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Abstract
Schurz (Synthese 164:201–234, 2008) proposed a justification of creative abduction
on the basis of the Reichenbachian principle of the common cause. In this paper we
take up the idea of combining creative abduction with causal principles and model
instances of successful creative abduction within a Bayes net framework. We identify
necessary conditions for such inferences and investigate their unificatory power. We
also sketch several interesting applications of modeling creative abduction Bayesian
style. In particular, we discuss use-novel predictions, confirmation, and the problem
of underdetermination in the context of abductive inferences.

Keywords Creative abduction · Theoretical concepts · Bayes nets · Unification ·
Novel predictions · Underdetermination

1 Introduction

One can basically distinguish two kinds of abductive inferences: those generating
new hypotheses and those aiming at determining the best hypothesis from a set of
available candidates. Let us call abductive inferences of the former kind creative,
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and those of the latter kind selective.1 While most of the philosophical literature on
abduction focuses on selective abduction (see, e.g., Lipton 2004; Niiniluoto 1999;
Williamson 2016), there is also an increasing interest in creative abduction (cf.
Douven 2017).

In contrast to selective abduction and other kinds of inferences (such as deduction
and induction), creative abduction is intended as an inference method for generating
hypotheses featuring new theoretical concepts on the basis of empirical phenomena.
Most philosophers of science are quite sceptical about whether a general approach
toward such a logic of scientific inquiry can be fruitful. However, since theoretical
concepts are intimately connected to empirical phenomena via dispositions (see, e.g.,
Carnap 1936, 1937), a restriction of the domain of application of such an approach
to empirically correlated dispositions might be promising. Schurz (2008) differenti-
ates between different patterns of abduction and argues for the view that at least one
kind of creative abduction can be theoretically justified. In a nutshell, his approach
is based on the idea that inferences to theoretical concepts unifying empirical corre-
lations among dispositions can be justified by Reichenbach’s (1956) principle of the
common cause.

In this paper we take up Schurz’ (2008) proposal to combine creative abduction
and principles of causation. We model cases of successful creative abduction within
a Bayes net framework which can, if causally interpreted, be seen as a generalization
of Reichenbach’s (1956) ideas (cf. Glymour et al. 1991). Such a move allows us to
specify general conditions which have to be satisfied in order to generate hypotheses
involving new theoretical concepts and to describe their unificatory power in a more
fine-grained way. In addition, it can be used to shed new light on several other issues
discussed within philosophy of science. In this paper we will sketch how it allows for
handling cases in which we can only measure non-strict (i.e., probabilistic) empirical
dependencies among dispositions, and how it paves the way for new applications to
other topics within philosophy of science. We consider our analysis of successful
instances of creative abduction by means of Bayes net models as another step toward
a unified Bayesian philosophy of science in the sense of Sprenger and Hartmann
(forthcoming).

The paper is structured as follows: In Section 2 we introduce Schurz’ (2008)
approach to creative abduction. We also explain how it allows for unifying strict
empirical correlations among dispositions and how it can be justified by Reichen-
bach’s (1956) principle of the common cause. In Section 3 we then briefly introduce
the Bayes net formalism, present our proposal how to model successful cases of
creative abduction within this particular framework, and identify necessary condi-
tions for such cases. Next we investigate the unificatory power gained by creative
abduction in the Bayesian setting and draw a comparison with the unificatory power
creative abduction provides in the strict setting. In Section 4 we sketch possible
applications of our analysis to other topics within philosophy of science. In par-
ticular, we discuss the generation of use-novel predictions, new possible ways of
applying Bayesian confirmation theory, a possible (partial) solution to the problem

1Selective abduction is often subsumed under the term inference to the best explanation.
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of underdetermination, and the connection of modeling successful instances of cre-
ative abduction Bayesian style to epistemic challenges tackled in the causal inference
literature. We conclude in Section 5.

