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It is a matter of common observation that investors value
substantial gains but are averse to heavy losses. Obvi-
ous as it may sound, this translates into an interesting
preference for right-skewed return distributions, whose
right tails are heavier than their left tails. Skewness is
thus not only a way to describe the shape of a distribu-
tion, but also a tool for risk measurement. We review the
statistical literature on skewness and provide a compre-
hensive framework for its assessment. Then, we present
a new measure of skewness, based on the decomposition
of variance in its upward and downward components.
We argue that this measure fills a gap in the literature
and show in a simulation study that it strikes a good
balance between robustness and sensitivity.
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1 INTRODUCTION

The financial literature offers a wealth of papers dealing with the construction and implementa-
tion of risk measures to allow investors to make informed trading decisions. In light of the recent
financial crises, these measures have become increasingly important in order to prevent tail risk
events.

One of the most important risk measures is the VIX index adopted by the Chicago Board
Options Exchange (CBOE). This is a forward-looking measure of volatility that investors expect
in the coming month (Whaley, 2009). Volatility indexes are deemed by market operators to
capture market fear: high index values are associated with high levels of uncertainty in the
underlying market, whereas low index values with stable conditions; see Whaley (2000) and
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Muzzioli (2013b). Traditionally, financial returns are assumed to follow a normal distribution. In
this connection, volatility is a good measure of risk based on the idea that investors are averse
to uncertainty. However, a significant number of studies highlight the fact that financial returns
are nonnormally distributed; see for example, Fama (1965), Peiró (1999), Chen, So, and Ger-
lach (2005), Lempérière et al. (2017), and Elyasiani, Gambarelli, and Muzzioli (2018). Specifically,
financial returns are found to present an empirical distribution with heavy tails and a negative
skew. In other words, the occurrence of extreme and negative events is more probable than in the
normal distribution. This has consequences in terms of the need to include higher-order moments
as indicators of market risk.

This may be illustrated by the CBOE SKEW index. The CBOE SKEW index has been listed on
the CBOE since February 2011 to measure the tail risk not fully captured by the VIX index. While
VIX measures the overall risk in the 30-day SςP500 log-returns without disentangling the proba-
bilities attached to positive and negative returns, the skewness index (CBOE SKEW) is intended
to measure the perceived tail risk, that is, the probability that investors attach to extreme negative
returns. The CBOE SKEW index relies on Pearson’s (third order) moment coefficient of skewness.
It is well known that Pearson’s moment coefficient of skewness is not a robust measure of skew-
ness. In the statistical literature there are several cases in which Pearson’s moment coefficient of
skewness leads to controversial conclusions. From a financial point of view, this could have seri-
ous problems. Indeed, the role of the CBOE SKEW index as an indicator of market fear has been
questioned since it frequently moves in the same direction as returns (Elyasiani, Gambarelli, &
Muzzioli, 2020).

There is an extensive statistical literature on skewness, which we review in this paper in
order to outline a comprehensive framework for its assessment. We find that only the clas-
sical measures of skewness rely on higher-order moments, while a number of more recent
measures do not. We also propose a new measure of skewness: the risk asymmetry index
(RAX) based on the same measure introduced by Elyasiani et al. (2018). The authors derive
the RAX index by estimating upside, downside and total volatility of returns using option
prices in a model-free setting (implied volatility). On the other hand, in this paper we
derive the RAX index by computing upside, downside, and total volatility of returns from
the physical distribution. By proposing the RAX index and reviewing existing measures of
skewness, we seek to contribute to the investigation of skewness measures from a statis-
tical perspective, arguing that the notion of skewness can play an important role in risk
measurement.

The choice of the RAX index is based on its ability to detect not only risk, i.e. the volatility
of returns, but also asymmetry, that is, the different volatility of positive and negative returns, as
empirically found in Elyasiani et al. (2018). In particular, we highlight two main points. First, it
has been found that the RAX index subsumes all the information of the skewness index (ITSKEW)
and volatility index (ITVIX) for the Italian market. Indeed, when these three indexes are included
in the same model, both the ITSKEW and the ITVIX fail to have a significant explanatory power
for future returns. In this connection, the contribution of the RAX is useful for investors who can
exploit its information in order to make profitable trades. Moreover, Elyasiani et al. (2018) found
that the RAX is able to indicate future fear or greed since extremely high or low level of the index
are related to positive or negative future returns. While the volatility index ITVIX provides useful
information on future returns only in the high volatility period, the RAX index provides useful
information about future returns during the entire sample period. The RAX index gives a clear
and unambiguous signal to investors as extremely low (high) values of the risk-asymmetry index
signal a buy (sell) opportunity.
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The paper proceeds as follows. In Section 2 we outline our framework for the study of
univariate skewness, with a review of the tools available for both qualitative and quantitative
assessments, identifying the statistical properties that a valid measure of skewness should sat-
isfy. In Section 3 we propose the new measure of skewness, focussing on its statistical properties
and interpretation. Section 4 contains an analysis of the robustness to outliers and sensitivity to
changes in the shape of the distribution of the RAX and the most relevant measures of skewness.
Section 5 concludes the paper with a brief discussion.

2 SYMMETRY AND ASYMMETRY

Skewness is defined as a relaxation of symmetry to allow for asymmetry in a specific direction. We
therefore start our investigation by introducing the notion of symmetry, which is uncontroversial,
at least in the univariate case. A univariate random variable X is symmetric with respect to the
real value m when X −m and m − X have the same distribution; see for instance Doksum (1975).
This property of the distribution of X can be written as P{X ≤ m − t} = P{X ≥ m + t} for all t > 0,
which amounts to saying that all corresponding left and right tails of X with respect to m have the
same weight. Letting t → 0, it is straightforward to see that m has to be the median of X , uniquely
defined as the midpoint of the interval formed by all 𝜈 such that P{X ≤ 𝜈} ≥ 1∕2 and P{X ≥ 𝜈} ≥
1∕2. It is also evident that symmetry is invariant with respect to affine transformations: if X is
symmetric and Y = 𝛼 + 𝛽X , then Y is also symmetric. Further considerations will be eased by the
introduction of a suitable distributional framework.

Let F be the distribution function of X . We define the support interval of F as the open inter-
val ]a, b[with left endpoint a = inf{x ∈ R|F(x) > 0} and right endpoint b = sup{x ∈ R|F(x) < 1}.
Note that it is possible to have a = −∞ or b = +∞. We assume that F is continuous on the real
line and strictly increasing on its support interval. More specifically, we assume that F is obtained
from a probability density function f that is continuous on ]a, b[ and such that f (x) > 0 for all
x ∈]a, b[, while f (x) = 0 if x ≤ a or x ≥ b. Let 0 be the class of all such distributions. Piece-
wise continuous density functions could be allowed to enlarge 0, but here we favor simplicity
over generality. Nonetheless, we point out that such an enlargement would provide scope for
probability density histograms (representing an important class of data based distributions). Inter-
esting subclasses of 0 are obtained by assuming that X has finite moments up to some order;
let k = {F ∈ 0|E|X|k <∞}, k = 1, 2, … , be such classes. If F ∈ 1, we denote by 𝜇 = E(X) the
mean of X . If F ∈ 2, we denote by 𝜎2 = E(X − 𝜇)2 the variance of X (with 𝜎 denoting the standard
deviation of X); note that 𝜎2

> 0 because F is continuous.
Assuming F ∈ 0, the symmetry condition can be written as

F(m − t) + F(m + t) = 1 for all t > 0, (1)

where m = F−1(1∕2)with F−1 uniquely defined on the open interval ]0, 1[ as the inverse function
of F. Note that F−1, called the quantile function of X , is also continuous and strictly increasing.
Since f is the derivative of F, condition (1) can be rewritten as f (m − t) = f (m + t) for all t > 0, so
that 𝜇 = m, for F ∈ 1, and 𝜇 can replace m in (1).

