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In the current study, the zirconium oxide (ZrO2) reinforced Aluminium Matrix Composites (AMCs) was designed as a 

brake lining and produced by mechanical alloying (MA) method. Wear tests of AMCs were performed according to ASTM 

G-99 at different sliding distance, operating temperatures and load in the range of 53 to 94 m, 20 to 340℃ and 10 to 30 N

respectively. Optimum wear performance parameters were determined using the Weighted Superposition Attraction (WSA)

algorithm. Firstly, to formulize the problem as an optimization problem through the guidance of the regression modelling, an

experimental design has been constructed, and the wear tests have been done at different reinforced rates, operating

temperature and loads. Secondly, WSA algorithm has been adapted to tackle the formulated optimization problem.

According to the results of WSA algorithm, the optimum rate of zirkonium oxide (ZrO2), load and operating temperature

was determined as 12%, 206.33°C and 21.20 N respectively while keeping the friction coefficient between 0.15–0.24.

Keywords: Aluminium matrix composites, Hot Wear, Mechanical alloying, Zirconia reinforced composite 

Introduction 

Aluminium matrix composites (AMCs) have 

superior properties such as low density, high hardness, 

high specific strength, good corrosion resistance and 

good wear resistance.
1–3

 Particle-reinforced AMCs are 

widely used in many industrial areas, especially in the 

automotive (brake system applications), aerospace and 

defence industries.
4
 In addition, AMCs stand out in 

properties such as high thermal and electrical 

conductivity. Therefore, the use of AMCs in the 

automotive industry is increasing day by day. Particle-

reinforced AMCs improve the wear resistance of parts 

that work at momently increase or constantly high 

temperature such as internal combustion engine 

pistons, automotive and aircraft brakes.
5
 Ceramic 

particles used as a reinforcing element in particle 

reinforced AMCs can expand the thermal stability and 

operating temperature range of the matrix material.
6
 

Wear resistance is an important parameter in many 

engineering fields. Many parameters such as material 

hardness, microstructure, the load it exposed during 

wear, working temperature, working environment, 

working time and speed are the factors that affect the 

wear performance of the materials.
7
 In general, 

materials with high hardness have high wear resistance. 

However, hardness in AMCs varies according to the 

reinforcement amount added to the matrix material, 

distribution, and the size of the reinforcement material. 

In addition, when added more than a certain amount of 

reinforcement materials in the matrix, the hardness of 

AMCs increases, while their wear performance 

decreases due to breaks in service conditions. Ay et al. 

investigated the wear performance of in-situ TiAl3 

reinforced composite materials in which they added 

three different amounts (2% 4% and 6 wt%) of Ti 

(Titanium) and stated that the hardness increased with 

increasing Ti amount.
1
 However, in the wear 

performance, they reported that in composites 4% and 

6% Ti added they exhibit the same wear performance 

after a certain sliding distance. Increasing the amount 

of reinforcement in the matrix causes breaks in 

working conditions of AMC materials. In addition, the 

load to which the material is exposed during wear 

directly affects the wear resistance. Increasing the 

applied load increases the stresses on the tested 

material and the contact material contact surfaces. In 

many studies carried out under different loads, reported 
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weight loss increases with increasing applied load.
8–10

 

In AMC exposed to the load, stress concentration 

occurs around reinforcement phase. With the effect of 

increased stress concentration, micro cracks formed 

(depending on time) on the contact surfaces of the 

particle-reinforced composites, proceedingly join-up of 

micro cracks and as a result debris occur (breaks) from 

the surface. In addition, another important factor is the 

operating temperatures. With the effect of increasing 

working temperature (as the material approaches 

recrystallization temperatures) the ductility of the 

material increases. Therefore, the wear resistance of 

AMCs decreases.
5,11,12

 

Going through the past studies, AMCs are 

generally known to have good wear behavior. In 

addition, the wear performances of these materials are 

determined within certain limits.
13–15

 However, 

determining all these limits at the same time requires 

a large amount of time and extra cost for researchers. 

Therefore, determination of optimum working 

conditions determines the working limits of the 

produced AMCs. These working conditions provide 

researchers that significant saving in terms of both 

time and cost. Metaheuristics can often find good 

solutions with less computational effort. Several 

meta-heuristic algorithms are proposed to search the 

feasible solution spaces. In the literature, diverse 

metaheuristic algorithms have been widely designed 

and used to solve various optimization problems.
16–20

 

The Weighted Superposition Attraction (WSA) 

algorithm is a recently developed optimization 

algorithm taking place in the class of metaheuristics. 

In this study, to identify the optimum levels of 

reinforced rate, load, and operating temperature to 

minimize the weight loss and wear rate while keeping 

the friction rate between 0.15–0.24 the WSA 

algorithm has been implemented. When these 

purposes are considered, we can state that the current 

paper has two main contributions: formulating the 

problem as a constrained optimization problem and 

solving this problem as efficiently as possible through 

the WSA algorithm. In addition, its aimed is to 

determine the optimum load temperature and 

reinforcement amount in a certain friction coefficient 

range and contribute to future studies. 
 

