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One of Glennan’s ([1996]) most prominent contributions to the new mechanist debate con-
sists in his reductive analysis of higher-level causation in terms of mechanisms. In this article
I employ causal Bayes nets (CBNs) to reconstruct his analysis. This allows for identifying gen-
eral assumptions that have to be satisfied to get the analysis working. I show that once these
assumptions are in place, they imply (against the background of the CBN machinery) that higher-
level causation indeed reduces to interactions between component parts of mechanisms. I also
briefly discuss the plausibility of these assumptions and some consequences for the mecha-
nism debate.
1. Introduction

Mechanisms play an important role formany sciences such as biology,medicine, and

neuroscience.Mechanisms are systems that can be described at different levels. They

consist of several lower-level component parts whose causal interactions give rise to

the overall behaviour of the system as a whole (Glennan [1996]; Machamer et al.

[2000]; Illari andWilliamson [2012]).Mostmodernmechanists aremainly interested

in howmechanisms and models of mechanisms can be used for purposes of explana-

tion and prediction (Bechtel and Abrahamsen [2005]; Craver [2007]). Mechanistic

explanations comewith the following key advantage over purely causal explanations:

While purely causal knowledge only allows for an horizontal (or etiological) expla-

nation of a phenomenon, the understanding of the mechanism underlying this phe-

nomenon provides a basis for a vertical (or synchronic) explanation across levels
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as well. Somechanisms provide a basis for causal and constitutional reasoning across

different levels of organization.1

Since the concept of mechanism is intimately connected to that of causation, it

seems promising to try to reduce (or explain) one of these two concepts to (or in terms

of ) the other. Attempts to analyse mechanisms in terms of causation (Gebharter

[2014], [2017b];Woodward [2002]) seem quite natural, simply becausemechanisms

are understood as systems consisting of causally interacting parts anyway. The other

direction, namely, to analyse causation in terms of mechanisms, seems more chal-

lenging. Perhaps the most prominent mechanistic account of causation has been

put forward byGlennan ([1996]). In a nutshell, Glennan proposes that causal relations

(or laws) connecting higher-level phenomena occur (or hold) due to mechanisms

underlying these phenomena.

Several philosophers, such as Craver ([2007]) and Psillos ([2004]), have attacked

Glennan’s ([1996]) mechanistic analysis of higher-level causation, and Glennan has

defended his approach against these and other criticisms (see, for example, Glennan

[2011]). The debate is still ongoing (Casini [2016]), and the question of whether a

mechanistic analysis of higher-level causation can be successful is still controversial.

This article is intended as a contribution to the debate about howmechanisms relate to

higher-level causation. I use the causal Bayes net (CBN) machinery (Spirtes et al.

[1993]; Pearl [2000]) as a tool for investigating Glennan’s mechanistic analysis of

higher-level causation. The framework allows for testing causal hypotheses, it pro-

vides the basis for a multitude of sophisticated procedures for uncovering causal struc-

ture (Spirtes et al. [1993]), and the approach satisfies standards that successful empir-

ical theories satisfy as well. In particular, it provides the best explanation for why sets

of variables describing different empirical systems show different probabilistic depen-

dence and independence patterns, and the theory as a whole can be tested on empirical

grounds (Gebharter [2017b]; Schurz and Gebharter [2016]). The hope is that the

framework can thus also be used to get an empirically informed grasp on philosoph-

ical issues such as the question of how higher-level causation relates to mechanisms.2

Note that CBNs have already been used for modellingmechanisms (see, for exam-

ple, Casini et al. [2011]; Clarke et al. [2014]; Gebharter [2014]; Murray-Watters and

Glymour [2015]; Koch et al. [2017]).3 I am also not the first to use causal modelling

techniques to shed new light on the question of whether higher-level causation can be

reduced to mechanisms. Casini ([2016]), for example, but also Glennan ([2011])

himself borrows from the causal modelling literature. The main difference between

these approaches and my own approach is that I combine different levels as well as
2 Note that alternative frameworks might be used for investigating how higher-level causation relates to
mechanisms as well. However, I think that CBNs are especially nice for the reasons mentioned.

3 For possible problems with such approaches, see (Kaiser [2016]; Weber [2016]). For a possible solution
to some of these problems, see (Gebharter and Koch [2021]).

1 How to define and identify levels is an important but still controversial question (Craver and Bechtel
[2007]; Eronen [2015]; Kästner [2018]). In this article I will bracket this problem and assume that it
can be solved in some way.
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causal and constitutional relationships in a single causal model.4 The reconstruction

of Glennan’s ([1996]) mechanistic analysis to be developed in this article will show

that a supporter of such an analysis needs to make three interrelated basic assump-

tions in order to reduce higher-level causation to mechanisms. Once one subscribes

to these assumptions, it follows from the CBN apparatus that higher-level causation

reduces to interactions between component parts of mechanisms. Though an in-depth

evaluation of these assumptions would go beyond the scope of this article, I briefly

discuss them in order to get a first impression of their putative plausibility.

The article is structured as follows: In section 2 I present Glennan’s ([1996]) mech-

anistic account of higher-level causation. In section 3 I introduce the basics of the

CBN framework required for subsequent sections. In section 4 I use the CBN frame-

work as a basis for reconstructing Glennan’s analysis. I also formulate and briefly

discuss the three basic assumptions mentioned. In section 5 I discuss several interest-

ing consequences of my analysis for the mechanism debate. In particular, I discuss

(i) the worry that a mechanistic analysis of higher-level causation might just reduce

higher-level causation to lower-level causation, (ii) several consequences for the de-

bate about inter-level causation in the presence of mechanisms, and (iii) how inter-

ventions on mechanisms might work according to the analysis provided. I conclude

in section 6.

Summarizing, the article aims at the following three main goals:
4 Casi
The
caus
(1) Fleshing out Glennan’s ([1996]) basic idea by providing a general formal

framework for reducing higher-level causation in terms of mechanisms.

(2) Using the framework as a tool for identifying several assumptions one has

to make (in addition to the framework) in order to get the reduction done.

(3) Sketching how the framework might shed new light on several other issues

discussed in the mechanism literature.
2. Glennan’s Analysis of Higher-Level Causation

Glennan ([1996]) starts his seminal article with Hume’s problem. In a nutshell,

Hume’s problem consists in the question of how we can acquire causal knowledge

even though we seem to be unable to qualitatively distinguish between regularities

due to causal laws and spurious correlations. From a phenomenological point of

view, the two kinds of regularities are indistinguishable simply because the ‘secret

connexion’ that binds cause and effect together does not produce any specific im-

pression or experience in the observer. While Hume’s own skeptical solution to the

problem consists in redefining causation as regular conjunction, Glennan proposes
ni et al. ([2011]) and Clarke et al. ([2014]) combine causal and constitutional relationships as well.
y are, however, more interested in modelling mechanistic hierarchies than in analysing higher-level
ation in terms of mechanisms.
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that one might be able to distinguish between regularities due to causal laws and

spurious correlations by checking whether there exists a mechanism that connects

the phenomenon of interest with its purported cause. According to Glennan ([1996],

p. 49), Hume’s claim that ‘no number of observations can yield an impression of a

connection’ between cause and effect is correct, but his claim that this connection is

‘secret’ is false. Actually, one can establish a causal relation by discovering a mecha-

nism that connects the cause to the effect phenomenon, which will often require so-

phisticated scientific methods.

To further spell out the idea of reducing higher-level causation tomechanisms, Glen-

nan ([1996], p. 52) provides the following definition of the concept of mechanism:
A mechanism underlying a behaviour is a complex system which produces
that behaviour by of the interaction of a number of parts according to direct
causal laws.
According to this definition, a mechanism is always a mechanism for a specific be-

haviour. This nicely fits the idea that one and the same system might behave in quite

different ways, where interactions between different parts might be responsible for

these different behaviours. This observation leads to the distinction between the parts

of a system that are constitutively relevant for the behaviour of interest and those that

are not. Let us call the former, in accordance with Craver ([2007]), the mechanism’s

components. As the definition says, these components are supposed to bring about

the behaviour of interest by causally interacting with each other. The part of the def-

inition that requires them to interact ‘according to direct causal laws’ is intended to

guarantee genuine causal interactions between component parts as well as that the

overall ‘behaviour of the aggregate stems from a series of local interactions’ (Glen-

nan [1996], p. S344). Note that later on, Glennan ([2002], p. S344) replaced the

phrase ‘according to direct causal laws’ in the original definition with ‘where the

interactions between parts can be characterised by direct, invariant, change-relating

generalisations’, where ‘direct, invariant, change-relating generalisations’ should be

understood in the sense of Woodward ([2003]). However, since whether one prefers

the one or the other phrase to characterise mechanisms will play no role for the re-

construction of Glennan’s analysis of higher-level causation in section 4, I will stick

with the simpler definition from the 1996 article.