A special case of interest is given by unimodal distributions. Following Dharmadhikari and
Joag-Dev (1988), p. 2, we say that X is unimodal at x⋆ ∈]a, b[ if F is convex on ]a, x⋆[ and concave
on ]x⋆, b[, which corresponds to f increasing on ]a, x⋆[ and decreasing on ]x⋆, b[. We say that X is
unimodal (tout court) if it is unimodal at some x⋆. In this case, the mode of X (denoted by M) can



4 CAMPISI et al.

be uniquely defined as the midpoint of the interval formed by all x⋆ such that X is unimodal at
x⋆. For all k = 0, 1, 2, … , we define ⋆k = {F ∈ k|X is unimodal}. If X is symmetric, it follows
from f (m − t) = f (m + t) for all t > 0 that M = m, for F ∈ ⋆0 , and M can replace m in (1). Hence,
for all symmetric X with F ∈ ⋆1 , we have M = m = 𝜇 and the three classical measures of central
tendency coincide.

If X is not symmetric, we say that X is asymmetric. While all symmetric distributions are alike
in symmetry, each asymmetric distribution is asymmetric in its own way. Skewness relaxes sym-
metry to allow for a specific type of asymmetry: a random variable is left-skewed when its left
tails are heavier than its right tails, whereas it is right-skewed when its right tails are heavier than
its left tails. A strictly skewed variable is a skewed variable that is not symmetric and, as such, it
represents a way of being asymmetric. We formalize these notions in the following: Section 2.1
provides an assessment of when a random variable is manifestly skewed; Section 2.2 provides an
assessment of how much of a skew a given random variable exhibits, even though such a skew
may not be manifest.

2.1 Qualitative assessment of skewness

We start with a simplifying remark: since the left tails of a random variable X are the right tails
of the opposite random variable −X , and vice versa, it will be sufficient to assess when X is
right-skewed; X will be left-skewed when −X is right-skewed. We proceed with a discussion of
when a random variable Y is more right-skewed than another random variable X , which is both an
interesting problem in itself and one whose solution will enable us to consider X as right-skewed
when it is more right-skewed than −X , as recommended by MacGillivray (1986).

Following van Zwet (1964), we compare X with Y by means of the function R(x) = G−1(F(x)),
a < x < b, where G is the distribution function of Y . We call R = G−1◦F the quantile-quantile
function of Y against X , because it is the function whose graph is represented in the Q-Q plot with
X on the horizontal axis and Y on the vertical axis. We say that X is less right-skewed than Y , or Y
is more right-skewed than X , and write F ≾ G, or G ≿ F, if R is convex, which indicates that the left
tails of X are progressively heavier than the left tails of Y and the right tails of Y are progressively
heavier that the right tails of X . Note that R is strictly increasing (as well as continuous) on ]a, b[.
The quantile-quantile function of X against Y is given by R−1(y) = F−1(G(y)), c < y < d, where
]c, d[ is the support interval of G. Since R−1 = F−1◦G is convex if and only if R is concave, we have
F ≿ G if and only if R is concave.

An interesting characterization of the above described comparison is that F ≾ G if and only
if Y is equal in distribution to a strictly increasing convex transformation of X : on the one hand,
the variable R(X) has the same distribution as Y ; on the other hand, if Y = 𝜙(X) with 𝜙 strictly
increasing and convex, then R = 𝜙. If both F ≾ G and F ≿ G, we write F ∼ G. Clearly, this is the
case when R is a positive affine function, that is, Y = 𝛼 + 𝛽X with 𝛽 > 0. This makes relative
skewness a property of location-scale models rather than individual distributions. The distribu-
tion function of −X is F(x) = 1 − F(−x), x ∈ R. Since F ≾ G if and only if F ≿ G, we find that X is
less right-skewed than Y if and only if −X is more right-skewed than −Y ; this means that we can
safely interpret F ≼ G as X being more left-skewed than Y , or Y being less left-skewed than X .

It is a simple matter to check that≾ is reflexive and transitive: F ≾ F and F ≾ G,G ≾ H implies
F ≾ H, where H denotes the distribution function of a third variable Z. This means that the
relationship ≾ is a preorder on 0, which justifies its common name of convex ordering of dis-
tributions and qualifies ∼ as the equivalence relationship defined by ≾. Several other orderings
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of distributions have been proposed in the skewness literature (Arnold & Groeneveld, 1993;
MacGillivray, 1986; Oja, 1981) and it turns out that the convex ordering is the strongest one. This
is because it only considers the convexity of the quantile-quantile function, without reference
to any measure of central tendency, and thus it only signals the most manifest cases of relative
skewness.

As anticipated, we say that X is right-skewed when −X ≾ X (and left-skewed when X ≾ −X);
note that here, for the sake of expressiveness, we apply≾ to−X and X rather than to F and F. Since
the convex ordering of distributions actually compares location-scale models, we can compare
m − X with X −m instead of −X with X . This leads us to focus on the quantile-quantile function
R of X −m against m − X and its slope r, which are given by

R(t) = F−1(F(t −m)) −m and r(t) =
f (m − t)

f (F−1(F(t −m)))
, −(b −m) < t < m − a. (2)

Since R(0) = 0 and r(0) = 1, it follows from the convexity of R that x ≤ R(x) for all x in (2), and
therefore

F(m − t) + F(m + t) ≤ 1 for all t > 0, (3)

which is known as van Zwet’s condition (Abadir, 2005) after van Zwet (1979) introduced it to prove
the celebrated mode-median–mean inequality (usually considered a sign of right skewness).

When (3) holds, the right tails of X with respect to m are uniformly heavier than the corre-
sponding left tails. This notion of skew to the right (Doksum, 1975) is easy to interpret, but it is
relative to a specific measure of central tendency. If the mean or mode of X are also available, dif-
ferent tails can be compared and, in general, they will lead to different assessments of skewness:
see Sato (1997) for an illustration of this phenomenon.

We conclude our discussion of qualitative skewness by noting that a random variable X is
symmetric if and only if it is both right-skewed and left-skewed (−X ∼ X). A notion of strict skew-
ness can then be obtained by excluding symmetric distributions (−X ≺ X or X ≺ −X). In this
way, we are able to partition 0 into four groups of distributions: symmetric distributions, strictly
left-skewed distributions, strictly right-skewed distributions, and other asymmetric distributions.
As demonstrated in the next subsection, the distribution in the last group can be adjudicated as
cases of negative (left) or positive (right) skewness through the choice of a suitable measure of
skewness.

