MATHEMATICS OF COMPUTATION
Volume 00, Number 0, Pages 000-000
S 0025-5718(XX)0000-0

DIVISIBILITY OF REDUCTION IN GROUPS OF RATIONAL
NUMBERS

FRANCESCO PAPPALARDI

ABSTRACT. Given a multiplicative group of non—zero rational numbers and a
positive integer m, we consider the problem of determining the density of the
set of primes p for which the order of the reduction modulo p of the group is
divisible by m. In the case when the group is finitely generated the density is
explicitly computed. Some example of groups with infinite rank are considered.

1. INTRODUCTION

It is a well known result due to Hasse [?] and others that the probability that 2
generates a subgroup of Iy with even order is 17/24 while the probability that 3
generates a subgroup of Iy, with even order is 2/3. So, it might not be a surprise to
read that the probability that 2 and 3 together generate a subgroup of F,, with even
order is 195/224 and that the probability that 3 and 5 together generate a subgroup
of I}y with even order is 6/7. In general, groups of rational numbers containing 2
have a slightly higher tendency, then those not containing 2, to generate subgroups
of I}, with even order. This phenomenon is related to the fact that the size of the
Galois group of 28 — 2 is half of the size of the Galois group of z® — ¢ where ¢ is an
odd prime. This paper deals with these properties in a fairly general context.

Let I' C Q* be a multiplicative subgroup and define the support SuppD' of T"
to be the set of primes p such that the p-adic valuation of some elements of T" is
nonzero. In the special case of finitely generated I" (see [?]) it is easy to see that
Supp I is finite. For any prime p € SuppI’, we denote by I', the reduction of I'
modulo p. That is

Iy ={g(modp): geT}.
It is clear that since p ¢ Supp[', I', C [} is a subgroup. As usual we also denote
by ind,(I") and ord,(I'") the index and the order of I',. That is

ord,(I") = #I',, and indy(T) = [F,, : T'y] = (p — 1)/ ord,(I').

Here, for m € Z, we consider the function

Ar(z,m)=#{p <z: p&Suppl, m |ord,(I')}.

The special case of T' generated by a rational number in Q* \ {1, —1} has been
extensively considered in the literature. For a complete and updated account we
refer to Moree’s survey paper [?, Sections 9.2 and 9.3]. Moree [?], Wiertelak [?] and
the author [?], give several asymptotic formulas for A gy (x,m) with g € Q*\{1, —1}.
More general results have been considered by Moree [?] and by Chinen and Murata
[?]. In this paper we propose the following:
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2 F. PAPPALARDI

Theorem 1. Let I' C Q* be a finitely generated group of rank r and let m € N.
Then, as x — oo, uniformly in m,

1 1 2 1+ﬁ
Ar(z,m) = gp,mi + Or (T(m)m X X ((ogogaj)) ) ,
log

log x

where if ¥(f,t) =1, gre+1
Sm ={n € N: Rad(n) | m and m | n}

and if Q(Cy, TY") is the extension of Q generated by Cx = e*™/* and by the h—th
roots of all the elements of T', then

p(f)
Z Z Cnd, rl/v(f )) . Q]'

nESm dln
fin

In the case when I' C QT, the group of strictly positive rational numbers, we
express or,m, in terms of the orders of the groups

F(t) _ FQ*t/Q*t .

Theorem 2. Assume that I is a finitely generated subgroup of Q1 and that m € N.
For any squarefree integer n, let t, = oo if either m is odd or for all t > 0,

Q2" ¢ T2 and t, = min {t eN: Q2" € 1"(2”1)} otherwise. Fur-
thermore let s, = vo (5(")), where §(n) is the discriminant of Q(\/n) and let

or = [Lesuppr ¢- Then

1 {—1
e =y L\ 1= 2 50y | (17 2 o)

£ nlged(m,or)
0>2
where
0 ’Lf tn = 005
1
by = iy, 28]
1
1 .
_W+ZW if sy > ).
k>sy
Remarks.

(1) The condition I' C Q% is not essential. It is mainly due to the fact that
the group (I'N Q(gm)*2a) - Q*2" JQ*%" is easy to describe when I' C Q.
This is done in Corollary ??. However, similar expressions for or ,, as in
Theorem ?7 should be derived also for groups containing negative numbers
and in particular containing —1.

(2) It is plain that the Generalized Riemann Hypothesis for the Dedekind zeta
functions of the fields Q((n,I'Y/?) (d | m) allows a sharper error term
in Theorem ?7. In fact, applying Generalized Riemann Hypothesis, and
proceeding along the lines of the proof of Theorem ?? and applying [?,
Lemma 5] rather than Lemma ?7?, it can be showed that, as z — oo,
uniformly in m,

AF(‘T,m)—QFm ( )+OF< ( )3I3/410g$).
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(3) All the series involved in the expression for gr ,, are convergent since they
are bounded by geometric series. In the case when I is finitely generated
with rank r, for every prime power ¢, the following identity holds (see

(7))

|F(€J)| — éma\x{o,j—w(Al),w,(7'—1)j—w(Aw,l),rj—vz(Ar)}7

where for ¢ = 1,...,7, A; is the i—th exponent of I' (defined in (77?)).

Therefore
1 1 ‘efr'ug(A,,.)
_ pue(Ay) _
(1) Z gj|p(gj)| = Z g+ ol 1
j>'UZ(A7‘) j>'UZ(A7‘)

This implies that or,, € Qt. Another immediate consequence of (??) is
that if ged(m, A,—1) =1 and either m is odd or ged(m, or) = 1, then

@ onm = ﬁ 11 (1 - 5:—11 [l - ervaii()iwll)— 1)]) '

Llm

(4) If one sets Ag = 1, then (??) holds also for r = 1. More precisely, if
[ = (a), where a € Q* \ {£1}, a = b" where b is not the power on any
rational number so that h = A, we write (in a unique way) b = aja3,
where a; is a squarefree integer. Then

{—1 1 1 1 1
1= g Vi <bh>Q’_‘” = pre(h) 4+ 1 and Z ok (bh)Q*2* = 39v2(h)
jz1 Q-8 k>ra; 7{@*2;C

a

since rq, = va(h), 71 = 0 and since s,, = vy (%) By Theorem 7?7 we

obtain that oy, equals:

el % if [2,a1] | m and v2(d(a1)) < va(mh);
L « 1+ 7};@ — if [2,a1] | m and va(8(a1)) > va(mh);
m 2 -1 22v2 ()
ém 1 if [2,a1] t m.

This formula is consistent with the formula in [?, Theorem 1.3].