Glennan’s ([1996], p. 64) mechanistic analysis of higher-level causation states that

‘two events are causally connected when and only when there is a mechanism con-

necting them’. The analysis comeswith a number of philosophical merits: First, it ren-

ders scientifically tangible questions about whether higher-level phenomena are caus-

ally connected. It suggests that questions like these can be answered on the basis of

empirical investigations. This is, for example, also supported by the Russo–Williamson

thesis (Russo and Williamson [2007]) that states that establishing causal claims re-

quires that difference-making evidence is supported by an understanding of the

mechanism responsible for the phenomenon of interest. Second, it provides a more
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sophisticated solution to Hume’s problem than regularity theories of causation have to

offer. While regularity theories redefine causation as constant conjunction and, thus,

run the risk of rendering too many regularities causal, a mechanistic analysis allows

for phenomena that are not causally related though they regularly occur together. Fi-

nally, a mechanistic analysis of higher-level causation allows for multiple realisability.

Smoking, for example, is a cause of premature death, but there are many different

mechanisms for explaining how exactly smoking can lead to premature death.

There are, of course, also problems with Glennan’s ([1996]) mechanistic analysis

of higher-level causation. One of the most frequently discussed problems is that a

mechanistic account does not provide any possibility for analysing causal interac-

tions among component parts at the fundamental physical level. While the account

seems to be capable of solving Hume’s problem for higher-level causation, the prob-

lem remains a threat at the fundamental physical level. Glennan ([2002], [2011]) ar-

gues that counterfactuals stating what would happen under interventions can be used

to achieve knowledge of the causal relations among component parts at the funda-

mental physical level. He emphasises, however, that though interventions can be

used for such epistemic purposes, they do not provide a basis for a thorough meta-

physical analysis of the concept of causation.5 Another problem with Glennan’s

mechanistic analysis might be that it seems to simply reduce higher-level causation

to causation at the fundamental physical level. Glennan ([1996], p. 66) counters this

worry by pointing out that ‘it is not [the fundamental causal] laws which make the

causal claim true; rather, it is the structure of the higher level mechanism and the prop-

erties of its parts’. The idea here is that the presence of the mechanism as a structured

whole makes—in addition to the causal structure at the fundamental physical level—

a substantial contribution in bringing about cause-effect relationships at higher levels.

I will come back to this and other issues in section 5. But first I will briefly introduce

the basics of the CBN formalism relevant for subsequent sections.
3. Causal Bayes Nets

Bayes nets (BNs) were originally developed to graphically store independence infor-

mation and to simplify reasoning under uncertainty. The formalism can, however, be

used to represent all kinds of relations and dependencies that have just the right for-

mal properties. In particular, they must conform to the Markov condition (Spirtes

et al. [1993], p. 33), which establishes a connection between probabilistic depen-

dence and graphical structure. Before I can introduce theMarkov condition properly,

a few preliminaries are required. In the following, V shall be a set of random var-

iables, X1, ... , Xn, which might represent events or properties; E a set of arrows

(→) connecting pairs of variables in V; and P a probability distribution over V.
5 For a discussion of the limitations of interventions for testing causal relations underpinned by complex
mechanisms, see (Casini [2016]).
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G 5 hV,E i is called the BN’s graph, and Par(Xj) shall stand for the set of a var-

iable Xj’s parents, which is the set of all Xi ∈ V, with Xi → Xj. Variables Xi that

are connected to Xj via a path of the form Xi → :::→ Xj are called Xj’s ancestors,

and variables Xj connected to a variable Xi over such a path are called Xi’s descen-

dants. The Markov condition can be formulated as follows:
6 Probab
0 for a
of pro

7 Note t
Both
Markov Condition: hV, E, Pi satisfies the Markov condition if and only if

G 5 hV,E i and probability distribution P conforms to

P(X1, ::: , Xn) 5
Yn

i51

P(XijPar(Xi)): (1)
The conditional probabilities P(XijPar(Xi)) appearing in equation 1 are called Xi’s

parameters. The Markov condition is basically a screening off condition. If satis-

fied, it guarantees that every variable Xi ∈ V is independent of its non-descendants

(which are the variables Xj not connected via a path Xi → :::→ Xj to Xi) conditional

on its direct ancestors (which are the variables in Par(Xi)).
6 Now one kind of rela-

tion that conforms to equation 1, and thus could be represented by a BN’s arrows, is

direct causal dependence (Spirtes et al. [1993]; Pearl [2000]). We shall call a BN

in which some (or all) arrows are causally interpreted a causal Bayes net (CBN).

For a model in which all arrows are causally interpreted, the Markov condition im-

plies that every variable becomes probabilistically independent of all its non-effects

given its direct causes. It also implies Reichenbach’s ([1956]) insights that common

causes screen off their effects and that an effect’s direct causes screen it off from its

indirect causes.

Other relations that seem to conform to equation 1 are, for example, supervenience

and constitution (Gebharter [2017a], [2017c]). Recent work by Schaffer ([2016])

suggests that the grounding relation might conform to the Markov condition as well.

In the following, however, I will only be interested in BNs that represent causal and/

or constitutional relationships. I will, from now on, represent direct causal connec-

tions by continuous arrows (→) and direct constitutional relationships by dashed ar-

rows (---›).7 I will refer to a variable Xi’s direct causes as its causal parents and

to Xi’s direct constituents as its constitutional parents. Likewise, I will refer to the

variables Xi connected to a variable Xj via a path of the form Xi → :::→ Xj as Xj’s

causal ancestors, and to the variables Xj connected to a variable Xi over such a path

as Xi’s causal descendants. If Xi and Xj are connected over a path of the form

Xi ---› ::: ---› Xj, I will refer to Xi as one of Xj’s constitutional ancestors and to

Xj as one of Xi’s constitutional descendants.
ilistic independence betweenXi andXj conditional onXk is defined asP(xijxj , xk ) 5 P(xijxk ) ∨ P(xj, xk ) 5
ll Xi-, Xj-, and Xk- values xi, xj, and xk, respectively. Probabilistic dependence is defined as the negation
babilistic independence.
hat representing these different kinds of relations by different arrows is just a cosmetic procedure.
kinds of arrows are assumed to technically work in exactly the same way.
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Given the terminology introduced we can state the Markov condition for systems

possibly featuring both causal and constitutional relations as follows:
8 Assum
Gebha
arrow
[1993
quent
Supervenience or Constitutional Markov Condition: hV, E, Pi satisfies

the causal or constitutional Markov condition if and only if every Xi ∈ V is

probabilistically independent of its non-descendants conditional on its causal

and constitutional parents.
The CBN framework comes with a simple test for whether a particular arrow

Xi → Xj (or Xi ---› Xj) can mediate probabilistic influence between Xi and Xj. To

determine whether Xj-variations are correlated with Xi-variations in some circum-

stances due to the arrow Xi → Xj (or Xi ---› Xj), one has to check whether Xj proba-

bilistically depends on Xi conditional on Xj’s other parents (Schurz and Gebharter

[2016], p. 1087), meaning that one has to check whether P(xjjxi, r) ≠ P(xjjr) ∧
P(xi, r) > 0 holds for some combination of Xi-values xi, Xj-values xj, and values r

of Par(Xj)nfXig. If the answer to this question is positive, we say that the arrow

Xi → Xj (or Xi ---› Xj) is productive. Arrows that do not pass the productivity test

are redundant and can be eliminated without making the model less informative.8

This fact will play a crucial role for evaluating Glennan’s ([1996]) mechanistic anal-

ysis of higher-level causation in section 4.