2.2 Quantitative assessment of skewness

Here we consider the more ambitious problem of measuring the extent to which a given distri-
bution is skewed. This means associating to every distribution of interest a real number, whose
sign captures the direction of skewness and whose absolute value is greater when skewness is
more pronounced. Formally, within our distributional framework, for distributions with finite
moments up to order k ∈ {0, 1, 2, …}, we aim to specify a functional Sk ∶ k → R, which will
be called a measure of skewness of order k and will be required to satisfy the following properties:

(P1) Sk(F) = −Sk(F) for all F ∈ k;
(P2) Sk(F) ≤ Sk(G) whenever F ≾ G.
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If we are only interested in unimodal distributions, we can replace k with ⋆k and specify a
unimodal measure of skewness of the same order. We will say that Sk is valid to stress that (P1)
and (P2) hold.

The meaning of (P1) and (P2) is that we intend our quantitative assessment to respect our
qualitative assessment. Indeed, it follows from (P1) and (P2) that Sk(F) ≥ 0 if F is right-skewed,
while Sk(F) ≤ 0 if F is left-skewed, so that Sk(F) = 0 if F is symmetric. Furthermore, it follows
from (P2) that Sk(F) = Sk(G) if F ∼ G, that is, we require any valid measure of skewness to be
location-scale invariant. Hence, to all intents and purposes, we are making the same assumptions
as Groeneveld and Meeden (1984), rooted in the foundational work of Oja (1981) and consistently
used in later work (Arnold & Groeneveld, 1995; Groeneveld, 1991a, 1991b; Groeneveld & Mee-
den, 2009; Tajuddin, 1996, 1999). If we define positive skewness as Sk(F) ≥ 0 and negative skewness
as Sk(F) ≤ 0, we are able to partitionk (or ⋆k ) in three groups of distributions: distributions with
strictly positive skew, distributions with strictly negative skew, and distributions with null skew.
Properties (P1) and (P2) ensure that such a partition does not contradict the partition obtained in
the previous subsection in terms of left and right skewness. We will call two measures of skewness
equivalent when they give rise to the same partition.

In the following, we review the literature on measuring skewness with (P1) and (P2) in mind.
We also take into account the values taken by Sk. Let s = infF Sk(F) and s = supF Sk(F) be its
extrema. Note that s = −s by (P1). If Sk is a valid measure of skewness and𝜙 is an odd and (strictly)
increasing real function defined on the image of Sk, then 𝜙◦Sk is another (equivalent) valid
measure of skewness. This means that any measure of skewness can be transformed so as to have
−1 and +1 as extrema, if s is known. However, this is not necessarily the case and, even if it
is, there is an interest in understanding whether the extrema can be attained or not and which
distributions come close to them. Finally, we pay attention to the estimation of Sk(F) when a
random sample X1, … ,Xn from F is available (beyond the general but noisy strategy of computing
Sk on a density estimate belonging to its domain of definition).

2.2.1 Higher-order measures

The study of skewness was pioneered by Pearson (1895, 1901, 1916). In fact, the most classical
measure of skewness goes under the name of Pearson’s moment coefficient of skewness:

𝛾j =
E(X − 𝜇)2j+1

𝜎2j+1 , (4)

where typically j = 1, but possibly j = 2, 3, … ; since 𝛾j is well-defined when the distribution of
X has finite moments up to order 2j + 1, the choice j = 1 is the least demanding in terms of dis-
tributional assumptions. The rationale behind (4) is to use higher-order moments to gauge the
extent to which the right tails of X are heavier than its left tails. This strategy obtains a valid
(2j + 1) th order measure of skewness: it is apparent that (4) satisfies (P1) and it was shown by
van Zwet (1964) that (4) satisfies (P2); see also Oja (1981) and MacGillivray (1986).

The third-order measure of skewness 𝛾1 (standardized third central moment of X) is also
called the Fisher–Pearson coefficient of skewness (Doane & Seward, 2011); see Arnold and Groen-
eveld (1995) for its historical attribution and Holgersson (2010) for the link to Fisher (1929). As
an aside, note that Karl Pearson was not interested in the sign of skewness and used 𝛽1 = 𝛾2

1 in
place of 𝛾1. If X follows a Pareto distribution with unit scale and large enough shape, that is,



CAMPISI et al. 7

f (x) = 𝜃∕x𝜃+1 for x > 1 and f (x) = 0 for x ≤ 1, with 𝜃 > 3, then 𝛾1 is arbitrarily large for 𝜃 close
enough to 3 and we conclude that s = +∞ (no finite upper bound on 𝛾1); see Groeneveld and
Meeden (1984) for details.

A natural estimator of 𝛾1 is the sample moment coefficient of skewness �̂�1, defined as the
ratio of the sample centered third moment ⟨(X − �̂�)3⟩ = n−1∑n

i=1(Xi − �̂�)3, where �̂� = ⟨X⟩ =
n−1∑n

i=1Xk
i is the sample mean, to �̂�3, where �̂� = ⟨(X − �̂�)2⟩1∕2 is the sample sd. The value �̂�1

obtained in this way (sample moment coefficient of skweness) can be adjusted for sample size, but
we are not interested in such an adjustment here; see Doane and Seward (2011) for information
and references on this topic. Egon Sharpe Pearson, together with H. O. Hartley, provided tables to
use �̂�1 as a test for departure from normality (Doane & Seward, 2011); see also Holgersson (2010)
on testing asymmetry. Finally, the sharp algebraic bound |�̂�1| ≤ (n − 2)∕(n − 1)1∕2 holds for all
samples of size n (Cox, 2010; Kirby, 1974; Wilkins, 1944) even though we have seen that 𝛾1 can
take arbitrarily large values.

As illustrated by Li and Morris (1991), in some cases 𝛾1 may not express asymmetry well.
Furthermore, as it is based on the third-order moment, 𝛾1 is strongly influenced by outliers; see
for instance Groeneveld (1991a). This lack of robustness, together with an appetite for broadening
the domain of definition, motivates the investigation of alternative measures of skewness.

2.2.2 Unimodal measures

A second measure of skewness that dates back to the pioneering work of Pearson (1895) is called
Pearson’s mode coefficient of skewness or Pearson’s first coefficient of skewness:

S′K =
𝜇 −M
𝜎

, (5)

well-defined for F ∈ ⋆2 . For instance, if f (x) = x𝛼−1e−x∕Γ(𝛼) for x > 0 and f (x) = 0 for x ≤ 0,
with 𝛼 > 1, we find 𝜇 = 𝛼, M = 𝛼 − 1 and 𝜎 =

√
𝛼, so that S′K = 1∕

√
𝛼. Remarkably, in this

case (gamma distribution with unit scale), the equality S′K = 𝛾1∕2 holds (Arnold & Groen-
eveld, 1995). The quantity 𝛼1 = 𝛾1∕2 is called the coefficient of momental skewness Zwillinger and
Kokoska (1999, p. 18) and is clearly equivalent to 𝛾1. In general, of course, 𝛼1 and 𝛾1 are not equiv-
alent to S′K . The rationale behind (5) is that, as discussed in Section 2.1, the mode-median-mean
inequality is a sign of right skewness. If−X ≼ X , then S′K > 0 and (5) gauges the width of inequal-
ity. It is clear that S′K satisfies (P1). However, as illustrated by Arnold and Groeneveld (1995),
the coefficient S′K does not satisfy (P2): compatibility with right skewness does not extend to full
compatibility with the convex ordering of distributions. Hence, we cannot regard S′K as a valid
measure of skewness.