(5) An immediate consequence of the previous remark is that gr ., # 0 for any
group I' and for any m. In fact o) > 0 for any a € Q* and if IV C Q*
is a subgroup with IV C T, then ord, I | ord, I" for any prime p ¢ SuppT.
Therefore or ., > or/,m > 0.

(6) In the special case when T' = (dy,ds) with di,ds € QT multiplicatively
independent so that rank I’ = 2, we have that, for ¢ > 3,

1 if j < ve(Aq);
F(éj) — gj*UZ(AI) if ’U@(Al) <7< U[(AZ/Al);
(23=0e(B2) if G > pp(Ag/A).

Hence

(-1 1 1 1 (ve(Br) 1
1_2' N pue(B) t oAl A T2 :
j21£J\F(£J)| re(Br) f4 1 f20e(B2/B L+1  P+i+1

This identity can be used in Theorem ?7 to explicitly compute 0(q d,),m in
the case when m is odd or when ged(m, 0(q 4,)) = 1.
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If ' ¢ Q is the multiplicative subgroup generated by r distinct prime
numbers py,...,p,, then [['(¢7)| = £ for all j, and if 5 is a divisor of
ged(m, p1 - - - pr), then ¢, = 0. We deduce that

1 o —1) n
OQpy - ,pr),m = H 1l —q X (1 T+l _1 )7

plm) ;o
£>2
where up = #{n € N: | gcd(m,p1---pr), n = k(mod 4)}
0 ifQ'Tm;
T S (g7 = 1) [g#r +us] i 2m;
P25 Pr)s ur + (g7 — 1) ug +us if 4)|m;
Uy + Uz + us it 8| m.

Several computations of the densities g, ...
tion ?77.

Among the various consequences of Theorem ?7, one can also compute the
density of the set of primes for which ord,I' is k-free (i.e. not divisible
by the k—power of any prime). More precisely, if k& > 2 and T is finitely
generated with rank r, then

.p),m are presented in Sec-

#{p <z: p&Suppl, ord,(T) is k—free}

1—

B (loglog )3 x
- (ﬂr”“ +Okr (log(kl)/((k+1)(3r+3)) z)) loga’

where
o0
Br = Z p(m) or -
m=1
In the special case when I' = (p1,---,p,) C Q*, where p; is prime for all

j=1,...,rand p; <pj4q forall j=1,...,r — 1, we have that
Bre = Br % Brk,

e =1 <1 T2y —grl)_(élr+1 — 1)) '

r>2
and fr € QT. Furthermore, if & > 3 or p; > 3, then fr  equals

1 ng(val) a p_; -1
1— 1— :
2k 2t —1 11 Py = D =1) = () - 1)

j=1
while, if £ =2 and p; = 2, BF,k equals

where

T

1 1 p;—1
2+2<27"+1—1>H<1<pj—1><p;“—1>—<p;r—1>>'

Jj=1

The proof of the above statement is carried out along the lines of [?, The-
orem 1.2]. Indeed one starts from the identity
#{p <z: pgSuppl, ord,(T) is k—free} = Z w(m) A (z, m").
m=1

The mail term is obtained by applying Theorem ?? to the values of m <
log!/ P*GrE3) 2. For log?/ P*Gr+3) < m < log? z, one uses the bound
Ar(z,m*) < m(z,m*, 1) and the Brun-Titchmarch Theorem. We will omit
further details.
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Like for most of the results regarding properties of the index and the order of
subgroups of F;, the techniques are those of the pioneering work by C. Hooley
[?], where Artin’s Conjecture for primitive roots is established as one of the conse-
quences of the Generalized Riemann Hypothesis.

The first to consider higher rank groups in relation to the Lang—Trotter Conjec-
ture, were Gupta and Ram Murty in [?]. Their approach led to the quasi-resolution
of the Artin’s Conjecture by Gupta, Ram Murty and Heath-Brown [?, ?].

2. NOTATIONAL CONVENTIONS

Throughout the paper, the letters p and ¢ always denote prime numbers. As
usual, we use 7w(x) to denote the number of p < x and

T odt
li(z) = —
i(@) /2 logt

denotes the logarithmic integral function.

o, and 7 are respectively the Fuler, the Mébius and the number of divisors
functions. An integer is said squarefree if it is not divisible for the square of any
prime number and more generally it is said k—free if it is not divisible by the k—th
power of any prime number.

For n € N, Rad(n) denotes the radical of n, the largest squarefree integer dividing
n. For a € Q*, vg(«) denotes the £—adic valuation of « and if n € Q*, 6(n) denotes
the field discriminant of Q(,/1). So, if

do(a) = sgn(«) H l,

14
ve(a)=1 mod 2

Then §(n) = do(n) if do(n) = 1(mod 4) and 6(n) = 4¢(n) otherwise.

For functions F and G > 0 the notations F' = O(G) and F < G are equivalent
to the assertion that the inequality |F| < ¢G holds with some constant ¢ > 0. In
what follows, all constants implied by the symbols O and < may depend (where
obvious) on the small real parameter e but are absolute otherwise; we write O, and
<, to indicate that the implied constant depends on a given parameter p.

3. FINITELY GENERATED SUBGROUPS OF Q*.

Let I be a finitely generated subgroup of Q* of rank r and let (aq,...,a,) be
a Z-basis of I'. We write Supp(T') = {p1,...,ps}. Then we can construct the
s X r—matrix with coefficients in Z:

(5T gy
M(ay,...,a.) = )
Qs 1 T Qs r
defined by the property that |a;| = pi™"---ps*’. It is clear that the rank of
M(ay,...,a,)) equals r. This of course implies r < s. For alli =1,...,r, we define

the i—th exponent of T by

(4) A; = A;(I") = ged (det A : A is a i X ¢—minor of M(aq,...,a,))).

So A; is the the non-negative greatest common divisor of all the minors of size i
of M(ay,...,ar). We also set Ay = Ap(I') =1 for k < 0 and Ay = Ap(T") =0

for k > r. It can be shown (see [?, Section 3]) that Aj,...,A, are well defined
and do not depend on the choice of the basis (aq,...,a,) and on the ordering of
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the support {p1,...,ps}. Furthermore, from the Dedekind formula expansion for
determinants, we deduce that

AiAj ‘ AiJrj Vi,j > 0.

For m € N, we have the following identity (see [?, Proposition 2, page 129 and
preceding pages])

m m Em.TI X m"
5 F = F * * = 2
(5) [Cm)l = PQ™/Q™] ged (m”,mr—DA, .. omA 1, Ay

S 1 ifmisoddorif —1¢TQ*™;
™7 Y9 ifmis even and — 1 € rQ*m.

