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Causal Bayes nets (CBNs) can be used to model causal relationships up to whole mechanisms.
Though modelling mechanisms with CBNs comes with many advantages, CBNs might fail to
adequately represent some biological mechanisms because—as Kaiser ([2016]) pointed out—
they have problems with capturing relevant spatial and structural information. In this article
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automata. Our approach can incorporate spatial and structural information while, at the same
time, it comes with all the merits of a CBN representation of mechanisms.
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1. Introduction

Mechanisms play an important role in many sciences. This is true especially for

most of current biomedical research, where to understand a phenomenon often

means to identify a mechanism responsible for that phenomenon’s occurrence. Ac-

cording to mechanists, certain explanations are best provided by pointing at the phe-

nomenon of interest’s underlying mechanism. Once a mechanism is identified, it can

be used to make predictions about the system and to control it by means of interven-

tions (for example, by designing a new drug that interferes with parts of that mech-

anism). Classical approaches to mechanisms—both in philosophical considerations

and in biological practice—are typically formulated in qualitative terms and often

supported by diagrams that depict how the relevant components interact to produce

the phenomenon of interest. Machamer et al. ([2000], p. 3) characterize mechanisms
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as ‘entities and activities organized such that they are productive of regular changes

from start or set-up to finish or termination conditions’. For other such approaches,

see, for example, (Glennan [1996], [2009]; Bechtel and Abrahamsen [2005]; Craver

[2007b]); but see also (Jones and Wolkenhauer [2012]).

However, there is also a clear need for quantitative mechanistic explanations and

predictions. While quantitative approaches came naturally for many sciences such

as physics or chemistry, their application in biomedical research showed a signifi-

cant delay and still is encountered less frequently than in other sciences. Simple pro-

cesses such as the oscillation of a pendulum or the concentration of a chemical com-

pound could be readily measured in a quantitative more or less accurate manner

rather early in history, allowing the formulation of mathematical theories thereof.

Biological processes, in contrast, are often harder to study as they involve a plethora

of interwoven entities and interactions on different scales. Many outcomes of bio-

logical experiments, such as the phenotype of a cell, are difficult to quantify by sim-

ple measures. As a result, biological sciences and the study of mechanisms are still

often perceived as something qualitative.

Although the origins of mathematical approaches to biology date back at least to

the beginning of the twentieth century, it was long perceived as a niche discipline

often with limited recognition by experimentalists.1 In recent decades, however, for-

mal approaches to biological questions have become increasingly popular and are

by now established part within the mainstream of biomedical research. Some of this

development is certainly facilitated by technological advancements (for example, by

high-resolution and quantitative microscopy approaches such as FRET- or FRAP-

microscopy) and the increased production of biological data since the advent of

‘-omics’ techniques. Partly, however, it is also driven by the increasing recognition

that quantitative approaches to biology are necessary. Many researchers argue that

the reason for this necessity is to capture the complexity of biological systems in a

more non-reductionist manner (see, for example, Wolkenhauer and Green [2013]).

However, even for a solid understanding of classic mechanistic biology and to provide

quantitative mechanistic explanations and predictions, especially where dynamic pro-

cesses are studied, formal approaches are needed, too (Bechtel and Abrahamsen

[2005]; Brigandt et al. [2017]).2

In scientific practice, this is mirrored by the vast diversity of mathematical and

computational modelling approaches that are successfully applied to study biolog-

ical processes. Examples of popular approaches are ordinary and partial differential

equations, agent-based models such as cellular automata, or network models such

1 There are some notable exceptions such as (Lotka [1925]) or the study of enzyme kinetics; see, for ex-
ample, the famous paper by Michaelis and Menten ([1913]).

2 For a discussion of examples in which a misunderstanding of quantitative (kinetic and thermodynamic)
principles led to misconceptions about the mechanism of how signalling proteins of the small GTPase
family are regulated see, for example, (Goody [2014]).
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as Boolean and Bayesian networks. The choice of which approach to apply often

depends on how suitable the approach is in terms of applicational ease and compu-

tational feasibility (and often simply depends on the familiarity with a certain tool).

For instance, one of the first comprehensive whole-cell models covering all basic

processes of all cellular functions such as cell division, metabolism, DNA replica-

tion, protein synthesis, and so on relied on a combination of over twenty different

formalisms (Karr et al. [2012]).

Philosophy’s coverage of formal modelling approaches in general and their appli-

cation to biological mechanisms in particular is a rather recent development (Wins-

berg [2009]). While the concept of what a mechanism is has received much attention

lately, formal approaches based on a philosophically elaborated concept of mecha-

nisms are only beginning to emerge. Causal Bayes nets (CBNs) are among the most

popular philosophical proposals for modelling mechanisms brought forward by au-

thors such as Casini and Baumgartner ([unpublished]), Casini et al. ([2011]), Clarke

et al. ([2014]), and Gebharter and Kaiser ([2014]; Gebharter [2014], [2017b]). CBN

approaches tomechanisms comewith many advantages: CBNs allow for formulating

and testing of causal hypotheses, they can be used for providing probabilistic expla-

nations and predictions, and they can be used to predict what would happen under

certain interventions (even if only non-experimental data is available). Unlike other

formalisms, CBNs are based on a thorough philosophical characterization of causal-

ity that satisfies modern standards for theoretical concepts (Schurz and Gebharter

[2016]; Gebharter [2017a]). They have been applied successfully in biology tomodel

signalling pathways, cancer progression mechanisms, and other processes (see, for

example, Sachs et al. [2005]; Koch et al. [2017]). Another advantage of the CBN

framework is that it provides a basis for developing powerful algorithms for causal

discovery (Spirtes et al. [2000]). Murray-Watters and Glymour ([2015]), for exam-

ple, take up Gebharter’s ([2014]) proposal to model mechanisms as bundles of causal

arrows in a CBN and develop an algorithmic search procedure for submechanisms

whose variables have not yet been measured.

There are, however, also several problems for CBN approaches to mechanisms.

