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Existing single beacon navigation systems commonly require precise known Effective Sound Velocity (ESV) and beacon 
position, as well as clock synchronization between the beacon and the hydrophone. However, these conditions are often 
difficult to guarantee in practical applications. Unknown clock drift, inaccurate ESV and beacon position will affect the 
range measurement precision, and consequently induce large localization errors. To eliminate the influence of above 
mentioned factors on the positioning accuracy, this paper proposes a new method of single beacon navigation. It treats clock 
drift, ESV and beacon position as unknown system parameters, and estimates them by the Expectation Maximization (EM) 
method. The advantages of new method are verified by field data. Numerical examples indicate that the method has better 
navigation performance than existing state-of-the-art methods in the presence of unknown clock-drift, ESV and beacon 
position setting error. 
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Introduction 
In the past several decades, the Autonomous 

Underwater Vehicles (AUVs) have played a crucial 
role in civilian and military applications, such as the 
underwater operation, environmental inspection, 
maritime search and rescue1-3. Accurate position 
perception is an essential condition for AUVs to 
complete the predetermined underwater tasks. 
Because Global Navigation Satellite System (GNSS) 
signals are not available underwater, underwater 
navigation is extremely challenging. There are two 
main categories of commonly used underwater 
navigation methods: the dead reckoning using 
proprioceptive sensing and the acoustic navigation 
aided by acoustic signal. Dead reckoning predicts the 
new position relative to previous position fix by 
depending on the estimates of AUV velocity and 
travel time. Unbounded cumulative position error is 
common in dead reckoning method, which restricts its 
practical application in long-term underwater 
operation. The localization of acoustic navigation 
technology is achieved by the range/range differences 
measured by the Time of Arrival (TOA)/ Time 
Differences of Arrival (TDOA) of acoustic signals. 
The most common method is Long Baseline (LBL) 
localization system, which provides a position fix by 
the acoustics triangular measurement from widely 
spaced fixed beacons. Typically, the LBL system is 

used for relatively wide area coverage navigation, and 
the positioning error is in meters. However, the 
expense and time of establishing an acoustic network 
limit the utilization of LBL system4-5. In addition to 
LBL system, the single beacon navigation method, 
which fuses the dead reckoning data and slant-range 
information from a single beacon, also has attracted 
the attention of researchers. Comparing with dead 
reckoning and LBL system, single beacon navigation 
method has bounded positioning error and better 
flexibility, which improve its application potential in 
underwater navigation. 

Considerable research efforts have been devoted to 
single beacon underwater navigation6-15. Larsen6 
proposed the concept of synthetic LBL system that 
incorporates dead reckoning data and range and/or 
range rate measurements of single acoustic beacon. 
Similarly, Lee et al.7 proposed the single beacon 
navigation model based on the combination of Inertial 
Measurement Unit (IMU), Doppler Velocity Log 
(DVL), depth sensor and single range measurement. 
Jin et al.8 combined the concept of synthetic LBL 
system with Ultra-Short Baseline (USBL) system, and 
proposed a novel single beacon navigation system. 
The vehicle is equipped with IMU and multiple 
hydrophones, and uses the range difference 
measurements to correct the dead reckoning data 
through Kalman filter. Rypkema et al.9 proposed a 
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similar navigation system, in which the vehicle-
mounted hydrophone array is used to acquire the 
acoustic range and angle measurements from AUV to 
single acoustic beacon, so as to realize self-
localization. 