Finally, from (?7?) and (??), we deduce the bounds:

(7) 2" 2 [F(m)| 2 5

4. LOCALLY FINITE SUBGROUPS OF Q*

The case when I' is not finitely generated is also of interest. In order to apply
the machinery used for finitely generated groups, we shall make some necessary
assumptions. We say that I' has thin support if SuppI' has 0 density in the set
of prime numbers. This hypothesis assures that ord,(I') is defined for almost all
primes p. Furthermore we say that I is locally finite if I'(m) = TQ*™ /Q*™ is finite
for every m € N.

If T is locally finite, we know that the exponent of finite group I'(m) is a divisor
of m. We denote by rr(m) the finite group rank of I'(m). That means that

S D

I'(m) Y
(m) le m,,Z’

where 7 = rr(m), my | ma |-+ | my [m, my > 1 IEmQ™, .. npp,, Q™ is a set
of generators for I'(m), we define the m—th local support as

Supp,,, I' = {p € SuppT': v,(n;) #0, for some j =1,...,7p@m)}

orm = H p.

pESupp,,, I'

and

Furthermore it is easy to check that

T'(m) = (01, Mregn) ) Q™ /Q7™,
So we can apply the identity of (??) obtaining
Em,r X M'Tm

ng (mrr(m)’mrr(m)*lAl(f‘% . 7mA7'F(m)—1(f) A (f‘)) )

[C(m)| =

» 2T (m)

where I' = (11 ... Nrrmy ) A0d Ep r is defined in (?7).

The free subgroup of Q* generated by any fixed set of primes S with zero density
is a thin support subgroup. However, if S is infinite, such subgroup is not locally
finite. Here we consider the following family of locally finite, thin support, not
finitely generated subgroups of Q*:
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Definition 1. Let S be a set of primes with 0 density and write

S = {p13p2a"'}7

where p; < piy1 for all i € N. Let I's be the subgroup of Q* generated by the
k!-powers of the p’s. That is

FS = <p17p%!a" '7p§!7"'>'

It is plain that I'g is a free Z—module of infinite rank. Furthermore S = SuppI'g
so that I'g has thin support. However, for every m € N, we have the identity:

DI s
FSQ*W _ <p17p%!7"'>p7:zn 1 ) >Q "
@*m Q*m

Ls(m) =
Hence

Proposition 1. Let m € N and let S be a set of prime numbers. Then I'g is locally
finite and satisfies the following properties:
(1) rrgem) = r(m) = max{k € N: m{k!} <m—1;
2) if £ is prime, then r({*) < af — 1;
) (W)—ozf—lfora<€
) #Ls(m) =11,<,(m) sty s @ multiplicative function.
) Suppm FS - {p17 cee 7pT‘pS(m)} C {pla e 7pm—1}~

Proof. The first statement is clear from the definition and for the second observe
that ve((af)!) satisfies

(COIETEDY [%} >a

This observation also implies that r(¢¢) = af — 1 for « < £. As for the fourth
statement, it is enough to observe that

rsQ*™ é Q*m

1%

Q"
and to apply the fact that
<p§!>Q*m . m
Q" ged(m, j!)

is a multiplicative function of m which is identically 1 if j§ > r(m). The last
statement is also clear from the definition of Supp,, I's. g

##

Theorem 3. Let S be a set of prime numbers with 0 density and let m € N be
either an odd number or such that gcd(m,org m) = 1. Then, as x — oo,

XT's,m L
A ~ .
rs (@m) e(m) logz’

where

l—1
XTs,m = H 1= Z goz—i—ZjZl max{0,a—v,(5!)}

Llm a>1

We will omit the proof of Theorem ?7? since it is similar to the proof of Theo-
rem 7?7, where the main ingredient Lemma 77 is replaced with Lemma ?7.

Remarks.
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(1) When T is not finitely generated, the rationality of or ., does not hold
in general. In fact if £ is an odd prime, I' = (p1,p52,...,p¢*,...) where
{p1,p2...} is a zero density set of primes and ap = £7%k!/¢"() where
51 =0 and for k > 2, B is defined by

Br=jifandonlyif jl—j<k<(G+1)!—j—-1,
then I' has thin support and it is locally finite. Furthermore
F(EJ) — pmax{keN Br<j} _ pi'=j

Hence

1
Qrzzl—(f—l)zw.

Jj=1
is rationally depedent to the Liuville transcendental number.

(2) The conditions that either m is odd or that gcd(m,org,m) = 1 in the
statement of Theorem ?7 can be removed at the cost of complicating the
expression for Xrg m.-

(3) It was proven in [?] that if ' C Q* is a finitely generated subgroup, the
Generalized Riemann Hypothesis implies that the set of primes for which
ind,(T") = 1 has a density dr that equals

1 1
II@‘W@W@>1‘WME: 1= ffn

£>2 cer(2)  ¢¢
£=1mod 4

This formula also holds for thin support, locally finite subgroups. In par-
ticular if S = {p1,pa,...} is a set of prime numbers with zero density,
then

<p1,p§!,~--ape 1 >Q*e
Q-
and [Ts(0)| = £7) = ¢*~1 by 3. in Proposition ??. Therefore

sre =TT (1= gy ) > 049

[s(f) =

where

1 : _ .
R ifpy =1 mod &
O otherwise.

Example: Let G = {3,5,11,17,29,...} denotes the set of (youngest) twin primes
which is well known to have density 0 and we will also assume to be infinite. Hence

g = (3,5%,116,17%4 29120 ),

In the following table we compare:

e the values of grg m (15 row);

6
e the values of %(0160),3) (224 row);

Arg,m(10%,3) d
Fp<ion pzay (3 row).

m = 2,...,13. Note that the numbers are truncated (not approximated) to the
nineth decimal digit.

e the values of
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m 2 3 4 5 6 7

0.733383118 | 0.462912155 | 0.366691559 | 0.249679999 | 0.447527842 | 0.166665452
0.681724375 | 0.462725165 | 0.314364697 | 0.214757063 | 0.447743891 | 0.145086499
0.760844529 | 0.516428520 | 0.350849505 | 0.239681524 | 0.499708537 | 0.161925072
m 8 9 10 11 12 13

0.183345779 | 0.154304051 | 0.178962194 | 0.099999999 | 0.108035882 | 0.083333333
0.156959413 | 0.154564447 | 0.161800300 | 0.088397156 | 0.107302096 | 0.074052842
0.175175943 | 0.172503021 | 0.180578659 | 0.098656429 | 0.119755456 | 0.082647330

Finally, 6p, = 0.47203266462865646291 - - - while
[{p < 10°: p ¢ G,ind,(Ig) = 1}| 33059
7(109) 78498

= 0.4211444878 - - -

and
[{p < 10°: p ¢ G,ind,(I'c) = 1}| _ 33059
{p <105: p &G} 70335

= 0.4700220374 - - - .