Materials and Methods 

Material Processing and Exerimental Procedure 

Al-Si-Mg (A356) alloy powder was used as a 
matrix material in the experimental studies. ZrO2 with 
an average powder size ≤10 µm was used as a 

reinforcing material. In AMCs production, four 
different amounts (3%, 6%, 9% and 12 wt%) of 
reinforcement were added to the matrix. In addition, 2 
wt% graphite was added as a solid lubricant to the 
matrix. The powders prepared were mechanically 
alloyed within a stainless-steel vial in a planetary type 
of mill. In the mechanical alloy, a fill rate of 50%, a 
ball powder ratio of 1:10, a milling time of 240 min, 
and as process control chemical (PCA) of 1 (wt.%) 
stearic acid were used. MA process was made in 15 
min alloying and 10 min waiting periods to prevent 
overheating of the powders. MA composite powders 
were produced green compacts in Ø12×7 mm 
dimension by pre-formed in steel mold with single 
axis hydraulic press (750 MPa). Zinc stearate was 
used as a lubricant in the cold forming (pressing) 
process of composite powders. The produced green 
compacts were sintered with 10–6 mbar vacuum,  
5 °C/min heating speed, on 550°C operating 
temperature for 60 min in a vacuum heat treatment 
furnace. After sintering, the composites were cooled 
to room temperature in the furnace. Wear tests were 
carried out according to ASTM G-99 standard by 
using pin-on disc type standard wear test device. 
Three different sliding distance (53, 72 and 94 m), 
and five different operating temperatures (20, 100, 
180, 260 and 340°C) were used in wear tests, 
including 0.5 m/s sliding speed and three different 
loads (10, 20 and 30 N). The sliding distances were 
determined to the stopping distances during braking 
of a car with different speeds.

21
 The operating 

temperatures were selected according to the 
maximum temperature formed due to friction between 
brake lining and disc during braking. In the wear tests 
was added a temperature module to the test device. 
Wear tests were started after the temperature module 
warmed up to the operating temperature and 
stabilized. Prior to the tests, the sample and disc 
surface were cleaned with ethanol. The spherical 
graphite cast iron as a counter disc was used in the 
wear tests. In every material group and at every 
temperature change, the counter disc was cleaned 
with 800 grit sandpaper with high-speed sanding 
device to ensure the same surface quality. The weight 
loss method was used to determine the wear in the 
composites. Each test was started at 0 m and weight 
loss was determined at the target distance. For 
determination of weight loss was used balance with a 
sensitivity of 1/10000 g. The weight loss, wear rate 
and friction coefficients in composites were 
calculated by taking the average of the data from 3 
different samples from each AMC group. 
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Regression Modelling  

This study formulates the relations between the 

factors (reinforced rate, load, and operating 

temperature) and the responses (weight loss, wear 

rate, and friction coefficient) through the calculated 

regression models mathematically. Then, the optimal 

or near-optimal factor levels those minimize the 

weight loss and wear rate under the constraint of 

having the friction coefficient a value from the 

interval of 0.15–0.24 are determined via the WSA 

algorithm by using the generated regression 

equations. The range in the friction coefficients used 

is according to the classes specified in “Road vehicles 

- Brake linings and pads for friction type brakes” TSE 

555 (TSE 555, 1992)
(21)

 and “Friction Coefficient 

Identification and Environmental Marking System for 

Brake Linings (stabilized Mar 2019) J866_201903.
(22)

 

Within the context of this current paper, the general 

full quadratic regression model represented in Eq. (1) 

has been used to formulize the mathematical relations 

between the factors and responses. 
 

        
 
          

 
     

      
 
           … (1) 

 

β terms represent the regression coefficients; while 

Y is the response, k is the factor number X terms are 

the factors (Xks are the linear terms,   
 s are the 

quadratic terms, and Xkks are the interaction terms), n 

is the total number of regression parameters, and ε is 

the residual error.
23

 The matrix notation for this model 

may be written as: 
 

        … (2) 
 

where, Y and X represent the output matrix (response 

values: weight loss, wear rate, and friction coefficient) 

and input matrix (factor values: reinforced rate, load, 

and operating temperature) respectively. Residuals are 

given by the ε matrix. β is a vector that is composed 

of the coefficients of the regression equation. β vector 

is calculated by using the Eq. (3).
(23,24) 

 

               … (3) 
 

After calculating the regression equation, two 

statistical indicators are looked at to see if this 

equation can be used for optimization purposes. First 

one is the coefficient of determination (  ).    

indicates how effective a regression model is in 

reflecting the dependent variables. For a successful 

formulation,    calculated via Eq. (4) is expected to 

be closer to 1 (100%). 
 

   
        

 

      
  … (4) 

If the R
2
 is closer to 1, then this means that the 

factors used to model the response are adequate and 

there is no need to use additional factors at the 

regression model.
23

 The second statistical indicator is 

the analysis of variance (ANOVA).
23

 Hypothesis 

testing can also be useful for determining the 

importance of a regression model. There are two 

standard hypotheses. The first one is the H0 (model is 

insignificant) and the other is H1 (model is 

significant). The hypothesis testing is mainly 

performed to identify if the Ho will be rejected or not. 

In line with this purpose, an appropriate and widely 

used method is the Analysis of Variance (ANOVA) 

that uses the p-value approach for decision making. 