Positioning error of single beacon navigation 
system mainly comes from three sources: 1) The 
Effective Sound Velocity (ESV) setting error. 
Because of the multi-path propagation of acoustic 
signal and the variations in water temperature, 
pressure, and salinity, ESV is location-correlated and 
difficult to determine precisely. The ESV setting error 
will lead to large range measurement error, and 
accordingly cause large localization error. 2) The 
unknown clock-drift. Accurate acoustic transit time 
depends on accurate clock synchronization between 
the clock of beacon and the core clock of AUV. This 
is commonly realized by synchronizing the beacon 
and AUV to the GNSS time before each operation. 
However, for the AUVs need to stay in the 
underwater environment for a long time, the amount 
of clock-drift during that time scale is noteworthy16. 
For instance, the Woods Hole Oceanographic Institute 
(WHOI) micro-modem, which is widely used in the 
single beacon navigation system, has a average clock 
drift of 162 microseconds per hour17. This represents 
that if the task lasts more than an hour, the unknown 
clock drift can be a remarkable source of error17. 3) 
The beacon position setting error. The estimation of 
AUV position depends on accurate beacon position, 
which requires calibration before performing the task. 
Commonly, the beacon is deployed on the surface 
vehicle, and its position is estimated through the range 
measurements between the beacon and the vehicle at 
different locations18. Any error in the calibration will 
directly affect the AUV navigation performance. All 
the single beacon navigation systems proposed6-9 
assume that ESV and beacon position are precisely 
known, and are based on the precise clock 
synchronization. These unrealistic assumptions will 
affect the practical performance of the single beacon 
navigation system. 

Zhu et al.10-15 treated the ESV and acoustic transit 
time as the state variable and measurement variable, 
respectively, and proposed the single beacon 
navigation model to estimate unknown ESV. 
Literature10-15 indicates that the model exhibits good 
navigation performance. However, unknown clock 
drift and inaccurate beacon position were not 
considered in Zhu & Hu10, Zhu et al.11,12, Qin et al.13, 

Yu et al.14 and Deng et al.15. In addition to the single 
beacon navigation, some existing researches about the 
LBL localization system also considered unknown 
clock drift, inaccurate ESV and beacon positions. 
Batista proposed the LBL localization model with 
clock drift and inaccurate ESV19. The additive and 
multiplicative factors were introduced to compensate 
the influence of clock drift and inaccurate ESV, 
respectively. Olson et al.20 considered the unknown 
beacon positions in the LBL system. Beacon positions 
were augmented as state variables, and were 
determined in the navigation process by voting 
scheme20. Both of above systems need multi-beacon 
range measurement, and both do not consider 
unknown clock drift, inaccurate ESV and beacon 
positions simultaneously. In practical underwater 
tasks, the navigation system proposed in  
literature10-15,19,20 may have large positioning error 
induced by one or two error sources. To the 
knowledge of the authors, the published literatures on 
designing the single beacon navigation method do not 
consider the effect of unknown clock drift, inaccurate 
ESV and beacon position simultaneously. 

Based on the Expectation Maximization (EM) 
method2,21-26, a single beacon navigation method 
was proposed in the case of unknown clock drift, 
inaccurate ESV and beacon position in this paper. 
The unknown clock drift, ESV and beacon position 
are treated as system parameters and iteratively 
estimated through EM method. Since both the clock 
drift and the ESV are dynamic in practice, the 
online version of the EM method26 will be utilized 
to estimate time-varying system parameters. 
Navigation performance of the proposed single 
beacon navigation method will be demonstrated by 
filed data.  
 
Materials and Methods  

In this section, the EM method will be utilized to 
eliminate the influence of unknown clock drift, 
inaccurate ESV and beacon position.  
 

Single beacon underwater navigation model 
The kinematic and measurement models of the 

single beacon navigation system are reviewed in this 
part. The reader can refer to Zhu & Hu10 and Gadre & 
Stilwell27 for model details. Based on the assumption 
that the ocean current and the in-water velocity of the 
vehicle are constant within the discrete-time interval

t , the discrete-time kinematic model of the single 
beacon navigation is as follows: 
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Where, kx  and ky  represent the horizontal coordinates 
of the hydrophone at epoch k ; ,cx kv  and ,cy kv  represent 
the ocean current components in the x  and y  
directions, respectively; ,wx kv  and ,wy kv  represent the 
in-water velocity components of the vehicle in the x  
and y  directions, respectively; kx , kA , kB  and ku  
represent the state vector, the system transition matrix, 
the control matrix and the input vector, respectively; kw  
denotes the system uncertainty, which is modeled as a 
Gaussian white noise process. The vehicle speed ,w kv  
can be estimated by the speed reading of the vehicle 
propeller. Combining ,w kv  with the vehicle heading k  

measured by an electronic compass, ,wx kv  and ,wy kv  can 

be obtained through , , coswx k w k kv v   and 

, , sinwy k w k kv v  , respectively. Assuming that the two 

groups of uncertainty in kw  are mutually independent, 

the covariance matrix 4 4
k R Q  for kw  can be 

characterized by two parameters: c for the ocean 
current uncertainty, and w  for the vehicle in-water 
speed uncertainty. The specific expression of kQ  can 
be referred to sources Zhu & Hu10 and Zhu et al.11,12. 