5. THE DEGREE [Q((m, TH?) : Q).

Let I' C Q* be a locally finite subgroup and let m and d be positive integers
with d | m. We denote by K, the m—th cyclotomic field. So K, = Q((), where
Cm = €2™/™ is the primitive m—th root of unity. Furthermore we denote K,,(I''/?)
the subfield of C generated over K, by the d—th roots of all elements of I'. It is
well known that K,,(I''/?) is a finite Galois extension of Q and that there is an
isomorphism

(8) Gal(Km (P )/ K) = T(K,) /(K )

Details on the theory of Kummer’s extensions can be found in Lang’s book [?,
Theorem 8.1]. The goal of this section is to prove the following:

Lemma 1. LetT' C Q* be a locally finite subgroup. Let m and d be positive integers
with d | m, set & = va(d) be the 2—adic valuation and let ky, 4(T') denote the degree
of the extension K,,(I'/%)/Q. Then the degree

p(m) x [T(d)]

km,d(r) = ‘H | 5

where
Hm,a _ (F N K;QQ)Q*QQ/Q*QQ.

It is clear that if d is odd, so that & = 0, then |H,, 0| = 1. In the following
statement we will describe explicitly Hyy,.« is the case when I' contains only positive
numbers.

Corollary 1. Given the Hypothesis of Lemma ??, also assume that T C Qt and
that d is even so that « > 0. Then

a—1 * [e3

-Q** €T (2%), 6(n) | m}.

Proof of Corollary 7?7. First note that if ( € T', then ( € K:;lza if and only if
%/C € K},. Since, for ¢ > 0, Q[ */(] is a Galois extension of Q only if its degree
over QQ is less or equal than 2, we deduce that (- (@*2Cx = 7]2%{ Q”“QCx for a unique
squarefree € N. Furthermore Q(,/7) C K, if and only if d(n) | m (see for
example Weiss [?, page 264]). Finally the conditions () | m and n squarefree
imply in particular that n | Rad(m) and this completes the proof. O

Hm,a = {77 € N: n | ng(mng,m)a 772

Proof of Lemma ?77. By the multiplicative property of the degree, we have that

fem,a(T) = [Kn(TV4) 1 Q] = @(m) x |Gal(K,(TY9) /Ky, -
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By (??), since I'(K},)¢/(K},)? is an abelian torsion group with exponent dividing
d, we have that

kma(T) =p(m) [ [Kn(@Y"): Kpnl=em) [[ K" /K"
¢ prime ¢ prime
£%||d £%||d
Now we apply the standard Isomorphism Theorems of finite groups and obtain
that:
]_—\K:;L(a N T N FQ*@“ /Q*Z“

K% T TAK:" T (TnK:LT)Qr /o
If £ is odd, then I' N K, “=rn Q*ea Therefore

©(m)
km,a(l') = X = — x[I(d)],
|Hm vz(d ) };[me |Hm,v2 (d)|
|l
where Hppo = (I'N K,*n2 )<@*20 /Q*Qn and this concludes the proof. O

6. CHEBOTAREV DENSITY THEOREM FOR Q((,,,'V/?).

In this section we apply the celebrated Chebotarev density Theorem to the fields
Q(¢m, T/ 4). We start by stating the result proven in [?] which, for simplicity, we
specialize to the case of extensions of Q and trivial conjugacy classes:

Lemma 2 (Effective, “unconditional” Chebotarev Density Theorem.). Assume
that L/Q is a Galois extension and denote by ny, and dj, the degree and the dis-
criminant of L. Then there exist constants ¢; and co such that if

log z > 10n, log® dy,
then

li Li(zPo
H{p <t phdy,p split totally in 1/Q} = S 4 O( t :clogz)
nr, nr ecl\/%
and By > % satisfies:
1 1

< 1-— 1-— .
/60 > maX{ 410g dL’ CQdi/nL }

In order to apply the above result, we need a sufficiently sharp estimate for
logdyr. An adequate one can be found in [?].

Lemma 3. Assume that L/Q is a Galois extension and denote by ny, and dj, the
degree and the discriminant of L. Then

%L log(Rad(dp)) < logdr, < (nz, — 1)log(Rad(dg)) + ny logny.

Consider the Galois extension Q((,,, /%), where d | m and where T' C Q* is a

locally finite subgroup. So, by Lemma 77,
nQ(,r1/4) = Km,a(l) < m[T(d)].
Also note that the primes that ramify in such an extension are exactly those that ei-
ther divide m or those in Supp, I'. Therefore Rad(dgc,, r1/4)) = lem(Rad(m), ot q)
and, by Lemma 77,
log(dgyc,, ri/ay) < 2m|L(d)|log(m|T(d)|or m)-

The conditions of uniformity of Lemma ?7 are satisfied if

(m[T(d)))* log?(m|T(d)|orm) < cloga
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for some ¢ > 0. We set nr(x,n,d) to be the number of primes up to z that are
unramified and split completely in K, (T'*/4).

If we specialize the previous discussion to the case when I is a finitely generated
group and we use the upper bound in (??), we obtain:

Lemma 4. Assume that I' C Q* is a fized finitely generated subgroup of rank r.
Let m,d € N be integers such that d | m. Then there exists constants ¢; and co
depending only on I' such that, uniformly for

log & 1/(3r+3)
m<e [ ——— ,
( (loglog x)? )
as x — 00,
(@,m,d) = ——Ti(z) + O v 0
r(Z,m, - km7d(r) ne r ec2 Viogz- {loglogz | °

If we specialize the previous discussion to the case when I' = I'g, where S if a
set of primes with zero density, we obtain:

Lemma 5. Let S be a set of prime numbers with density zero. Let m,d € N be

integers such that d | m. Assume also that logor,, < m™. Then, there exist

absolute positive constants c¢1 and co < 1 such that for x — oo, uniformly for

log log x

m< og———————
logloglog x

we have

7rg(x,m,d) = li(z) + O(zexp(—(logz)*?). O

km.a(T's)

7. PROOFS OF THEOREMS ??7 AND 77

It is a criterion due to Dedekind that an odd prime p € Supp " splits totally in
K, (T'Y/4) if and only d divides the index ind,(T') and p = 1(mod n). Therefore

9) mr(z,n,d) =#{p <z: p&Suppl, p=1(modn), d|ind,(T)}.
The following combinatorial identity allows us to apply the Chebotarev Density

Theorem.