2 Creative abduction, unification, and the principle of the common
cause

In this section we present Schurz’ (2008) approach to creative abduction. Following
Schurz, we focus on a simple analysis of dispositions as introduced by the early
logical empiricists (e.g., Carnap 1936, 1937).2 According to this analysis, whether an
object x has a disposition D depends on whether certain test conditions T lead to a
specific reaction R. For an object x to be soluble in water, for example, it is required
that x dissolves at some time t if put into water at t :

∀t (T (x, t) → (D(x) ↔ R(x, t))) (1)

According to the traditional understanding, T and R are empirical concepts, while
the dispositional concept D is a not directly observable theoretical concept. Note that
Eq. 1 comes close to a partial definition of D on the basis of T and R, except that
the dispositional term is not relativized to t . What distinguishes the characterization
of a disposition D(x) as provided in Eq. 1 from a purely conventional definition of
a disposition with reference to time (e.g., by replacing D(x) with D(x, t) in Eq. 1,
where D(x, t) might be interpreted as x is soluble in water at some point in time t)
is that Eq. 1 is empirically creative in the sense that it allows for deducing empirical
statements which cannot be deduced from our background postulates on statements
containing T and R alone. It is a well-known fact that the only non-conservative (or
creative) import of Eq. 1 is the following assumption about the uniformity of test-
reaction pairs: If at some time t an object x satisfies the test conditions and brings
about the corresponding reaction, then x will do so at any time t :

∃t (T (x, t) ∧ R(x, t)) → ∀t (T (x, t) → R(x, t)) (2)

Equations 1 and 2 are empirically equivalent, where two statements “are empirically
equivalent just in case they have the same class of empirical, viz., observational,
consequences [and . . . ] the empirical consequences of any statement are those of its
logical consequences formulable in an observation language” (Laudan and Leplin
1991, p. 451; cf. also Okasha 1997, p. 251). That the empirical content of Eq. 2 is
implied by Eq. 1 is straightforward, since Eq. 2 contains only (logical and) empirical
expressions and is a direct consequence of Eq. 1. That all statements containing only
(logical and) empirical expressions that are consequences of Eq. 1 can be deduced
already from Eq. 2 can be shown by definition theoretical means (cf. Essler and Trapp
1978).

2For more modern analyses of dispositions, see, for example, Lewis (1997), Malzkorn (2000), and Manley
and Wasserman (2008).
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If Eq. 2 has been established on empirical grounds, then introducing a disposition
D via Eq. 1 is a theoretical means to explain Eq. 2. However, not much is gained
by introducing D since for each regularity among test-reaction pairs a distinct dis-
position has to be postulated. Things become more interesting once we focus on
regularities among several dispositions D1, ..., Dn, each characterized by a corre-
sponding test-reaction pair consisting of Ti and Ri (with 1 ≤ i ≤ n). Now assume
that we found strict pairwise empirical correlations between all of these dispositions
D1, ..., Dn, meaning that

Di(x) ↔ Di+1(x) for all 1 ≤ i < n. (3)

This amounts to the assumption that the following statement has been empirically
established:

∃t (Ti(x, t) ∧ Ri(x, t)) → ∀t (Tj (x, t) → Rj (x, t)) for all 1 ≤ i, j ≤ n (4)

Let us call each statement of this form a crossed uniformity assumption. Given n

test-reaction pairs for n dispositions D1, ..., Dn, we get n2 such crossed uniformity
assumptions (Schurz 2008, p. 226). It is a logical fact that this is empirically equiv-
alent to introducing one higher-level dispositional concept D characterized by n

test-reaction pairs:

∀t (Ti(x, t) → (D(x) ↔ Ri(x, t))) for all 1 ≤ i ≤ n (5)

Note that introducing the theoretical concept D via Eq. 5 reduces the number of law
statements from n2 to n. In this sense such a reduction can be understood as unifica-
tory. The abductive inference consists in the introduction of D via Eq. 5 on the basis
of Eq. 4. It can be illustrated on the following example inspired by Hempel (1965):
Assume that at some time the inhabitants of a not too distant possible world real-
ized that some objects have the disposition to attract iron (D1) and that some objects
have the disposition to produce electricity when moved along a wire (D2), meaning
that they introduced the two theoretical concepts D1 and D2 on the basis of Eq. 2
and in accordance with Eq. 1. Suppose further that both discoveries were made inde-
pendently of each other, but that people found out later on that the dispositions D1
and D2 are correlated (Eq. 3) via observing that their corresponding test and reaction
conditions coincided (Eq. 4). They might then have started to explain this correlation
by introducing the higher-level disposition of generating an electromagnetic field D
via Eq. 5.