Most single beacon navigation systems treat the 
slant range as measurement variable6-9, which is based 
on the assumption that the ESV and beacon position 
are precisely known, and the clock synchronization is 
accurate. To explicitly express the clock drift, ESV 
and beacon position in the measurement equation, we 

treat the acoustic transit time as measurement 
variable, and write the corresponding measurement 
equation as follows: 

 
     2 2 2

,
,

k b k b k ba e t
k k k k t k

e k

x x y y z z
m T T T

v
    

      … (2) 
 
Where, a

kT  and e
kT  denote the measured Time of 

Arrival (TOA) and the known Time of Emission 
(TOE), respectively;  , ,k k kx y z  and  , ,b b bx y z  are 
the coordinates of the vehicle and the beacon, 
respectively; ,e kv  denotes the ESV; t

kT  denotes the 
clock drift; and ,t k  denotes the measurement 
uncertainty associated with acoustic transit time. In 
this paper, both kz  and bz  are assumed as the known 
quantity obtained from depth sensors; ,t k  is modeled 
as a zero-mean white Gaussian process with the 
variance ,t kR ; bx , by , ,e kv  and t

kT  are all treated as 
unknown deterministic system parameters. 

By denoting ,, , ,
Tt

k b b e k kx y v T   θ  as the 
unknown system parameter set, Eq. 2 can be written 
as follows: 

   ,,k k k k t km h  x θ               … (3) 
 
Where,  
 

2 2 2
,( , ) ( ) ( ) ( ) t

k k k k b k b k b e k kh x x y y z z v T      x θ
 
Online EM method 

The online EM method stated in Huang26 is used to 
estimate the kθ  along with the state vector kx . The 
purpose of the EM method is to iteratively calculate 

kθ  and kx , and get an increasingly good 
approximation of the Maximum Likelihood (ML) 
estimate. In the EM method, the cost function is 
defined as  ( ), i

k kQ θ θ , where ( )i
kθ  denotes an 

approximate value of estimated kθ  at the ith step 
iteration.  ( ), i

k kQ θ θ  is defined as: 
 

   

   ( )

( ) ( )
1: 1:

1: 1:

, E log , ,

log ,
k k

ik k

i i
k k k k k k

k k k k k

Q p

p p d

   

 
x θ

θ θ

θ θ m x θ m

m x x m x  
  

 … (4) 
 
Where, E [ ]x  denotes an expectation with respect to 

x ;  log   represents the natural logarithmic 

function;  pθ a  represents the Probability 



INDIAN J GEO-MAR SCI, VOL 50, NO 11, NOVEMBER 2021 
 
 

972

Distribution Function (PDF) of a random vector a , 
which is dependent on the parameter θ ; 1:km  
represents the measurements from the first to the kth 
epoch; and  |p x y  is the condition probability of x  
given y . 

During each iteration, the approximation of 
estimated kθ  can be written as the solution of 
following optimization problem26: 
 

 ( 1) ( )arg max ,
k

i i
k k kQ 

θ
θ θ θ

 
… (5) 

 
Denoting N as the total iteration times, the EM 

estimation of the unknown parameter kθ  is 
 

( )ˆ N
k kθ θ                … (6) 

 
From Huang26, the inequality  
       ( )

( ) ( ) ( )
1: 1: , ,ik k

i i i
k k k k k kL L Q Q  θ θ

m m θ θ θ θ

 
                 … (7);  

 
always holds, in which    1: 1:log

k kk kL pθ θm m  is 
the cost function of ML method. Therefore, the 

 1:k kLθ m  is non-decreasing as each iteration 

proceeds. Through calculating  ( ), i
k kQ θ θ  at E-step, 

and solving the optimization problem Eq. 5 at M-step 
iteratively, the EM method is formulated. 
 
