

over x ∈ T in the above result, we get that
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∑

x∈T

μT

(

Varx (μT̂x
(

n−1∑

i=0

χi f ))

)

≤ 1

p

(
n−1∑

i=0

√
Ti+1

)

⎛

⎜⎜⎜⎜
⎝

n−1∑

i=0

√
Ti+1 phi

∑

x∈T

∑

y∈T̂x

dy≤dx +hi+1

μT(cT,y Vary( f ))

⎞

⎟⎟⎟⎟
⎠

≤ 1

p

(
n−1∑

i=0

√
Ti+1

)(
n−1∑

i=0

√
Ti+1 phi hi+1

)

DT( f )

≤ 2α

p(k − 1)

(
n−1∑

i=0

√
Ti+1

)2

DT( f )

and (2.10) follows. Above we used the exponential growth of the scales {hi }i together
with (i) of Lemma 1.9 to obtain phi hi+1 ≤ 2α/(k − 1).

2.1.3 Third step

(Recurrence). With the above notation (2.1) and (2.10) yield the following key recur-
sive inequality:

Trel(T) ≤ λ

⎡

⎣2 + 4α

p(k − 1)

(
n−1∑

i=0

√
Ti

)2⎤

⎦

with Ti given by (2.9) and λ = 2 1−δ
1−9δ

. Suppose now that L = αN+1 and � = αN with
α = (1 − δ)−1. Then Trel(T) = TN+1 and n = N . If we set ai := √

Ti then we get

aN+1 ≤ c
N∑

i=0

ai , c = λ1/2
(

2 + 4α

p(k − 1)

)1/2

,

which implies that bn :=∑n
i=0 ai satisfies bN+1 ≤ (1 + c)bN . In conclusion

Trel(T) = a2
N+1 ≤ b2

N+1 ≤ (1 + c)2N b2
1.

The proof of the upper bound of Trel(T) in Theorem 1 is complete if the depth L is
of the form αn, n ∈ N. The extension to general values of L follows at once from
Lemma 1.10.
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2.2 Lower bound on the relaxation time Trel

Let us consider as a test function to be inserted into the variational characterization of
Trel(T) the cardinality Nr of the percolation cluster Cr of occupied sites associated to
the root r . More formally

Nr (η) := #{x ∈ T : ηy = 1 ∀y ∈ γx }

where γx is the unique path in T joining x to the root r . Notice that Nr can be written
as Nr (η) = ηr

(∑k
i=1 Nxi + 1

)
, where {xi }k

i=1 are the children of the root and Nxi

denotes the analogous of the quantity Nr with T replaced by the sub-tree Txi rooted
at xi .

We now compute the variance and Dirichlet form of Nr . Clearly

c−1
∑

x∈T

μ(x is a leaf of Cr ) ≤ DT(Nr ) ≤ c
∑

x∈T

μ(x is a leaf of Cr ) ≤ cμ(Nr )

for some constant c = c(k). Moreover μ(Nr ) = p
(
kμ(Nx1) + 1

)
which, for p =

pc = 1/k, implies that μ(Nr ) = L/k. To compute VarT(Nr ) we use the above
expression for Nr together with the formula for conditional variance to write

VarT(Nr ) = μ (VarT(Nr | ηr )) + VarT

(
μ(Nr | ηr )

)

= pk VarTx1
(Nx1) + VarT

(
ηr (kμ(Nx1) + 1)

)

= VarTx1

(
Nx1

)+ p(1 − p)L2. (2.13)

Hence VarT(Nr ) ≥ c′L3 and

Trel(T) ≥ VarT(Nr )

DT(Nr )
≥ c′′L2.

��
3 The quasi-critical case: proof of Theorem 2

Here we assume p = pc − ε, ε > 0 and, without loss of generality, we assume that
εk � 1. Recall that we work directly on the infinite tree T

k .

3.1 Upper bound on the relaxation time Trel

We first claim that, for any � such that 2�(1 − εk)� < 1, one has

Var( f ) ≤ λ
∑

x∈Tk

μ
(

Varx (μT̂x
(c(�)

T,x f ))
)

(3.1)

123



262 N. Cancrini et al.

with λ = 2
1−2(�+1)(1−εk)�

. The proof of (3.1) starts from inequality (2.4), whose
derivation does not depend on the value of p. After that we proceed as follows. Since
p = pc − ε, Lemma 1.9 (ii) implies that

μTx (1 − c(�)

T,x ) = p�

p
≤ (1 − εk)� ∀x ∈ T

k .