Note that creative abduction as discussed above can be interpreted either in a real-
ist or an instrumentalist way. Under the latter interpretation D is taken to be nothing
over and above a more or less useful theoretical means to unify empirical descrip-
tions of certain phenomena of interest that can—in principle—be replaced by any
other concept with equal empirical adequacy and unificatory power. Under the realist
interpretation, on the other hand, D is assumed to represent a real structure; state-
ments involving D are considered to be either true or false. Schurz (2008) made a
strong case in favour of a realist interpretation by endorsing Reichenbach’s (1956)
common cause principle:
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(CCP) If two properties A and B are correlated and neither A causes B nor B

causes A, then A and B are effects of a common cause C.

(CCP) demands that every correlation among any pair of properties not standing in
direct causal dependence to each other has to be explained by the existence of an
independent common cause. In this sense (CCP) provides a way of causally unifying
observed regularities. In the case of pairwise empirically correlated dispositions such
as D1, ..., Dn above, (CCP) supports a realist interpretation of the unifying higher-
level disposition D: The correlation among dispositions D1, ..., Dn is explained by
postulating a common cause D.

In the next section we take up the idea of combining creative abduction and prin-
ciples of causation by modeling cases of successful creative abduction in a Bayes
net framework. Though Bayes nets can be causally interpreted, one does not have
to subscribe to a realist interpretation when employing this particular framework to
model creative abduction. While the realist gets a justification for creative abductive
inferences on the basis of a causal interpretation, the instrumentalist can still use the
Bayes net framework without a causal interpretation as a tool for justifying abductive
inferences in terms of unificatory power. In this paper we prefer to stay neutral on
the realist vs. instrumentalist question. As we will show, modeling creative abduction
Bayesian style comes with a couple of advantages regardless of the answer to that
question.

3 Modeling creative abduction Bayesian style

We start this section by briefly introducing the basics of the Bayes net formalism.
Bayes nets allow for modeling and graphically representing the paths over which
probabilistic information spreads between variables. A Bayes net consists of a set V
of random variables X1, ..., Xn, a set E of directed edges (−→) connecting some of
these variables, and a probability distribution P over V. A triple 〈V,E, P 〉 is a Bayes
net if and only if it conforms to the Markov factorization (Pearl 2000, p. 16)

P(X1, ..., Xn) =
n∏

i=1

P(Xi |Par(Xi)), (6)

where Par(Xi) is the set of Xi’s parents in the Bayes net’s graphG = 〈V,E〉, i.e., the
set of all Xj ∈ V for which Xj −→ Xi holds. Whenever the probability distribution
P of a triple 〈V,E, P 〉 factors according to Eq. 6, then one can read off certain
independencies in P from the graph G = 〈V,E〉. Every Xi ∈ V has, for example, to
be independent of every Xj that is not connected to Xi via a path Xi −→ ... −→ Xj

conditional on Par(Xi). In the causal interpretation, the arrows (−→) of a Bayes
net’s graph stand for direct cause-effect relationships. It is well-known that (CCP) is
a consequence of assuming the causally interpretated Markov factorization. Note that
Schurz (2008, 2016) only refers to the causal Bayes net framework in order to justify
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Fig. 1 Bayes net for modeling
successful instances of creative
abduction

(CCP) in support for a realist interpretation of creative abduction.3 In contrast, we
employ Bayes nets in order to analyze successful instances of creative abduction.

Let us now come to the question of how to model successful cases of creative
abduction in the Bayes net framework. We represent pairwise empirically correlated
lower-level dispositions by variables D1, ..., Dn and the abduced higher-level dis-
position by a variable D. Evidence for one of the lower-level dispositions Di (with
1 ≤ i ≤ n) is represented by a variable Ei which stands for an inductive gener-
alization of instances of test-reaction conditions such as (Ti(a1, t1) ∧ Ri(a1, t1)) ∧
... ∧ (Ti(ak, tl) ∧ Ri(ak, tl)). The dependence of each lower-level disposition Di on
its corresponding evidence Ei is represented the same way as the dependence of a
hypothesis on its evidence is typically modeled in the Bayesian framework: For each
pair Di, Ei we draw an arrow Di −→ Ei . Since the creative abductive step is con-
ducted by applying (CCP) in Schurz’ (2008) original approach, we introduce the
higher-level disposition variableD as a common parent of the lower-level disposition
variables D1, ..., Dn. The resulting graph is depicted in Fig. 1.