H0 is rejected when the p-value derived from the 

ANOVA analysis is less than the α (Type-I error), 

otherwise, H1 is true and therefore the model is 

significant. In this study 95% confidence level is 

used, then this means the α = 1−0.95 = 0.05. 
 

Weighted Superposition Attraction (WSA) Algorithm 

The WSA algorithm is a recently developed 

optimization algorithm which taking place in the class 

of metaheuristics. The algorithm originally designed 

by Baykasoglu & Akpinar to tackle complex 

continuous optimization problems.
25

 The later 

implementations of the WSA algorithm have proved 

the algorithm's adequacy on tackling different 

optimization problems such as engineering design
26–

28
, binary optimization

29,30
, resource constrained 

project scheduling.
31–33

 

The WSA algorithm combines the superposition 

principle and the attracted movement of agents while 

exploring the solution space of an optimization 

problem. At the initialisation phase, the WSA 

algorithm constructs a predefined number of solutions 

randomly. After that, the WSA algorithm constructs a 

single solution via the superposition principle as a 

target solution to direct all the other solutions towards 

it in comparison to their fitness values.
27

 Before the 

start of this procedure, the WSA algorithm ranks the 

solutions on hand according to their fitness values and 

assigns weights to each solution on the basis of their 

ranks. To calculate these rank-based weights the 

WSA algorithm realizes a formula as follows: weight 

          where i is the rank of a solution and τ is a 

user defined parameter. The target solution 

determination procedure starts with an empty vector 

and turns it into a target solution iteratively as 

explained below. The procedure assigns priorities 

from the interval [0, 1] to each digit of the empty 
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vector firstly. Then, the procedure compares the 

precalculated weights of each solution with these 

priorities of the empty vector’s digits successively. If 

the procedure establishes a solution having a greater 

weight than the priority of the related digit of the 

initially empty vector, then, the procedure identifies 

the corresponding element of the related solution as a 

quotable candidate to the related empty position of the 

initially empty vector. This means, the procedure 

forms a candidate list for every digit of the initially 

empty vector. 

After that, the procedure selects one element from 

the candidate list via roulette wheel to set as an 

element of the initially empty vector therefore the 

target solution. This procedure is ended when all the 

digits of the initially empty vector filled, namely a 

target solution was obtained. The next step of the 

WSA algorithm is to update the solutions on hand via 

the guidance of the constructed target solution. The 

WSA algorithm makes every solution to compare 

their fitness values against the target solution’s fitness 

value. If the target solution is better than a solution, 

then the related solution is updated by moving it 

towards the constructed target solution. On the other 

hand, the WSA algorithm generates a random number 

from the interval [0, 1] and compares it against the 

value calculated as               , where      is the 

fitness value of solution   and        is the fitness 

value of target solution. If the randomly generated 

number is lower than or equal to the calculated value, 

then the related solution is also updated by moving it 

towards the target solution, otherwise, the related 

solution is updated by moving towards a randomly 

determined direction. The WSA algorithm updates 

each solution for its every dimension          
   at iteration t via Eq. 5. Here,   is the total number 

of decision variables of the related optimisation 

problem. 
 

                                      … (5) 
 

where,        refers to value of solution   on 

dimension  ,       is the step size,        represents 

the move direction of solution   on its dimension  , 

         denotes the distance between the value of 

solution   on its dimension  and the origin at     

iteration, and                . In Eq. 6, the second 

term (                     ) of the right-hand-side 

realizes the update of a solution on a dimension and 

the WSA algorithm executes this update via the step 

sizing function given by Eq. 6. 

         
                              

                              
  … (6) 

 

As can be seen from Eq. 6, the step sizing function 

requires an initial step size       to be set and the 

WSA algorithm updates this step size proportionally 

throughout the iterations. This update uses a random 

number   from the interval [0, 1] and the user defined 

parameters            and        . More detailed 

information about the general framework of the WSA 

algorithm and its steps can be obtained from 

Baykasoğlu & Akpinar.
25,27

 

 

Results and Discussions 

Wear Test Results 

The response surface results of weight loss versus 

reinforced rate and load are depicted in Fig. 1a. It is 

observed that the weight loss increases with 

increasing load and decreases with increasing amount 

of reinforcement in the matrix which improves the 

resistance against plastic deformation and the 

hardness and wear resistance of the material.
34

 Past 

study reports that increased reinforcement in the 

matrix improves hardness and wear resistance.
35

 

 
 

Fig. 1 — Response surface results of weight loss versus  

a) Reinforced rate and load, b) Reinforced rate and temperature 

and c) Load and temperature 
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Increasing load increases the stress on the sample 

contact surface, and this increases the particles broken 

off from the surface and causes an increase in weight 

loss. The response surface results of weight loss as a 

function of amount of reinforcement and temperature 

are shown in Fig. 1b. It can be seen in Fig.1b that the 

weight loss increases with increasing temperature and 

decreases with increasing amount of reinforcement in 

the matrix. The highest weight loss was measured for 

the matrix (Al-2% G) at 340°C and the lowest weight 

loss was measured for the composite (12% ZrO2) at 

20°C. Increasing operating temperature increases the 

ductility of the matrix and decreases the strength.
36

 

