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Real-time implementation of hyperspectral imagery is an emerging research area which has notable remote sensing 

applications. It is challenging to process a huge volume of hyperspectral data under real-time constraints. Field 

programmable gate arrays are considered as an efficient hardware suited for onboard processing system. ATGP is a proven 

target detection algorithm which can automatically detect the target without any predefined data. In the traditional method, 

this algorithm involves orthogonal subspace projector which makes the hardware design too complex and slow. To speed up 

the process, Gram-Schmidt orthogonalization operator is used. Gram-Schmidt orthogonalization technique uses inner 

product instead of matrix inverse which makes the hardware design easy to implement in FPGA board. A detailed 

comparative analysis is carried out using three different hyperspectral images to emphasize the performance of the design 

which is adopted in this technique. The processing speed of the proposed ATGP-GS algorithm is 3.484 s for ROSIS Pavia 

University dataset, 1.781 s for HYDICE Urban dataset and 1.609 s for AVIRIS Cuprite dataset. The proposed algorithm is 

implemented in Virtex 6 ML605 evaluation board to evaluate the real-time performance of the system.  

Keywords: Automatic target generation process, Field programmable gate array, Gram-Schmidt orthogonalization, 

Hyperspectral imaging, Onboard processing 

Introduction 

Hyperspectral imaging sensors captures numerous 

spectral bands at varying wavelengths to characterize 

the objects present in the surface of Earth.
1,2

 These 

imaging systems generate large data volumes consist 

of rich information about the scene which is more 

detailed than the conventional imaging systems like 

multispectral sensors. Moreover, sub-pixel level 

analysis is not possible with multispectral images 

because it has only few spectral bands.
3 

The main 

challenge in processing of hyperspectral images is the 

huge dimension of data. Because of the possibility of 

sub-pixel analysis and availability of rich information, 

the hyperspectral images can be used in number of 

applications which includes environmental modeling, 

wildfire management, pollutants detection in water 

and atmosphere, biological threat detection, military 

and security applications and so on. 

During two decades, a large number of target 
detection algorithms have been introduced by 
researchers.

4–9
 The main aim of target detection 

algorithms is to recognize the pixels in a 
hyperspectral data cube when a specific target is 
given. Real-time identification of manmade and 
natural targets from hyperspectral images has become 
more important in the field of military and security 
purpose. From the literature

10,11
, it is proved that 

Automatic Target Generation Process (ATGP) has 
good target detection accuracy. Initially, ATGP was 
implemented using Orthogonal Subspace Projection 
(OSP) operator which is more complex due its matrix 
inversion operation.

1
 This will slow down the 

operation and affect the real time performance. To 
overcome this problem, another version of ATGP is 
introduced with Gram-Schmidt Orthogonalization 
technique.

12
 This technique will reduce the complex 

matrix multiplications and performs only vector 
operations. This will reduce the computations and 
makes the system to perform fast. The target detection 
process is shown in Fig. 1. 

The latest development in hyperspectral imaging 

instruments increases the spatial, spectral and 

temporal resolution of data cube. This introduces a 

new challenge in fast processing and analyzing 

hyperspectral data. To accelerate the computational 
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speed, it is necessary to use hardware accelerators for 

real-time processing of data.
13,14

 Field programmable 

gate arrays (FPGAs) are the preferred hardware 

solution compared to graphical processing units 

(GPUs), clusters of computers and multicore 

processors. This is because of the following three 

reasons: 1) small size, weight and low power 

consumption, 2) tolerance to ionizing radiation, and 3) 

reconfigurable property.
15

 

The performance of the proposed algorithm is 

evaluated using three real hyperspectral datasets namely 

Airborne Visible Infra-Red Imaging Spectrometer 

(AVIRIS), Hyperspectral Digital Image Collection 

Experiment (HYDICE) and Reflective Optics 

Spectrographic Imaging System (ROSIS). The proposed 

algorithm was implemented on the Xilinx Virtex-6 

XC6VLX240T FPGA of the ML605 evaluation board. 