Arnold and Groeneveld (1995) proposed replacing (5) with

𝛾AG = P{X ≥ M} − P{X ≤ M} = 1 − 2F(M), (6)

which we call the Arnold–Groeneveld coefficient of skewness. The coefficient 𝛾AG is well-defined
for all F ∈ ⋆0 , because it does not involve any moment of X , which is an improvement in itself.
The rationale behind (6) lies in an implicit comparison between M and m (in place of 𝜇): if M ≤ m
then F(M) ≤ 1∕2 and 𝛾AG ≥ 0. In this way, as in the previous case, right skewness implies 𝛾AG ≥ 0
through the mode-median-mean inequality. In addition, unlike the previous case, property (P2)
is satisfied. This was shown by Arnold and Groeneveld (1995) assuming differentiable probability



8 CAMPISI et al.

density functions, but it holds for all F,G ∈ ⋆0 with modes MX and MY , respectively, that F ≼

G implies F(MX ) ≥ G(MY ); this follows from F = G◦R, where R = G−1◦F, and the definition of
unimodality. Since (P1) follows from the equality F(−M) = 1 − F(M), we find that 𝛾AG is a valid
unimodal measure of skewness of order zero (best possible order).

The coefficient 𝛾AG takes values in [−1, 1] and the equality 𝛾AG = 1 is attained when M = a,
which requires a > −∞ in the support interval of F, while 𝛾AG = −1 when M = b, which requires
b < +∞. It follows that all decreasing densities exhibit maximal positive skewness, while all
increasing densities exhibit maximal negative skewness. This is clearly a limitation, because 𝛾AG
cannot discriminate between monotone densities of the same type. A sample version �̂�AG of (6)
can be obtained from an estimator M̂ of the mode and an estimator F̂ of the distribution function;
the latter can be the empirical distribution function, for simplicity, while the former can be one
of the estimators of the mode implemented in package modeest (Poncet, 2019) for R (R Core
Team, 2019); see the references therein.

2.2.3 First-order measures

A third classical measure of skewness is called Pearson’s median coefficient of skewness or Pearson’s
second coefficient of skewness:

S′′K = 3 𝜇 −m
𝜎

, (7)

where the leading (arbitrary) multiplicative constant stems from an approximation of (5); see
Yule (1911, p. 150). Equation (7) is well-defined for F ∈ 2 and is based, like (5), on the
mode-median-mean inequality. It is clear that S′′K satisfies (P1), but like S′K , as shown by van
Zwet (1964), S′′K does not satisfy (P2). As a result we cannot consider S′′K a valid measure of
skewness. However, a valid replacement for (7) is provided by Groeneveld and Meeden (1984):

𝛾GM = 𝜇 −m
E|X −m|

, (8)

which is well-defined for all F ∈ 1 and we call the Groeneveld–Meeden coefficient of skewness.
The broader domain of definition is an advantage in itself, property (P1) is clearly preserved and,
moreover, 𝛾GM satisfies (P2), as shown by Groeneveld and Meeden (1984). The coefficient 𝛾GM is
thus a valid measure of skewness of order one (best possible order using the mean). The mean
absolute error turns out to be the right denominator for the difference between the mean and the
median, if this is to be used as a measure of skewness.

We know from Jensen’s inequality that |E(X −m)| ≤ E|X −m| with equality if and only
if P{X ≥ m} = 1 or P{X ≤ m} = 1. It follows that −1 < 𝛾GM < 1 and the extrema of 𝛾GM are
unattainable by continuous distributions; see Groeneveld (1991b) for the case of discrete distribu-
tions. A sample version �̂�GM of (8) will be obtained by replacing m with the sample median m̂ and
E|X −m|with its sample counterpart ⟨|X − m̂|⟩, as well as 𝜇with �̂�. Finally, we point out that (8)
admits an interpretation in terms of a player betting that an observation X will exceed its median
m, which is especially interesting from a financial viewpoint; see Groeneveld and Meeden (1984)
for details.

A simple alternative first-order measure of skewness was suggested by Tajuddin (1999) in
parallel to 𝛾AG:

𝛾T = P{X ≤ 𝜇} − P{X ≥ 𝜇} = 2F(𝜇) − 1. (9)
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We call 𝛾T in (9) the Tajuddin coefficient of skewness, noting that Tajuddin (1996) had previ-
ously proposed the equivalent measure log(F(𝜇)∕{1 − F(𝜇)}) = log(1 + 𝛾T)∕(1 − 𝛾T). Equation (9)
is clearly well-defined for all F ∈ 1, it satisfies (P1), because F(−𝜇) = 1 − F(𝜇), and it satisfies
(P2), because Jensen’s inequality gives E(Y ) = E(G−1(F(X))) ≥ G−1(F(𝜇)) if X ≼ Y (F ≼ G); see
also Tajuddin (1996). It follows that 𝛾T is a valid alternative to 𝛾GM.

The rationale behind (9) is again the mode-median-mean inequality for right-skewed distribu-
tions: if a return is right-skewed, then it is probably below average. It may sound counterintuitive
that investors like such returns, but a different wording is possible: if a return is right-skewed,
then on average it is in the right tail of its distribution. This may sound more palatable, but neither
formulation has any impact on the validity of 𝛾T . As for the values that 𝛾T can take, it is imme-
diate to see that −1 < 𝛾T < 1. The extrema cannot be attained, because F is continuous, but in
Section 3 we present an example where 𝛾T = 1 − 2𝜆 → 1 as 𝜆 ↓ 0. Finally, a sample version �̂�T of
𝛾T can be obtained from (9) by estimating F with the empirical distribution function and 𝜇 with
�̂� = ⟨X⟩.

2.2.4 Zeroth-order measures

None of the measures of skewness presented until now is well-defined for all F ∈ 0. A possibility
in this sense is offered by the quantile coefficient of skewness

B𝛼 =
{F−1(1 − 𝛼) −m} − {m − F−1(𝛼)}

F−1(1 − 𝛼) − F−1(𝛼)
=
{F−1(1 − 𝛼) + F−1(𝛼)}∕2 −m
{F−1(1 − 𝛼) − F−1(𝛼)}∕2

, (10)

where 𝛼 ∈]0, 1∕2[ and a typical choice is 𝛼 = 1∕4. The quartile coefficient of skewness B1∕4 dates
back to Bowley (1920, p. 116) and is known as the Bowley–Yule coefficient of skewness, because
the coefficient 2B1∕4 can be traced back to Yule (1911, p. 150). Groeneveld and Meeden (1984)
introduced B𝛼 , inspired by Hinkley (1975), and also let 𝛼 ↓ 0 to obtain the coefficient B0 = (a + b −
2m)∕(b − a) for distributions with a bounded support interval, that is, with a > −∞ and b < +∞.
Remarkably, if both the numerator and denominator in (10) are integrated with respect to 𝛼 from
0 to 1∕2, before taking their ratio, the coefficient 𝛾GM in (8) emerges (assuming F ∈ 1). It was
shown by Groeneveld and Meeden (1984) that B𝛼 satisfies (P1) and (P2) for all 𝛼 ∈ [0, 1∕2[. Hence,
we have a family of valid zeroth-order measures of skewness (making no assumptions on the
moments of the distribution).