Weber ([2016]), for instance, argues that CBNmethods cannot handle the dynamics

of certain biological mechanisms and are in this regard inferior to differential equa-

tions, and Kaiser ([2016]) argues that CBN approaches to mechanisms are problem-

atic because CBNs might fail to capture spatial and structural information relevant

for mechanistic explanation in biology. It therefore seems that CBN approaches to

mechanisms are forced to remain incomplete if modelling the mechanism of interest

requires the incorporation of rich spatial and structural information. This article

takes Kaiser’s observation as a starting point. We agree that CBN models of mech-

anisms might lack relevant spatial and structural information. CBNs are, however,

quite flexible and we think that one should not be overhasty in rejecting them as use-

ful tools for modelling mechanisms.
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In this article we develop a new hybrid approach for modelling mechanisms based

on CBNs and cellular automata.3We thereby aim to extend the CBN approach while

staying within the philosophically elaborated framework of mechanisms. The over-

all causal structure of mechanisms is, according to Gebharter ([2014]), represented

by simple input–output structures (bundles of causal arrows) in CBNs. Cellular au-

tomata are used to model submechanisms that feature spatial and structural informa-

tion that is not directly available in the associated CBNs. Our approach comes with

all the powerful merits of a CBN representation of mechanisms while, at the same

time, it can avoid problems such as the ones pointed out by Kaiser ([2016]). An ad-

ditional advantage of implementing cellular automata will be that they can nicely

capture the dynamics involved in spatial and structural processes in many mecha-

nisms. This makes our hybrid approach suited for running simulations including lots

of spatial and structural information that clearly exceed what could be done on the

basis of a pure CBN representation.

The article is structured as follows. In Section 2, we briefly introduce the basics of

the CBN and cellular automata frameworks. We then present our hybrid approach for

modelling mechanisms in Section 3. As a proof-of-principle we use a simple toy ex-

ample for illustration of the core ideas how to model mechanisms by supplementing

CBNs with cellular automata in this section. In Section 4, we then use a simplified

example of protein–receptor binding to illustrate how our approach can avoid prob-

lems CBN approaches have with representing rich spatial and structural information

in biological mechanisms. In Section 5, we summarize our results and discuss open

questions for future research.

2. Causal Bayes Nets and Cellular Automata

In this section we first briefly review the basics of the CBN formalism. We then give

a short introduction to cellular automata. We will only present the basics and parts of

these formalisms that are relevant for what we will do in the remainder of the article.

Both formalisms are illustrated by means of a simple forest fire toy example.

2.1. Causal Bayes nets

The causal interpretation of Bayes nets was mainly developed by Clark Glymour

and his students around 1990 (see, for example, Glymour et al. [1991]; Spirtes et al.

3 We are not the first ones who suggest to combine Bayesian networks and cellular automata. Kocabas and
Dragicevic ([2006]), for example, propose to generate transition rules of a CA for modelling the change
of land use in an urban environment by applying Bayesian networks to geographic information systems,
and Kohler et al. ([2015]) show that dynamic Bayesian networks (Murphy [2002]) and probabilistic cel-
lular automata are intertranslatable under certain conditions. They then use this result to apply Bayesian
inference methods in order to tackle problems of parameter estimation in partial differential equations.
We are indebted to an anonymous referee for pointing us to these papers. We will come back to the ques-
tion of how our endeavour in this article differs from these approaches later on.
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[1993]) and later by Pearl ([2000]). CBNs are triples hV,E, Pi. V is a set of random

variables X1, ::: ; Xn describing events or event types, E is a binary relation on V

(E ⊆V � V) that is interpreted as direct causal dependence with respect to V, and P

is a probability distribution over V that is intended to provide information about the

strengths of the causal influences between the variables inV propagated over the system

of interest’s causal structure G 5 hV,Ei (which is also called a causal graph).

That Xi is a direct cause of Xj in a causal graph G 5 hV, Ei (meaning that

hXi, Xji ∈ E) is graphically represented by a causal arrow Xi → Xj. Par(Xj) is the set

ofXj’s direct causes (or causal parents) inG.Des(Xi) is the set ofXi’s descendants. All

the variablesXj forwhich there exists a causal pathXi → :::→ Xj inG are descendants

of Xi. For technical reasons, Xi is assumed to be a descendant of itself. The descen-

dants of Xi that are not identical with Xi are intended to represent Xi’s (direct or indi-

rect) effects in G.

At the very heart of the CBN framework lies the idea that probabilistic dependence

is produced by causal structure. How measured probability distributions and causal

structures are related is expressed by several core axioms. The most important of these

axioms is the one known under the name of the causal Markov condition (CMC)

(Spirtes et al. [2000], p. 29):

Causal Markov Condition: hV,E, Pi satisfies the causal Markov condition if
and only if every Xi ∈ V is probabilistically independent of its non-descendants
VnDes(Xi) conditional on its causal parents Par(Xi).

4

The CMC is assumed to hold for causally sufficient variable sets V.5 Whenever a

model hV,E, Pi satisfies CMC, the model’s graph G 5 hV,Ei determines the fol-

lowing Markov factorization:

P(X1, ::: , Xn) 5
Yn

i51

P(Xi jPar(Xi)) (1)

The conditional probabilities P(Xi jPar(Xi)) are called the causal model’s parame-

ters. According to Equation 1, specifying a model’s parameters fully determines the

joint probability distribution over V. There are also further axioms such as the causal

minimality and the causal faithfulness condition that will hold in many contexts and

play an important role for several purposes, first and foremost for causal discovery

(Spirtes et al. [2000]). For this article, however, we will only require CMC.

Consider as a simple example a CBN that models how forest fires emerge and

might destroy huts (see Figure 1). Cmp stands for the number of campfires in a cer-

tain region, Moi for the number of subregions of a certain size with high moisture,

Fire for the number of subregions affected by forest fire, and Hut for the number of

4 Probabilistic independence of X and Y conditional on Z can be defined as (P(x jy, z) 5 P(x j z)) ∨
P( y, z) 5 0 for all X-, Y-, and Z-values x, y, and z, respectively, where X, Y, and Z can be variables or
sets of variables. Probabilistic dependence can be defined as the negation of probabilistic independence.