 

Materials and Methods 
 

Dataset Description 

We considered three hyperspectral images for the 

experimental analysis. These images are chosen for 

analysis because they have highly reliable reference 

data and the results can be compared with the high 

spectral resolution. The dataset is available in the 

websitehttp://lesun.weebly.com/hyperspectral-data-

set.html.  
 

AVIRIS Cuprite Mining Site Dataset  

The most popular hyperspectral dataset is Cuprite 

data captured by AVIRIS (Airborne Visible Infrared 

Imaging Spectrometer) sensor over the Cuprite 

mining site, Nevada, in 1997. There are 224 spectral 

bands in the Cuprite image ranging from 370 nm to 

2480 nm. This image has 350 × 350 pixels with 

approximately 10 nm spectral resolution. There are 

188 bands after removing the noisy bands (i.e. 1–2 

and 221–224) and the water absorption bands (i.e. 

104–113 and 148–167). This cite consist of minerals 

including alunite, buddingtonite, calcite, kaolinite, 

and muscovite. The image scene from AVIRIS 

considered in our experiments is shown in Fig. 2. 
 

HYDICE Urban Dataset 

The second dataset is recorded by the HYDICE 

(Hyperspectral Digital Image Collection Experiment) 

sensor in October 1995, which is an urban area at 

 
 

Fig. 1 — Hyperspectral target detection process 
 

 
 

Fig. 2 — (a) AVIRIS Image Scene with RGB bands (31, 20, 12); 

(b) Region of interest 
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Copperas Cove, near Fort Hood, Texas, USA. This 

image has 307 × 307 pixels with the spatial resolution 

of 2 m per pixel and spectral resolution of 10 nm. It 

has 210 spectral bands ranging from 400 nm to 2500 

nm. There are only 162 bands after removing noise 

bands such as 1–4, 76, 87, 101–111, 136–153 and 

198–210 due to dense water vapor and atmospheric 

effect. The urban image considered for analysis is 

shown in Fig. 3. 
 

ROSIS Pavia Dataset 

The third dataset is acquired using ROSIS 

(Reflective Optics System Imaging Spectrometer) 

over the Pavia University, northern Italy. This image 

has 610 × 340 pixels with a spectral coverage ranging 

from 0.43 to 0.86 μm. The number of bands in this 

image is 103 spectral bands and a spatial resolution of 

1.3 m per pixel. It covers an urban environment, with 

various solid structures (asphalt, gravel, metal sheets, 

bitumen, bricks), natural objects (trees, meadows, 

soil), and shadows. The ROSIS image scene of Pavia 

University is shown in Fig. 4. 
 

Linear Mixing Model 

In the structured modelling methods, the target 

detection involves Linear Mixing Model (LMM) 

which is evaluated by considering the variability of 

pixels. In LMM, the mixed pixel is considered as a 

collection of spectra of endmembers.
3
 Consider 𝐿 is 

the number of spectral bands available in the dataset 

and there are 𝑝 target signatures, 𝑚1 ,𝑚2 ,… ,𝑚𝑝  

present in the image. Let 𝑚𝑗  is an 𝐿 × 1 column 

vector denoted by the 𝑗th
 target signature and 𝑟 is an 

𝐿 × 1 column vector which denotes the spectral 

signature of a pixel vector. Linear Mixing Model can 

be represented as: 
 

𝑟 = 𝑀𝑎 + 𝑛 … (1) 
 

where 𝑛 is considered as an 𝐿 × 1 column vector 

denotes the additive white noise with zero mean and 

variance 𝜎2𝐼𝐿×𝐿and 𝐼𝐿×𝐿 is the 𝐿 × 𝐿 identity matrix. 

The image pixel vector is normally a mixed pixel and 

the signature of the mixel pixel is the combination of 

target signatures.  
 