E-Step 

 ( ), i
k kQ θ θ  is calculated in the E-step. Because 

process noise kw  and measurement noise ,t k  are 
both assumed as white noise, the state is Markovian, 
and the measurement is conditional independent, 

 1: ,
k k kpθ m x  can be decoupled26 as: 
 
       1: 1: 1 1: 1, | |

k kk k k k k k kp p p m p θ θm x x m x m
  … (8) 

 

Due to the linearity of kinematic model, if the a 
posterior  1 1: 1|k kp  x m  is Gaussian,  1: 1|k kp x m  
will also be Gaussian2: 
   1: 1 | 1 | 1ˆ| ; ,k k k k k k kp N  x m x x P             … (9) 

Where,  ; ,N x μ Σ  denotes the Gaussian PDF 

with mean vector μ  and covariance matrix Σ . | 1ˆ k kx  

and | 1k kP  are the a prior state estimate and the a 
prior covariance matrix at the kth epoch, respectively, 
which can be directly obtained through the prediction 
procedure of the Kalman filter10-12: 

 
| 1 1 1| 1 1 1ˆ ˆ=k k k k k k k     x A x B u                         … (10) 

 

| 1 1 1| 1 1 1= T
k k k k k k k     P A P A Q                         … (11) 

 
Where, 1| 1ˆ k k x  and 1| 1k k P  are the a posterior state 
estimate and the a posterior covariance matrix at the 
k-1th epoch, respectively. 

Since the measurement model  ,k k kh x θ  is 

nonlinear, conducting the linearization of  ,k k kh x θ  

at the nominal point  ,k kx θ , one gets 
 
       , ,

k kk k k k k k k k k kh h    x θx θ x θ H x x H θ θ
  … (12) 

 
Where, 
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h h

   

 
 

 x θ
x x θ θ x x θ θ

x θ x θ
H H
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 … (13) 
 
are the Jacobians of the measurement model at the 
nominal point ( , )k kx θ . Using the linearized model 
Eq. 12, the likelihood PDF can be approximated by a 
Gaussian distribution: 
 

        ,| ; , ,
k k kk k k k k k k k k k t kp m N m h R    θ x θx x θ H x x H θ θ

  … (14) 
 
Substitute Eqs. 9 and 14 into Eq. 8, and conduct the 

logarithm operation. By neglecting the terms 
independent of kθ , one gets 

        2 1
1: ,, 0.5 ,

k k k kk k k k k k k k k k t kL m h R c         θ x θ θm x x θ H x x H θ θ
 

 
 … (15) 

Where, 
k

cθ  represents the constant value relative to 

variable kθ . 
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Fix ( )i
kθ  and calculate the estimation of kx . Denote 

the a posterior PDF with parameter ( )i
kθ  as 

 
   ( )

( ) ( )
1: | |ˆ| ; ,i

k

i i
k k k k k k kp N

θ
x m x x P

          
 … (16) 

 
Based on known ( )i

kθ , select ( 1)
|ˆ i

k k
x  as the nominal 

state and conduct the linearization of Eq. 3. The 
corresponding Jacobian is 
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xH

 

 … (17) 
 

In the case that ( )i
kθ  is given, Eq. 3 is independent 

of kθ . Therefore,  
k k kθH θ θ  on the right hand of 

Eq. 15 does not exist. Based on the Jacobian, the 
correction procedure of extended Kalman filter is 
utilized for calculating  ( ) 1:|i

k
k kp

θ
x m (refs. 10-12) as: 

  1( ) ( ) ( ) ( )
| 1 | 1 ,k k k

i i T i i T
k k k k k t kR



  x x xK P H H P H       … (18) 

 
    ,( ) ( ) ( 1) ( ) ( ) ( 1)

| | 1 | | 1 |ˆ ˆ ˆ ˆ ˆ
k

i i i i i i
k k k k k k k k k k k k k km h  

     xx x K x θ H x x

  … (19) 
 

( ) ( ) ( )
| | 1 | 1k

i i i
k k k k k k k   xP P K H P              … (20) 

 

Where, ( )i
kK  is the Kalman gain. 