Thus

Var( f ) ≤
∑

x∈Tk

μ
[
Varx (μT̂x

( f ))
]

≤ 2
∑

x∈Tk

μT

[
Varx (μT̂x

(c(�)

T,x f ))
]

+ 2(� + 1)(1 − εk)�
∑

x∈Tk

μ[Varx (μT̂x
( f ))]

and (3.1) follows.
Now choose � = −2 log(εk)

εk , so that λ < 4 in (3.1) for any ε small enough, and
define, for x ∈ T

k , Tx as the finite k-ary tree rooted at x of depth �.
Exactly the same arguments leading to (2.12), but without the subtleties of the

intermediate scales {hi }i , show that

μ
(

Varx (μT̂x
(c(�)

x f ))
)

≤ Trel(T)
∑

y∈Tx

μ
(
cy Vary( f )

)
. (3.2)

If we now combine (3.2) together with (3.1) we get

Var( f ) ≤ 4� Trel(T)D( f ) (3.3)

for all ε small enough. Finally we claim that Trel(T) ≤ c�β for some appropriate
constants c, β.

To prove the claim it is enough to observe that, in its proof for the case p = pc

given in Sect. 2, only upper bounds on percolation probabilities played a role. By
monotonicity these bounds hold for any p ≤ pc. Hence the claim. In conclusion

Var( f ) ≤ c�1+βD( f )

and Trel ≤ c�1+β = c′ε−(1+β).

3.2 Lower bound of the relaxation time Trel

Thanks to Lemma 1.10, Trel ≥ Trel(T ) for any finite sub-tree T . We now choose T as
the k-ary tree rooted at r with depth � = �1/ε� and proceed exactly as in the proof of
Theorem 1. Using the notation of Sect. 2.2 we have

DT(Nr ) ≤ cμ(Nr ) ≤ c′�
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where we used the fact that the average of Nr at p < pc is bounded from above by
the same average computed at p = pc since Nr is increasing (w.r.t. the natural partial
order in �T). To compute VarT(Nr ) we proceed recursively starting from [cf (2.13)]

VarT(Nr ) = (1 − kε) VarTx1
(Nx1) + 1 − p

p
μ(Nr )

2

μ(Nr ) = (1 − εk)μ(Nx1) + p

Since the number of steps of the iteration is �1/ε� one immediately concludes that
μ(Nr ) ≥ ck� and VarT(Nr ) ≥ c′

k�
3 for some constant ck depending only on k. Thus

Trel ≥ Trel(T ) ≥ VarT(Nr )

DT(Nr )
≥ c�2 = c ε−2,

for some constant c > 0.

4 Mixing times: proof of Theorem 3

The specific statement (i) and (ii) are a direct consequence of (1.7), Theorem 1 and
Theorem 2. The upper bound T1(T ) ≤ T2(T ) ≤ cLTrel(T ) was proved in [19,
Corollary 1]. It remains to prove the lower bound and this is what we do now following
an idea of [8].

Consider two probability measures π, ν on �T and recall their Hellinger distance

dH(π, ν) := √2 − 2IH(π, ν),

where

IH(π, ν) :=
∑

ω

√
π(ω)ν(ω).

Clearly

IH(π, ν) ≥
∑

η∈�T

π(η) ∧ ν(η) ≥ 1 − ‖π − ν‖T V .

If we combine the above inequality with [9, Lemma 4.2 (i)] we get

1

2
dH(π, ν)2 ≤ ‖π − ν‖T V ≤ dH(π, ν).

Assume now that π, ν are product measures, π =∏n
i=1 πi , ν =∏n

i=1 νi , so that

IH(π, ν) :=
n∏

i=1

IH(πi , νi ).
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Therefore

‖π − ν‖T V ≥ 1 − IH(π, ν) = 1 −
n∏

i=1

IH(πi , νi )

= 1 −
n∏

i=1

(
1 − 1

2
dH(πi , νi )

2
)

≥ 1 −
n∏

i=1

(
1 − 1

2
‖πi − νi‖2

T V

)

≥ 1 − e−∑i
1
2 ‖πi −νi ‖2

T V . (4.1)

Suppose now that, for each i ≤ n, νi is the distribution at time t of some finite, ergodic,
continuous time Markov chain X (i), reversible w.r.t. πi and with initial state xi . In this
case the measure ν is the distribution at time t of the product chain X = ⊗i Xi started
from x = (x1, . . . , xn) and π is the reversible measure.