Groeneveld and Meeden (2009) suggest a variant of (10) that is appropriate when the direc-
tion of skewness is known a priori, but we do not deal with this case here. Brys, Hubert, and
Struyf (2003) argue that the octile coefficient B1∕8 is more appropriate to detect asymmetry than
the quartile coefficient B1∕4, because it uses more information from the tails of the distribution,
but they also note that B1∕4 is less sensitive to outliers (more robust) than B1∕8. In the end, this
tension between sensitivity and robustness is at the heart of the choice of 𝛼 in (10) and, more
generally, of a measure of skewness or any other distributional summary.

It is easy to see that −1 < B𝛼 < 1 for all 𝛼 ∈ [0, 1∕2[; the extreme values are unattainable
by continuous distributions, because B𝛼 = −1 would require F−1(1 − 𝛼) = m and B𝛼 = 1 would
require F−1(𝛼) = m, but see Groeneveld (1991b) for discrete distributions. A sample version of
(10) will be obtained by replacing all quantiles of F by their sample counterparts (quantiles of the
empirical distribution function); in particular, of course, m̂ will replace m. The coefficients B0
and B1∕4 admit an interpretation analogous to that of 𝛾GM; see Groeneveld and Meeden (1984).
The coefficient B𝛼 features, together with the median m and the 𝛼 th interquantile range
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S𝛼 = F−1(1 − 𝛼) − F−1(𝛼), in an interesting decomposition of F−1(𝛼), where 𝛼 varies in 𝛼 ∈
[0, 1∕2[; see Benjamini and Krieger (1996).

3 THE RISK ASYMMETRY INDEX

Let X be a random variable with mean 𝜇 and standard deviation 𝜎. The centered variable X − 𝜇
can be written as the sum of its positive part (X − 𝜇)+ = max(0,X − 𝜇) and its negative part
(X − 𝜇)− = max(0, 𝜇 − X). Accordingly, the variance of X can be written as 𝜎2 = 𝜎2

U + 𝜎
2
D, where

𝜎
2
U = E(X − 𝜇)2+ is called the upside variance of X and 𝜎

2
D = E(X − 𝜇)2− is called the downside

variance of X ; note, however, that 𝜎2
U and 𝜎2

D are not ordinary variances, and in particular not
the variances of (X − 𝜇)+ and (X − 𝜇)−, but rather their second order moments. The quantities
𝜎U and 𝜎D are called the upside sd and downside sd of X , respectively. From a financial view-
point, 𝜎U represents “good” volatility and 𝜎D represents “bad” volatility, while 𝜎 represents “total”
volatility. The risk asymmetry index (Elyasiani et al., 2018) is defined as RAX = (𝜎U − 𝜎D)∕𝜎 and
represents the relative excess of “good” volatility (with respect to “bad” volatility) in the distribu-
tion of returns modeled by X . The rationale behind this definition is to compare above average
returns with below average returns in terms of their root mean squared residuals. We show in the
following that such a comparison results in a valid measure of skewness.

The RAX can be rewritten as:

RAX = 𝜎U − 𝜎D

𝜎

= 𝜎U

𝜎

− 𝜎D

𝜎

=

√

𝜎
2
U

𝜎2 −

√

1 −
𝜎

2
U

𝜎2 =

√

1 −
𝜎

2
D

𝜎2 −

√

𝜎
2
D

𝜎2 , (11)

that is, as a strictly increasing function of the relative upside variance 𝜎2
U∕𝜎

2 or, alternatively, as the
opposite function of the relative downside variance 𝜎2

D∕𝜎
2 = 1 − 𝜎2

U∕𝜎
2. This rewriting is useful

to show that RAX is a valid measure of skewness. In fact, property (P1) follows directly from
the fact that the upside variance of −X is the downside variance of X . As for property (P2), we
first note that (11) is location-scale invariant. This allows us to focus on the standard case 𝜇 = 0
and 𝜎 = 1. In this case, we have 𝜎2

U = EX2
+ and it follows from theorem 5.3 in Oja (1981) that

X ≼ Y implies EX2
+ ≤ EY 2

+. Then, by (11), the same inequality holds for RAX and (P2) holds. We
conclude that RAX is a valid second-order measure of skewness and, as such, it fills a gap in the
literature reviewed in Section 2.2.

It is clear from the decomposition of variance in its upside and downside components that
0 < 𝜎2

U∕𝜎
2
< 1. If X is symmetric, then 𝜎2

U = 𝜎
2
D and 𝜎2

U∕𝜎
2 = 1∕2, so that RAX = 0. The following

example shows that the relative upside variance can come arbitrarily close to 1 for a suitable
choice of F in 2. Let X be a random variable with probability density function defined by f (x) =
(1 − 𝜆)f−(x) + 𝜆f+(x), x ∈ R, with

f−(x) =
2𝜆2

(1 − 𝜆)2
fu(x) +

1 − 2𝜆 − 𝜆2

(1 − 𝜆)2
ft(x), x < 0 and f+(x) = 𝜆e−𝜆x

, x ≥ 0, (12)

ft(x) = (1 − 𝜆){1 − |1 + (1 − 𝜆)x|} and fu(x) =
1 − 𝜆

2
, − 2

(1 − 𝜆)
< x < 0, (13)

while f−(x) = 0 for x ≥ 0, f+(x) = 0 for x < 0, ft(x) = fu(x) = 0 for x ≤ −2∕(1 − 𝜆), and 𝜆 ∈]0,
√

2 −
1[; note that f is continuous at 0 and therefore on its support interval ]a, b[=] − 2∕(1 − 𝜆),+∞[.
Since E(X) = 0, E(X2

+) = 2∕𝜆 and E(X2
−) ≤ {2∕(1 − 𝜆)}2(1 − 𝜆) = 4∕(1 − 𝜆), so that 𝜎2

D∕𝜎
2
U ≤

2𝜆∕(1 − 𝜆), we find 𝜎2
U∕𝜎

2 = 1∕(1 + 𝜎2
D∕𝜎

2
U) → 1, as 𝜆 ↓ 0. Similarly, since 𝜎2

D∕𝜎
2 → 0, the relative
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upside variance of−X can get arbitrarily close to 0. It follows that RAX → 1 for X and RAX → −1
for −X . Note that P{X ≤ 0} = 1 − 𝜆, so that 𝛾T = 1 − 2𝜆 as anticipated in Section 2.2.