Therefore, the weight loss of composites increased at 

high working temperatures.
37,38

 Similarly, Fig. 1c 

depicts the weight loss response surface results versus 

load and temperature. As seen in Fig. 1c, the weight 

loss increases with increasing working temperature 

and load. It is understood that the applied load is more 

effective than the operating temperature on the weight 

loss of the composites produced. The matrix ductility 

increases with increasing operating temperature and 

load. Increasing stress in the wear surface and sub-

surface ignite to develop micro cracks. Micro cracks 

progress easily and combine to produce macro cracks 

at high load and operating temperatures. Zhu et al. 

reports that the wear resistance of the composites 

decreases by the increasing load and operating 

temperature.
39 

From the response surface results of wear rate as a 
function of reinforcement rate and load as shown in 
Fig. 2a, wear rate decreases with increasing amount of 
reinforcement rate for all loads. Increasing amount of 
reinforcement in the matrix increases the strength of 
the composites.

40
 Increasing the amount of 

reinforcement in the matrix provides a shared 
response to the load by both the matrix and 
reinforcement, and this decrease the weight loss and 
wear ratio. The graph also shows that the wear rate is 
high especially at low and high loads (10 N and 30 
N). At low loads, parts breaking off on the sample 
surface can easily go away from the tribological 
system which increases the wear rate. Similarly, at 
high loads, high stress developed in the sample worn 
surface increases the weight loss and wear rate. 
Similar results were observed by Kumar et al.

37
 The 

response surface results of wear rate versus 
reinforcement rate and operation temperature are 
shown in Fig. 2b. As can be seen in Fig. 2b, wear rate 
decreases with increasing reinforcement rate at all 
operating temperatures. Also, as the operation 

temperature increases, the wear rate increases at all 
loads. Wear rates also support the wear loss results as 
expected. The strength of the material decreases with 
increasing operation temperature and it causes 
increasing in wear rate and weight loss.

36
 

The response surface results of friction coefficient 

as a function of the reinforcement rate and load are 

given in Fig. 3a. Obtained results show that the 

friction coefficient decreases at all loads with 

increasing amount of reinforcement in the matrix. The 

highest friction coefficient was measured in the 

matrix at 30 N load. Increasing reinforcement rate in 

the matrix increases the hardness which causes 

decreasing in friction coefficient. Similar results were 

observed by Simsek et al.
35

, Uyyuru et al.
41 

and Çelik 

et al.
42 

The response surface results of friction 

coefficient as a function of reinforcement rate and 

temperature are given in Fig. 3b. As seen in Fig. 3b, 

the friction coefficient increases with increasing 

operating temperature. Increasing of  ductility  of  the  

 
Fig. 2 — Response surface results of wear rate versus  

a) Reinforced rate and load, b) Reinforced rate and temperature 

and c) Load and temperature 
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Fig. 3 — Response surface results of friction coefficient  

a) Reinforced rate and load b) Reinforced rate and temperature  

c) Load and temperature 
 

matrix at high temperatures decreases the strength of 

the material. Wear particles that break off the sample 

surface during the wear test smear on the surface and 

this lead to increase the surface roughness, causing an 

increase of friction coefficient.
6,43

 The response 

surface results of friction coefficient as a function of 

the temperature and load are given in Fig. 3c. Results 

show that the friction coefficient increases with 

increasing load and temperature. It was observed that 

the highest friction coefficient is measured at the 

highest operating temperature for all loads. The 

material strength decreases, and the surface roughness 

increases with increase in operating temperature, and 

this leads to the increase in friction coefficient. 

In Fig. 4, the SEM images of the worn surface of 

12% ZrO2 reinforced AMC materials at different 

temperatures are shown. It further demonstrates the 

deformation on the sample surface increases with 

increasing in the operation temperature. Worn surface 

SEM images (Fig. 4a) of the composite tested at room 

temperature show deformation tracks and parallel 

spalling to the sliding direction on the surface. In the 

worn surface obtained at 100°C temperature, micro 

cracks and micro chipping smeared on the surface are 

observed. Also, there are worn particles smeared on 

the surface. At higher operating temperatures, parallel 

grooves to the slide direction on the surface are 

observed. When the temperature reaches 260°C and 

340°C (Figs 4d and 4e), there are more micro cracks 

and spalling than those of at lower temperatures (Figs 

 
 

Fig. 4 — SEM images of worn surfaces in different temperature under 30 N loads of composite materials the 12% ZrO2 contain at:  

a) Room Temperature, b) 100°C, c) 180°C, d) 260°C, e) 340°C 
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4 a–c). Stress concentrations caused by higher 

temperature and higher load leads to micro cracks as 

the slide distance increases.
44

 The presence of micro 

cracks on the surface weakens the bond between the 

reinforcing material and the matrix and allows the 

micro cracks to progress more easily which leads to 

macro cracks just beneath the wear surface and 

spalling on the wear surface.
45 

Similar results were 

observed by Simsek et al.
43

 
 

WSA Results 

The main goal of this current paper is to optimize 

the objectives of weight loss and wear rate under the 

friction coefficient constraint. The reinforced rate, 

load, and operating temperature have been identified 

as the factors affecting these objectives. In line with 

this purpose, the regression models have been 

formulized firstly and then an optimization problem 

has been developed thanks to these models. After that, 

this paper has aimed to optimize this problem via the 

WSA algorithm. The aforementioned factors with 

their actual and coded levels are represented Table 1. 