5 A set of variablesV is causally sufficient if and only if ‘every common cause of any two or more variables
in V is in V, or has the same value for all units in the population’ (Spirtes et al. [2000], p. 22).
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huts in the region of interest. The causal structures of interest can be imbedded in

wider causal contexts. X1 and X2, for example, stand for not further specified causally

relevant factors for Cmp andMoi, respectively, while X3 is a not further specified ef-

fect of Hut. We assume that the number of camp fires has a positive causal influence

on the number of forest fires (camp firesmight cause forest fires), while the number of

subregions with high moisture has a negative effect on the number of forest fires

(moisture might prevent forest fires). In addition, we assume that the number of forest

fires has a negative causal influence on the number of huts in the area of interest (for-

est fires destroy huts). Every variable in the CBN is, according to CMC, independent

of its non-descendants conditional on its direct causes. The graph in Figure 1 together

with the probability distribution overV 5 fX1, X2, X3,Cmp,Moi, Fire,Hutg} could
now be used for causal reasoning and for generating predictions about what would

happen under possible interventions.

2.2. Cellular automata

Cellular automata were originally developed by von Neumann ([1966]). They can

be used to model dynamic processes in many different fields such as biology, phys-

ics, complexity science and many others (for an overview and examples, see Nagel

and Schreckenberg [1992]; Ermentrout and Edelstein-Keshet [1993]; Schiff [2008];

Bandini et al. [2011]). They allow for modelling complex and self-regulatory sys-

tems and are suitable for simulating and visualizing spatial and structural changes

systems might undergo over time.

Cellular automata describe a system’s development over discrete time steps

t0, t1, t2, ::: . A cellular automaton (CA) consists of an n-dimensional (finite or infinite)

grid of cells (which is called the universe), a set of possible states s1, ::: , sm these cells

might be in, a defined neighbourhoodNj(x) for each cell x (where j is the radius of the

neighbourhood), and a set of rules that determine the state of every cell x at the next

time step ti11 on the basis of the cells in its neighbourhood at step ti. The rules are typ-

ically the same for all time steps ti. They can be deterministic or probabilistic. When

formulating rules, it is important to consider boundary conditions. These boundary

conditions determine how cells close to the edges of the grid behave and how their

Figure 1. Graph of a simple exemplary CBN.
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neighbourhoods are defined. For running simulations, it is also important to specify

the states of every cell in the universe at the first time step t0. The assignment of states

to all cells in the universe at a time step ti is called a configuration. How exactly pa-

rameters such as the neighbourhood or the rules are choosen is a practical question

that has to be considered by the modeller in order to make the model of the system

of interest empirically adequate.

We use the same forest fire example we used above for illustrating CBNs to give

an impression what can be done on the basis of CAs. For the sake of simplicity, we

use a two-dimensional 8� 8 grid as our universe. Each cell xi,j stands for a subregion

of the region of interest and can be in five different states: s0 (white) for the cell is

empty (except for trees), s1 (black) for hut, s2 (grey) for forest fire, s3 (circle) for high

moisture, and s4 (cross) for campfire. We specify a cell’s neighbourhood as the

Moore neighbourhoodN1 with a radius of one (see Figure 2a).We assume that forest

fires can spread through the region of interest, but cannot spread beyond that re-

gion’s borders. Hence, the neighbourhood N1(xi,j) of cells xi,j lying at the border

of our universe consists of fewer cells (see Figure 2b).

We specify the following simple rules:

R.1. If a cell xi,j is occupied by a hut at tk and there is a forest fire in its

neighbourhood N1(xi,j) at tk, then xi,j becomes a forest fire cell at tk11.

R.2. If a cell xi,j is empty at tk and there is a forest fire in N1(xi,j) at tk, then: (i) if

there is a high moisture cell in N1(xi,j) at tk, then xi,j becomes a forest fire

cell at tk11 with probability 0.05. (ii) if there is no high moisture cell in

N1(xi,j) at tk, then xi,j becomes a forest fire cell at tk11 with probability 0.75.

R.3. If a cell xi,j is empty at tk and there is a campfire (but no forest fire) in

N1(xi,j) at tk, then: (i) if there is a high moisture cell in N1(xi,j) at tk, then

Figure 2. (a) shows the Moore neighbourhood N1 of cell x3,3 in a 5 � 5 universe;
(b) shows the Moore neighbourhood N1 of the cells x1,1 and x5,3 lying at the border of
that universe.
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xi,j becomes a forest fire cell at tk11 with probability 0.01. (ii) if there is no

high moisture cell in N1(xi,j) at tk, then xi,j becomes a forest fire cell at tk11

with probability 0.05.

Rule R.1 is deterministic, while R.2 and R.3 are probabilistic. In each round, R.1 is

first applied to each cell, then R.2 is applied to each cell, and then R.3 is applied to

each cell. R.1 says that huts burn down if there was a forest fire in their neighbour-

hood at the time step before. R.2 dictates how forest fires spread through our 8 � 8

cell universe, and R.3 how forest fires emerge. In particular, R.2 says that forest fires

spread with a certain probability and R.3 says that there is a certain probability for

forest fires to occur in the vicinity of camp fires. These probabilities are higher if

the ground is dry and lower if it is wet. For a simple exemplary simulation over three

time steps, see Figure 3.

Note that while CAs can nicely capture the dynamics of systems involving lots of

spatial and structural information, they are—contrary to CBNs—not backed up by a

thorough philosophical theory of causation. They provide no intrinsic information

about the causal structure underlying the systems of interest other than what is pro-

vided by the modeller. Often, one might want to interpret the transition rules regulat-

ing how cells behave over time steps as descriptions of causal laws or mechanisms.

However, these rules can also express non-causal laws of nature, they could be a by-

product of certain boundary conditions, or they could simply hold because one or

more hidden common causes are at work. Formally, they are therefore blind with re-

spect to the difference between causation and correlation.

3. A Hybrid Approach for Modelling Mechanisms

Our hybrid approach for modelling mechanisms is based on Gebharter’s ([2014])

proposal to represent mechanisms as simple input–output structures consisting of

one or more causal arrows. In Machamer et al.’s ([2000]) terminology, one could

Figure 3. CA simulation of the forest fire example over 3 time steps.
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say that the variables at the tails of these arrows describe the start or set-up condi-

tions, while the variables at the arrows’ heads describe the finish or termination

conditions. What is going on inside the mechanism can then be described by supple-

menting these input–output structures by more detailed graphs describing the enti-

ties and activities (modelled by additional variables) involved in bringing about the

phenomenon of interest as well as their organization (modelled by additional ar-

rows). We will use the forest fire toy example introduced in Section 2 to illustrate

our hybrid approach for modelling mechanisms.6 In Figure 4a, for example, the ar-

rows Cmp→Hut and Moi→Hut inside the dashed box could represent a mecha-

nism that is part of a larger causal structure.7Cmp and Moi would stand for the

mechanism’s input, and Hut for its output. Submechanisms could then be repre-

sented by further bundles of arrows that describe in more detail what is going on

inside the original mechanism. Two possible submechanisms of the mechanism

depicted in Figure 4a could, for example, be represented by the two structures

Cmp→ Fire←Moi and Fire→Hut in the dashed boxes in Figure 4b. For details

and explicit conditions that have to be satisfied such that the structures in the dashed

boxes in Figure 4b can be submechanisms of the structure in Figure 4a, see (Gebharter

[2014], Section 4).