Automatic Target Generation Procedure-Orthogonal 

Subspace Projection  

The Automatic Target Generation Procedure 

(ATGP) automatically finds a set of spectrally distinct 

endmembers in the hyperspectral image when there is 

no prior knowledge of target is available.
8
 This 

algorithm estimates the end members by iterative 

orthogonal projections of the input and finding the 

largest magnitude vector of these projections.  

In ATGP algorithm, the first target pixel vector is 

first selected and is represented as 𝑡0. Then the image 

pixels are projected onto the orthogonal space  𝑡0 
⊥. 

The first target is chosen by considering maximum 

length pixel vector in  𝑡0 
⊥ and is denoted by 𝑡1. This 

procedure is continued to obtain all the target vectors 

until a stopping criterion is satisfied.  

Rewrite the model Eq. (1) as follows 
 

𝑟 = 𝑡𝑎𝑝 + 𝐵𝛾 + 𝑛 … (2) 
 

where 𝑡 = 𝑚𝑝denotes the desired target signature and 

𝐵 =   𝑚1 ,𝑚2 ,… ,𝑚𝑝−1  represents undesired spectral 

signature matrix. To annihilate 𝐵 from image pixel 

vector, an orthogonal subspace projector is used and 

is given by 
 

𝑃𝐵
⊥ =  𝐼 − 𝐵 𝐵𝑇𝐵 −1𝐵𝑇  … (3) 

 
 

Fig. 3 — HYDICE Image Scene with RGB bands (40, 30, 10) 
 

 
 

Fig. 4 — ROSIS Image Scene with RGB bands (50, 30, 15) 
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Applying 𝑃𝐵
⊥ to Eq. (2) results in a new model 

 

𝑃𝐵
⊥𝑟 = 𝑃𝐵

⊥𝑡𝑎𝑝 + 𝑃𝐵
⊥𝑛 … (4) 

 

The signal-to-noise ratio (SNR) is given as 
 

𝑆𝑁𝑅 𝑥 =  
(𝑥𝑇𝑃𝐵

⊥ 𝑡)𝑎𝑝
2 (𝑡𝑇𝑃𝐵

⊥𝑥)

𝑥𝑇𝑃𝐵
⊥𝐸[𝑛𝑛𝑇 ]𝑃𝐵

⊥𝑥
 … (5) 

 

as the standard criterion. The SNR is maximized by a 

matched filter represented by 𝑀𝑡  with 𝑥 = 𝜅𝑡 where 𝜅 

is a constant and 𝑡 is the desired target signature. The 

combination of 𝑃𝐵
⊥ with 𝑀𝑡  is known as an orthogonal 

subspace classifier 𝑃𝑂𝑆𝑃  is denoted by 
 

𝑃𝑂𝑆𝑃  =  𝑀𝑡𝑃𝐵
⊥ =  𝑡𝑇𝑃𝐵

⊥ … (6) 
 

The orthogonal subspace projector is given as 

𝑃𝐵
⊥ =  𝐼 − 𝐵 𝐵𝑇𝐵 −1𝐵𝑇  which is applied to all 

image pixels. The steps involved in ATGP-OSP is 

shown in Algorithm 1. 
 

Algorithm 1: ATGP-OSP 

1. Inputs: 𝐹 : hyperspectral image cube (lines x 

rows x bands) 

𝑝 : the number of targets to be detected 

2. 𝑐 = 𝐹𝑇𝐹 % To find the largest length pixel 

3. 𝑖𝑑𝑥 = arg𝑚𝑎𝑥[1,…,𝑟]𝑐 : ,𝑁  

4. 𝑡0 = 𝐹(: , 𝑖𝑑𝑥) 

5. 𝐵 =  𝑡0 0 ,… ,  0 where 𝑡0 be the initial 

endmember with maximum length 

6. for 𝑖 = 1 to 𝑝 − 1 do 

7. 𝑃𝐵
⊥ =  𝐼 − 𝐵 𝐵𝑇𝐵 −1𝐵𝑇 ; 