With the guidance of the factor levels depicted in 

Table 1, an experimental design has been created and 

the related experiments have been executed. The 

experimental results are presented in Table 2. The 

formulas exposing the relations between the 

independent and dependent variables have been 

obtained as the second-order regression forms from a 

small number of observations of the responses 

provided by the experimental setup. To ensure the 

clarity for the readers, the regression equations have 

been formulized by using the observed factor levels 

due to the actual factor levels. However, for a 

successful implementation of the WSA algorithm, we 

preferred to use formulas determined with the 

guidance of the coded factors. In this study, the 

handled problem is a multi-objective optimization 

since the aim is to minimize the weight loss and wear 

rate simultaneously under the constraint of having a 

friction coefficient from the interval of 0.15–0.24. To 

optimize this multi-objective problem via the WSA 

algorithm, the coded responses have been used as 

stated before. For this purpose, each column has been 

divided by that column's highest observation value. 

We present  the  regression  equations  with  uncoded 

values for the readers; however, in the background for 

the WSA algorithm, models were used for coded factor 

levels and responses. The R
2
 and ANOVA do not 

change. The R
2
 values of the regression models have 

been determined through the ANOVA analyses done 

via MINITAB 16 statistical package. For the 

optimization phase, we have coded the WSA algorithm 

in MATLAB (R2019b) and obtained the results by 

running the algorithm on a personal computer having 

Intel Core i7 – 2.2 GHz processor and 8 GB RAM. As 

a result of the experimental design of the uncoded units 

calculated via Eqs (1–3), the second-order polynomial 

regression models (full quadratic models) given by Eqs 

(7–9) have been obtained. 
 

                                         
                            
               

              
  

              
                    

                                    … (7) 
 

                                       
                              
               

                
  

              
                  

                                   … (8) 
 

                                       
                              
               

                
  

             
                    

                                   … (9) 
 

The    statistics (  ,   -Prediction,   -Adjusted) 

associated with the given models for the responses 

have been calculated via MINITAB-16. The results 

for    statistics are summarized in Table 3. 

From the observation of the data given in Table 3, 

it can be clearly seen that the formulized regression 

models satisfactorily reflect the dependent variables 

due to the    values close to 100%. The factors of 

namely reinforced rate, load, and operating 

temperature have been successfully realized to model 

the mentioned responses. The significance of the 

formulized regression models (Eqs (7–9)) can be 

clearly seen from the ANOVA results represented in 

Table 4. Due to the p-values lower than alpha (5%) 

the alternative hypothesis (H1) is accepted, and this 

situation correspond to the significant regression 

models and by this means these models can be used 

for the optimization purpose. 

Table 1 — Factors list of actual and corresponding coded values 

of reinforced rate, load, and operating temperature 

Factor Symbol abbreviation 
Level 

−1 0 1 

Reinforced rate (wt%) RR X1 0 6 12 

Load (N) L X2 10 20 30 

Temperature (°C) T X3 20 180 340 
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Table 3 — Calculated    values 

Response    (%)   (predicted) (%)   (adj) (%) 