A sample version of RAX can be obtained from (11) by replacing 𝜎2 with the sample vari-
ance �̂�2 and 𝜎2

U with the sample upside variance �̂�2
U = ⟨(X − �̂�)2+⟩ or 𝜎2

D with the sample downside
variance �̂�2

D = ⟨(X − �̂�)2−⟩, where of course �̂� = ⟨X⟩ is the sample mean. An advantage of RAX is
that risk-neutral versions of these quantities are easy to obtain from option data in a model-free
set-up (Bakshi, Kapadia, & Madan, 2003; Muzzioli, 2013a, 2013b); this was indeed the original
setting of Elyasiani et al. (2018). In this setting 𝜎U and 𝜎D represent the upside corridor implied
volatility and the downside corridor implied volatility, respectively (Carr & Madan, 1998; Muzzi-
oli, 2013a, 2013b). From an economic point of view the upside corridor is associated with “good“
volatility, as it refers to the potential for substantial gains. On the other hand, the downside cor-
ridor is associated with “bad” volatility due to the risk of heavy losses for investors. Note that, in
principle, the entire risk-neutral distribution function of returns can be recovered from option
data, because it is the discounted first derivative of the European put price, but in practice it can
be tricky to go beyond the first moments; see Birru and Figlewski (2012) for an example of work
in this direction.

4 EMPIRICAL FINDINGS

In this section we follow the approach of Brys et al. (2003), Tajuddin (1996, 1999) to examine
the robustness to outliers and the sensitivity to changes in the shape of the distribution of the
RAX introduced in Section 3, together with other valid measures of skewness. More specifically,
we consider simulated data from four common distributions (Gamma, Weibull, Lognormal, and
Pareto) for different values of their shape parameter and we compare four measures of skewness:
the Groeneveld–Meeden (𝛾GM), the Bowley–Yule (B1∕4), the RAX and the Tajuddin (𝛾T) coefficient
of skewness (all taking values between −1 and 1).

Recall that a Gamma distribution has probability density function given by

f𝛼,𝛽(x) =
1

Γ(𝛼)𝛽𝛼
x𝛼−1 exp

(

− x
𝛽

)

, 0 < x < +∞, (14)

where 𝛼 > 0 is a shape parameter, while 𝛽 is a scale parameter and can therefore be ignored (set
to 1) as far as skewness is concerned. Arnold and Groeneveld (1995) highlight that the param-
eterization of Gamma distributions in terms of 𝛼 respects the convex ordering of distributions.
Indeed, the Fisher–Pearson coefficient of skewness is given by 𝛾1 = 2∕

√
𝛼 and it decreases as 𝛼

increases. A Weibull distribution has probability density function given by

f𝛼,𝜆(x) =
𝛼

𝜆

( x
𝜆

)
𝛼−1

exp
(

−
( x
𝜆

)
𝛼
)

, 0 < x < +∞, (15)

where 𝛼 > 0 is a shape parameter and 𝜆 is a scale parameter (set to 1 without loss of generality).
The Fisher–Pearson coefficient of skewness for a Weibull distribution is known to be positive for
small 𝛼, decreasing with 𝛼 and negative for large 𝛼 (Tajuddin, 1999). A Log-normal distribution
has the following probability density function:

f𝛼,𝜇(x) =
𝛼

x
√

2𝜋
exp

(

−𝛼
2(ln x − 𝜇)2

2

)

, 0 < x < +∞, (16)
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where 𝛼 > 0 is a shape parameter (𝛼 = 1∕𝜎) and 𝜇 = 0, without loss of generality, because exp(𝜇)
is a scale parameter. The Fisher–Pearson coefficient of skewness for a Log-normal distribution
is 𝛾3 = (exp(−𝛼2) + 2)

√
exp(−𝛼2) − 1, which decreases with 𝛼; see for example Tajuddin (1999).

Finally, the probability density function of a Pareto distribution is

f𝛼,x0 (x) =
𝛼x𝛼0
x𝛼+1 , x0 < x < +∞, (17)

where 𝛼 > 0 is a shape parameter, while x0 is set to 1 (shape parameter). Note that, for a
Pareto distribution, the expected value and variance are finite if 𝛼 > 1 and 𝛼 > 2, respec-
tively, while the Fisher–Pearson coefficient of skewness requires 𝛼 > 3, and it is decreasing
with 𝛼.

In the Appendix, we report the average estimated skewness by varying 𝛼 in a distribution
specific set of values, and letting n = 30,100, 1,000. Since the standard errors are small, and the
four measures of skewness behave similarly for all sample sizes, in Figure 1 we focus on the
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F I G U R E 1 Average of skewness estimates over 1,000 samples of size n = 100 for several values of the shape
parameter 𝛼 of the Gamma (panel a), Weibull (panel b), Lognormal (panel c) and Pareto (panel d) distributions
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F I G U R E 2 Boxplots of skewness estimates on 1000 random samples of n = 1,000 observations from a
Gamma distribution with shape parameter 𝛼 = 1.5 without contamination (a) and with 15% contamination (b).
Difference between average skewness estimates at contaminated and at uncontaminated data for different values
of 𝛼 of the Gamma distribution and 5% (c) and 15% (d) contamination, respectively

average estimated skewness, as a function of 𝛼, for samples of size n = 100. In the four cases
considered, we expect all four measures to decrease monotonically in 𝛼 and Figure 1 confirms
this expectation. Each measure starts close to 1 when 𝛼 assumes its minimum value (indicat-
ing high skewness) and falls toward 0 as 𝛼 grows (indicating low skewness). For the Gamma
distribution, in Figure 1a, we see that B1∕4 and 𝛾T attain the smallest values, while RAX main-
tains between 𝛾GM (upper limit) and B1∕4 or 𝛾T (lower limit) for every 𝛼. Similar results hold for
the Weibull distribution, in Figure 1b, and for the Pareto distribution, in Figure 1d, whereas for
the Log-normal distribution, in Figure 1c, the RAX remains slightly above the other measures
of skewness, which are here very close to each other. This means that, across a variety of prob-
ability distributions, RAX displays an intermediate sensitivity to changes in the shape of each
distribution.

As a further step, we analyze the robustness of the four measures of skewness with respect
to the influence of a number of outliers. For this purpose, in panels a of Figures 2–5 we
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(d)

F I G U R E 3 Boxplots of skewness estimates on 1000 random samples of n = 1,000 observations from a
Weibull distribution with shape parameter 𝛼 = 1.5 without contamination (a) and with 15% contamination (b).
Difference between average skewness estimates at contaminated and at uncontaminated data for different values
of 𝛼 of the Weibull distribution and 5% (c) and 15% (d) contamination, respectively

propose the boxplots of the skewness estimates on 1,000 random samples of n = 1,000 obser-
vations, while panels b of Figures 2–5 depict the same boxplots where we replaced 15% of the
data with outliers spaced 8 sds to the right of the mean. The value of 𝛼 for each distribution
is fixed, and it is equal to 𝛼 = 1.5 for the Gamma and the Weibull distributions, and 𝛼 = 0.8
and 𝛼 = 3 for the Log-normal and Pareto distributions. In the four numerical simulations con-
ducted, it may be seen that the median values increase for all measures of skewness, bringing
the boxes with them, whereas on the other hand the RAX shows a decrease. We will see that 𝛾T
can also decrease upon contamination, for smaller values of 𝛼, while this will not happen to 𝛾GM
and B1∕4.