Since the productivity test introduced will do a lot of work in subsequent sections,

further elaboration and illustration seem appropriate. I will use the test as a kind of

Occam’s razor: If two (or more) parents of a variable compete for relevance, the

one (or ones) not making any difference must go. Assume, for example, we are in-

terested in whether Suzy throws a stone (S 5 1=0) and in whether Billy throws a

feather (B 5 1=0) at a vase that might, as a result, shatter (V 5 1=0). Suppose we

are interested in the following two competing causal hypotheses:
h1: Whether Suzy throws (S 5 1=0) is causally relevant for whether the vase

breaks (V 5 1=0).

h2: Whether Billy throws (B 5 1=0) is causally relevant for whether the vase

breaks (V 5 1=0).
S passes the productivity test. If Billy throws the feather, Suzy throwing the stone

still makes a difference for whether the vase breaks (P(V 5 1jS 5 1, B 5 1) ≠
P(V 5 1jB 5 1)), and we can conclude that h1 is true. But since whether Billy

throws does not make a difference either if Suzy throws (P(V 5 1jB 5 1, S 5 1) 5

P(V 5 1jB 5 0, S 5 1) 5 P(V 5 1jS 5 1)) or if she does not throw

(P(V 5 1jB 5 1, S 5 0) 5 P(V 5 1jB 5 0, S 5 0) 5 P(V 5 1jS 5 0)),B fails
ing productivity for all of a model’s arrows amounts to assuming minimality (Schurz and
rter [2016], theorem 2). Note that applying the productivity test to single causal or constitutional
s only requires that the model satisfies the Markov condition; neither minimality (Spirtes et al.
], p. 34) nor the stronger faithfulness assumption (Spirtes et al. [1993], p. 56) is required. Conse-
ly, I will assume neither minimality nor faithfulness in this article.
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the test, and we conclude that h2 is false. Note that this does not yet mean that h2
can be reduced to (or explained in terms of ) h1. However, depending on the context,

one can use the productivity test for answering questions like these as well. While h1
and h2 describe same-level phenomena, we can construct a similar case involving

phenomena located at different levels. Assume, for example, I expect it to rain later

on and we are interested in the causal impact of whether I decide to take an umbrella

with me. Suppose we are interested in the following two competing causal hypotheses:
9 The b
(Gebh
the ca
conce
h3: My decision (D 5 1=0) is causally relevant for whether I take an umbrella

with me (U 5 1=0).

h4: The corresponding brain processes (B 5 1=:::=n) are causally relevant for

whether I take an umbrella with me (U 5 1=0).
Depending on how exactly my decisions are related to what is going on in my brain,

one will get different results from applying the productivity test to this scenario. If

my decisions are multiply realisable and supervene on brain processes, then h3 will

fail and h4 will pass the test. In the context of different levels, this could be inter-

preted as h3 being reducible to h4. While it makes perfect sense to say that my de-

cisions are causally relevant for whether I take an umbrella with me in everyday live

situations and higher-level causal claims might also be useful for scientific explana-

tion, they can, in the end, be reduced: Higher-level phenomena are only causally rel-

evant because they relate to lower-level phenomena in a certain way, but the lower-

level phenomena do all the actual causal work. In subsequent sections I will use the

productivity test in this latter sense: as an indicator for when certain causal relations

can be reduced in terms of more fundamental causal relations (and inter-level relation-

ships of constitution).
4. Reconstructing Glennan’s Analysis

In this section, I use the CBN framework as a basis for developing a reconstruction of

Glennan’s ([1996]) mechanistic account of higher-level causation.9 For illustrative

purposes, I introduce an abstract toy example that shall stand proxy for all possi-

ble cases involving higher-level causation. Now, for Glennan, the analysis of higher-

level causation starts with two higher-level phenomena that stand in a causal relation-

ship. Let us model the possible behaviours of the systems exhibiting these phenomena

with the two random variables H1 and H2. In addition, we assume that H1 is causally

relevant for H2. Hence, H1 →H2 has to be a part of our model. Further details about

how the possible behaviours of the systems described by H1 and H2 are related

to each other is modelled by a probability distribution P over V, where V is a set
asic idea for modelling causal and inter-level relations in one and the same model is the same as in
arter [2017a]). While the productivity test introduced in section 3 is used to answer questions about
usal efficacy of mental properties in (Gebharter [2017a]), I use it as a device for exploring issues
rning reduction in terms of mechanisms in this article.
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of variables containing H1, H2, and several other variables to be introduced soon.

Since H1 is assumed to be a cause of H2, we assume that H2 depends on H1, mean-

ing that P(h2jh1) ≠ P(h2) ∧ P(h1) > 0 holds for some H1- and H2-values h1 and h2,

respectively.

The next step in Glennan’s ([1996]) analysis would be to decompose the two sys-

tems whose higher-level behaviours are described by H1 and H2 and to identify the

component parts of the mechanisms responsible for these behaviours. There are cur-

rently several proposals for how to identify a mechanism’s component parts on the

market (see, for example, Craver [2007]; Harbecke [2015]; Baumgartner and Gebharter

[2016]; Baumgartner and Casini [2017]; Gebharter [2017c]; Krickel [2018]). However,

since we are first and foremost interested in reconstructing Glennan’s analysis rather

than in the question of how to distinguish the parts constitutively relevant for certain

behaviours from those that are not, we can ignore the latter question for the moment.

For now it is only important to stress that some parts of our systems stand in consti-

tutive relevance relations to the higher-level behaviours of interest, while others do

not. Let us assume that the mechanism underlying H1 consists of three constitutively

relevant parts, while the mechanism responsible for H2 consists of two. We model

H1’s component parts with the variables L1, L2, and L3 and H2’s components with

L5 and L6. Let us assume that we also found a non-component part that we will model

withL4. (Theremight be additional non-component parts that wewill ignore for now.)

Next, let us assume that the lower-level variables L1, ... , L6 are causally connected to

each other like in figure 1.10 By adding a dashed arrow for every component part, we

finally arrive at the graph depicted in figure 1.11

Now the proxymodel in figure 1 and the CBN framework can be used as a tool for

investigating the commitments of Glennan’s ([1996]) mechanistic account of higher-

level causation. If higher-level causation can actually be reduced in terms of mecha-

nisms, this would amount to the claim that certain constraints that allow for elimi-

nating higher-level causal arrows such as H1 →H2 have to hold for all models like

the one in figure 1. Now the crucial question is whether we can formulate such con-

straints. They would have to come in the form of general assumptions one has to

make in order to render higher-level arrows such as H1 →H2 unproductive in the sense

explained in section 3. The reduction of the higher-level causal relationship between

H1 and H2 would, according to this idea, consist in demonstrating that the arrow

H1 →H2 is redundant, meaning that it does no causal work that is not already done

by some lower-level causal structure.

Here comes the first assumption required to get the reduction of higher-level cau-

sation in terms of the model: All kinds of higher-level phenomena occur because
10 Note that nothing hinges on the particular causal structure among lower-level variables as long as the
assumptions to be introduced are satisfied.

11 Constitutive relevance arrows are drawn from lower- to higher-level variables because higher-level phe-
nomena behave with respect to their component parts similarly to how effects behave with respect to
their causes. For a more detailed argumentation, see (Gebharter [2017c]).
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of underlying mechanisms. The assumption guarantees that for every higher-level

phenomenon described by some variable H there will be lower-level constitutively

relevant parts that can be described by variables L1, ... , Ln. It is typically also as-

sumed that the overall behaviour of a mechanism H supervenes on the behaviours

of the mechanism’s component parts L1, ... , Ln (see, for example, Glennan [1996];

Craver [2007]; Baumgartner and Gebharter [2016]).12 We can summarize and formu-

late these requirements in terms of CBN models as follows:
12 Note
alwa
istem
phys
Thro
a me
Assumption 1 (Supervenience/Constitution): For each higher-level phe-

nomenon described by a variable H there are component parts described by

variables L1, ... , Ln such that L1 ---›H , ... , Ln ---›H , and P is constrained by

8h8h0∃ l∶ If  h ≠ h0,  then P(l h) ≠ P(lj jh0), and (2)

8 l∃h∶ P(hjl) 5 1, (3)

where L (with values l) is an individual variable ranging over all possible

combinations of instantiations of lower-level variables L1, ... , Ln.
Equations 2 and 3 are constraints on the probability distributions that come with

models of mechanisms. They reflect probabilistic implications of supervenience

and constitutive relevance: If and only if H supervenes on {L1, ... , Ln}, then every

change ofH’s value will be accompanied by a change in the probability distribution

over {L1, ... , Ln} (equation 2). And vice versa: whenever the values of all variables