Probability flow between dispositions D1, ..., Dn is established via D if the
following general conditions are satisfied:

1. D is not extreme, i.e., 0 < P(D) < 1.
2. Each Di depends positively on D, i.e., P(Di |D) > P (Di).

From 1. and 2. it follows that P(Di |Dj) > P (Di) if i �= j . (For a proof see, e.g.,
Dardashti et al. 2017.) To account for the corresponding correlations between the
evidence E1, ..., En, the following condition has to be satisfied as well:

3. Each Ei depends positively on its corresponding Di , i.e., P(Ei |Di) > P (Ei).

From 1., 2., and 3. it follows that P(Ei |Ej) > P (Ei) if i �= j .
Conditions 1., 2., and 3. are necessary conditions for successful creative abduction:

They guarantee pairwise correlations among lower-level dispositions that have to

3For an argument supporting a realist interpretation of the causal Bayes net framework, see Gebharter
(2017) and Schurz and Gebharter (2016).
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be inductively inferred on the basis of observed evidence and build the basis for
introducing the higher-level dispositionD which is then, in turn, used to explain these
correlations.4

Like in Schurz’ (2008) original approach, creative abduction provides unifica-
tion if modeled Bayesian style. In the original approach (see Section 2) introducing
the higher-level disposition D provided unification of n2 empirical law statements
establishing pairwise empirical correlations among n lower-level dispositions to n

higher-level dispositional statements. In the Bayes net setting, pairwise empirical cor-
relations between n lower-level dispositions D1, ..., Dn consist in

(
n
2

)
probabilistic

dependencies of the form P(Di |Dj) > P (Di), where 1 ≤ i �= j ≤ n. Simi-
larly, for the dependencies among pairs of evidential variables there are

(
n
2

)
empirical

correlation statements of the form

P(Ei |Ej) > P (Ei), where 1 ≤ i �= j ≤ n. (7)

It follows from the Markov factorization (Eq. 6) that these
(
n
2

)
empirical correlation

statements can be unified by the 2n + 1 probabilistic statements in conditions 1., 2.
and 3.: n statements of the form P(Ei |Di) > P (Ei) (with 1 ≤ i ≤ n), n statements
of the form P(Di |D) > P (Di) (with 1 ≤ i ≤ n), and 1 statement 0 < P(D) < 1.
To compare Schurz’ (2008) approach and the Bayesian approach w.r.t. their unifica-
tory power, we introduce a simple measure u intended to capture the intuitions about
unification outlined above. Given n correlated lower-level dispositions, u(n) mea-
sures the ratio between x(n) empirical statements to be unified and y(n) unifying
theoretical statements. In order to shift the neutral case to 0, we subtract 1 from this
ratio: u(n) = x(n)

y(n)
− 1. Its output is in the interval [−1, ∞), where a negative value

means that the theoretical description is more costly than simply listing the empirical
statements, 0 means that there is no gain but also no cost in providing a theoreti-
cal description, and a positive value means that the theoretical description provides
unification.5

A comparison of the unificatory power of both, the original and the Bayes net
approach, is provided in Fig. 2 (thin solid line and thin dotted line): In the case
of strict (unconditional) correlations, the original approach fares better than the
Bayesian approach. This is due to the theoretical power of the Bayesian framework
which requires more parametrization. However, one can increase the performance of
the Bayesian approach (see thin and thick dotted line in Fig. 2) by omitting the inter-