We deeper explore robustness in panels c and d of Figures 2–5, where further simulations
are depicted. Specifically, panels c and d of Figures 2–5 show, for each measure of skewness
and several values of 𝛼, the difference between the average estimated value at the contami-
nated and at the original datasets. We replaced a percentage of the original data with outliers
under two different contamination levels: we contaminated our data at 5% in Figures 2–5c and



CAMPISI et al. 15

●

●●

●
●

●●

●
●

●

●●

●

●●

●

● ●●

●
●●

●

●

●●●
●●●

B1/4 γGM γT RAX

0
.2

0
.4

0
.6

0
.8

e
s
ti
m

a
te

d
 s

ke
w

n
e

s
s

(a)

●

●

●●●●

●●

●

●

●

●

●

●●●●●●●

●●●●●●●●
●

●

●

●●●●●●
●

B1/4 γGM γT RAX

0
.2

0
.4

0
.6

0
.8

e
s
ti
m

a
te

d
 s

ke
w

n
e

s
s

(b)

● ● ● ● ●

0.5 1.0 1.5 2.0 2.5 3.0

−
0

.2
0

.0
0

.2
0

.4

α

a
ve

ra
g

e
 d

if
fe

re
n

c
e

 o
f 

e
s
ti
m

a
te

d
 s

ke
w

n
e

s
s

●

●
● ● ●

●
● ● ● ●

●

●

●
●

●

B1/4

γGM

γT
RAX

(c)

● ● ● ● ●

0.5 1.0 1.5 2.0 2.5 3.0

−
0

.2
0

.0
0

.2
0

.4

α

a
ve

ra
g

e
 d

if
fe

re
n

c
e

 o
f 

e
s
ti
m

a
te

d
 s

ke
w

n
e

s
s

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

B1/4

γGM

γT
RAX

(d)

F I G U R E 4 Boxplots of skewness estimates on 1,000 random samples of n = 1,000 observations from a
Log-normal distribution with shape parameter 𝛼 = 0.8 without contamination (a) and with 15% contamination
(b). Difference between average skewness estimates at contaminated and at uncontaminated data for different
values of 𝛼 of the Log-normal distribution and 5% (c) and 15% (d) contamination, respectively

at 15% in Figure 2–5d. Focusing on the absolute skewness change upon contamination, we note
that B1∕4 stands out as rather insensitive to the presence of outliers, while the performance
of RAX is competitive with that of 𝛾T and 𝛾GM. As for the sign of change, as anticipated, we
observe in panels c and d of Figures 2–5 a possible decrease of 𝛾T and RAX, but not of B1∕4, nor
of 𝛾GM.

As an aside, following Tajuddin (1999), we analyze the skewness sign pattern according to the
relationships between the mean, median, and mode of the Weibull distribution. Table 1 presents
the signs of the four measures of skewness depending on the value of 𝛼. It may be observed
that the sign of B1∕4 is opposite to the signs of all other measures when 3.2589 < 𝛼 < 3.4395.
In this case, B1∕4 fails to preserve the sign of (𝜇 −m), while RAX, 𝛾T , and 𝛾GM respect the rela-
tionship between 𝜇 and m. Based on our empirical findings, we can conclude that RAX strikes
a good balance between robustness to outliers and sensitivity to changes in the shape of the
distribution.
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F I G U R E 5 Boxplots of skewness estimates on 1000 random samples of n = 1,000 observations from a
Pareto distribution with shape parameter 𝛼 = 3 without contamination (a) and with 15% contamination (b).
Difference between average skewness estimates at contaminated and at uncontaminated data for different values
of 𝛼 of the Pareto distribution and 5% (c) and 15% (d) contamination, respectively

T A B L E 1 Sign patterns of skewness values given by different measures in the Weibull distribution case

𝜶 Relationship of M,m, 𝝁 𝜸GM B1∕4 RAX 𝜸T

0 < 𝛼 ≤ 1 m < 𝜇 + + + +

1 < 𝛼 < 3.25889 M < m < 𝜇 + + + +

3.2589 < 𝛼 < 3.3125 m < M < 𝜇 + − + +

3.3125 < 𝛼 < 3.4395 m < 𝜇 < M + − + +

3.4395 < 𝛼 𝜇 < m < M − − − −



CAMPISI et al. 17

5 DISCUSSION

In this paper we presented a comprehensive framework for the assessment of univariate skew-
ness. We reviewed existing measures and proposed a new one, called RAX, based on Elyasiani
et al. (2018). We showed that RAX is a valid measure of skewness and can be safely used by schol-
ars. By using simulated data, we found that RAX strikes a good balance between robustness to
outliers and sensitivity to changes in the shape of the distribution.

RAX is the relative difference between upside and downside volatility. We used volatility, fol-
lowing Elyasiani et al. (2018), due to its high standing in finance. In principle, we could also
compare above average returns with below average returns in terms of their mean absolute residu-
als, rather than root mean squared residuals, but we would still need volatility in the denominator
to satisfy (P2).
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APPENDIX A. SENSITIVITY ANALYSIS

In this Appendix we conduct a sensitivity analysis of the four measures of skewness by varying
𝛼 in a distribution specific set of values in a sample of n observations, with n = 30,100, 1,000.
Table A1 is for the Gamma distribution, Table A2 is for the Weibull distribution, Table A3 is for
the Log-normal distribution, Table A4 is for the Pareto distribution. Each table reports results
based on 1,000 samples. Note that, in all the tables, the standard errors are small, and the four
measures of skewness behave similarly for all sample sizes. Therefore, we can conclude, that the
results of Section 4 on the average estimated skewness, as a function of 𝛼, are valid for different
sample sizes.
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T A B L E A1 Average estimated skewness and standard error of the Gamma distribution for 1,000
samples of n = 30,100, 1,000 observations and for 𝛼 ranging from 0.01 to 3

n 𝜸GM B1∕4 RAX 𝜸T

𝛼 = 0.01 30 1.0000 1.0000 0.7663 0.8756

(0.0000) (0.0000) (0.0014) (0.0019)

100 1.0000 1.0000 0.8413 0.9109

(0.0000) (0.0000) (0.0011) (0.0007)

1,000 1.0000 1.0000 0.8881 0.9197

(0.0000) (0.0000) (0.0005) (0.0002)

𝛼 = 0.2 30 0.8780 0.7185 0.5210 0.5105

(0.0030) (0.0058) (0.0030) (0.0035)

100 0.9027 0.7558 0.5704 0.5218

(0.0013) (0.0031) (0.0019) (0.0019)

1,000 0.9116 0.7730 0.5928 0.5282

(0.0004) (0.0009) (0.0007) (0.0006)

𝛼 = 0.5 30 0.6121 0.4004 0.3925 0.3478

(0.0047) (0.0074) (0.0030) (0.0040)

100 0.6262 0.4119 0.4281 0.3623

(0.0026) (0.0041) (0.0019) (0.0021)

1,000 0.6343 0.4198 0.4473 0.3651

(0.0009) (0.0013) (0.0007) (0.0007)

𝛼 = 1 30 0.4202 0.2430 0.3029 0.2530

(0.0051) (0.0075) (0.0030) (0.0041)