L1, ... , Ln representing constitutively relevant parts are fixed, then also H’s value will

be determined (equation 3).
Figure 1. Toy model for exploring the commitments of Glennan’s ([1996]) mechanistic
account of higher-level causation.
that in mechanistic models actually used for explanation, the supervenience assumption will not
ys hold. However, the project of reducing higher-level causation in terms of mechanisms is not ep-
ic but rather metaphysical in nature, and almost everyone seems to agree that given the full meta-
ical picture, a mechanism’s macro behaviour supervenes on the behaviours of its component parts.
ughout this article I assume that lower-level variables L1, ... , Ln describing the component parts of
chanism can in principle be defined, even if actually unknown.
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Assumption 1 renders higher-level causal relations redundant. This can be illus-

trated on the basis of our toy model as follows: Let l be an arbitrarily chosen com-

bination of instantiations of H2’s constitutively relevant variables L5 and L6.
13 It fol-

lows with equation 3 that there is exactly one H2-value h2 for every l such that

P(h2jl) 5 1, while P(h0
2jl) 5 0 for all H2-values h0

2 different from h2. There are

two possible cases for every H1-value h1: Either (i) h1 and l are compatible, meaning

that P(h1, l) > 0, or (ii) they are not, meaning that P(h1, l) 5 0. If (i) is the case, then

P(h2jh1, l) 5 P(h2jl) and P(h0
2jh1, l) 5 P(h0

2jl) hold. Thus, no H2-value depends on

h1 conditional on l. If (ii) is the case, then no H2-value depends on h1 conditional

on l by definition. So conditionalizing on l renders H2 independent from H1 in both

cases (i) and (ii). Because l was arbitrarily chosen, this result generalises: H2 and

H1 are independent conditional on any possible combination of instantiations of

the variables L5 and L6, meaning that H2 and H1 are independent conditional on

Par(H2)nfH1g 5 fL5, L6g. Thus, the arrow H1 →H2 is unproductive. Note that this

reasoning does not hinge on the particular structure of our exemplary model. It can

be generalized for all kinds of CBN models involving mechanisms that satisfy

assumption 1.

Note, however, that assumption 1 is still not sufficient for a general reduction of

higher-level causation to mechanisms. One needs to assume, in addition, that at least

some of the components of the causemechanism are causally relevant for at least some

of the components of the effect mechanism. In other words, one needs to assume that

for every higher-level causal relation there is a corresponding lower-level causal con-

nection. In figure 1, this assumption is already satisfied due to each one of the directed

causal chains going through L4. We can state this second assumption as follows:
13 An a
causa
Assumption 2 (Lower-Level Causal Relevance 1): If a higher-level phe-

nomenon described by a variable Hi is causally relevant for another higher-

level phenomenon described by a variable Hj, then at least some of Hi’s com-

ponent parts are causally relevant for Hj’s component parts as well.
But why exactly do we need assumption 2 in addition to assumption 1? The need for

assumption 2 can be illustrated by means of our exemplary model in figure 1 as fol-

lows: Assume that the component variables of the two mechanisms represented

would not be causally connected. This could, for example, be the case if there were

no arrow between L3 and L4. However, we still assume that H1 is a higher-level

cause of H2, which suggests that some changes in the cause mechanism (consisting

ofH1, L1, L2, and L3) can bring about changes in the target mechanism (consisting of

H2, L5, and L6). If there is no causal connection between the supervenience bases of

H1 and H2, then the only causal relation that can account for this fact is H1 →H2. In
nalogous argument can be formulated against the efficacy of mental causes in the context of the
l exclusion problem (Gebharter [2017a]).
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order to establish such a connection between H1 and H2, however, H1 →H2 must

pass the productivity test introduced in section 3. Hence, the arrow H1 →H2 can

be rendered redundant only ifH1’s supervenience base andH2’s supervenience base

are causally connected. There are two possibilities for such a causal connection:

H1’s and H2’s supervenience bases have a common cause, or H1’s supervenience

base is a cause of H2’s supervenience base. In order to account for the fact that

H2 changes can be brought about by producing changes in H1, there must be a di-

rected causal chain from H1’s supervenience base to H2’s supervenience base.

There is one final assumption one needs to make for a successful reduction of

higher-level causation to interactions among component parts of the mechanisms in-

volved. Let me briefly illustrate why one needs to make it. Assume that H1 has four

possible values (0, 1, 2, 3),H2 has three possible values (0, 1, 2), and L5 and L6 each

have two possible values (0, 1). (Since details about the other variables of the model

are not required for the point I want to make here, I will ignore those variables for

the moment.) Now assume that H1, L5, and L6 are connected in such a way that the

following conditionals hold:
If H1 5 0, then L5 5 0 and L6 5 0.

If H1 5 1, then L5 5 0 and L6 5 1.

If H1 5 2, then L5 5 1 and L6 5 0.

If H1 5 3, then L5 5 1 and L6 5 1.
In addition, we assume that H2’s parameters are defined as follows, where i ∈
f0, 1, 2, 3g and h2,0 stand short for H2 5 0, h2,1 stands short for H2 5 1, and so on:

P h2,0jr) 5 1 P h2,1 r) 5 0 P h2,2ð jr) 5 0 if  r 5 h1,i, l5,0, l6,0jðð
P h2,0jr) 5 0 P h2,1 r) 5 1 P h2,2ð jr) 5 0 if  r 5 h1,i, l5,1, l6,0jðð
P h2,0jr) 5 0 P h2,1 r) 5 1 P h2,2ð jr) 5 0 if  r 5 h1,i, l5,0, l6,1jðð
P h2,0jr) 5 0 P h2,1 r) 5 0 P h2,2ð jr) 5 1 if  r 5 h1,i, l5,1, l6,1jðð

These parameters are chosen in such a way that whenever two of the three parents of

H2 take any of their values, the third parent’s value is also determined. This means

that no change inH2’s value can lead to a change in the probability distribution over

one of H2’s parents conditional on H2’s remaining parents. Given these rather ex-

treme constraints, the productivity test implies that the higher-level causal arrow

H1 →H2 is not productive. However, it also follows that the constitutional arrows

L5 ---›H2 and L6 ---›H2 are not productive. In addition, deleting H1 →H2 renders

L5 ---›H2 and L6 ---›H2, and deleting L5 ---›H2 or L6 ---›H2 renders H1 →H2

productive again. In cases such as the one constructed, the productivity test pro-

posed in section 3 cannot identify the culprit; it only tells us that at least one of the

competing arrows cannot represent an efficacious relation.
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How should we interpret this result? First of all, note that such cases require a

very specific fine-tuning of the model’s parameters and can, thus, be expected to

be extremely rare.14 However, the logical possibility of such scenarios demands

for an answer to the question raised. Since a supporter of a mechanistic analysis

of higher-level causation aims at reducing higher-level causation in terms of mech-

anisms, it is advisable for her to favour the constitutional arrows over the causal ones.15

In other words, she needs to assume that the higher-level behaviour’s component parts

rather than the higher-level causes are efficacious:
14 The p
causa
a com

15 Anot
sume
whet
of H
Assumption 3 (Constitutional Priority): If constitutional as well as causal

arrows pointing at a variable H describing some higher-level phenomenon

do not pass the productivity test (described in section 3), then H’s causal par-

ents rather than H’s constitutional parents are inefficacious with respect to H.
To summarize, the three assumptions introduced imply (to the background of the

CBN framework) that higher-level causation reduces to causal interactions among

component parts of the mechanisms involved. Assumption 1 warrants that for every

higher-level phenomenon there exist several component parts that, together, render

any causal relation between that phenomenon and its higher-level causes unproduc-

tive. Assumption 3 guarantees that those higher-level causes are actually ineffica-

cious and that the causal relations do not fail the productivity test simply because

one or more constitutively relevant parts are inefficacious. Finally, assumption 2

is required in order to account for the fact that the effect mechanism can be influ-

enced by manipulating the cause mechanism. Let me stress again that the possibility

of reducing higher-level causation in terms of mechanisms does not hinge on the

specific structure of the model in figure 1. The results of this section apply to all

CBN models involving mechanisms as long as one subscribes to assumptions 1–3.