Lemma 6. Let m € Z and I’ < Q*. We have the identity
Aram) = 5SS w(dulfmr(eond,y (£n/m)),
n€Sm din f|lm
where
Sm ={n € N: Rad(n) | m and m | n}

and

y(f k) =TT e
0

Note that with the notation above v(f,n/m) | nd. In fact for every £ | f,
ve(n) —ve(m) + 1 < we(n) 4+ ve(d) since ve(m) > 1.

Proof. Let p be a prime such that p ¢ SuppI and m | ord,(I'). Then m | p—1
and there exists a unique n € S, such that p =1 mod n and (%, m) =1 (indeed
n= Hélmﬁvf(pfl)). Hence

Ar(z,m) = Z Br(z,m),

neESm,
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where Br(z,m) equals
-1

(10) # {p <z: p¢&Suppl’, m|ord,(T), p = 1(modn), (Lﬂn) = 1} .
n

Now note that if p is a prime with p & SuppI’, p = 1(modn) and (%,m) =1,
then

m|ord,(I') <= (ind,(T),n) % .

Indeed from the hypothesis that n € S,;, and from
n=(p—1,n) = (indy(I'),n)(ord,(I'), n)

we deduce that m | ord,(T') if and only if m | (ord,(T"),n) i.e. (indy(a),n) | . So

we can rewrite Br(z,m) in (77?) as

n
m

#{pﬁﬂr: p & SuppT, (ind,(D),n) |, p=1(modn), (p;l,m>=1}-

Next we apply the inclusion—exclusion formula to the conditions p = 1(mod n) and

(pn;l,m) =1, so that Ar(z,m) equals

Z Z,u(d)# {p <z: p¢Suppl', (ind,(T),n) ‘% , p = 1(mod nd)}

ne€Sy dlm

Finally observe that, if v(f,n/m) is the quantity defined in the statement of the
lemma, then

R | s iy

fln ln
y(f, 7)) lind, (T) ve () <ve(indp(T)))

So Ar(x, m) equals

> Y u@u(f)#{p < w: p & SuppT, 3(f, 1) |ind,(T), p = 1(mod nd) } .
n€Sy, dlm
fln

Applying the definition in (??) and the fact that n and m have the same radical,
we deduce the claim. (]

Proof of Theorem 7?7. Let us start from the identity of Lemma 7?7 and rewrite it
as:

Ap(z,m) = >0 ) p(d)u(f)mr (x,ndm(f,%))jL
n€Sm, dlm
nm<y fln

o ¥ T (e (1.2)

Nn€ESm, dlm
nm>y fln

= X+ 0(%).
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Note that Lemma ?? implies that if y = ¢; (log z/ log? log 2)*/7+3) | then

o= Y Y p(du(f)mr (xv”d’7(f’ %))

n€ESm, dlm
nm<y fln
u(d)p(f)li(z) x
= Z Z kg (F) +0r ec2 Ylogz- Vloglog
nESm, dlm 7 ( "'L)
nm<y f|n

= QF,m 11(1’) —l—E(x,y,m),
where

Ble,ym) < 3 - T + > Zili(z)

6, 3
T o 2 2 D)
nm<y nm>y fln
7(m) zylogy m T 1
€ T v T g 2 Gy
g m
n>y/m

since Kgn ~(f,n/m) = de(n). The choice made for y implies that the first term is neg-
ligible. For the second term observe that the Rankin Method (see [?, Lemma 3.3])
implies that for any ¢ € (0, 1), uniformly in m,

1 1
(11) > ~ e e

Hence

m T 1 m \? = 1
) g 2wy T (5) oz = =

) nESm,
n>y/m n>y/m

m r me

< 0 (i) s

2c
7(m)mcx(log log x) 3+3 T2
L Tlmmea(logloga) P

(log x) 5
Now let us deal with 5. We have that

> X (it (1.2)) <

NnESm, dlm
nm>y f\n

7(m) Z Zw(x,nd,1)+ Z Z#{k‘gx: nd |k} |,

n€ESm, dlm nESm, dlm
y<nm<z nm>z

where z is a suitable parameter that will be determined momentarily. By the
Brun—-Tichmarch Theorem and the trivial estimate, the above is

T(m)m 1 1 1
<ot | e 2 s T 2

neSm,
nm>y nm>z

Applying one more (??), we obtain the estimate

Yy < 7(m) (Qfm)f mer (Mg(xl/Z)yc - Zlc)
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2+1/c

Finally setting z = log xz and ¢ =1 —1/loglogx we obtain the claim. U

Proof of Theorem ?7. We use the formulas for the degrees ky,q (s, »)(I') of Lemma 7?7
and of Corollary ?? which in this case reads as:

k’nd,'y(f,ﬁ)(r) = H ’ [W(n/m)-&-l)

o f
where H,,q,0,(v(r, 2 )) is trivial if f is odd while if 2 | f, then va(v(f, 7)) = va(
and

va(35)
Hnd,?)g(%)-&-l = {77 € N: 77|Rad(m), 772 ’ Q 2

Thus, if for brevity we write v = Ug(%), the sum defining or ,, in the statement of
Theorem 77, equals

2 ﬁ 2 @ > nO]] ’F(zvdn/mm)‘ﬂ N

IHnd va (3 f,m>>|
))+1

n
m

v (F)+1

€ T2+, §(n) \nd} .

neSy, d|n fln L f
1 ‘LL(d) ve(n/m)+1 -t
LD DEED D IR R D D20 | LACEel
n|Rad(m) /nESm d|n fln L f
n#l 772UQ*2U+1 EF(2U+1) §(n)|nd f even
= S1+4 95,

say. To compute S7, we use the identity
Loyud) 1
n) o d n
So that

S o= > iH(u’r(zw("/m)H)‘l)

nES,  Llm

=11 > i <1—’F€J W(’"“’ 1>

Llm j>ve(m)

= IS5 (e

£lm j=>0

1 1
= S {102 5

Llm
We also deduce that for m odd,

orm = (m) H

2

Zw IT( w

fm i>1
In order to compute S5, we need to use the following lemma:

Lemma 7. With the notation above, let

S:L Z N(d).

p(n e
d(n)Ind
Then
- L ifo(n) | n;
S = %, where Tom =& —1 if 6(n) tn but §(n) | 2n;

0 ifo(n)t2n.
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Proof of Lemma ??. Set 6(n) = 22° with x odd squarefree and 3 € {0,2,3}. Fur-
ther set n = n/2% with n’ odd.