8. 𝑣 = 𝑃𝐵
⊥𝐹; 

9. 𝑖 = arg𝑚𝑎𝑥[1,…,𝑟]𝑣 : , 𝑖 ; 

10. 𝑡𝑖 = 𝐵 : , 𝑖 + 1 = 𝐹 : , 𝑖 ; 
11. end for 

12. Output: 𝐵 = [𝑡0 ,  𝑡1 ,… , 𝑡𝑝−1]; Endmember 

matrix 
 

Automatic Target Generation Procedure-Gram Schmidt 

Orthogonalization 

The ATGP-GS algorithm is proposed to reduce the 

computational complexity of the traditional OSP 

which adopts a enhanced version of Gram–Schmidt 

method.
16

 This method uses the previously formulated 

information which speed up the entire process. The 

classical orthogonal projection approach involves 

matrix calculation which is difficult to compute in 

hardware. This method involves inner product space 

which orthogonalizes the set of vectors. The 

hyperspectral image F is defined in the space Rn  and 

this process involves a linearly independent vectors 

V =  {v1 ,… . . , vk } for k ≤ n , and creates an 

orthogonal vectors U =  {u1,… . . , uk} which has the 

same k-dimensional subspace of Rn  as V. The 

operation operator is expressed as  
 

proju v =
<𝑣,𝑢>

<𝑢 ,𝑢>
u … (7) 

 

where < 𝑣,𝑢 >represents the inner product of vectors 

u and v. The initial endmember is selected by 

extracting the maximum magnitude vector. After the 

selection of first endmember, the ATGP-GS  

algorithm detects the new endmembers by finding the 

vector which has largest orthogonal projection with 

the previously extracted endmember. Moreover, 

ATGP-GS algorithm check whether the new 

endmember are not as same as the previously 

extracted endmember and also it ensures the extracted 

endmembers are really a new endmember. The steps 

involved in ATGP-GS algorithm is explained in 

Algorithm 2. 
 

Algorithm 2 ATGP-GS 

1. Inputs: 𝐹 : hyperspectral image cube (lines x 

rows x bands) 

 𝑝 : the number of targets to be detected 

2. =  𝑡0 0 ,… ,  0  ; where 𝑡0 be the initial 

endmember with maximum magnitude in 

orthogonal space. 

3. 𝑈 =  0 0 ,… ,  0  ; for storing the orthogonal 

base generated by GS process 

4. for 𝑖 = 1 to 𝑝 − 1 do 

5. 5.𝑈[: , 𝑖] = 𝐵[: , 𝑖]; 
6. 𝑃𝐵

⊥ =  1,… ,1 ; 
7. for 𝑗 = 2 to 𝑖 do 

8. 𝑝𝑟𝑜𝑗𝑈 :,𝑗−1  𝐵 : , 𝑖  = 𝐵 : , 𝑖 𝑇𝑈 : , 𝑗 − 1 /

𝑈 : , 𝑗 − 1 𝑇  𝑈 : , 𝑗 − 1 𝑈 : , 𝑗 − 1 ; 
9. 𝑈 : , 𝑖 = 𝑈 : , 𝑖 − 𝑝𝑟𝑜𝑗𝑈 :,𝑗−1  𝐵 : , 𝑖  ; 

10. end for 𝑗 
11. 𝑤 =  1,… ,1 ; 
12. for 𝑘 = 1 to 𝑖 do  

13. 13.𝑝𝑟𝑜𝑗𝑈 :,𝑘  𝑤 =
𝑤𝑇𝑈 :,𝑘 

𝑈 :,𝑘 𝑇𝑈 :,𝑘 𝑈 :,𝑘 
; 