4Note that our Bayes net account differs from Schurz’ (2015) approach to unify statistical dependencies
and independencies by causal structure. While Schurz reduces a number of statistical dependencies and
independencies to a (smaller) number of causal relations, our account reduces a number of correlations
among different pieces of evidence to a number of statements postulating abduced dispositions.
5Measuring unificatory power by counting statements, argument patterns, etc. is common in the unifica-
tion literature (cf. Woodward 2017, sec. 5.4). There are, however, also other ways of measuring unificatory
power. To avoid problems Bayesian measures have with common cause structures (cf. Schupbach 2005),
Myrvold (2017) suggests to avoid an explicit representation of common causes. For purposes of unifica-
tion, one should use hypotheses postulating such common causes instead. But since we focus on creative
abduction in this paper, avoiding common causes in order to maintain a Bayesian measure for unification
seems to be inappropriate for our endeavor. For this reason and in order to compare the Bayes net analysis
with Schurz’ (2008) approach, we decided in favor of a simple counting measure.
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Fig. 2 Comparison of unificatory power in the original and in the Bayesian setting: n is the number of
pairwise empirically correlated dispositions. u(n) measures the unificatory power given n such disposi-
tions by taking the ratio between the number of their corresponding empirical law statements and the
number of unifying statements with a shift of the neutral case to 0. In the original setting (thin solid line),

u(n) is calculated via n2

n
− 1, where n2 is the number of empirical law statements in Eq. 4. The unifying

statements consist of the n formulae in Eq. 5. In the Bayesian setting (thin dotted line), the correspond-

ing u(n) is calculated via (n
2)

2n+1 − 1. The nominator
(
n
2

)
expresses the number of statements describing the

strict (unconditional) empirical correlations in Eq. 7, and the denominator 2n + 1 is the number of uni-
fying statements in conditions 1., 2., and 3. Omitting the lower-level dispositions D1, ...,Dn results in a
slight boost of unificatory power (thick dotted line): If one operates directly with the higher-level dispo-

sition D, u(n) is calculated via (n
2)

n+1 − 1. Again,
(
n
2

)
expresses the number of statements describing the

empirical correlations, and n + 1 is the number of unifying statements (condition 1 and n statements of
the form P(Ei |D) > P (Ei), where 1 ≤ i ≤ n). The unificatory power u(n) in the Bayesian setting with

conditional dependencies (thin dashed line) is calculated via
2n−2·(n

2)
2n+1 − 1. The numerator expresses the

number of statements describing the conditional and unconditional dependencies according to Eq. 8, and
the denominator 2n + 1 is, again, the number of unifying statements in conditions 1., 2., and 3. When
directly operating with D in this setting (thick dashd line), again, a boost in unificatory power results. In

this setting u(n) is calculated via
2n−2·(n

2)
n+1 −1. The latter two cases show that once one allows for non-strict

(conditional) correlations, then abductive inference in the Bayes net setting receives a tremendous boost in
terms of unificatory power. Note that the y-axis plots the logarithm of the ratio with a shift of the neutral
case to 0

mediate lower-level dispositionsD1, ..., Dn in the 2n+1 statements used for unifying
the correlations among the evidenceE1, ..., En and explain these correlations directly
by n statements of the form P(Ei |D) > P (Ei) (with 1 ≤ i ≤ n) and 1 statement
0 < D < 1 instead.6 While introducing the lower-level dispositionsD1, ..., Dn might
be practically necessary to find a more general higher-level disposition D, the pres-
ence of these lower-level dispositions should not be counted against the unificatory

6The conditional probabilities P(Ei |D) can be computed as P(Ei |Di,D) · P(Di |D) + P(Ei |Di,D) ·
P(Di |D).
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value of the larger theory since all the theoretical gain achieved by the unification
can eventually be traced back to the presence of the higher-level disposition D.7

Up to now we focused on comparing the unification of statements about uncon-
ditional empirical correlations. However, many more empirical correlations are
possible in the Bayesian setting. If the evidential base is strictly correlated (i.e.,
P(Ei |Ej) and P(Ei |Ej) with 1 ≤ i, j ≤ n are extreme), then it follows from Eq. 6
and conditions 1., 2., and 3. that each two variables Ei, Ej (with i �= j ) are inde-
pendent conditional on any set of other evidential variables. Thus, the unconditional
dependence statements in Eq. 7 capture all dependencies among variables E1, ..., En

in this setting. However, if some correlations among pieces of evidence cannot be
screened off by some non-empty set of other evidential variables, then also many
conditional empirical dependencies may hold among pairs of evidential variables. In
particular, there can be up to 2n−2 · (

n
2

)
empirical dependencies of the form

P(Ei |Ej ,Z) > P (Ei |Z),where

1 ≤ i �= j ≤ n and Z ⊆ {Ek : 1 ≤ i �= k �= j ≤ n}. (8)