Before pointing at some interesting consequences of the results obtained in this

section, let me say a few words about the plausibility of assumptions 1–3. Assump-

tion 1 nicely fits the newmechanist movement and probably every mechanist would

subscribe to it: Higher-level phenomena are brought about by causal interactions

among their constitutively relevant parts, and the behaviour of the system as a whole

is connected to the behaviours of the component parts via supervenience. Note that

the supervenience assumption is not only supported by mechanists, but also by

almost everyone who believes in a layered view of the world (see, for example,

Kim [2007]). Assumption 2 is quite plausible as well. If my higher-level decision

is causally relevant for raising my left arm, then it seems also that the processes
roblem should, for example, not arise in cases of non-deterministic causal dependencies. That the
l influences among variables to be analysed are indeterministic or at least pseudo-indeterministic is
mon assumption in the causal modelling literature (see, for example, Spirtes et al. [1993]).
her reason to go for the constitutional arrows is that a mechanism’s components are typically as-
d to be difference makers. Recall from section 3 that the productivity test is basically a test for
her a parent of a variable is a difference maker for that variable. So if L5 and L6 are components

2, the arrows L5 ---›H2 and L6 ---›H2 should stay, and H1 →H2 must go.
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in my brain over which this decision supervenes are causally relevant for that phe-

nomenon. My arm going up without any neurological causal basis would be more

than miraculous. Finally, assumption 3 also seems plausible. It grants priority to

constitutional relationships over causal relationships. This nicely fits the idea that

constitution is a metaphysical relation that is more essential for an object or phenom-

enon than causation. While the presence of a cause might bring about quite different

effects in different possible worlds due to different causal laws, the presence and be-

haviour of the constituents of a higher-level object or phenomenon determine the be-

haviour of this object or phenomenon in all possible worlds. It is, for example, hard to

see how certain spatial changes in the molecules constituting my left arm could not re-

sult in a corresponding arm movement at the higher level. To summarize, it seems that

all three assumptions—at least at first sight—are quite plausible and, thus, that Glen-

nan’s ([1996]) mechanistic account of higher-level causation might be supported by a

CBN analysis such as the one developed in this section. But note that for a final verdict

about the three assumptions’ plausibility, a much more thorough investigation would be

required. However, the main aim of this article consists in spelling out which assump-

tions one would have to subscribe to in order to reduce higher-level causation in terms

of mechanisms.

5. Consequences for the Mechanism Debate

In this section I discuss three interesting consequences and connections of the re-

sults obtained in section 4 to other issues discussed in the literature on mecha-

nisms. I discuss (i) the worry that a mechanistic analysis of higher-level causation

might just reduce higher-level causation to lower-level causation, (ii) several conse-

quences for the debate about inter-level causation in the presence of mechanisms, and

(iii) how interventions on mechanisms might work according to the analysis provided

in section 4.

5.1. Do mechanisms add anything to
lower-level causal structure?

If Glennan ([1996]) is right and higher-level causation can actually be reduced to

interactions between component parts of mechanisms, then one might wonder

whether the analysis could not also be done without mechanisms. This is basically

Psillos’s ([2004]) worry briefly mentioned in section 1: At some point one runs out

of mechanisms when analysing higher-level causation mechanistically, and it seems

that, in the end, the causal structure at the lowest level is doing all the work in re-

ducing higher-level causation. Glennan ([2011]) countered this objection by arguing

that his mechanistic account and an interventionist treatment of causation depend

on each other and, thus, stand and fall together16: While the mechanistic approach
16 Psillos ([2004]) and Glennan ([2011]) both presume an interventionist understanding of causation.
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depends on interventionism when it comes to accounting for causal interactions

among component parts, interventionism, in turn, ‘relies on the mechanical approach

because the truth-conditions for counterfactuals depend upon the structure of mech-

anisms’ (Glennan [2011], p. 806). Glennan goes on by arguing that interventionism

faces a regress problem similar to the one of the mechanistic approach. I agree with

Casini ([2016]) that Glennan’s argumentation does not go through because both ac-

counts run into different kinds of regresses: The mechanist runs into a vicious on-

tological regress, while the interventionist only faces a probably rather harmless

conceptual regress.

In this section I am not particularly interested in how the mechanistic account and

interventionism relate to each other. I still take Psillos’s ([2004]) worry as a starting

point, but approach it from a different angle. Interestingly, Glennan has already

thought about the possible objection that his analysis might just reduce higher-level

causation to causal relations at the fundamental physical level. He addressed it by

pointing out that, ‘Although the mechanism responsible for connecting two events

may supervene upon lower-level mechanisms, and ultimately on mechanistically in-

explicable [causal] laws of fundamental physics, it is not these laws that make the

causal claim true; rather, it is the structure of the higher level mechanism and the

properties of its parts’ (Glennan [1996], p. 66). Which role mechanisms play exactly

in making the higher-level causal claim true is, however, not explained in more de-

tail, and there are several ways to interpret this quote. Here is one such possibility:

The structure of the higher-level mechanism that is required in addition to the lower-

level causal structure basically consists of the particular component parts whose

causal interactions give rise to the higher-level phenomenon of interest. Information

about this structure consists primarily in information about which parts are consti-

tutively relevant for that phenomenon and about their causal interactions.17 This

kind of information is required to link the higher-level phenomenon to what is caus-

ally going on at the lower level and, thus, is essential for getting the reduction done.

However, just making such a claim does not yet establish its truth. The reconstruc-

tion and the CBN model developed in section 4 can be used to further support it.

The reconstruction comes with clear criteria for when a higher-level causal rela-

tion is reducible. The model shows that more is needed than just the lower-level causal

structure in order to reduce higher-level causation. In particular, one also needs to

connect the higher-level causal structure with the lower-level causal structure by

adding several dashed arrows representing constitutive relevance relations (assump-

tion 1). Without these additional arrows, the productivity test would yield that

H1 →H2 is productive (and, thus, the reduction would fail), and the Markov condi-

tion would be violated because there would be probabilistic dependencies between
17 I am indebted to an anonymous referee for pointing out that the structure of a mechanism meant here
might also include the spatiotemporal ordering of the component parts. Since the point I want to make
in this subsection does not require this kind of structural information, I will abstract from it for now.
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variables at different levels (for example, between H2 and L5 and between H2 and L6)

not accounted for by any connection in the graph. This shows that a successful and

consistent reduction requires mechanisms as mediators between the behaviours of

higher- and lower-level variables. Note that acquiring information about the structure

of mechanisms, information about which parts of a system are constitutively relevant

for the overall behaviour of that system, is not a trivial task. Constitutive relevance

relations cannot be read off the variables and causal relations represented in the model.

Decomposing mechanisms and finding out which parts are actually components are

quite demanding processes that cannot be done on a priori grounds. This is further

supported by the fact that there are currently several quite sophisticated theories of

constitutive relevance and approaches for constitutive relevance discovery on the

market (see, for example, Craver [2007]; Harbecke [2010], [2015]; Baumgartner

and Gebharter [2016]; Baumgartner and Casini [2017]; Gebharter [2017c]).
5.2. Mechanisms and inter-level causation

Several authors have recently argued for or against inter-level causation in the pres-

ence of mechanisms. Leuridan ([2012]), for example, is sympathetic toward inter-

preting constitutive relevance as a bidirectional causal relation between variables

at different levels, and Krickel ([2017], p. 543) argues for the view that mechanistic

hierarchies do not exclude inter-level causation if one takes seriously that ‘the relata of

the mechanistic level relation are acting entities’. Authors such as Craver and Bechtel

([2007], Kistler ([2009]), and Romero ([2015]), on the other hand, claim that inter-level

causation can be reduced to truths about constitutive relevance relations and lower-

level causal structure. In what follows, I will explore how the analysis provided in

section 4 may be used in order to support the reductionist camp.