Choosing  ( ) ( )
|ˆ i i

k k kx θ,  as the nominal point, 

 ( ), i
k kQ θ θ  can be calculated as: 

       
 

,
2( ) 1 ( ) ( ) ( ) ( ) ( ) ( )

, | |
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ˆ                ; ,
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 … (21) 
 

Where, ( )
k

i
xH  and ( )

k

i
θH  are the Jacobian of ( )

|ˆ i
k kx , and 

( )i
kθ , respectively. By denoting 

 

     2 2 2( ) ( ) ( ) ( ) ( )
| |ˆ ˆ ˆi i i i i

k k b k k b k br x x y y z z      … (22) 

 

( )
k

i
xH  and ( )

k

i
θH  can be written as 
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 … (23) 
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k
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 … (24),  
 
respectively. 

 
Simplify Eq. 21 as 
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M-Step 

The maximum point of  ( ), i
k kQ θ θ  with respect to 

kθ  will be found in the M-step. In this study, we will 
adopt the analytic method based on the calculation of 
stationary point. By maximum point definition, ( 1)i

k
θ

should satisfy Frandsen et al.28: 
 

 
( 1)

( )

1 4

,

i
k k

i
k k

k

Q








 


θ θ

θ θ
J 0

θ
 

            … (27) 

 
 

( 1)

2 ( )

2

,
0

i
k k

i
k k

k

Q




 


θ θ

θ θ
H

θ
 

            … (28) 

Where, 1 4
1 4


 0  denotes zero vector, and 0H  

denotes H  is a negative definite matrix. 
The first and second order derivatives of 
 ( ), i

k kQ θ θ  with respect to kθ  are shown in Eqs. 29 
and 30, respectively. 
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From Eq. 29, Eq. 27 is satisfied if and only if 
 ( ), 0i

k k θ θ . Because there are four unknown 

parameters and one equality constraint, kθ  has 

infinite solutions. Selecting t
kT  as the variable, and 

choosing bx , by  and ,e kv  as their nominal values bx , 

by  and ,e kv  during the iteration process, one gets 
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Combining Eqs. 27 and 31: 
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Denote the leading principal minors of matrix C  as 
 1,2,... , 1,2,...p p nC , which are the determinants 

of the upper left p p  submatrices of C (ref. 29). From 
Eq. 30, one gets 
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，
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            … (33) 

From Eq. 33 and Theorem 1.4 in Wilson29, if ,t kR  
is positive, then matrix H  is negative semi-definite. 
Therefore, Eq. 28 is not satisfied, which means that 
Eq. 32 is not the maximum point of  ( ), i

k kQ θ θ . 
However, negative semi-definite matrix H  ensures 
   ( 1) ( ) ( ) ( ), ,i i i i

k k k kQ Q θ θ θ θ  always holds. From Eq. 
7, the measurement likelihood is still non-decreasing 
as each iteration proceeds, which indicates that it is 
reasonable to update the unknown parameters using 
Eq. 32. 
 
Algorithm 

Combing E-Step with M-Step, EM-based single 
beacon underwater navigation method at kth epoch is 
listed in Algorithm 1. In addition, we use indirect 
ocean current measurement to correct the ocean 
current10-15 (the corresponding standard deviation of 
measurement noise is denoted as cm ). Specific 
correction steps can refer to literature10-15, and are 
omitted for simplicity. 
 
Results 

The navigation performance of the proposed  
EM-based method (to be referred to as “PM”) will be 
investigated by field data with unknown clock drift, 
Algorithm 1 — EM-based single beacon navigation method with 

inaccurate ESV, beacon position and clock drift 

Input: (0)
1| 1 1| 1 ,ˆ , , , , , , t

k k k k k e k b b km v x y T    x P . 

1: Calculate | 1ˆ k kx  and | 1k kP  through Eqs. 10 and 11, 
respectively. 

2: Initialization: (0)
| | 1ˆ ˆk k k kx x , (0)

| | 1k k k kP P . 

3: Calculate (0)r̂  and (1)t
kT  through Eqs. 22 and 31, 

respectively. 
4: for 1i   to N do 

5: Calculate ( )
k

i
xH  through Eq. 17. 