If these conditional dependencies are also taken into account, then creative abduc-
tion Bayesian style provides a tremendous gain in unificatory power (see Fig. 2,
thin dotted and thin dashed line as well as thick dotted and thick dashed line).
From 1., 2., and 3. it also follows that P(Ei |Y) > P (Ei |Z), where Z ⊂ Y
and Y are sets of evidential variables different from Ei . (For a proof see, e.g.,
Dardashti et al. 2017.) So, the Bayes net framework allows for a much more fine-
grained modeling of non-strictly empirically correlated dispositions which can be
found in many higher-level sciences such as economics, medicine, psychology, and
sociology.

As the comparison in Fig. 2 shows, the original approach proposed by Schurz
(2008) and our Bayesian approach perform differently well in different settings. In
the case without conditional correlations, the strict approach fares better. It provides
more unificatory power and leads already to unification with only two empirically
correlated dispositions, while our Bayes net approach requires at least four empiri-
cally correlated dispositions to produce positive unificatory power. In the non-strict
setting with conditional correlations, on the other hand, Schurz’ approach is not appli-
cable. This is the setting where the Bayesian approach excels. Although the version
with 2n + 1 unifying statements also requires at least four empirically correlated
dispositions to produce positive unificatory power, the amount of unificatory power
provided explodes. The version with n+1 unifying statements fares even better. Note
that it already provides positive unificatory power with three empiricaly correlated
dispositions. These results suggest that the two approaches might rather be seen as
complementing each other than as concurring accounts.

7We are indebted to an anonymous referee for pointing this out to us.
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4 Possible applications and connections to other issues

In this section we outline possible applications of modeling creative abduction
Bayesian style and connections to other topics from the philosophy of science litera-
ture. In particular, we discuss how abduced theoretical concepts allow for use-novel
predictions, how the approach fits with a recent proposal to solve the problem of
underdetermination, and how it provides new possibilities for confirmation. Finally,
we briefly discuss how results from the causal discovery literature could be used to
approach creative abduction from an epistemic perspective.

Use-novel predictions Let us illustrate how creative abduction in a Bayes net model
allows for generating use-novel predictions8 by means of the magnet example intro-
duced in Section 2. Our line of reasoning here is in accordance with Schurz (2008).
Although regarding use-novel facts our framework does not add anything to his
argumentation, we think that it is good to see that the Bayesian approach can pro-
vide use-novel predictions as well. Assume that an empirical correlation between
the two dispositions of attracting iron (D1) and producing electricity when being
moved along a wire (D2) had been established by experimenting with lodestone. It is
inferred by abductive inference that this correlation is brought about by the higher-
order disposition of generating an electromagnetic field (D). In our approach, this
means that one subscribes to a dispositional pattern captured by a Bayes net model
with the structure D1 ←− D −→ D2. Now assume that one finds an object that is
not a lodestone, but attracts iron anyway (D1). It follows from our model together
with conditions 1. and 2. that this increases the probability that this object’s having
disposition D brought about its having disposition D1. Hence, the probability for D
is increased as well. But sinceD also increases the probability of this object’s having
the disposition to produce electricity by being moved along a wire, also the proba-
bility of D2 is increased. Thus, observing that the object has disposition D1 predicts
that P(D2|D1) > P (D2) applies to it as well. Note that this prediction is use-novel
since only lodestone was used in building the theoretical model.

Confirmation Given two dispositions D1 and D2 are empirically correlated, it seems
to be commonly accepted that one can use evidence for one of these dispositions
to confirm the presence of the other disposition. If, for example, one finds that an
object attracts iron (E1), then one tends to accept this as evidence that it has the
disposition of producing electricity when being moved along a wire (D2) as well. So
E1 can be understood as a test for whether an object has disposition D2. This can
be justified by help of our model as follows: Once the model’s structure E1 ←−
D1 ←− D −→ D2 has been established via creative abduction, it follows with
condition 3. that observingE1 increases the probability for the presence ofD1 which,