Let me illustrate this by means of the toy example introduced in section 4. As-

sume, in addition to the assumptions already in place, that the model features the

two inter-level causal relations L1 →H2 and H1 → L5 (fig. 2).
18 A reduction in the

sense of Craver and Bechtel ([2007] would, again, consist in showing that these

two arrows are redundant and can, in principle, be deleted from the model and that

all the work these arrows seem to do is actually done by constitutive relevance rela-

tions and the lower-level causal structure. Let us start with bottom-up causation and

with the arrow L1 →H2. With assumption 1 it follows that L1 →H2 is unproductive for

exactly the same reasons the higher-level causal arrowH1 →H2 turned out as unpro-

ductive in section 4 (L1 and H2 are independent conditional on Par(H2)nfL1g 5

fL5, L6g); and for the few cases in which the productivity test would output L1 →H2

as well as one or both of the constitutional arrows L5 ---›H2 and L6 ---›H2 as

unproductive, assumption 3 tells us that the bottom-up cause should be considered

as inefficacious. Finally, one needs to guarantee that manipulating L1 can bring
18 Since the focus is on inter-level causation now, I have deleted the higher-level causal arrow H1 →H2.
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about changes in H2. If the bottom-up arrow L1 →H2 should turn out as unproduc-

tive, one needs to account for this fact by assuming that one or more directed chains

from L1 to H2 go through H2’s supervenience base {L5, L6}. This can be guaranteed

by subscribing to the following assumption:
19 Like
the s
Assumption 4 (Lower-Level Causal Relevance 2): If a lower-level phe-

nomenon described by a variable Li is causally relevant for a higher-level phe-

nomenon described by a variableHj, then Li is causally relevant for at least some

of Hj’s component parts as well.
Assumption 4 has the same function for reducing bottom-up causation as assump-

tion 2 has for reducing higher-level causation. It seems plausible for almost the same

reasons, too19: It would be miraculous if there were bottom-up causes without a cor-

responding lower-level causal story to be told. Assume, for example, that certain

processes in my brain caused the raising of my left arm. Then, surely, there is a causal

story to be told about how these brain processes caused the muscles in my left arm

to contract in specific ways that constitute the raising of my left arm. A common

cause path connecting these brain processes and the muscle contractions in my left

arm would not be enough to explain the dependence of the raising of my left arm on

these brain processes.

Reducing the top-down causal arrow H1 → L5 is more cumbersome. Assump-

tions 1 and 3 that, together, render causes inert in the presence of constitutive rele-

vance relations have no bearing on lower-level variables such as L5. To render H1

inefficacious with respect to L5, one needs to subscribe to additional assumptions.

Here is a possible candidate:
Assumption 5 (Extended Productivity): Xi → Xj (or Xi ---› Xj) is produc-

tive if and only if Xj depends on Xi conditional on Par(Xj)nfXig. If Xi is a

higher-level direct cause of Xj, then Xj must also depend on Xi conditional on

the set V0 of Xi’s constitutive ancestors.
Figure 2. Toy model for exploring the reducability of inter-level causation in terms of
mechanisms.
in the case of the other assumptions, a more thorough evaluation of assumption 4 would go beyond
cope of this article.
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Assumption 5 is basically an extended version of the productivity test introduced in

section 3. It states that for a causal arrow to be productive, it does not always suffice

that the two variables the arrow connects cannot be screened off by the effect var-

iable’s other parents. If the cause variable is a higher-level variable, then the vari-

ables constitutively relevant for the cause variable have to be considered as well.

Assumption 5 seems plausible on first sight. The question on which everything seems

to hinge is whether the behaviour of the system at the higher level (H1) can contrib-

ute anything to the causal work done by the mechanism’s component parts (L1, L2,

and L3).

Unfortunately, it turns out that assumption 5 is not sufficient to reduce top-down

causation in all cases. The problem is that though the set of constituents {L1, L2, L3}

clearly screensH1 off from L5, assumption 5 does not exclude probability flow along

the arrow H1 → L5 in general. In particular, the causal arrow H1 → L5 might be

responsible for a probabilistic dependence between H1 and L5 conditional on L4.

As a consequence, H1 → L5 would not be redundant since H1 → L5 would pass the

productivity test and, thus, deleting H1 → L5 would violate the Markov condition.

Since constitution is assumed to formally work exactly like causation, the situation

is equivalent to a case in which a variable X1 is a deterministic direct cause of an-

other variable X2 and, at the same time, a probabilistic direct cause of another var-

iable X3, where both X2 and X3 are probabilistic direct causes of a fourth variable X4.

In such a case, nothing logically excludes the possibility that X2 is dependent on X4
conditional on its other parent X3, meaning that nothing excludes that X2 → X4

passes the original productivity test and is actually required to avoid a violation of

the Markov condition.

Another—and, as far as I can see, the only—possible way to go consists in sub-

scribing to a variant of the closure of the physical domain, which says that if there

are physical causes for a physical event, then citing all of these physical causes gives

us all the information we might get for whether the physical event of interest actually

occurs (see, for example, Kim [2007]). In light of this assumption, higher-level causes

cannot provide any additional information. This assumption can be adopted for lev-

els of mechanisms:
Assumption 6 (Causal Closure of Levels): If there exist lower-level direct

causes L1, . . . , Ln as well as higher-level direct causes H1, . . . , Hm for a

lower-level variable Ln11, then H1, . . . , Hm do not pass the productivity test

introduced in section 3.
Assumption 6 amounts to the claim that higher-level causes always fail the original

productivity test in the presence of same-level causes. So while the reduction of

higher-level as well as bottom-up causation came quite naturally due to assumptions

that have—at least at first glance—some plausibility, the reducibility of top-down

causation needs to be assumed by brute force. In any case, it seems clear that to
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reduce top-down causation in terms of mechanisms, a variant of the causal closure of

levels is required. If this is so, and subscribing to assumption 6 amounts to nothing

over and above begging the question, then the question of whether there is top-down

causation in the presence of mechanisms becomes, in the end, an empirical question;

it entirely depends on whether there are overall behaviours of mechanistic systems

that pass the productivity test.

Note that even if one is ready to subscribe to the causal closure of levels or is able

to establish it on empirical grounds, one still has to guarantee that lower-level causal

arrows have priority over competing top-down causal arrows if both kinds of arrows

turn out to be unproductive and the deletion of one of these arrows would render the

others productive again. One could do this analogously to how constitutional arrows

were prioritized by assumption 3:
20 An in
Assumption 7 (Lower-Level Causal Priority): If lower-level as well as

higher-level causal arrows pointing at a variable X describing some phenom-

enon do not pass the productivity test (described in section 3), then X’s higher-

level causal parents rather than X ’s lower-level causal parents are inefficacious

with respect to X.
Assumption 7 has some plausibility. If one has to give up causal efficacy either for

the higher- or for the lower-level cause, almost everyone would decide in favour of

the lower-level cause. This is, for example, an assumption commonly accepted in the

debate surrounding causal exclusion (see Kim [2007]). It can also be supported by

the arm-raising example mentioned in support of assumption 2 in section 4.

To summarize, the analysis provided in section 4 reduces bottom-up causation

to lower-level causation plus constitutive relevance if one is ready to accept assump-

tion 4. In order to reduce top-down causation as well, one has to make additional as-

sumptions such as the more problematic assumptions 6 and 7. Supporters of re-

ductive accounts of inter-level causation, such as Craver and Bechtel ([2007], might

be able to strengthen their position by coming up with plausible arguments for as-

sumptions 4 and 7, and by supporting assumption 6 on empirical grounds.
5.3. Interventions into mechanistic hierarchies

How interventions work in the presence of mechanistic hierarchies is still not well

understood. Craver ([2007]), for example, suggests that it might be possible to sur-

gically intervene on the whole as well as on any part of a mechanism, where inter-

ventions are to be understood in the sense of Woodward ([2003], p. 98).20 Baum-

gartner and Gebharter ([2016]) and Romero ([2015]) show that there is no way to

surgically intervene on a mechanism’s overall behaviour as long as one accepts that

the higher-level behaviour of a mechanism supervenes on the behaviours of its
tervention on a variable is ‘surgical’ if it causes no other variable directly.
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component parts. They argue that all interventions on the mechanism as a whole

are actually fat-handed, meaning that they are common causes of the higher-level

behaviour as well as of the behaviours of some component parts. Let us see whether

we can add something to that debate.

For illustrating how interventions might work according to the analysis provided

in section 4, let us have another look at the exemplary model introduced in that sec-

tion. Let us introduce a higher-level intervention variable IH1
for H1.