Now the problem with CBN approaches to mechanisms that Kaiser ([2016],

p. 921) highlights is ‘their failure to include relevant spatio-structural information

in a way that does not render the models non-explanatory, unmanageable, or incon-

sistent with basic assumptions of causal graph theory’. Kaiser’s main worry with

CBN models of mechanisms is that though they can nicely represent causal depen-

dencies at a quite abstract level, they fail to capture spatio-temporal details relevant

for mechanistic explanation in a feasible way. The variables whose causal connec-

tions our forest fire CBNs describe, for example, represent quite abstract features of

the system of interest: They stand for numbers of specific objects in a certain region

of interest. These variables do not provide more specific spatial and structural infor-

mation about camp fires, subregions with high moisture, forest fires, and huts, how

forest fires emerge and spread through the region of interest and how they interact

with huts if they come close to them. One could, in principle, replace the CBNs in

Figure 4 by much more complex CBNs featuring lots of variables that could then

describe the positions, behaviours, and so on of all the possible objects involved

6 This is clearly not the kind of mechanism biologists and other scientists are interested in. However, we
think that it is still a nice example to illustrate our approach. Also note that we do not restrict ourselfs to
biological mechanisms, but have a much broader notion of mechanism in mind here. Basically, all kinds
of causal input–output structures qualify as mechanisms as long as one can tell a more detailed causal
story about what is going on inside the causal arrows. In Section 4, we will demonstrate how our hybrid
approach can avoid the problems CBNs might have with representing spatial and structural information
by providing a more sophisticated hybrid model of a biological mechanism.

7 Note that information about which bundles of causal arrows represent mechanisms is left open by the
formalism. Which arrows should stand for mechanisms (or submechanisms), that is how to draw dashed
boxes, is formalism-external information that might to some extent depend on the particular interests of
the causal modeller.
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in our toy forest fire mechanism. But such a move would make the nice and simple

CBN models in Figure 4 unnecessarily complex, confusing, and probably more or

less useless from a practical point of view. It might, in addition, lead to conceptual

problems. (For details, see Kaiser [2016].) It seems to be better to use CBN models

for what they do best—representing causal structures at a more abstract level—and

to leave capturing the relevant spatial and structural properties to the CA formalism,

which is much better suited for that purpose.

We now have the CBNs in Figure 4 as well as the CA specified in Section 2 at

hand to model the forest fire toy mechanism. The CBNs capture the causal depen-

dencies involved at a more abstract level, and the CA provides detailed spatial and

structural information about possible processes within that mechanism. As a last

step, we have to combine the CBNs and the CA. In the approach presented in this

article, the key idea is to outsource complex spatial and structural features relevant to

(sub)mechanisms represented in a CBN into a CA. Recall that the CBNs’ variables

were intended to represent numbers of certain objects in a region of interest. The var-

iable Cmp modelling the number of camp fires could, for example, describe how

many of the 8� 8 cells of our CA are in state s4,Moi how many of the cells are high

moisture subregions (are in state s3), Fire how many cells are occupied by forest fire

(are in state s2), and Hut how many of our 8 � 8 cells feature huts (are in state s1).

These variables are still quite abstract: They do not provide specific information

about how states s1, ::: , s4 are distributed over the cells in our 8� 8 grid. Their values

Figure 4. The substructures in the dashed boxes represent mechanisms. The two mech-
anisms in (b) are submechanisms of the mechanism in (a).
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are compatible with many different configurations in the CA that can be further

specified according to the needs of the modeller.

Note that our CBNs’ parameters and the independencies implied by our CBNs’

causal structures and CMC have to fit the forest fire CA. In general, there are several

possibilities how such a fit could be established. If the CA will reach a steady state in

the long run, then our CBNs’ parameters can be identified with the corresponding

conditional probabilities featured by theCA’s steady state distribution. Instead of com-

puting these conditional probabilities, one can also calculate them on the basis of sim-

ulations. If the system under study will not reach steady state in the long run, then one

might try to identify the parameters with the corresponding conditional probabili-

ties of the CA-distribution over ti1n steps. The parameters P(Fire jCmp,Moi) and

P(Hut jFire) of the CBN whose graph is depicted in Figure 4b, for example, might

then be identified with the CA-probabilities of Fire’s values at step ti11 given the

values of Cmp and Moi at ti and with Hut’s values at step ti12 given the values of

Fire at ti11. This strategy, identifying the parameters at an operating point of interest,

seems to work well for our simple forest fire mechanism. Another strategy for spec-

ifying parameters in the case of non-steady state processes would be to use dynamic

causal models (Murphy [2002]; Gebharter and Schurz [2016]). Every time step in

the dynamic causal model would then correspond to a time step in the CA. Since

space is limited, we will confine ourselves to applying the first two non-dynamic

strategies. The investigation of how exactly dynamic CBNs and cellular automata

can be combined to model more complex non-steady state behaviour of mechanisms

shall be left for future work.

According to the considerations above, a model of our CBN–CA hybrid approach

intended to represent one or more mechanisms can be defined as follows8:

CBN–CA Hybrid Model: hV,E, P,U1, ::: ,Un, CA1, ::: , CAni is a CBN–
CA hybrid model if and only if hV,E, Pi is a causal Bayes net and
CA1, ::: ,CAn are cellular automata such that

(1) U1, ::: ,Un are (non-empty) subsets of V of which none
contains variables X, Y connected by a directed path
X → ::: → Y featuring more than one arrow;

(2) the values of each variable in a set Ui describe a number of
possible configurations of CAi;

(3) the parameters of each Y in a set Ui that has causal pa-
rents X1, ::: , Xm in Ui equal the conditional probabilities
P(Y jX1, ::: , Xm) determined by CAi (or calculated on the ba-
sis of simulations); and

(4) whenever G 5 hV, Ei together with CMC determines
an independence among variables in a set Ui, these inde-
pendence is also featured by the probability distribution

8 Note that this is only one possibility to combine CBNs and CAs to model mechanisms. We discuss fur-
ther possibilities in Section 5. A detailed investigation of these alternative possibilities has to be carried
out in future work.
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over Ui determined by CAi (or calculated on the basis of
simulations).