The condition §(n) | n implies that d(n) | nd for all possible d and in such a case,
we have that S = % by the multiplicativity of the involved functions.

The condition §(n) { n, 6(n) | 2n is equivalent to x | n’ and 8 = a + 1, which in
particular implies that n is even. Therefore, in this case, by multiplicativity,

n' 20471
v€{0,1},
Blaty

Finally, if the condition &(n) { 2n is satisfied, since x 1 n/, for all squarefree d | n,
we have that d(n) { nd so, in such a case, S = 0. So we can assume that = | n/,
B> a+1 and that 8 € {2,3}. It follows that

1 1 (=1)"
S=wXom) 2 o =0
v€{0,1},
at+l<platy

since the conditions on v in the sum are never satisfied. This concludes the proof.
O

Next note that Sy = 0 unless m is even. In the latter case we write

>, Sw

n|Rad(m)
n#1

where, by Lemma 77,

5 - > e S [ |
nES,, T of
nzvz(n/m)Q*z 25+ er(2ra(n/m+1)y f even

Next we use the fact that S, = 0 unless d(n) | 2n and this happens only if 7 | m.

Furthermore S,, = 0 unless there exists ¢ > 0 such that 7721'(@*?)r1 e (2. We
will set ¢, to be the least of such ¢t so that ¢, = oo if there is no ¢ with such a

property. Furthermore if s > ¢,, then 7725(@*25+1 € I(25th).
Hence, for m even, we can rewrite

Sp= Y S,
n|Rad(m),

n#1,
ty<oo

We deduce that if S, is one of the summands above, then it equals

Tnn o X
- Z ‘F 2027(7n/m+1 |H<1—‘F€f / )+1)‘ ):

nESm,
va2(n/m)>t, £>2
677 Ug ve(n/m)+1 ) 1
Z ‘1“ 21}2(n/m)+1 ’ H ( ‘ K ) ’
nESm,
v2(6(n))<va(n)+1 Z>2

va(n/m)>t,
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where €,(j) = 1if j = v2(8(n)/2) and €,(j) = —1if j > v2(6(n)/2). So S, equals

—1

_ 1 1))
Sy x 2vz(m)—1 1—2% X Z 7
va(m)+1
= 27 |T'(27)] o) 2J |r (27 —v2(m)+ )‘
Jj>wva( (n))
-1
— S x 172; " 3 en(k + va(m/2))

k k
2457 [0 2 T(2F)|

k>max{t,+1,02(6(n)/m)}

Hence,

1 -1
Orm = ——~ 1- = | X Vrms
; ; ; ;
s L\ 2 5

where, if m is odd, vr, =1 and, if m is even, vr ,,, equals

! enlk + va(m/2)
- Xemey) X X Tamen

n|Rad(m)  k>t,+1
n#lL - k>va(8(n)/m)

t,, fe%e]
If we add to the last sum above the term 7 = 1 and we observe that

e1(k +v2(m/2)) 1
2 T EReY =T

k>ti1+1
k2wv2(6(1)/m)

since t1 = 0,0(1) = 1 and € (k 4+ va(m/2)) = —1, we mildly simplify the formula
for vr ,, when m is even, obtaining:

-1

1 en(k+v2(%))
m = 1— P — 1 pUASSIRC AR
vr, ; 27 [1(29)] + Z Z 2k [T(2%)]

n|Rad(m) k>t,+1
ty<oo k>sn

-1

1
)\
jz1

n|Rad(m)

where s, = vo (2 and

m

0 if t,, = o0
1
by = 5 FIE)
1 .
423"|F(72 | + Z 72!@ |F(2k)| if Sp > tn,
k>sy
and this completes the proof. O

8. NUMERICAL DATA

In this section we compare numerical data. The density or ., can be explicitely
computed once a set of generators of I is given. In particular, the following Pari-GP
[?] code allows to compute gy, ... p,),m =rho(m,p_1---p_r).
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rho(m,q)={local(a,A,b,B,1,r,rh);
r=omega(q) ;rh=gcd(2,m) /m;
B=divisors(m) ;b=matsize(B) [2];
for(k=1,b,1=B[k];
if (isprime(1)&(1>2),
rh=rh*(1°2*(1"r-1)/(1-1) /(1" (x+1)-1))));
A=divisors(gcd(m,q));a=matsize(A) [2];
ul=0;u3=0;u2=0;
for(j=1,a,1=A[j];
if (L%h4==1,ul++) ;if (1%4==3,u3++) ;if (1%4==2,u2++));
psi=if (m%2==1,0,
if (m¥%4==2,u1+(2" (-r)-1)*(u3+u2/2" (r+1)),
if (m%8==4,ul+u3+(2" (-r)-1)*u2,ul+ud+u2)));
rth*(1-psi/ (2" (r+1)-1))}

The first table compares the values of gr, ., as in Theorem ?7? (second row)