Weight loss 99.04 98.35 98.79 

Wear rate 94.83 90.54 93.49 

Friction coefficient 99.67 99.41 99.59 

Table 4 — ANOVA results for the regression models 

Response Symbol P-Value vs Alpha Result 

Weight loss     0.000 < 0.05 Model significant 

Wear rate     0.000 < 0.05 Model significant 

Friction coefficient     0.000 < 0.05 Model significant 

Table 2 — Design of experiments and observed responses 

Run No. 
Original factor levels Coded factor levels Weight loss Wear rate 

Friction 

coefficient 

X1 X2 X3 X1 X2 X3              

1 0 10 20 −1 −1 −1 20.6000 8.2729 0.0595 

2 0 10 180 −1 −1 0 26.9000 10.8020 0.0733 

3 0 10 340 −1 −1 1 35.1000 14.0960 0.0815 

4 0 20 20 −1 0 −1 36.8000 7.3894 0.1233 

5 0 20 180 −1 0 0 44.6000 8.9556 0.1477 

6 0 20 340 −1 0 1 55.2000 11.0841 0.1919 

7 0 30 20 −1 1 −1 79.3000 10.6155 0.1900 

8 0 30 180 −1 1 0 93.3333 12.4941 0.2610 

9 0 30 340 −1 1 1 98.2000 13.1456 0.3060 

10 3 10 20 −1 −1 −1 18.9667 7.4897 0.0590 

11 3 10 180 −1 −1 0 26.0000 10.2670 0.0727 

12 3 10 340 −1 −1 1 31.2330 12.3330 0.0798 

13 3 20 20 −1 0 −1 35.3333 6.9764 0.1121 

14 3 20 180 −1 0 0 45.1333 8.9113 0.1465 

15 3 20 340 −1 0 1 53.2333 10.5106 0.1778 

16 3 30 20 −1 1 −1 76.7667 10.1048 0.1830 

17 3 30 180 −1 1 0 84.6000 11.1359 0.2470 

18 3 30 340 −1 1 1 90.5000 11.9125 0.2890 

19 6 10 20 0 −1 −1 21.2667 8.2721 0.0584 

20 6 10 180 0 −1 0 23.7000 9.2180 0.0719 

21 6 10 340 0 −1 1 31.0000 12.0580 0.0804 

22 6 20 20 0 0 −1 33.1000 6.4374 0.1077 

23 6 20 180 0 0 0 43.1333 8.3888 0.1422 

24 6 20 340 0 0 1 56.0000 10.8911 0.1621 

25 6 30 20 0 1 −1 68.5333 8.8858 0.1760 

26 6 30 180 0 1 0 79.7000 10.3336 0.2320 

27 6 30 340 0 1 1 85.8000 11.1245 0.2890 

28 9 10 20 1 −1 −1 18.6000 7.1254 0.0569 

29 9 10 180 1 −1 0 22.2000 8.5040 0.0710 

30 9 10 340 1 −1 1 25.7660 9.8700 0.0774 

31 9 20 20 1 0 −1 32.0667 6.1422 0.1010 

32 9 20 180 1 0 0 38.0000 7.2786 0.1376 

33 9 20 340 1 0 1 48.3333 9.2579 0.1631 

34 9 30 20 1 1 −1 70.8667 9.0493 0.1670 

35 9 30 180 1 1 0 77.1000 9.8453 0.2190 

36 9 30 340 1 1 1 90.7000 11.5820 0.2660 

37 12 10 20 1 −1 −1 16.6330 6.2526 0.0566 

38 12 10 180 1 −1 0 21.2660 7.9940 0.0692 

39 12 10 340 1 −1 1 23.7000 8.9090 0.0741 

40 12 20 20 1 0 −1 30.6000 5.7515 0.0949 

41 12 20 180 1 0 0 35.3333 6.6411 0.1366 

42 12 20 340 1 0 1 45.3333 8.5207 0.1596 

43 12 30 20 1 1 −1 56.9667 7.1381 0.1660 

44 12 30 180 1 1 0 65.6000 8.2199 0.2270 
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When the ranges of design parameters are  

considered, it is obvious that the regression equations 

formulized for the responses of weight loss, wear rate, 

and friction coefficient have satisfactory levels of 

accuracy. The performances of the formulized models 

are clarified in Table 5. The reader must be aware that 

the    is depicted the observed responses while  

   is depicted the expected results calculated through  

the formulized regression equations. Additionally,     , 

     and     , which are calculated by the formula 

given in Eq. (10), refers to the prediction error of the 

ith run. 

Table 5— Performance tests for the regression equations 

Run No. 

(i) 

Original factor levels Weight loss Wear rate Friction coefficient 

X1 X2 X3          
     

(%) 
         

     

(%) 
         

     

(%) 