14. 𝑃𝐵
⊥ = 𝑃𝐵

⊥ − 𝑝𝑟𝑜𝑗𝑈 :,𝑘  𝑤 ; 

15. end for 𝑘 

16. 𝑥 = 𝑃𝐵
⊥𝐹; 

17. 17.. 𝑖 = arg𝑚𝑎𝑥[1,…,𝑟]𝑥 : , 𝑖 ; 

18. 𝑣𝑖 = 𝐵 : , 𝑖 + 1 = 𝐹 : , 𝑖 ; 
19. end for 

20. Output: 𝐵 = [𝑡0 ,  𝑡1 ,… , 𝑡𝑝−1]; Endmember 

matrix 
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Hardware Implementation 

The hardware architecture of the ATGP-GS 

algorithm to implement in FPGA board is shown in 

Fig. 5. The prefetching approach is adopted to store 

the data using off-chip memory. The data 

communication is managed by DDR3 SDRAM and a 

direct memory access (DMA). MicroBlaze is the 

softcore processor available in the Virtex board which 

controls the operations of DMA and FIFO. The 

proposed algorithm is implemented in the 

reconfigurable unit and the output is obtained using 

RS232 port which is controlled by RS232 controller. 

In this section, anenhanced version of ATGP 

algorithm is implemented using high performance 
Virtex board. The endmembers are calculated by 
orthogonal projections which is formulated by Gram-
Schmidt method. The modules to deploy ATGP-GS 
algorithm along with I/O communications using AXI 
Interconnect bus is shown in Fig. 6. 

In this work, parallelization is adopted to minimize 
the execution time. The calculation of maximum 
projections is the time-consuming stage. This requires 
a huge number of dot products and should be 
executed in parallel manner. The modules of dot 
product unit are shown in Fig. 7. The hardware 

required to execute the dot-product is multiplier, 
adder and a register. 

The architecture of the maximum length module to 

find the initial target signature and also the maximum 

length vector after adopting orthogonal projection is 

described in Fig. 8. The length of the pixel 𝑓𝑖  is 

calculated using the formula  𝑓𝑖
𝑁
𝑘=1 (𝑘) × 𝑓𝑖(𝑘). To 

compute this step, two pixels are retrieved from 

DDR3 SDRAM at the same time. After calculating 

the length, the value is compared with the already 

extracted maximum value and if it is a new maximum 

value, then it is saved for next iteration. This will be 

carried out for all number of spectral bands. 

The modules to implement the projection operator 

are explained in Fig. 9. This module performs the 

operation 𝑃𝐵
⊥ − (𝐵𝑇𝑈/𝑈𝑇  𝑈). This module consists 

of dot product followed by a divider. The result of 

divider is multiplied with the Matrix Memory 𝑈. Then 

 
 

Fig. 5 — Hardware architecture of the complete system 

 
 

Fig. 6 — Modules to implement ATGP-GS Algorithm 
 

 
 

Fig. 7 — Dot Product Unit 
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the result is obtained by subtracting with the vector 

memory 𝑃𝐵
⊥.  

The step-by-step description of proposed 

architecture and its workflow to extract the set of  
𝑝 endmembers from a hyperspectral image is given 

below. 

 At first, Microblaze choose a set of 𝑝 

endmembers randomly and issue a signal to DMA 

for writing these initial endmembers in the FIFO. 

 Then, the control unit accepts these endmembers 

and moves them to the registers. After storing in 

registers, the volume of these endmembers are 

formulated and stored in a register. 

 Once the Microblazestore the initial set of 

endmembers, it sends a signal to the DMA to 

transfer the data from the DDR3 SDRAM to the 

FIFO.  

 After storing the first pixel in FIFO, the ATGP-

GS module will perform the operation. A new 

row of pixel is sent to the dot product module for 

every clock cycle. The control unit monitors 

whether it is a first target and maximum length is 

calculated. It identifies this set of pixels as the 

first target. Then the projection operator is 

calculated and followed by dot product to find the 

next target. This will be repeated for all 𝑝 number 

of targets. 
 