21 According to

the mechanistic account of higher-level causation, there must be some lower-level

component parts for IH1
. Let us assume that IL1

and I 0L1
model two of them, that I 0L1

is a direct cause of IL1
, and that both lower-level variables are direct causes of L1. In

addition, we add the causal arrows IH1
→ L1 and IL1

→H1 and arrive at the structure

depicted in figure 3.22

As we have seen, subscribing to assumptions 1–4 renders possible causes of

higher-level variables such as H1 causally inert. (Note that the problematic assump-

tion 6 and also assumption 7 are not required for this result.) Under these conditions,

the result of Baumgartner and Gebharter ([2016]) and Romero ([2015]) that the be-

haviour of a mechanism at the higher level can only be manipulated while, at the

same time, intervening on some of that mechanism’s component parts turns out

to be correct. But we can also add something to this result: Actually, all the work

is done by the lower-level variables. So interventions on mechanisms are in some

sense fat-handed. They are, however, not fat-handed in the sense of Baumgartner,

Gebharter, and Romero. By intervening on a mechanism, one does not intervene

on higher- and lower-level variables via different effective causal paths. One rather

influences higher-level variables in virtue of exerting causal influence on the mech-

anism’s constitutively relevant parts.
Figure 3. Toy model for exploring how interventions into mechanistic hierarchies
might work theoretically.
21 I use a very weak notion of ‘intervention variable’ here. For IX to count as an intervention variable
for another variable X, I will only assume that IX is a direct cause of X, or of one or several of X’s
constitutional ancestors. ‘Under an intervention on a mechanism’ I will understand as ‘an intervention
on a variable of that mechanism’.

22 The I-variables should represent all the possible ways that a mechanism consisting of H1, L1, L2, L3
could be manipulated. They will stand proxy for all kinds of possible intra- and inter-level interventions
on mechanisms and serve as a theoretical tool for investigating how such interventions on mechanistic
systems might actually work.
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Our analysis can be used to shed new light on the following two related questions:

(i) How can post-intervention distributions be computed in CBN models capturing

mechanistic hierarchies, and (ii) How can constitutive relevance relations be inferred

on the basis of interventions? Let us start with question (i). The effect of setting a

variable Xi to value xi by means of an intervention in a purely causal BN can be com-

puted as follows (see Pearl [2000]): As a first step, one deletes (or ‘breaks’) all the

arrows pointing at Xi. Next, one applies equation 1 to the resulting truncated graph

in order to compute the conditional probabilities P(V0jXi 5 xi) for any set V0 ⊆V of

variables of interest. These conditional probabilities are then identified with the post-

intervention distribution over V0. This procedure guarantees that intervening on a

variableXi can have an effect on Xi’s descendants (its effects), but not on its ancestors

(its causes) or causally independent variables.

Here is a first sketch of how this technique could also be used in order to compute

the effects of interventions onmechanisms in systems spanning nomore than two lev-

els. According to our analysis, there are at least two different kinds of background

knowledge one might have when intervening on mechanisms that nicely correspond

to the different kinds of experiments biologists and neuroscientists carry out when

they study how manipulating multi-level systems might influence behaviours at dif-

ferent levels (see, for example, Craver [2007]; Kästner [2018]). For each kind of

knowledge or experiment, there is a different way to compute the corresponding

post-intervention distribution.
Bottom-up experiment: This kind of experiment corresponds to a situation in

which the experimenter knows exactly which lower-level variable(s) she ac-

tively changes, but not the effect of the intervention on the system’s behaviour

at the higher level. In this case, one just applies the arrow-breaking technique

described: One first deletes the arrows into those lower-level variables that are

the targets of the intervention and then computes the post-intervention distri-

bution on the basis of the resulting graph and equation 1. By doing this, one

can learn about how changing the values of these lower-level variables prob-

abilistically influences the overall behaviour of the mechanism or the higher-

or lower-level behaviours of other mechanisms causally connected to it.

Top-down experiment: One might, however, know that an experimental inter-

vention produced a specific higher-level behaviour Y 5 y, but not which parts

of the system the intervention influenced directly and which of these parts

were actually responsible for that higher-level behaviour. According to our

analysis, this corresponds to a top-down experiment. The effect of such an in-

tervention on any variable X’s value x (describing, for example, a specific be-

haviour of a lower-level part) can be computed as follows: First, consider all

the possible ways the mechanism’s lower-level variables could have been in-

fluenced by a (possibly fat-handed) intervention. For a set L of m lower-level
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variables there will be jP(L)j 2 1 such possibilities. Let us label them

S1, . . . , Sn. Next, produce the truncated graph Gi for each possible scenario

Si by deleting the arrows into the variables intervened on in that scenario.

For each pair Si and Gi, list all those possible value combinations l of the var-

iables intervened on that are compatible with X 5 x and Y 5 y. For each of

them, compute the conditional probability P(xjy, l) on the basis of equation 1

and the truncated graph Gi. Record all of these probabilities in a set P. After

having done this for every pair Si and Gi, compute the average of all the prob-

abilities recorded in P and identify the post-intervention distribution with this

average.23 The suggested procedure corresponds to observingY 5 y and going

through all the possible ways this observation could have been produced by

interventions on parts of the mechanism. On its basis one can learn how an

experiment might have influenced a mechanism’s parts as well as how the in-

tervention and the observation Y 5 y might influence the probability distri-

butions over variables of other mechanisms causally connected to the first one.
Our analysis shows that whether an experiment counts as a bottom-up or a top-down

experiment depends on the experimenter’s background knowledge and explanatory

goals. The result that these different kinds of experiments correspond to shifts in ep-

istemic perspectives also nicely fits Kästner’s ([2018], p. 77) observation that ‘By

fleshing out the perspectival aspect inherent in the mechanistic view we gain a better

understanding of the explanatory practices in science’. There is clearly also space for

several kinds of mixed experiments that combine the strategies for bottom-up and

top-down experiments sketched.

Let me now come to the related point (ii) mentioned: constitutive relevance dis-

covery. While it is not possible to surgically intervene on a mechanism’s higher-

level behaviour as a whole—which is exactly what Craver’s ([2007]) prominent

mutual manipulability criterion for constitutive relevance relations demands—in par-

ticular, bottom-up experiments as characterized turn out to be useful for identifying

constitutive relevance relations. According to the analysis developed, the following

procedure would, for example, be sufficient to do the job: First, decompose the system

(described by H ) into several parts (described by L1, ... , Ln). Next, pick one of the

lower-level variables Li. Now check whether setting Li to one of its values by inter-

vention leads to any change in the probability distribution of H while the values of

all other lower-level variables Lj are fixed by interventions. If H wiggles in such a

bottom-up experiment, then Li must be a component part of H or a cause of a com-

ponent part not included in L1, ... , Ln. This procedure requires, of course, that the

lower-level variables can be controlled independently. More sophisticated discovery

procedures for constitutive relevance relations might be developed on the basis of
reflects the situation in which the experimenter considers all possible intervention scenarios Si as
lly likely. If one has a more concrete idea of how likely it is that Y 5 y has been produced by in-
ning on specific parts of the system, one could use the weighted average instead. The weights would
correspond to the experimenter’s confidence in particular intervention hypotheses.
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the analysis presented in this article. The analysis might also be compatible with some

of the approaches already on the market. The algorithmic procedure discussed in

(Gebharter [2017c]), for example, should be compatible.
6. Conclusion

In this article I provided a reconstruction of Glennan’s ([1996]) mechanistic account

of higher-level causation in terms of CBNs. Reducing higher-level causation in a

CBN setting means to specify general conditions under which higher-level causal

arrows can be rendered redundant in all kinds of models involving mechanisms.

In section 4 I specified three such assumptions: Higher-level phenomena can always

be decomposed in component parts in such a way that they supervene on the be-

haviours of these component parts (assumption 1). If a higher-level phenomenon

is causally relevant for another one, then at least some component parts of the former

must be causes of some component parts of the latter (assumption 2). And, finally,

constitutional arrows are always prioritized over causal arrows competing for pro-

ductivity (assumption 3). Since all three assumptions seem—at least at first glance—

quite plausible from a mechanist’s perspective, the CBN reconstruction might be used

to provide additional support for Glennan’s mechanistic analysis of higher-level cau-

sation from the perspective of an empirically informed theory of causation.