8A prediction is use-novel if it predicts an empirical phenomenon that was unknown at the time of the
prediction or that has not been used as evidence in constructing the theory on whose basis this phe-
nomenon is predicted (see, e.g., Worrall 1985, 2006). The ability to produce use-novel predictions is
often regarded as a requirement for empirically successful theories since it renders theories independently
testable.
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in turn, by conditions 1. and 2. increases the probability of the presence of D. Since
D is a positive factor for bringing about D2 as well, also the probability for D2’s
presence will be increased. Thus, P(D2|E1) > P (D2) applies to our object and,
according to Bayesian confirmation theory, E1 confirms D2.9 Below we will see
that a qualitative model of such confirmation, which might be considered to be a
straightforward application of the theory of creative abduction based on the common
cause principle (CCP), has several problems. In this sense, expanding the account by
switching to the Bayes net framework seems to allow for increased applicability.

The problem of underdetermination This problem arises due to the fact that two
different theories or hypotheses H1 and H2 can often account for some evidence E

equally well. So, just considering E, it is underdetermined which hypothesis one
should choose. One approach to this problem consists in employing indirect evidence
E′ (Laudan and Leplin 1991, p. 464): Assume that H2, but not H1 is derivable from
a more general theory H, which also entails another hypothesis H3. Assume further
thatE′ is direct evidence forH3. Now Laudan and Leplin propose thatE′ cannot only
be employed for confirming H3 and H, but also for confirming H2. Their argument
for cashing out E′ in order to confirm H3 can be stated as follows (cf. Okasha 1997,
pp. 252f):

i H entails H2 and H3 (but not H1). Furthermore, E′ confirms H3.
ii Hence: E′ confirms also H. (with i)
iii Hence: E′ confirms also H2. (with i and ii)

However, Okasha (1997) has noted that Laudan and Leplin’s (1991) solution falls
victim to problems that arise due to qualitative assumptions about confirmation. The
underlying principle which grants the inference from i to ii is the so-called converse
consequence condition (CCC):

(CCC) If A entails B and C confirms B, then C also confirms A.

And the underlying principle which grants the inference of iii is the so-called special
consequence condition (SCC):

(SCC) If A entails B and C confirms A, then C also confirms B.

Both, (CCC) and (SCC), were already discussed by Hempel (1965), who wrote:

“Special Consequence Condition: If an observation report confirms a hypothe-
sis H , then it also confirms every consequence of H . [. . . The other condition
is] the condition that whatever confirms a given hypothesis also confirms
every stronger one. [. . . This principle might be called] ‘converse consequence
condition’.” (Hempel 1965, pp. 31f)

9For a similar line of argumentation in the case of confirmation across analogical systems, see (Dardashti
et al. 2017). For possible problems and an extension of this approach, see (Feldbacher-Escamilla and
Gebharter ms).
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Hempel (1965) also demonstrated that these two principles taken together trivial-
ize the notion of qualitative confirmation because they imply that every statement
confirms every other statement. The reason for this is simple:

1) Trivially, A entails A.
2) Hence, by (SCC): A confirms A.
3) Trivially also A ∧ B entails A.
4) Hence, by (CCC): A confirms A ∧ B.
5) But then, again by (SCC): A confirms B.

Clearly, this problem does not show up for the (comparative and) quantitative notion
of confirmation. If we take, for example, the positive relevance notion of confirma-
tion, then for some A, B, C it is well possible that Pr(A|C) ≤ Pr(A) (C is not
positively relevant for A) though Pr(A|B) > Pr(A) (B is positively relevant for A)
and Pr(B|C) > Pr(B) (C is positively relevant for B). The question arises, how
then Laudan and Leplin’s (1991) proposal can be carried out by help of a quantitative
notion of confirmation. This is where our probabilistic Bayesian approach to model
creative abduction comes into play. We can model Laudan and Leplin’s proposal in
a quantitative (probabilistic) way by the Bayes net depicted in Fig. 3. In this model
it follows that E′ confirms H2, but not H1: Like in the paragraph about confirma-
tion, E′ confirms H2 simply because P(H2|E′) > P (H2) holds due to conditions
1., 2., and 3.: The mentioned theorem of Dardashti et al. (2017) shows that given
these conditions probabilistic flow between E′ and H2 is guaranteed, and more gen-
erally that positive relevance is transmitted via such paths.10 Furthermore, E′ does
not confirm H1 because P(H1|E′) = P(H1) holds. This is a direct consequence of
the Markov factorization (Eq. 6). In this way our approach can be used to justify a
quantitative (probabilistic) reading of Laudan and Leplin’s solution to the problem of
underdetermination. The quantitative model allows for avoiding problems a qualita-
tive model of successful creative abduction might have when applied to the problem
of underdetermination as outlined here.