1 0 10 20 20.6000 20.34097 1.27 8.2729 8.492079 2.58 0.0595 0.062922 5.44 

2 0 10 180 26.9000 25.97813 3.55 10.8020 10.72118 0.75 0.0733 0.077594 5.53 

3 0 10 340 35.1000 32.55528 7.82 14.0960 13.17322 7.00 0.0815 0.084432 3.47 

4 0 20 20 36.8000 39.36711 6.52 7.3894 7.644857 3.34 0.1233 0.117798 4.66 

5 0 20 180 44.6000 47.14596 5.40 8.9556 9.486071 5.59 0.1477 0.154881 4.64 

6 0 20 340 55.2000 55.86482 1.19 11.0841 11.55022 4.04 0.1919 0.184128 4.20 

7 0 30 20 79.3000 78.21311 1.39 10.6155 10.1911 4.16 0.1900 0.194988 2.56 

8 0 30 180 93.3333 88.13366 5.90 12.4941 11.64443 7.30 0.2610 0.254481 2.56 

9 0 30 340 98.2000 98.99422 0.80 13.1456 13.32068 1.31 0.3060 0.306138 0.05 

10 3 10 20 18.9667 20.10167 5.65 7.4897 8.067221 7.16 0.0590 0.058409 1.01 

11 3 10 180 26.0000 25.52272 1.87 10.2670 10.14526 1.20 0.0727 0.072653 0.06 

12 3 10 340 31.2330 31.88377 2.04 12.3330 12.44623 0.91 0.0798 0.079062 0.93 

13 3 20 20 35.3333 37.51951 5.83 6.9764 7.226651 3.46 0.1121 0.110052 1.87 

14 3 20 180 45.1333 45.08225 0.11 8.9113 8.916799 0.06 0.1465 0.146706 0.13 

15 3 20 340 53.2333 53.585 0.66 10.5106 10.82988 2.95 0.1778 0.175526 1.28 

16 3 30 20 76.7667 74.75721 2.69 10.1048 9.779548 3.33 0.1830 0.184009 0.55 

17 3 30 180 84.6000 84.46166 0.16 11.1359 11.08181 0.49 0.2470 0.243073 1.62 

18 3 30 340 90.5000 95.10611 4.84 11.9125 12.607 5.51 0.2890 0.294302 1.80 

19 6 10 20 21.2667 19.26975 10.36 8.2721 7.535996 9.77 0.0584 0.056069 4.16 

20 6 10 180 23.7000 24.4747 3.17 9.2180 9.462968 2.59 0.0719 0.069885 2.88 

21 6 10 340 31.0000 30.61964 1.24 12.0580 11.61287 3.83 0.0804 0.075866 5.98 

22 6 20 20 33.1000 35.0793 5.64 6.4374 6.702079 3.95 0.1077 0.104479 3.07 

23 6 20 180 43.1333 42.42594 1.67 8.3888 8.241161 1.79 0.1422 0.140705 1.03 

24 6 20 340 56.0000 50.71258 10.43 10.8911 10.00318 8.88 0.1621 0.169096 4.11 

25 6 30 20 68.5333 70.70871 3.08 8.8858 9.261628 4.06 0.1760 0.175202 0.46 

26 6 30 180 79.7000 80.19705 0.62 10.3336 10.41282 0.76 0.2320 0.233838 0.79 

27 6 30 340 85.8000 90.6254 5.32 11.1245 11.78695 5.62 0.2890 0.28464 1.53 

28 9 10 20 18.6000 17.84523 4.23 7.1254 6.898404 3.29 0.0569 0.055903 1.78 

29 9 10 180 22.2000 22.83407 2.78 8.5040 8.67431 1.96 0.0710 0.06929 2.47 

30 9 10 340 25.7660 28.76291 10.42 9.8700 10.67315 7.52 0.0774 0.074844 3.42 

31 9 20 20 32.0667 32.04648 0.06 6.1422 6.071139 1.17 0.1010 0.101079 0.09 

32 9 20 180 38.0000 39.17702 3.00 7.2786 7.459156 2.42 0.1376 0.136877 0.56 

33 9 20 340 48.3333 47.24756 2.30 9.2579 9.070106 2.07 0.1631 0.16484 1.07 

34 9 30 20 70.8667 66.0676 7.26 9.0493 8.637341 4.77 0.1670 0.168569 0.93 

35 9 30 180 77.1000 75.33984 2.34 9.8453 9.637469 2.16 0.2190 0.226777 3.43 

36 9 30 340 90.7000 85.55207 6.02 11.5820 10.86053 6.64 0.2660 0.27715 4.02 

37 12 10 20 16.6330 15.8281 5.09 6.2526 6.154445 1.59 0.0566 0.057909 2.26 

38 12 10 180 21.2660 20.60083 3.23 7.9940 7.779285 2.76 0.0692 0.070869 2.35 

39 12 10 340 23.7000 26.31356 9.93 8.9090 9.627059 7.46 0.0741 0.075994 2.49 

40 12 20 20 30.6000 28.42105 7.67 5.7515 5.333832 7.83 0.0949 0.099853 4.99 

41 12 20 180 35.3333 35.33549 0.01 6.6411 6.570784 1.07 0.1366 0.135222 1.04 

42 12 20 340 45.3333 43.18992 4.96 8.5207 8.030668 6.10 0.1596 0.162757 1.97 

43 12 30 20 56.9667 60.83388 6.36 7.1381 7.906687 9.72 0.1660 0.164109 1.15 

44 12 30 180 65.6000 69.89001 6.14 8.2199 8.755749 6.12 0.2270 0.221889 2.30 
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  … (10) 

 

The confirmation tests for the regression equations 

are presented in Table 6. In this table, the 

performance of the models is given for different 

factor values that were not used when calculating the 

regression models. 

Results presented in Table 6 indicate that the 

regression models are able to reflect the given 

observations with the prediction errors (PE) less than 

8%. In the second stage of this paper, we have firstly 

modelled the problem as a constrained continuous 

optimization problem (by using the preidentified 

regression Eqs (7–9) as given below. 

 

                            … (11) 

s.t. 
s.t.                              ;          ; 

          ;              … (12) 

Secondly, we used the WSA algorithm to tackle the 

problem. Since the problem is a constrained 

optimization problem, the WSA algorithm requires a 

constraint handling mechanism to prevent the 

algorithm to result in infeasibility. Therefore, the 

ITCH approach
27,46,47

 was adapted to the WSA 

algorithm. Additionally, the values of the control 

parameters of the WSA algorithm with their 

definitions are given in Table 7. All the values given 

in Table 6 were determined through a set of 

preliminary experiments. The confirmations for the 

optimization results are given in Table 8. 

Optimization results obtained for load and 

temperature in the model proposed in the study are as 

Table 6 — Confirmation tests for the regression equations 

Run No. 

(i) 

Original factor levels Weight loss Wear rate Friction coefficient 

X1 X2 X3          
     

(%) 
         

     

(%) 
         

     

(%) 