The sets Ui are intended to contain the input and output variables of the mechanisms

modelled. Condition (1) says that mechanisms are represented by structures that

might have several input and output variables, but do not feature intermediate causes.

This reflects the basic idea of representing mechanisms by means of simple input–

output structures in CBNs. Condition (2) connects the variables in a setUi represent-

ing a mechanism to the CA corresponding to Ui. Condition (3) reflects the require-

ment mentioned above that the parameters of a CBN involving mechanism variables

must fit the probabilities determined by CA1, ::: ,CAn. Condition (4) finally says that

the probability distributions determined by CA1, ::: , CAn must feature the screening

off relations determined by the CBN’s causal structure and CMC. Note that the

CBN–CA hybrid model definition can—at least in principle—cover the steady state

as well as the ti1n step behaviour of models.

Note that our hybrid approach to modelling mechanisms differs from other ap-

proaches to combine Bayesian networks and CAs such as the ones proposed by

Kocabas and Dragicevic ([2006]) or Kohler et al. ([2015]). Kocabas and Dragicevic

use Bayesian networks to generate transition rules for a CA intended tomodel change

of land use on the basis of geographic information systems. Kohler et al., on the other

hand, use results about the intertranslatability of dynamic Bayesian networks and

CAs to apply Bayesian inference tools for purposes of parameter estimation in partial

differential equations. It is irrelevant for these approaches whether the edges of the

Bayesian networks are causally interpreted or not. Also note that because the goals

these authors have in mind are quite different from ours, the ways how they combine

Bayesian networks and CAs differ from ours as well. We are mainly interested in

whether causally interpreted Bayesian network models of mechanisms can—con-

trary to what Kaiser ([2016]) claims—be used as a basis for modelling mechanisms

involving complex spatio-structural features. Here the CA formalism comes to help.

Whenever such information is required, one can supplement the input–output struc-

tures representing mechanisms in CBNs by a CA that involves the missing details

about how exactly the mechanism’s component parts might spatially and structurally

interact to bring about the phenomenon of interest. The minimal conditions that have

to be satisfied in order for a CA to play this role in a CBNmodel of a mechanism are

specified in the CBN–CA hybrid model definition. They are intentionally formulated

quite loosely and general in order to grant a maximum of flexibility to the modeller.

4. Modelling Spatio-Structural Mechanisms
Using CBN–CA Hybrids

In Section 3, we made a proposal how to combine CBNs and CAs to model mech-

anisms. Before we proceed in showing our approach’s potential to include complex

spatio-structural information, we shall shortly recapitulate the shortcomings of CBN
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approaches to mechanisms highlighted by Kaiser ([2016]). Based on a case study of

protein–DNA binding Kaiser argues that CBNs are not able to incorporate complex

spatial and structural information relevant in a plethora of biological mechanisms.

More precisely, she claims that three distinct kinds of information are necessary

to explain how a protein can recognize and bind a specific DNA motif:

(1) Binding information about the kinds of bonds that are formed between
amino acid residues and DNA base-pairs (direct contacts), and about the parts
of the DNA and the [transcription factor (TF)] that indirectly interact with each
other (indirect contacts);
(2) Chemical-structural information about the primary sequences of DNA and
TF binding sites, about the complementarity of their chemical structures;
(3) Spatial information about the conformations of DNA and the TF and why
they spatially fit, about how the DNA shape contributes to recognition (Kaiser
[2016], p. 926).

Clearly, these types of information are relevant for understanding mechanisms of

macromolecular interactions (such as interactions between TFs and DNA). Kaiser

([2016]) argues that CBNs are not designed to incorporate such data and that des-

perately trying to capture them (for example, by means of adding additional vari-

ables and values) not only is cumbersome, but can result in contradictions with basic

assumptions of graph theory such as the requirement that the variables of a causal

model have to be conceptually independent of each other. The problem at heart can

be aggravated even more: Although it might be sufficient for many biological appli-

cations to incorporate the above information, others also require to clarify how the

involved macromolecules acquire their conformation, that is, a certain geometrical

shape. The problem with such cases is that the three kinds of information listed above

are not independent of each other. If one wants to gain a fundamental understanding

how a certain protein acquires its shape one needs to know its primary structure, that is

its amino acid sequence, and chemical-structural and physical information about the

amino acids such as shape, charge, and reactive groups as well as lots of biophysics

to understand how these properties determine secondary and tertiary structure of the

protein (its resulting three-dimensional shape).Most likely, a good deal of the required

biophysics will contain rather fundamental and mechanistically inexplicable laws.9 In

such cases then, a modeller interested in a mechanism that requires a rather detailed

understanding (for example of protein folding) faces the challenge to implement a

plethora of spatio-structural, chemical, and physical information as well as mechan-

ically inexplicable laws into a model of a biological mechanism. It is highly ques-

tionable that CBNs alone are suitable for such a task.

Our hybrid CBN–CA approach, however, might fare better in cases such as the

one described. In order to demonstrate its potential, we choose an example analogue

9 Note that even Glennan ([1996]), who advocates a mechanistic analysis of causal laws, accepts that more
fundamental physical laws might not be explicable in terms of mechanisms.
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to the case of protein–DNA binding used by Kaiser ([2016]). The phenomenon on

which we will focus in the remainder of this article is protein–receptor binding, a

type of macromolecular interaction in which a ligand protein binds to a receptor pro-

tein. Let us assume that we are interested in modelling a biological mechanism that

involves a regulatory protein that is expressed upon a specific upstream signal (Su)

and binds to a certain intercellular receptor in order to activate it. Once activated, the

receptor engages in other downstream signals (Sd). This biological process could be

modelled by a CBN with a simple linear graph as shown in Figure 5.