The epistemic challenge: search In this paper we aimed at modeling creative abduc-
tion in the Bayes net framework. To this end we assumed that creative abduction had
already been successfully applied. We did not provide an answer to the epistemic
question of how and under which conditions creative abduction can be successfully
applied in practice. So the epistemic challenge consists in developing reliable meth-
ods to abduce unifying dispositions on the basis of empirical data. As Glymour
(2018) points out, this problem is tackled in the literature on search of latent variables
(see, e.g., Silva et al. 2006; Kummerfeld and Ramsey 2016). Such procedures would,
however, require continuous data rather than binary variables as we used them in this
paper. So variables should rather represent the strengths of dispositions than sim-
ply the presence of such dispositions to get these approaches to work. How exactly

10We are indebted to an anonymous referee for stressing this parallel between the mentioned intuitions
on a qualitative notion of confirmation and the properties of a quantitative notion of confirmation in the
Bayesian framework applied here.
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Fig. 3 Bayes net modeling
Laudan and Leplin’s (1991)
solution to the problem of
underdetermination

such approaches to latent variable search fit with the classical literature on abduction
within philosophy of science has to be investigated in future research.

5 Conclusion

This paper was about modeling successful cases of creative abduction on the basis of
empirically correlated dispositions within a Bayes net framework. After introducing
Schurz’ (2008) strict approach in Section 2, we developed a Bayes net representation
of instances of successful creative abduction in the sense of Schurz in Section 3. This
move allows for a more fine-grained investigation of the unificatory power gained by
creative abduction. It also allows for identifying the relevant necessary conditions for
successful cases of creative abduction. Note that our approach to creative abduction
can, in a very limited way, be used for purposes of selective abduction as well. It
suggests to penalize all dispositions of a given set of candidates that do not meet the
necessary conditions for successful creative abduction, i.e., all those Ds that (i) are
not positively correlated with one of the lower-level dispositions D1, ..., Dn (or one
of the pieces of evidence E1, ..., En) to be explained or (ii) do not screen off all non-
intersecting sets of lower-level dispositions (or pieces of evidence) from each other.
If (i) were the case, then D would not explain every lower-level disposition (or piece
of evidence), and if (ii) were not the case, the Markov condition would be violated
and D would not fully explain some correlations among lower-level dispositions (or
pieces of evidence). In both cases, there might be a better dispositional explanation
available. The approach does, however, not come with a criterion for how to select
the best disposition(s) D of a set of rivals all satisfying these necessary conditions.
For this purpose, one could use one of the approaches to selective abduction already
on the market (see, e.g., Lipton 2004; Niiniluoto 1999; Williamson 2016).

In Section 4 we then discussed several possible applications of modeling creative
abduction Bayesian style. In particular, we spelled out how creative abductive infer-
ences can generate use-novel predictions in our setting. We also presented a new
possibility to apply Bayesian confirmation theory: Once a higher-level connection
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between lower-level dispositions has been established via creative abduction, one can
confirm the presence of one of these lower-level dispositions by finding evidence for
one of the other lower-level dispositions. Another result was that a quantitative (prob-
abilistic) reading of Laudan and Leplin’s (1991) proposed solution to the problem of
underdetermination can be supported once one is able to unify one of the competing
hypotheses with an additional hypothesis via creative abduction.

This paper was about modeling successful instances of creative abduction and
about which interesting conclusions one can draw from a Bayes net representation.
An issue that has not been tackled is the epistemic question of how exactly theoretical
concepts should be abduced on the basis of empirical data. If dispositions can be
adequately represented by continuous variables, then this seems to open the door for a
fruitful application of much more sophisticated search procedures from the literature
on causal discovery.
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