6: Calculate ( )i
kK  and ( )

|ˆ i
k kx  through Eqs. 18 and 19, respectively. 

7: Calculate ( )ˆ ir  and ( 1)i
k
θ  through Eqs. 22 and 32, 

respectively. 
8: end for 

9: ( ) ( ) ( )
| | 1 | 1k

N N N
k k k k k k k   xP P K H P . 

10: ( ) ( )
| | | |ˆ ˆ ,  N N

k k k k k k k k x x P P . 

Output: | |ˆ ,k k k kx P . 
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inaccurate ESV and beacon position. In addition, the 
performance of traditional single beacon navigation 
method based on the synchronized clock, precise ESV 
and beacon position27,30 (to be referred to as “SM”), 
and the navigation method which can estimate the 
unknown ESV10-12 (to be referred to as the “SAM”) 
will also be evaluated as a comparison. 

The method of collecting field data can be referred 
to literature10-12. To verify the performance of the 
proposed method, clock drift and beacon position 
offset are added in the field data artificially. The clock 
drift between the beacon and the hydrophone has been 
set as 0.005 / 3600 st

kT k t   , which means the 
navigation system has a clock-drift of 5 ms per hour. 
Both beacon position offset bx  and by  are set 
equal to 20 m. When implementing SAM, PM and 
SM, the following initial settings are selected: (1)  
0.5 m/s for the initial cxv  and cyv  offset, (2) 1520 m/s 
for the nominal ev , and (3) (0) 0t

kT  s for the PM. 
The tuning parameters of these three methods are: (1) 

0.01c   m/s, (2) 0.1w   m/s, (3) 1e   m/s for 
SAM, (4) 0.001tm  s, (5) 5rm   m, (6) 

0.01cm   m/s and (7) 0 m for the nominal beacon 
position offset. In particular, the iterations N of EM 
based method is chosen as 15. 

The comparison of the estimated trajectories 
among SAM, PM and SM is shown in Figure 1, 
together with the true and the nominal beacon 
position. Similarly, the comparison of horizontal 
distance error    2 2ˆ ˆH x x y y      among three 
methods is shown in Figure 2. The Average Root 
Mean Square (ARMS) of horizontal distance error 
ARMS H , defined as: 
 

   2 2

1

1 ˆ ˆARMS T
H k k k kk

x x y y
T 

      

 

… (34) 
It is also utilized as the evaluation index, in which  
T  represents the total number of fixed sampling 
intervals. The ARMS H of SAM, PM and SM are 
9.7949, 0.4264, and 24.5856 m, respectively. From 
Figures 1 and 2 and the comparison of ARMS H , 
one concludes that PM has the highest accuracy 
among these three navigation methods in the presence of 
unknown clock drift, inaccurate ESV and beacon 
position. The clock drift utilized in this paper is 
commonly much bigger than it’s actual value  

(for instance, the WHOI micro-modem has a average 
clock drift of 162 microseconds per hour17). Even under 
this unrealistic adverse condition, PM exhibits a 
satisfactory navigation performance. Because two or 
three error sources are not considered in SAM and  
SM, the localization errors of both methods  
are divergent.  
 
Conclusion 

In real applications, the navigation performance of 
single beacon navigation system was always affected 
by the unknown clock-drift between the beacon and 
the hydrophone, as well as the ESV and the beacon 
position setting error. To eliminate the localization 
error induced by the unknown clock drift, the 

 
 

Fig. 1 — Planar position estimates comparison among SAM, PM
and SM. The square markers in the sub-graph represent the esti 
 

 
 

Fig. 2 — Horizontal distance error comparison among SAM, PM
and SM 
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imprecise knowledge of the ESV and the beacon 
position, this paper proposed an EM-based single 
beacon underwater navigation method, which treated 
the clock drift, the ESV and the beacon position as 
unknown system parameters, and estimated these 
parameters through EM method. Numerical examples 
using field data indicated that the navigation  
accuracy of proposed method significantly outperform 
that of existing state-of-the-art methods in the 
presence of unknown clock-drift, inaccurate ESV and  
beacon position. 
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