To keep the example simple, suppose the upstream and downstream signals Su and

Sd are binary variables that can either take the value ‘present’ or ‘not present’. The val-

ues of Protein represent the concentration of our regulatory protein of interest within

the biological cell. Althoughmore fine grained values are possible, we assume that in

our example only the values 0, 8, 16, 32 and 64 [proteins/biological cell] are relevant.

The values of Receptor represent the ratio of activated receptors to total receptor

count (ranging from 0 to 1 in steps of 0.05). For the purpose of our study (considering

only one type of ligand), we make a rapid equilibrium assumption and assume that

once a protein–receptor complex is formed it is instantaneously in its active form.

For some applications such a CBN representation is perfectly suitable and suffi-

cient (see, for example, the model from Sachs et al. [2005]). Suppose, however, that

we are also interested in understanding the molecular and structural basis of the in-

teraction between the protein and its receptor underlying the phenomenon of recep-

tor binding. Such level of detail in a mechanism is, for example, relevant for explain-

ing how certain mutations interfere with protein–receptor binding on a molecular

level by changing the protein’s structure. We propose to implement these details

by supplementing the causal arrow Protein→ Receptor with a CA. The CA is in-

tended to provide detailed information about how component parts of the mecha-

nism for protein–receptor binding spatially and structurally interact in order to bring

about this phenomenon. As a biologically realistic CA of protein–receptor interac-

tion, due to the immense complexity of the process, is beyond the scope of this ar-

ticle, we will simplify the biology in our example a little bit.10

Figure 5. Graph of a simple CBN that models how a certain protein activates a receptor.

10 Computational structural biology is a very active field of research and predicting the molecular structure
of biological macromolecules and their interactions is one of the most challenging problems in compu-
tational biology. Although cellular automata have been used for modelling protein folding, we are not
aware of an already existing CA model that we could use to model the structure and the interactions
between multiple proteins and receptor molecules.
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4.1. The biophysics of a tiny peptide world

We assume a two-dimensional universe in which life has evolved. To understand the

structural basis of protein folding and receptor binding in this universe, we construct

the following CAmodel of a biological cell that contains a cell membrane, receptors,

and proteins. These will be the component parts of the mechanism. We specify a

cell11 x’s neighbourhoodNj(x) as the Moore neighbourhood (with a radius of j) with-

out x itself. Each cell in the CA model can either be empty or occupied by an amino

acid or a not further specified particle with a postive (1), negative (–), or no charge.

Although the basic building bricks of life are very similar to the ones in our world,

there are some important differences. Proteins, for example, are rather small polypep-

tides that are composed of only three distinct kinds of amino acids: posimine (posi-

tively charged; 1), negatiline (negatively charged; –), and neutramine (no charge).

These amino acids share the same squared shape. In peptide sequences we will indi-

cate them with a one-letter code: P for posimine, N for negatiline, O for neutramine.

Analogously to our world, protein folding can induce a specific conformation of pro-

teins. Whole molecules either diffuse within the cytosol or move according to repul-

sive and attractive forces. The following biophysical laws govern this behaviour:

(1) Each charged particle x is subject to repulsive and attractive forces deter-

mined by its own charge and by the charges within its neighbourhood

Nj(x) that sum up to the resulting force ~FRes:

~FRes(x) 5 o
i∈Nj(x)

~Fi,x,

where ~Fi,x is the force a charged cell i exerts on x. ~Fi,x’s norm depends on

the distance di,x between i and x by 1
di,x
, its direction depends on whether i

and x attract or repel each other. While the same charges (1/1 and –/–)

repel each other, distinct charges (1/– or –/1) attract each other.

(2) At each time step, a peptide’s charged amino acids x change their position

in accordance to ~FRes(x) if possible. Each amino acid x can only change its

position with an empty cell within the overlap of the N1-neighbourhoods

of the predecessing and subsequent amino acids x – 1 and x1 1 in the pep-

tide sequence, that is with an empty cell in N1(x 2 1) \ N1(x 1 1). If the

cell in the direction of ~FRes is occupied, but there is an empty cell in the di-

rection of ~FRes’s part-dimension, the amino acid changes its position with

this cell (and thereby takes the next best option). Although neutramines are

not influenced by electrostatic forces, they have a chance of 0.05 to change

their position with a random empty cell within N1(x 2 1) \ N1(x 1 1).

11 The term ‘cell’ denotes a location within the CA’s grid. We will use the term ‘biological cell’ to refer to
living cells.
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(3) Peptides as whole molecules are also subject to attractive and repulsive

forces. The resulting force ~FP
Res on a peptide P is the sum of the resulting

forces ~FRes(x) on each of its amino acids.

(4) In each time-step a peptide will move one cell in the direction of its ~FP
Res

provided the movement is not blocked by other structures and ~FP
Res > 0.

If ~FP
Res 5 0, there is a chance of 0.2 to move towards a random direction.

Due to a crowded cytosol that causes friction, movement is decelerated by

factor 0.85 after each step.

Although very primitive, these imaginary laws of biophysics are sufficient to de-

scribe a system that shares crucial similarities with the behaviour of real proteins. First

of all, proteins can take a specific conformation depending on their primary sequence:

Figure 6a–d shows the conformations of different peptides resulting from simulations

with a CA model that uses the above laws as rules (with radius j 5 2 for the Moore-

neighbourhood in law 1 and 3). The conformations shown in Figure 6a and b are very

stable, hard to change and almost always return to this state after pertubation of the

conformation. Figure 6c depicts different semi-stable conformations of the peptide

PPNNONNPP in which it remains as long as there are no major pertubations. Due

to being charged only negatively, the peptide NNNNN in contrast has no stable

conformation but constantly oscillates between different shapes in which the amino

acids have a high distance to each other (Figure 6d).Moreover, the laws also allow for

interactions between molecules. The peptide PPPOPOONONNN, for example, has a

polar charge pattern that enables it to bind molecules of its own kind (see Figure 6e).

As we will later see also the kinetics of binding reactions occurring in such systems is

similar to those of real chemical systems.

In summary the entities of our tiny peptide world are similar to real biological

macromolecules with respect to their structural organization (linear polymers com-

posed of monomeric units with different properties), possible interactions and activ-

ities (repulsion, attraction, diffusion) and resulting behaviour (formation of higher-

order structures, binding kinetics similar to real binding reactions).