Results and Discussion 
 

Performance of Software Implementation 
We have considered ATGP algorithm to identify 

the spectral signatures in the hyperspectral data cube. 

The optimization of this algorithm involves Gram-

Schmidt Orthogonalization technique which does not 

have complex matrix inverse calculations. The 

processing time of these two algorithms is visualized 

in Table 1. The ATGP-GS algorithm has low 

computational time which indicates that the fast 

processing of hyperspectral data cube.  
 

Target-Detection Accuracy Evaluation 

The spectral similarity between the USGS library 

spectra and the corresponding endmembers  

extracted by the considered implementation of the 

ATGP algorithm is determined using spectral angle 

distance (SAD). It is important to emphasize that 

smaller SAD values indicate higher spectral 

similarity. The SAD between a target 𝑡𝑖  detected by 

the ATGP algorithm and a reference spectral 

signature 𝑠𝑖  is given by 

 
 

Fig. 8 — Modules to find maximum length 
 

 
 

Fig. 9 — Modules to find projection operator 
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𝑆𝐴𝐷 𝑡𝑖 , 𝑠𝑖 = 𝑐𝑜𝑠−1  
𝑡𝑖 ∙𝑠𝑖

 𝑡𝑖 ∙ 𝑠𝑖 
  … (8) 

The good detection performance of the targets is 

determined by low SAD values. The SAD values for 

the endmembers of AVIRIS Cuprite, HYDICE Urban 

and ROSIS Pavia University is shown in Table 2. The 

SAD values indicate that the ATGP-GS optimization 

does not penalize ATGP-OSP in terms of target 

detection accuracy. 
 

Performance of Target Detection Algorithm 

 In AVIRIS Cuprite dataset, the scene is well 

understood mineralogically and has several exposed 

minerals of interest including alunite, buddingtonite, 

calcite, kaolinite, and muscovite. We have considered 

the mineral Alunite as the target spectra. The spectral 

signature of the target is available in the United States 

Geological Survey (USGS) Digital Spectral Library. 

After removing water absorption and noisy bands, the 

bands 3–103, 114–147 and 168–220 are considered 

for analysis. In Fig. 10, the detector results of ATGP-

GS, HSD, AMSD and OSP is shown. In HYDICE 

Urban dataset, we have considered only 162 bands 

such as 5–75, 77–86, 88–100, 112–135 and 154–197. 

We have considered Asphalt road as the target spectra 

and the detection result of ATGP-GS, HSD, AMSD 

and OSP is shown in Fig. 11. In ROSIS Pavia 

University dataset, the target to be detected is Painted 

Table 1 — Computational time of endmember extraction step for 
different datasets 

Hyperspectral Image Scene ATGP ATGP-GS 

ROSIS Pavia University 23.625s 3.484s 

HYDICE Urban 14.766s 1.781s 

AVIRIS Cuprite, Nevada 14.406s 1.609s 
 

 

Table 2 — SAD values for endmembers in AVIRIS Cuprite 

Dataset, HYDICE Urban Dataset and ROSIS Pavia University 

Dataset 

Endmembers ATGP-OSP ATGP-GS 

AVIRIS Cuprite Dataset 

Alunite 11.68º 11.68º 

Andradite 9.52 º 8.50 º 

Buddingtonite 7.71º 7.79º 

Dumortierite 12.15º 5.89º 

HYDICE Urban Dataset 

Asphalt Road 7.54º 7.54º 

Grass 9.33º 9.13º 

Tree 4.25º 6.82º 

Roof 6.21º 5.41º 

ROSIS Pavia University Dataset 

Painted Metal Sheets 7.79º 7.79º 

Bare Soil 11.84º 11.91º 

Bitumen 13.96º 12.98º 

Self-Blocking Bricks 9.05º 8.92º 
 

 
 

Fig. 10 — Detector results of ATGP-GS, HSD, AMSD and OSP for AVIRIS Cuprite scene with Ground truth 
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metal sheets and the detector results are shown in  

Fig. 12. The ATGP-GS algorithm shows reliable 

performance compared to HSD, AMSD and OSP 

algorithm with different datasets. 