100 0.4365 0.2562 0.3308 0.2634

(0.0028) (0.0041) (0.0019) (0.0023)

1000 0.4413 0.2592 0.3423 0.2633

(0.0009) (0.0013) (0.0006) (0.0007)

𝛼 = 3 30 0.2382 0.1315 0.1860 0.1436

(0.0051) (0.0074) (0.0028) (0.0044)

100 0.2444 0.1341 0.2037 0.1512

(0.0029) (0.0040) (0.0016) (0.0024)

1,000 0.2473 0.1372 0.2094 0.1545

(0.0009) (0.0014) (0.0005) (0.0008)
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T A B L E A2 Average estimated skewness and standard error of the Weibull distribution for 1,000 samples of
n = 30,100, 1,000 observations and for 𝛼 ranging from 0.5 to 4

n 𝜸GM B1∕4 RAX 𝜸T

𝛼 = 0.5 30 0.7478 0.5086 0.3291 0.4777

(0.0039) (0.0071) (0.0120) (0.0044)

100 0.7939 0.5539 0.5203 0.5001

(0.0020) (0.0037) (0.0059) (0.0024)

1,000 0.8134 0.5682 0.6152 0.5125

(0.0006) (0.0012) (0.0019) (0.0008)

𝛼 = 1 30 0.4068 0.2470 0.2457 0.2531

(0.0048) (0.0072) (0.0077) (0.0041)

100 0.4267 0.2515 0.3057 0.2373

(0.0029) (0.0043) (0.0043) (0.0023)

1,000 0.4423 0.2602 0.3412 0.2646

(0.0009) (0.0013) (0.0013) (0.0008)

𝛼 = 2 30 0.1241 0.0608 0.0884 0.0825

(0.0050) (0.0073) (0.0070) (0.0042)

100 0.1433 0.0775 0.1156 0.0898

(0.0029) (0.0042) (0.0035) (0.0022)

1,000 0.1436 0.0754 0.1218 0.0880

(0.0009) (0.0013) (0.0011) (0.0007)

𝛼 = 3 30 0.0317 0.0154 0.0223 0.0194

(0.0049) (0.0075) (0.0070) (0.0044)

100 0.0305 0.0133 0.0274 0.0187

(0.0029) (0.0042) (0.0036) (0.0023)

1,000 0.0303 0.0102 0.0310 0.0184

(0.0010) (0.0014) (0.0011) (0.0007)

𝛼 = 4 30 − 0.0202 − 0.0130 − 0.0173 − 0.0129

(0.0050) (0.0077) (0.0065) (0.0042)

100 − 0.0313 − 0.0227 − 0.0184 − 0.0182

(0.0029) (0.0042) (0.0037) (0.0024)

1,000 − 0.0283 − 0.0193 − 0.0193 − 0.0177

(0.0009) (0.0013) (0.0012) (0.0008)
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T A B L E A3 Average estimated skewness and standard error of the Log-normal distribution for 1,000
samples of n = 30,100, 1,000 observations and for 𝛼 ranging from 0.5 to 3

n 𝜸GM B1∕4 RAX 𝜸T

𝛼 = 0.5 30 0.8265 0.5321 0.1613 0.5870

(0.0034) (0.0017) (0.0006) (0.0064)

100 0.8790 0.5684 0.4863 0.6467

(0.0037) (0.0011) (0.0173) (0.0111)

1,000 0.9012 0.5851 0.7827 0.6746

(0.0003) (0.0054) (0.0034) (0.0013)

𝛼 = 1 30 0.5311 0.3065 0.3005 0.3623

(0.0046) (0.0026) (0.009) (0.0074)

100 0.5635 0.3210 0.4406 0.3763

(0.0041) (0.0014) (0.0104) (0.0058)

1,000 0.5725 0.3218 0.5181 0.3814

(0.0021) (0.0050) (0.0028) (0.0008)

𝛼 = 1.5 30 0.3571 0.1896 0.2352 0.2414

(0.0041) (0.0024) (0.0007) (0.0069)

100 0.3895 0.2136 0.3190 0.2534

(0.0040) (0.0013) (0.0133) (0.0083)

1,000 0.4018 0.2204 0.3630 0.2603

(0.0027) (0.0052) (0.0034) (0.0011)

𝛼 = 2 30 0.2706 0.1407 0.1876 0.1817

(0.0053) (0.0028) (0.0009) (0.0076)

100 0.2977 0.1618 0.2488 0.1942

(0.0042) (0.0013) (0.0081) (0.0044)

1000 0.3065 0.1664 0.2758 0.1970

(0.0014) (0.0046) (0.0025) (0.0008)

𝛼 = 3 30 0.1977 0.1160 0.1364 0.1292

(0.0053) (0.0028) (0.0009) (0.0076)

100 0.1987 0.1042 0.1674 0.1293

(0.0042) (0.0013) (0.0081) (0.0044)

1000 0.2049 0.1098 0.1849 0.1324

(0.0014) (0.0046) (0.0025) (0.0008)
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T A B L E A4 Average estimated skewness and se of the Pareto distribution for 1,000 samples of
n = 30,100, 1,000 observations and for 𝛼 ranging from 2.1 to 10

n 𝜸GM B1∕4 RAX 𝜸T

𝛼 = 2.1 30 0.7030 0.3844 0.6691 0.4967

(0.0010) (0.0013) (0.0035) (0.0014)

100 0.7032 0.3842 0. 6747 0.4975

(0.0011) (0.0013) (0.0036) (0.0015)

1,000 0.7008 0.3833 0.6740 0.4948

(0.0009) (0.0012) (0.0032) (0.0013)

𝛼 = 3 30 0.6136 0.3440 0.5666 0.4060

(0.0009) (0.0013) (0.0003) (0.0009)

100 0.6134 0.3437 0.5690 0.4062

(0.0009) (0.0013) (0.0003) (0.0009)

1,000 0.6135 0.3423 0.5665 0.4072

(0.0008) (0.0012) (0.0002) (0.0008)

𝛼 = 4 30 0.5694 0.3219 0.5048 0.3672

(0.0009) (0.0013) (0.0024) (0.0009)

100 0.5699 0.3243 0.5044 0.3672

(0.0009) (0.0013) (0.0022) (0.0009)

1,000 0.5691 0.3641 0.5012 0.3664

(0.0008) (0.0012) (0.0022) (0.0008)

𝛼 = 8 30 0.5052 0.2929 0.4175 0.3127

(0.0009) (0.0013) (0.0016) (0.0008)

100 0.5024 0.2898 0.4160 0.3127

(0.0009) (0.0014) (0.0017) (0.0008)

1,000 0.5034 0.2916 0.4139 0.3118

(0.0009) (0.0014) (0.0016) (0.0008)

𝛼 = 10 30 0.4933 0.2880 0.4004 0.3027

(0.0009) (0.0013) (0.0016) (0.0008)

100 0.4908 0.2846 0.4010 0.3026

(0.0009) (0.0014) (0.0015) (0.0007)

1,000 0.4917 0.2855 0.3993 0.3027

(0.0009) (0.0014) (0.0016) (0.0008)
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