4.2. A hybrid model of receptor activation in the tiny peptide world

The described CA now enables us to construct a CBN–CA hybrid model of the

mechanism describing how exactly the component parts of the mechanism bring

about the phenomenon of interest, that is how different amounts of regulatory pro-

teins cause different frequencies of activated receptors. Recall that we have already

specified which values the variables from the graph in Figure 5 can take. Next, we

specify the model’s parameters. This could, for example, be done on the basis of

empirical data. Suppose the parameters for the variables Su, Protein, and Sd are

P(Su 5 present)5 0:1, P(Protein5 0 jSu 5 not present) 5 1, P(Protein 5 16j
Su 5 present)5 P(Protein 5 64 jSu 5 present) 5 0:25, P(Protein 5 32jSu 5
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Figure 6. General features of peptides in the tiny peptide world: (a) Stable conformation
of a peptidewith the sequenceNPNP; (b) stable conformation of a peptidewith the sequence
PNONP; (c) semi-stable conformations of a peptide with the sequence PPNNONNPP;
(d) unstable conformations of a peptide with the sequence NNNNN; (e) excerpt from
a simulation with eight peptides with sequence PPPOPOONONNN. The arrows mark
two interacting peptides.



present) 5 0:5, P(Sd 5 present jReceptor ≥ 0:5) 5 1, and P(Sd 5 not present j
Receptor < 0:5) 5 1. Furthermore, we need to connect the CBN with the CA by

means of specifying the remaining parameters for the variable Receptor from

the simulations with the CA. In our example, the binding of the regulatory pro-

tein to its receptor will reach an equilibrium that persists as long as the regulatory

protein is not degraded. We use this equilibrium to determine the parameters

P(Receptor 5 r jProtein 5 p) from several runs of a simulation using the CA with

input p by the following function:

fp(r) 5

����8 t :
number of active receptors at t

total number of receptors at t
5 r

����
t

, (2)

where t are all generations from all runs in which the CA is at equilibrium. Sup-

pose finally that our protein has the sequence NPNP and its receptor has the struc-

ture12 depicted in Figure 7a. To bind to its receptor, our protein not only has to be

in the right conformation, but also in the right orientation. Once the protein occu-

pies the whole ligand pocket, the receptor switches to its active state. Together the

CBN and the CA represent a hybrid model in the sense of the CBN–CA hybrid

model definition in which the CBN describes the causal structure of the mechanism

of interest on a general andmore abstract level, while the CAmodel contains the spa-

tial and structural information relevant to the mechanism. The whole approach is

summarized in Figure 7b:Su → Protein Receptor→ Sd is the CBN’s graph. The

Figure 7. (a) Structure of the receptor. Only proteins with the right shape and orientation
can bind into the ligand pocket (which is highlighted in yellow). (b) Sketch of the hybrid
modelling approach.

12 Although in reality receptors are proteins, too, and thus are obliged to the same biophysics as any other
protein, we assume that in the tiny protein world receptors feature additional properties that, in contrast
to other proteins, ensure they have a fixed conformation.
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rest of Figure 7b illustrates how the parameters for the dashed arrow are computed:

For each possible value p of Protein the conditional probabilities P(Receptor 5 r j
Protein 5 p) for every possible value r of Receptor are computed via Equation 2

on the basis of CA simulations.

With this hybrid model at hand, we can perform simulations. Figure 8a shows the

results for our protein at different concentrations and with different ranges for the

attractive and repulsive forces, that is with a different radius j for the Moore-

neighbourhood Nj. For N1 and N2, protein–receptor binding and activation reaches,

in an exponentially increasing but saturating manner, an equilibrium (Figure 8a, left

and middle graph).13 For N3, protein–receptor binding is unstable and results in an

equilibrium near base-line (Figure 8a, right graph). From the equilibrium states we

can now determine the CBN’s missing parameters by the above parameter function

that we have done exemplarily for N2 (see Table 1).

Taking a closer look at the CA simulations (for N1 and N2) reveals how the pro-

tein–receptor interaction takes place at a molecular level: First, the protein takes a

specific square shaped conformation (see Figure 6a) that can occasionally be dis-

turbed by intermolecular interactions, but quickly returns to its original conforma-

tion. As it diffuses through the cell, it sometimes encounters a receptor to whose li-

gand pocket it can bind provided the protein has the right conformation and fits into

the pocket. Once the ligand pocket is occupied, the receptor is activated. The attrac-

tive forces between the posimine and negatiline of the protein and the opposite

charges of the receptor’s ligand pocket prevent dissociation.14

Although it is a rather phenomenological description of the spatial aspects of our

mechanism of interest, it contains all the kinds of information Kaiser ([2016]) claims

to be relevant: information about the bonds between amino acids (1), the primary

sequence of the protein and the sequence of the surface charges in the ligand pocket

(2) as well as the conformation of the protein and the shape of the binding pocket (3).

Moreover, the description could be easily explicated further by reference to the un-

derlying laws of biophysics that can also explain how these three kinds of informa-

tion are at least partially connected.

The outsourcing of spatio-structural information to the CA in CBN–CA hybrid

models furthermore allows for predicting new effects on basis of the CA simula-

tions. If, for instance, we are interested in understanding what impact a certain mu-

tation of our protein will have on the activation of receptors, we can simply explore

how the protein with the altered sequence behaves in the CA simulations. The muta-

tionsN1O andN1P for example (pointmutations inwhich the negatiline at position 1

has been exchanged for a neutramine or posimine, respectively) impair the protein’s

conformation and binding capacity in most scenarios and thereby lead to a reduced

13 Note that the kinetics exhibited in our simulations are remarkably similar to the chemical model of bind-
ing between a receptor R and a ligand L forming a complex RL, R 1 L ⇄ RL where the kinetics are
described by ordinary differential equations.