17

9
and % (first row) with I'; = (2,...,p,), v < 7 (p; is the i—th prime) and
m =2,...,16. All values have been truncated to 7 decimal digits.
mA\L, I 2 3 1 5 6 7
2 | 0.7083259 | 0.8705329 | 0.9369869 | 0.9686946 | 0.9843725 | 0.9921912 | 0.9960977
0.7083333 | 0.8705357 | 0.9369791 | 0.9686869 | 0.9843672 | 0.9921865 | 0.9960936
3 | 0.3750162 | 0.4615489 | 0.4874978 | 0.4958546 | 0.4986178 | 0.4995315 | 0.4998315
0.3750000 | 0.4615384 | 0.4875000 | 0.4958677 | 0.4986263 | 0.4995425 | 0.4998475
1| 0.4166745 | 0.4821469 | 0.4958488 | 0.4989975 | 0.4997547 | 0.4999387 | 0.4999818
0.4166666 | 0.4821428 | 0.4958333 | 0.4989919 | 0.4997519 | 0.4999384 | 0.4999846
5 | 0.2083311 | 0.2419332 | 0.2483914 | 0.2496736 | 0.2499273 | 0.2499772 | 0.2499875
0.2083333 | 0.2419354 | 0.2483974 | 0.2496798 | 0.2499359 | 0.2499871 | 0.2499974
6 | 0.2656511 | 0.4574280 | 0.4869920 | 0.4957940 | 0.4986109 | 0.4995309 | 0.4998313
0.2656250 | 0.4574175 | 0.4869921 | 0.4958052 | 0.4986186 | 0.4995415 | 0.4998474
7 | 0.1458489 | 0.1637375 | 0.1662449 | 0.1665994 | 0.1666516 | 0.1666582 | 0.1666502
0.1458333 | 0.1637426 | 0.1662500 | 0.1666071 | 0.1666581 | 0.1666654 | 0.1666664
8 | 0.0833265 | 0.1785587 | 0.2166697 | 0.2338669 | 0.2420661 | 0.2460616 | 0.2480390
0.0833333 | 0.1785714 | 0.2166666 | 0.2338709 | 0.2420634 | 0.2460629 | 0.2480392
9 | 0.1249966 | 0.1538451 | 0.1625054 | 0.1652942 | 0.1662133 | 0.1665179 | 0.1666177
0.1250000 | 0.1538461 | 0.1625000 | 0.1652892 | 0.1662087 | 0.1665141 | 0.1666158
10 | 0.1475587 | 0.2106102 | 0.2170853 | 0.2340359 | 0.2421145 | 0.2460758 | 0.2480397
0.1475694 | 0.2106134 | 0.2170890 | 0.2340434 | 0.2421216 | 0.2460806 | 0.2480442
11 | 0.0016644 | 0.0992460 | 0.0999258 | 0.0999871 | 0.0999930 | 0.0999937 | 0.0999937
0.0916666 | 0.0992481 | 0.0999316 | 0.0999937 | 0.0999994 | 0.0999999 | 0.0999999
12 | 0.1562485 | 0.2142815 | 0.2396969 | 0.2469355 | 0.2490664 | 0.2497065 | 0.2498959
0.1562500 | 0.2142857 | 0.2396875 | 0.2469341 | 0.2490658 | 0.2497098 | 0.2499084
13 | 0.0773848 | 0.0828743 | 0.0832071 | 0.0833201 | 0.0833317 | 0.0833320 | 0.0833320
0.0773809 | 0.0828779 | 0.0832983 | 0.0833306 | 0.0833331 | 0.0833333 | 0.0833333
T4 | 0.1033220 | 0.1425403 | 0.1557674 | 0.1665792 | 0.1666493 | 0.1666580 | 0.1666592
0.1032986 | 0.1425438 | 0.1557727 | 0.1665861 | 0.1666555 | 0.1666651 | 0.1666664
15 | 0.0781280 | 0.1116612 | 0.1210907 | 0.1238016 | 0.1246141 | 0.1248689 | 0.1249475
0.0781250 | 0.1116625 | 0.1210937 | 0.1238082 | 0.1246246 | 0.1248792 | 0.1249606
16 | 0.0416661 | 0.0892749 | 0.1083288 | 0.1169345 | 0.1210315 | 0.1230292 | 0.1240151
0.0416666 | 0.0892857 | 0.1083333 | 0.1169354 | 0.1210317 | 0.1230314 | 0.1240196

The next table compares the values of of ,, as in Theorem ?? (second row) and

Ap, (10°,m)

~x(io%)

(first row) with T, = (3, ...

s Prt1), 7 < 7and 2 <m < 16.
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m\L 1 2 3 4 5 6 7

2 0.6666655 | 0.8571448 | 0.9333310 | 0.0677335 | 0.0841212 | 0.9921209 | 0.0960788%
0.6666666 | 0.8571428 | 0.9333333 | 0.9677419 | 0.9841269 | 0.9921259 | 0.9960784
3 0.3740019 | 0.4615306 | 0.4874732 | 0.4958573 | 0.4986160 | 0.4995291 | 0.4998312
0.3750000 | 0.4615384 | 0.4875000 | 0.4958677 | 0.4986263 | 0.4995425 | 0.4998475
1 0.3333555 | 0.4285866 | 0.4666680 | 0.4838841 | 0.4920754 | 0.4960635 | 0.4980383
0.3333333 | 0.4285714 | 0.4666666 | 0.4838709 | 0.4920634 | 0.4960629 | 0.4980392
5 0.2083280 | 0.2419252 | 0.2484011 | 0.2496762 | 0.2499270 | 0.2499777 | 0.2499876
0.2083333 | 0.2419354 | 0.2483974 | 0.2496798 | 0.2499359 | 0.2499871 | 0.2499974
6 0.3124943 | 0.4450448 | 0.4834115 | 0.4948565 | 0.4983650 | 0.4994672 | 0.4998148
0.3125000 | 0.4450549 | 0.4834375 | 0.4948680 | 0.4983790 | 0.4994810 | 0.4998322
7 0.1458220 | 0.1637352 | 0.1662398 | 0.1666008 | 0.1666500 | 0.1666581 | 0.1666592
0.1458333 | 0.1637426 | 0.1662500 | 0.1666071 | 0.1666581 | 0.1666654 | 0.1666664
3 0.1666562 | 0.2142034 | 0.2333303 | 0.2419403 | 0.2460312 | 0.2480318 | 0.2490220
0.1666666 | 0.2142857 | 0.2333333 | 0.2419354 | 0.2460317 | 0.2480314 | 0.2490196
9 0.1250027 | 0.1538590 | 0.1625073 | 0.1652946 | 0.1662161 | 0.1665172 | 0.1666171
0.1250000 | 0.1538461 | 0.1625000 | 0.1652892 | 0.1662087 | 0.1665141 | 0.1666158
10 | 0.1388773 | 0.1728045 | 0.2152763 | 0.2335623 | 0.2419895 | 0.2460393 | 0.2480265
0.1388888 | 0.1728110 | 0.2152777 | 0.2335715 | 0.2420015 | 0.2460503 | 0.2480366
I1 | 0.0916609 | 0.0992403 | 0.0999244 | 0.0999869 | 0.0999931 | 0.0999936 | 0.0999937
0.0916666 | 0.0992481 | 0.0999316 | 0.0999937 | 0.0999994 | 0.0999999 | 0.0999999
12 | 0.0624985 | 0.1648314 | 0.2112400 | 0.2319473 | 0.2414047 | 0.2458287 | 0.2479503
0.0625000 | 0.1648351 | 0.2112500 | 0.2319381 | 0.2413984 | 0.2458378 | 0.2479635
13 | 0.0773695 | 0.0828785 | 0.0832960 | 0.0833287 | 0.0833318 | 0.0833320 | 0.0833320
0.0773809 | 0.0828779 | 0.0832983 | 0.0833306 | 0.0833331 | 0.0833333 | 0.0833333
T4 | 0.0972166 | 0.1403456 | 0.1648538 | 0.1662621 | 0.1665672 | 0.1666369 | 0.1666534
0.0972222 | 0.1403508 | 0.1648645 | 0.1662712 | 0.1665754 | 0.1666449 | 0.1666613
15 | 0.0781188 | 0.1116473 | 0.1210896 | 0.1238047 | 0.1246196 | 0.1248686 | 0.1249482
0.0781250 | 0.1116625 | 0.1210937 | 0.1238082 | 0.1246246 | 0.1248792 | 0.1249606
16 | 0.0833204 | 0.1071366 | 0.1166656 | 0.1209677 | 0.1230143 | 0.1240113 | 0.1245069
0.0833333 | 0.1071428 | 0.1166666 | 0.1209677 | 0.1230158 | 0.1240157 | 0.1245098

The next table compares the values of fr, , (i.e. the density of primes p with

ord,(T';) k—free) (first row) and #{p§109,pe5u2rp(fdg§dp(r) is k free) (second row) for
k=2...,7andr=1,...,7.