Performance of Hardware Implementation 

In this section, an experimental evaluation of the 

proposed FPGA implementation was conducted. The 

FPGA design was implemented on the Xilinx 

 
 

Fig. 11 — Detector results of ATGP-GS, HSD, AMSD and OSP for HYDICE Urban Image with ground truth 
 

 
 

Fig. 12 — Detector results of ATGP-GS, HSD, AMSD and OSP for ROSIS Pavia University Image with ground truth 
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Virtex-6 XC6VLX240T FPGA of the ML605 board.  

This FPGA has a total of 3,01,440 slice registers, 

1,50,720 slice lookup tables (LUTs), and 11,398 LUT 

Flip Flop pairs. In addition, the FPGA includes some 

heterogeneous resources such as 768 DSP48E1s and 

416 distributed block RAMs. 
 

Simulation Results 
The simulation results of ATGP-GS algorithm are 

shown in Fig. 13. A sample input is given as [282, 

342, 453, 544, 238, 366, 397, 458, 922, 312, 823, 

314] and is represented as ‘tbpixelin’. The number of 

bands is 4 and the number of targets is 2. The result is 

represented as ‘tbresult’. From the results, it is visible 

that the band having maximum pixel values are taken 

as the first endmember. 

The resource utilization of ATGP-GS algorithm  

is given in Table 3. FIFOs and the memories are 

implemented using Block RAMs. A large number of 

slices and DSP48E1s are used for the implementation 

of the ATGP-GS algorithm. The main challenge of 

the parallel system is the frequent communications 

between the modules. To reduce this prefetching 

approach is utilized. DMA is used to reduce the I/O 

overhead. When ATGP-GS modules process a set of 

data, the DMA will fetch the next data set and storing 

it in the write FIFO.  

According to the experimental results, the target 

detection accuracy of the proposed ATGP-GS 

algorithm is better compared to ATGP-OSP. 

Regarding the processing speed performance, ATGP-

GS shows 7 times speedup than that of the ATGP-

OSP. It is worth noting that the proposed architecture 

of ATGP-GS can also gain benefits in terms of 

scalability, portability, and flexibility. This is 

particularly suitable for the real-time hyperspectral 

target detection applications on satellite. 

 

Conclusions 

This work focused on the FPGA version of an 

ATGP algorithm for remotely sensed hyperspectral 

image. In our proposed method, we have investigated 

the impact of adopting the Gram-Schmidt method for 

calculating the orthogonal projections instead of OSP 

method. The proposed algorithm is implemented on a 

Virtex-6 XC6VLX240T FPGA which proves that our 

implementation makes full use of FPGA architecture 

and also enhances the performance of the system. The 

proposed ATGP-GS algorithm can detect the targets 7 

times faster than the ATGP-OSP algorithm. As a 

future work, we will focus to utilize the hardware 

resources in a better way and improve the detection 

speed. The spatial as well as spectral information can 

be used to obtain a high performance. And also, we 

will focus on unsupervised deep learning algorithms 

for remote sensing applications to enhance the 

detection accuracy. 

 
 

Fig. 13 — Simulation results of ATGP-GS algorithm 
 

Table 3 — Summary of Resource Utilization of the  

ATGP-GS Algorithm 

 Available 

Resources 

Utilized 

Resources 

Percentage 

of Utilization 

Number of DSP48E1s 768 637 82% 

Number of Slice  

Registers 

3,01,440 1,80,232 60% 

Number of Slices LUTs 1,50,720 79,070 52% 

Number of   LUT  

Flip Flop pairs 

11,398 3,048 27% 
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