In section 5 I pointed to some interesting consequences of the findings of section 4

for other issues discussed in the mechanism literature. The analysis provided (i) shows

that and also why lower-level causal structure as well as mechanisms are required for

reducing higher-level causation. It also (ii) shows that a reductive analysis of inter-

level causation in terms of causal and constitutive relevance relations such as Craver

and Bechtel’s ([2007]) follows from the CBN machinery if one is ready to subscribe

to three additional assumptions (assumptions 4, 6, and 7). Finally, the analysis sheds

new light on (iii) how interventions on mechanisms might actually work, how post-

intervention distributions could be computed for systems involving mechanisms,

and how different kinds of experiments could be used to study mechanisms and to

identify a mechanism’s constitutively relevant parts. This is, of course, only the tip of

the iceberg, and much more work needs to be done in order to develop a full-fledged

account of interventions on mechanisms and reliable methods for the discovery of

causal and constitutive relevance relations in mechanisms.
Acknowledgements

I would like to thankMichael Baumgartner, Lorenzo Casini, Christian J. Feldbacher-

Escamilla, Stuart Glennan, Mario Günther, Stephan Hartmann, Lena Kästner, Beate

Krickel, Gerhard Schurz, Reuben Stern, and Jim Woodward for their input and

important discussions. Thanks also to three anonymous referees for many helpful

comments.



000 Alexander Gebharter
Munich Center for Mathematical Philosophy
Ludwig Maximilian University of Munich

Munich, Germany
alexander.gebharter@gmail.com
References

Baumgartner, M. and Casini, L. [2017]: ‘An Abductive Theory of Constitution’, Philosophy

of Science, 84, pp. 214–33.

Baumgartner, M. and Gebharter, A. [2016]: ‘Constitutive Relevance, Mutual Manipulabil-

ity, and Fat-Handedness’, British Journal for the Philosophy of Science, 67, pp. 731–

56.

Bechtel, W. and Abrahamsen, A. [2005]: ‘Explanation: A Mechanist Alternative’, Studies

in the History and Philosophy of the Biological and Biomedical Sciences, 36, pp. 421–

41.

Casini, L. [2016]: ‘Can Interventions Rescue Glennan’s Mechanistic Account of Causality?’,

British Journal for the Philosophy of Science, 67, pp. 1155–83.

Casini, L., Illari, P. M., Russo, F. and Williamson, J. [2011]: ‘Models for Prediction, Expla-

nation and Control: Recursive Bayesian Networks’, Theoria, 26, pp. 5–33.

Clarke, B., Leuridan, B. and Williamson, J. [2014]: ‘Modelling Mechanisms with Causal Cy-

cles’, Synthese, 191, pp. 1651–81.

Craver, C. [2007]: Explaining the Brain, Oxford: Clarendon.

Craver, C. and Bechtel, W. [2007]: ‘Top-Down Causation without Top-Down Causes’, Biol-

ogy and Philosophy, 22, pp. 547–63.

Eronen, M. I. [2015]: ‘Levels of Organization: A Deflationary Account’, Biology and Philos-

ophy, 30, pp. 39–58.

Gebharter, A. [2014]: ‘A Formal Framework for Representing Mechanisms?’, Philosophy of

Science, 81, pp. 138–53.

Gebharter, A. [2017a]: ‘Causal Exclusion and Causal Bayes Nets’, Philosophy and Phenom-

enological Research, 95, pp. 353–75.

Gebharter, A. [2017b]: Causal Nets, Interventionism, and Mechanisms: Philosophical Foun-

dations and Applications, Cham: Springer.

Gebharter, A. [2017c]: ‘Uncovering Constitutive Relevance Relations in Mechanisms’, Phil-

osophical Studies, 174, pp. 2645–66.

Gebharter, A. and Koch, D. [2021]: ‘Combining Causal Bayes Nets and Cellular Automata:

A Hybrid Modeling Approach to Mechanisms’, British Journal for the Philosophy of Sci-

ence, 72, pp. 839–64.

Glennan, S. [1996]: ‘Mechanisms and the Nature of Causation’, Erkenntnis, 44, pp. 49–

71.

Glennan, S. [2002]: ‘Rethinking Mechanistic Explanation’, Philosophy of Science, 69,

pp. S342–53.

Glennan, S. [2011]: ‘Singular and General Causal Relations: A Mechanist Perspective’, in

P. M. Illari, F. Russo and J. Williamson (eds.), Causality in the Sciences, Oxford: Oxford

University Press, pp. 789–817.

mailto:alexander.gebharter@gmail.com


A Causal Bayes Net Analysis 000
Harbecke, J. [2010]: ‘Mechanistic Constitution in Neurobiological Explanations’, Interna-

tional Studies in the Philosophy of Science, 24, pp. 267–85.

Harbecke, J. [2015]: ‘The Regularity Theory of Mechanistic Constitution and a Methodology

for Constitutive Inference’, Studies in History and Philosophy of Biological and Biomed-

ical Sciences, 54, pp. 10–19.

Illari, P. M. and Williamson, J. [2012]: ‘What Is a Mechanism? Thinking about Mechanisms

across the Sciences’, European Journal for Philosophy of Science, 2, pp. 119–35.

Kaiser, M. I. [2016]: ‘On the Limits of Causal Modeling: Spatially-Structurally Complex Bi-

ological Phenomena’, Philosophy of Science, 83, pp. 921–33.

Kästner, L. [2018]: ‘Integrating Mechanistic Explanations through Epistemic Perspectives’,

Studies in History and Philosophy of Science Part A, 68, pp. 68–79.

Kim, J. [2007]: Physicalism, or Something Near Enough, Princeton, NJ: Princeton University

Press.

Kistler, M. [2009]: ‘Mechanisms and Downward Causation’, Philosophical Psychology, 22,

pp. 595–609.

Koch, D., Eisinger, R. S. and Gebharter, A. [2017]: ‘A Causal Bayesian Network Model of

Disease Progression Mechanisms in Chronic Myeloid Leukemia’, Journal of Theoretical

Biology, 433, pp. 94–105.

Krickel, B. [2017]: ‘Making Sense of Interlevel Causation in Mechanisms from a Metaphys-

ical Perspective’, Journal for General Philosophy of Science, 48, pp. 453–68.

Krickel, B. [2018]: ‘Saving the Mutual Manipulability Account of Constitutive Relevance’,

Studies in History and Philosophy of Science Part A, 68, pp. 58–67.

Leuridan, B. [2012]: ‘Three Problems for the Mutual Manipulability Account of Consti-

tutive Relevance in Mechanisms’, British Journal for the Philosophy of Science, 63,

pp. 399–427.

Machamer, P., Darden, L. and Craver, C. [2000]: ‘Thinking about Mechanisms’, Philosophy

of Science, 67, pp. 1–25.

Murray-Watters, A. and Glymour, C. [2015]: ‘What’s Going on inside the Arrows? Dis-

covering the Hidden Springs in Causal Models’, Philosophy of Science, 82, pp. 556–

86.

Pearl, J. [2000]: Causality, Cambridge: Cambridge University Press.

Psillos, A. [2004]: ‘A Glimpse of the Secret Connexion: Harmonizing Mechanisms with

Counterfactuals’, Philosophy of Science, 12, pp. 288–319.

Reichenbach, H. [1956]: The Direction of Time, Berkeley: University of California Press.

Romero, F. [2015]: ‘Why There Isn’t Inter-level Causation in Mechanisms’, Synthese, 192,

pp. 3731–55.

Russo, F. and Williamson, J. [2007]: ‘Interpreting Causality in the Health Sciences’, Interna-

tional Studies in the Philosophy of Science, 21, pp. 157–70.

Schaffer, J. [2016]: ‘Grounding in the Image of Causation’, Philosophical Studies, 173,

pp. 49–100.

Schurz, G. and Gebharter, A. [2016]: ‘Causality as a Theoretical Concept: Explanatory

Warrant and Empirical Content of the Theory of Causal Nets’, Synthese, 193, pp. 1073–

103.

Spirtes, P., Glymour, C. and Scheines, R. [1993]: Causation, Prediction, and Search, Dor-

drecht: Springer.



000 Alexander Gebharter
Weber, M. [2016]: ‘On the Incompatibility of Dynamical Biological Mechanisms and Causal

Graphs’, Philosophy of Science, 83, pp. 959–71.

Woodward, J. [2002]: ‘What Is a Mechanism? A Counterfactual Account’, Philosophy of Sci-

ence, 69, pp. S366–77.

Woodward, J. [2003]: Making Things Happen, Oxford: Oxford University Press.