Let λi be the spectral gap of the chain X (i), let fi be the corresponding eigenvector
and choose the starting state xi in such a way that | fi (xi )| = ‖ fi‖∞. Then

‖πi − νi‖T V ≥ 1

2

1

‖ fi‖∞
|πi ( fi ) − νi ( fi )| = 1

2

| f (xi )|
‖ fi‖∞

e−λi t

= 1

2
e−λi t , (4.2)

where we used πi ( fi ) = 0 because fi is orthogonal to the constant functions.
In conclusion, by combining together (4.1) and (4.2), we get

‖π − ν‖T V ≥ 1 − e− 1
8

∑
i e−2λi t

.

Therefore, if t = t∗ with

t∗ = 1

2

[
1

maxi λi
log n − 1

mini λi
log 8

]
,

then ‖π − ν‖T V ≥ 1 − e−1. Thus the mixing time of the product chain X is larger
than t∗.

We now apply the above strategy to prove a lower bound on T1(T ).
Let T

(i) be the i th (according to some arbitrary order) k-ary sub-tree of depth �L/2�
rooted at the �L/2�-level of T and consider the OFA-kf model on ∪i T

(i). Clearly such
a chain X is a product chain, X = ⊗i Xi , where each of the individual chain is the
OFA-kf model on T

(i). The key observation now is that, due to the oriented character
of the constraints, the projection on ∪i T

(i) of the OFA-kf model on T coincides with
the chain X . Hence T1(T ) ≥ tmix if tmix denotes the mixing time of the product chain
X . According to the previous discussion and with n = k�L/2� the number of sub-trees
T (i) we get
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T1(T ) ≥ tmix ≥ 1

2
(log n − log 8) gap(LT′)−1 = 1

2
(log n − log 8) Trel(T

′)

≥ 1

c
L Trel(T

′)

for some constant c > 0 where we used translation invariance to conclude that the
spectral gap λi of the chain Xi coincides with gap(LT′) for any i , T

′ denoting a k-ary
rooted tree of depth �L/2�.

5 Concluding remarks and open problems

(i) It is a very interesting problem to determine exactly the critical exponents for the
critical and quasi-critical case and in particular to verify whether the lower bounds
in Theorems 1 and 3 give the correct growth of the corresponding time scales as a
function of the depth of the tree.

(ii) A key ingredient of our analysis is the fact that the percolation transition on
T

k is continuous, i.e. with probability one there is no infinite cluster of occupied sites
at p = pc and the probability that the cluster of the root touches more than n levels
decays polynomially in 1/n. A very challenging open problem is the extension of the
approach described in this work to models with a discontinuous (or first-order) phase
transition for the corresponding bootstrap percolation problem.

The first instance of the above general question occurs for a kinetically constrained
model on the ternary tree T

3, with the local constraint cx requiring at least j = 2 of the
k = 3 children of x to be vacant. The natural obstacle for the dynamics—previously
an infinite ray of 1’s in the j = 3 case corresponding to standard percolation—now
becomes a binary regular subtree of T

3 where the configuration is identically equal
to one. By the results of Pakes and Dekking [7] (see also [2]), generalizing the work
of Chayes et al. [3] for the binary tree, it is known that the associated bootstrap
percolation model undergoes a first order phase transition at pc = 8/9, unlike the
second order phase transition of percolation. This may therefore suggest that, when p
crosses the critical point pc = 8/9, the relaxation time jumps from O(1) (cf [19]) to
exponential (as e.g. in the Ising model in the setting of a first order phase transition).
However, rather natural test functions, like e.g. the indicator of the event that the root
is occupied after L iterations of the bootstrap map, do not support the above scenario
and, for p = pc, still give a bound �(L2) on the relaxation time, exactly as in the
percolation j = 3 case. Numerical simulations for a similar unoriented model [22]
also suggest a poly(L) relaxation time. Thus it may be possible that the nature of the
phase transition at pc = 8/9 is more subtle than what appears and finding the correct
behavior of the relaxation time at criticality remains a very interesting and challenging
problem.

(iii) Using the comparison methods of [19, Sect. 4], our results on the relaxation
time can be transfered with minimal changes to the un-oriented case defined as follows.
On the un-rooted regular tree with degree k + 1, consider the kinetically constrained
model in which a vertex can be updated iff at least k of its k + 1 neighbors are vacant.
The critical value pc at which ergodicity breaks down coincides with the critical
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value of the oriented model on T
k considered so far (cf. [19, Theorem 1]). Moreover

the relaxation time (on the infinite tree or on finite subtrees with suitable boundary
conditions) can be bounded from above and below by the corresponding relaxation
time in the oriented case. The comparison between the mixing times is more indirect
since one has first to compare the logarithmic Sobolev constants of the two models
and then use the general bounds relating the latter to the mixing times (see e.g. [21]).
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