E\T 1 2 3 4 5 6 7

0.4643728 | 0.3916870 | 0.3783724 | 0.3751626 | 0.3743029 | 0.3740588 | 0.3739871
2 0.4643773 | 0.3916738 | 0.3783458 | 0.3751487 | 0.3742881 | 0.3740453 | 0.3739753
0.8669787 | 0.7640822 | 0.7275550 | 0.7117925 | 0.7044658 | 0.7009347 | 0.6992045
3 0.8669801 | 0.7640826 | 0.7275397 | 0.7117918 | 0.7044620 | 0.7009346 | 0.6992023
0.9429226 | 0.8922523 | 0.8729475 | 0.8644050 | 0.8603871 | 0.8584410 | 0.8574845
4 0.9429270 | 0.8922653 | 0.8729480 | 0.8644003 | 0.8603827 | 0.8584393 | 0.8574853
0.9742393 | 0.9493687 | 0.9396381 | 0.9352925 | 0.9332389 | 0.9322416 | 0.9317506
5 0.9742428 | 0.9493723 | 0.9396454 | 0.9352960 | 0.9332398 | 0.9322460 | 0.9317542
0.9879809 | 0.9757187 | 0.9708684 | 0.9686929 | 0.9676621 | 0.9671607 | 0.9669135
6 0.9879833 | 0.9757210 | 0.9708738 | 0.9687015 | 0.9676725 | 0.9671724 | 0.9669251
0.9942653 | 0.9881936 | 0.9857800 | 0.9846948 | 0.9841798 | 0.9839289 | 0.9838052
7 0.9942667 | 0.9881987 | 0.9857830 | 0.9846992 | 0.9841872 | 0.9839368 | 0.9838137
0.9972219 | 0.9942060 | 0.9930041 | 0.9924629 | 0.9922058 | 0.9920804 | 0.9920185
8 0.9972247 | 0.9942058 | 0.9930081 | 0.9924704 | 0.9922122 | 0.9920868 | 0.9920254

Example. Let I' = (3% . 111533 . 113,37 . 137,22 . 52 . 11 - 13). Then Supp(T') =
(2,3,5,11,13) and the matrix associated to T is

0 00 2
3370
M=|0 00 2],
15 3 0 1
0 0 7 1

so Ay(T) =23-32-7,A3(T') =2-3 and As(T') = A1(T") = 1. Hence if £ 142,

-1 00— 1)
1-— E - — =
LD ()~ -1
j>1

while

2 24 % 21 6 2 x 11 x 127
1-— : = d 1- : = )
gy e M X om0
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Furthermore if 7 is squarefree and ¢, is finite (i.e. thQ*Tﬂ € I'(2'1) for some
t > 0), then n | 2 x 3 x5 x 11 x 13. More precisely, after some calculations, one
obtains that:

0 ifne{l,33,39,143};

1 ifp e {30,110, 130,4290};

2 ifne{3,11,10, 13,330,390, 1430};

00

ty =
otherwise.
So by (?7?)
. e if jo =1
2 iy~ (e =2
izjo ﬁ if jo=3

We conclude that

33 if n € {1,33} or if n € {39,143} and 4 | m;

23 x31
grp if 1 € {30,110,130,4290} and 4 | m;
b = s if g e {3,11,10, 13,330, 390, 1430};
") —whe i€ {39,143} and 2{|m;

15— if n € {30,110, 130, 4290} and 2||m;

T 2631
0 otherwise.

The following table compares the values of gr ,, as in Theorem ?? (second row)

and %099’;”) (first row) with I' and m = 2,...,25. The numbers are truncated

(not approximated) to the seventh decimal digit.

m 2 3 4 5 6 7 8
0.86691300 | 0.46280353 | 0.43348907 | 0.24967274 | 0.40110378 | 0.16624556 | 0.21673147
0.86693548 | 0.46280992 | 0.43346774 | 0.24967990 | 0.40110970 | 0.16625015 | 0.21673387

m 9 10 11 12 13 14 15
0.15427696 | 0.21638900 | 0.09998758 | 0.20057942 | 0.08332899 | 0.14412518 | 0.11554303
0.15426997 | 0.21639344 | 0.09999379 | 0.20055485 | 0.08333064 | 0.14412815 | 0.11555433

m 16 17 18 19 20 21 22
0.10836781 | 0.06248592 | 0.13371134 | 0.05554725 | 0.10819549 | 0.07695901 | 0.08666158
0.10836694 | 0.06249929 | 0.13374211 | 0.05555515 | 0.10822818 | 0.07694221 | 0.08666296
m 23 24 25 26 27 28 29
0.04544655 | 0.10028492 | 0.04993461 | 0.07222781 | 0.05141541 | 0.07206581 | 0.03571052
0.04545439 | 0.10027743 | 0.04993598 | 0.07222128 | 0.05142332 | 0.07206407 | 0.03571423
m 30 31 32 33 34 35 36
0.10098433 | 0.03332901 | 0.05418229 | 0.04627953 | 0.05417804 | 0.04149951 | 0.066869103
0.10099355 | 0.03333329 | 0.05418346 | 0.04627811 | 0.05418285 | 0.04150932 | 0.066871057
m 37 38 39 40 41 42 43
0.02777853 | 0.04815382 | 0.03856533 | 0.05408612 | 0.02500475 | 0.06670581 | 0.023815314
0.02777776 | 0.04816273 | 0.03856624 | 0.05409836 | 0.02499999 | 0.06668454 | 0.023809517

Conclusion. Average values of ord, (I") in the sense of Kurlberg and Pomerance [?]
or weighted sum of ind,(T") in the sense of [?] can also be considered. For example,
if m € N, in [?] Susa and the author consider the problem of enumerating primes p
such that ind,(T") = m.
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