14 See the animation available at dclps.phil.hhu.de/ext-data/SupplVideo-1-NonAnon.mp4.
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receptor activation to varying degrees (see Figures 8b and 8c).15 Interestingly, the op-

posite is the case for the radius N3 as in these scenarios the mutant proteins exhibit a

better binding to the receptor. This, too, can be attributed to the lack of square shaped

Figure 8. Simulation results for the relative receptor activation under variation of the
protein concentration and radius of the Moore-neighbourhood (N1 2 N3). Curves are
plotted on the basis of n 5 3 independent simulation runs with a random distribution
of the proteins at g0. The solid line shows the mean value, the shaded area the standard
deviation of the relative receptor activation. (a) Results for the wild type protein with the
sequence NPNP. (b) Results for the protein with the point mutation N1O in which the
negatiline at position 1 has been exchanged for a neutramine. (c) Results for the protein
with the point mutation N1P in which the negatiline at position 1 has been exchanged for
a posimine.

15 See also the animation available at dclps.phil.hhu.de/ext-data/SupplVideo-2-NonAnon.mp4.
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Table 1. Parameters for Receptor determined on the basis of the equilibrium states of three runs of the CA simulations with N2

and wild type sequence of the protein

P(Receptor 5 rjProtein 5 p)

r 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0.1 0.2 0.32 0.38 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.62 0.38 0 0
64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0.97



conformation since the increased range of attractive/repulsive forces allows the pro-

tein to take shapes and orientations that can still bind to the receptor.

5. Conclusion

We started this article with a problem for CBN representations of mechanisms high-

lighted by Kaiser ([2016]): Though CBNmodels of mechanism comewith many ad-

vantages, they seem to have problems with capturing spatial and structural informa-

tion relevant for somemechanisms, especially in biology. In this article we proposed

to overcome such problems by representing such mechanisms within a hybrid model-

ling approach. In particular, we propose to supplement CBNs with CAs that can rep-

resent complex spatial and structural features of a system. In general, we represent

mechanisms by causal input–output structures in CBNs. Whenever spatial and struc-

tural information is relevant, such an input–output structure can be supplemented

with a CA. The input and the output variables in such a structure then describe global

features of the CA, and the probability distribution generated by the CA must fit the

distribution over the corresponding input and output variables in the CBN.16

Let us finally briefly discuss some possible open problems. We illustrated our hy-

brid modelling approach and discussed how it can handle spatial and structural in-

formation by means of the example of a molecular mechanism underlying protein–

receptor binding. Though this mechanism is a very coarse simplification with mostly

fictive biophysics, we think that this nicely shows that CBN–CA hybrids are at least

in principle capable of dealing with the problem of modelling spatio-structural com-

plex mechanisms. In reality, structural biology is, of course, muchmore complex and

involves plenty kinds of different molecules, intra- and intermolecular bonds and

forces. But even if it should turn out that CAs are not suitable for some mechanisms

that require a high degree of sophisticated molecular detail, it is clear that the idea of

multi-formalismmodelling is not limited to CAs.We conjecture that also other meth-

ods established in computational structural biology—such as, for example, molecular

dynamics simulations (reviewed, for example, inKarplus andMcCammon [2002])—

might be combined with CBN models of mechanisms.

Although our hybrid approach allows for modelling spatio-structural complex

mechanisms, the modeller has to face some additional decisions, for example, how

16 Our approach bears some similarity to the ideas of Chalupka et al. ([2017]) who distinguish between
macro- and micro-variables and define the former in terms of partitions of the latter in order to automat-
ically generate and test causal hypotheses on the macro-level variables; we are indebted to an anonymous
referee for pointing us to this similarity. It thus seems that in the presentedmodel (see Figure 7b)Receptor
is a macro-variable based on micro-variables such as position and interactions of individual molecules in
the CA. However, Chalupka et al. explicitly understand macro-variables as task/question specific and in-
dependent of the specific instantiation of the micro-variables. In some mechanisms, however, the specific
micro-variable instantiation can have a significant influence on the mechanism’s output (for example,
when hysteresis or stochasticity in biochemical reaction networks play a role) and so these requirements
are not necessarily fulfilled.
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to specify the parameters. Especially when it comes to modelling non-steady state

behaviour of dynamical systems, combining static CBNs with dynamical CAs might

violate the Markov condition. Furthermore, our approach leads to a variety of yet un-

answered questions, for example:When exactly is spatial information too complex to

be represented in a CBN and what are the features that make it complex? How can the

transition rules of a CA supplementing a causal input–output structure in a CBN rep-

resenting a mechanism be learned from data? However, as the aim of this article was

to show that hybrid modelling approaches can overcome some of the limitations of

conventional CBN models of mechanisms, we leave these and other issues to future

research.

A promising future philosophical question would be whether and, if yes, then to

which extent CBN–CA hybrids can provide a unified approach to mechanistic ex-

planations and explanations based on fundamental laws analogue to the biophysical

laws we have specified for our CAmodel in Section 4. The simulations based on our

fictive tiny peptide world, for example, support the importance and advantages of a

unified approach as they have shown that variations of parameters in a law of nature

(variation of the size of the Moore-neighbourhood from law 1 and 3) can directly

affect the working of the investigated mechanism.

In the hybrid models in the sense of Section 4, the CAs capture what is going on

inside of certain arrows or paths, that is the processes underlying these arrows or

paths. Another fairly obvious way of combining CBNs and CAs is to use CBNs to

describe what is (partly) going on in the CA. In such hybrids, the interface between

both formalisms could be defined by transition-rules that feature variables that also

occur in the CBN. The CBN could, for example, either describe global processes of

the system that influence the CA through at least one of its variables, or the CBN could

describe some aspects of an agent or cell within the CA and could be instantiated mul-

tiple times for each agent or cell. This class of hybrid models promises a multitude of

intriguing possibilities for applications in the sciences, too. Exploiting the rich possi-

bilities of learning and data-mining capabilities of the Bayesian network machinery,

CBN models describing certain aspects of the behaviour of different biological cell

types can be learned from data. Integration of these models into a supramechanistic

CBN–CA hybrid model—maybe similar to Kocabas and Dragicevic’s ([2006])

work—could then help to explore the interactions between cells and other components

of the cellular environment. Such hybrid approaches could offer valuable insights for

example into how different cell types within a certain tissue influence each other and

contribute to the overall properties of that tissue or how the microenvironment of a

tumour (consisting of different cell types and extracellular components) influences

cancer cells.

Summarizing, we believe that CBN–CA hybrids and generally other hybrid mod-

elling approaches to mechanisms might be a promising new field of research that

offers new perspectives on philosophical questions (such as the ones mentioned)

as well as on possible applications in the sciences.
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