1 0 10 100 24.6000 23.04205 6.76 10.2230 9.578764 6.73 0.0668 0.071237 6.23 

2 0 10 260 30.1830 29.14921 3.55 12.1210 11.91933 1.69 0.0762 0.081992 7.06 

3 0 20 100 40.9000 43.13903 5.19 8.2127 8.537597 3.81 0.1392 0.137319 1.39 

4 0 20 260 53.2333 51.38789 3.59 10.6892 10.49028 1.90 0.1736 0.170484 1.80 

5 0 30 100 84.9667 83.05588 2.30 11.3741 10.8899 4.45 0.2290 0.225714 1.46 

6 0 30 260 96.2000 93.44644 2.95 12.8779 12.45469 3.40 0.2720 0.281289 3.30 

7 3 10 100 24.2660 22.69469 6.92 9.5826 9.078373 5.55 0.0686 0.06651 3.14 

8 3 10 260 28.0660 28.58574 1.82 11.0830 11.26788 1.64 0.0760 0.076837 1.09 

9 3 20 260 51.4000 49.21613 4.44 10.1486 9.845474 3.08 0.1636 0.162095 0.91 

10 3 30 100 80.8000 79.49194 1.65 10.6357 10.40281 2.24 0.2160 0.21452 0.69 

11 6 10 260 27.7000 27.42967 0.99 10.7740 10.51005 2.51 0.0778 0.073855 5.34 

12 6 20 260 48.7000 46.45176 4.84 9.4714 9.094303 4.15 0.1515 0.15588 2.84 

13 9 10 100 21.2000 20.22215 4.84 8.1210 7.75849 4.67 0.0669 0.063576 5.23 

14 9 10 260 24.7730 25.68099 3.54 9.4740 9.645863 1.78 0.0756 0.073046 3.50 

15 9 20 100 34.9333 35.49425 1.58 6.6912 6.737281 0.68 0.1233 0.119957 2.76 

16 9 20 260 40.9000 43.09479 5.09 7.8341 8.236764 4.89 0.1477 0.151838 2.74 

17 9 30 100 74.8333 70.58622 6.02 9.5559 9.109538 4.90 0.2030 0.198652 2.19 

18 12 10 100 18.9330 18.09697 4.62 7.1170 6.938999 2.57 0.0641 0.065368 1.94 

19 12 10 260 24.3000 23.3397 4.11 9.1340 8.675306 5.29 0.0748 0.074411 0.52 

20 12 20 100 31.6000 31.76077 0.51 6.3452 5.924441 7.10 0.1200 0.118517 1.24 

Table 7 — Parameters with their values of the WSA algorithm 

Parameter Definition Value Parameter Definition Value 

MaxIter Maximum number of iterations 50000 λ User defined parameter 0.75 

NS Number of solutions at each iteration 50 φ User defined parameter 0.0001 
τ User defined parameter 0.8 sl0 Initial step size 0.001 

 

Table 8 — Confirmations for the optimization results 

Response Reinforced Rate (X1) Load (X2) Temperature (X3) (  ) WSA (   )    (%) 

Weight loss 12 21.205289 206.334328 40.4739±3.12 39.7205 1.9 

Wear rate 12 21.205289 206.334328 7.2765±1.016 6.8715 5.9 
Friction coefficient 12 21.205289 206.334328 0.1507±0.0012 0.1500 0.5 



J SCI IND RES VOL 81 MAY 2022 

 

 

472 

given in Table 8. However, in the confirmation tests, 

was used as load 21.2 N and temperature 206.3 ± 1°C 

due to the test device sensitivity. The results given in 

Table 8 represents that formulized constrained 

continuous problem is an effective tool to optimize 

slot design parameters due to the prediction errors at 

most 5.9%. According to the obtained results, we  

can strongly conclude that the WSA algorithm has  

an effective prediction performance in solving  

the  modelled   constrained   continuous   optimization  

problem. We can also claim that the WSA algorithm 

is able to produce accurate predictions for the 

problem on hand. Additionally, an average CPU time 

of 24.9834 seconds confirms the effectiveness of the 

WSA algorithm in terms of execution time. In the 

literature, it is reported that the optimum parameters 

are determined with low error rates for maximum 

wear resistance in studies conducted with different 

optimization methods.
48–50

 
 

Conclusions 

In the current study, we have dealt with 

determination of the wear performance parameters to 

minimize the weight loss and wear rate while keeping 

the friction rate between 0.15–0.24. A constrained 

continuous optimization model has been developed for 

the related problem through the guidance of the 

regression modelling and after that, this optimization 

problem has been solved via the WSA algorithm. The 

main goal of the WSA algorithm was to find the 

optimal or near-optimal wear performance parameters 

namely operation temperature and load, and rate of 

zirconium oxide (ZrO2) in aluminium matrix 

composites (AMCs). Empirical relationships between 

the wear performance parameters and the responses 

have been derived through the regression modelling. 

Then, by using these regression models, we were able 

to formulate the problem as an optimization model 

through which we could tackle the problem via the 

WSA algorithm. The parameters namely reinforced 

rate, load and operating temperature were optimised 

using the desirability based WSA algorithm to 

minimise the weight loss and wear rate while keeping 

the friction coefficient between 0.15–0.24. For AMCs, 

minimum weight loss and wear rate predicted was 

40.47 g and 7.27×10
−3

 mm
3
/Nm respectively at a rate 

of 12% ZrO2, load of 21.20 N and operating 

temperature of 206.33°C. Confirmation test results 

given in Table 8 confirmed these findings and the 

effectiveness of the designed WSA algorithm.  

It further predicts an error of weight loss and wear rate 

of 1.9% and 5.9% respectively. These results indicate 

that WSA algorithm performed slightly better results 

for the responses focused within the context of this 

paper. In addition, in this study, it was seen that the 

amount of reinforcement, load and temperature 

parameters of the composite materials, which are 

desired to work in the desired friction coefficient  

range from D class friction materials according to the 

TSE 555 standard, can be determined with a very low 

error rate. 
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