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Abstract

Recent advances in computational methods for intractable models have made network
data increasingly amenable to statistical analysis. Exponential random graph models
(ERGMs) emerged as one of the main families of models capable of capturing the complex
dependence structure of network data in a wide range of applied contexts. The Bergm
package for R has become a popular package to carry out Bayesian parameter inference,
missing data imputation, model selection and goodness-of-fit diagnostics for ERGMs.
Over the last few years, the package has been considerably improved in terms of efficiency
by adopting some of the state-of-the-art Bayesian computational methods for doubly-
intractable distributions. Recently, version 5 of the package has been made available on
CRAN having undergone a substantial makeover, which has made it more accessible and
easy to use for practitioners. New functions include data augmentation procedures based
on the approximate exchange algorithm for dealing with missing data, adjusted pseudo-
likelihood and pseudo-posterior procedures, which allow for fast approximate inference of
the ERGM parameter posterior and model evidence for networks on several thousands
nodes.
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1. Introduction

Exponential random graph models (ERGMs, Frank and Strauss 1986; Wasserman and Patti-
son 1996; Robins, Pattison, Kalish, and Lusher 2007) are one of the most important families
of statistical models conceived to capture the complex dependence structure of an observed
network and identify the relational effects that are supposed to describe the link creation
process.
Bayesian inference for ERGMs is challenging because of the intractability of both the likeli-
hood and the marginal likelihood. The advanced computational methods developed by several
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recent papers (see for example, Koskinen, Robins, and Pattison 2010; Caimo and Friel 2011;
Caimo and Mira 2015; Alquier, Friel, Everitt, and Boland 2016; Bouranis, Friel, and Maire
2017, 2018) have made it possible and computationally feasible to model increasingly large
network data using ERGMs on several thousands of nodes. The development of user-friendly
software has always represented an essential aspect of the research activity in this area.
There is a wide range of R packages (R Core Team 2022) implementing various inferential
approaches and modeling extensions of the ERGM framework. These include the ergm pack-
age (Hunter, Handcock, Butts, Goodreau, and Morris 2008b) providing a comprehensive set
of functions for fitting, simulating and diagnosing ERGMs; the tergm (Krivitsky and Hand-
cock 2014) and btergm (Leifeld, Cranmer, and Desmarais 2018) packages for the analysis of
temporal ERGMs; the mlergm (Stewart and Schweinberger 2018) package for analyzing mul-
tilevel ERGMs; and the fergm package (Box-Steffensmeier, Christenson, and Morgan 2018)
implementing estimation and fit assessment for frailty ERGMs. The main software alterna-
tive to these R packages is the free PNet program (Wang, Robins, and Pattison 2009) which
runs on Windows.
The Bergm package for R implements Bayesian analysis for exponential random graph mod-
els, providing a comprehensive inferential framework for Bayesian parameter estimation and
model selection using efficient Monte Carlo algorithms. It can also supply model assessment
and goodness-of-fit procedures that address the issue of model adequacy. Although compu-
tationally intensive, the package is easy to use and represents an attractive way of analyzing
networks by adopting a fully probabilistic treatment of uncertainty of the network effects
that are assumed to be able to explain the overall connectivity structure of the network. The
Bergm package depends on the ergm package which is part of the statnet suite of packages
(Handcock, Hunter, Butts, Goodreau, and Morris 2008) and therefore it makes use of the
same model set-up and network simulation algorithms. The Bergm package has been im-
proved considerably in terms of usability for practitioners and performance since its early
versions (Caimo and Friel 2014). The aim of the package is to provide a set of tools for both
developers and end-users. For this reason the package includes several competing functions
(based on different statistical approaches) for accomplishing posterior parameter estimation
and model selection.
The package has been used in several applications such as neuroscience (Sinke, Dijkhuizen,
Caimo, Stam, and Otte 2016), organization science (Caimo and Lomi 2014; Tasselli and Caimo
2019) and political science (Henning, Aßmann, Hedtrich, Ehrenfels, and Krampe 2019).
The purpose of this paper is to provide a complete description of the recent improvements
by summarizing some of the technical background and newly implemented algorithms in the
main functions of the package.

2. Getting Bergm
The Bergm package (Caimo, Bouranis, and Krause 2022) is available from the Comprehen-
sive R Archive Network (CRAN) at https://CRAN.R-project.org/package=Bergm and can
be obtained in R using the following commands:

R> install.packages("Bergm")
R> library("Bergm")

https://CRAN.R-project.org/package=Bergm
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Bergm depends on ergm (Hunter et al. 2008b), network (Butts 2008), coda (Plummer,
Best, Cowles, and Vines 2006), MCMCpack (Martin, Quinn, and Park 2011), Matrix (Bates
and Mächler 2022), mvtnorm (Genz et al. 2021), matrixcalc (Novomestky 2012) and Rglpk
(Theussl and Hornik 2019). Loading the package will automatically load all the dependencies.
All of these packages are available on CRAN at http://CRAN.R-project.org/. The results
presented in this paper have been obtained using R version 4.2.1; Bergm version 5.0.5; ergm
version 4.2.2; network version 1.17.2; coda version 0.19-4; MCMCpack version 1.6-3; Matrix
version 1.4-1; mvtnorm version 1.1-3; matrixcalc version 1.0-5 and Rglpk version 0.6-4.

3. Network data
Two very well known network datasets are used throughout this tutorial for illustrative pur-
poses: the first is the Lazega’s Law Firm dataset whose undirected edges represent collabora-
tive relations in a Northeastern US corporate law firm (Lazega 2001); the second is the Faux
Dixon High School dataset, which represents a directed friendship network (Resnick et al.
1997).

3.1. Lazega’s law firm

The law office in Lazega’s study network (graphs displayed in Figure 1), consists of binary
undirected collaborative relations between 36 partners in a Northeastern US corporate law
firm (Lazega 2001). Various members’ attributes are also part of the dataset, including
seniority, formal status, office in which they work, gender, law school attended, individual
performance measurements (hours worked, fees brought in), attitudes concerning various
management policy options.

R> data("lazega", package = "Bergm")

3.2. Faux Dixon high school

The Faux Dixon High School network data (graphs displayed in Figure 2), included in
the ergm package, represents a simulation of a binary directed in-school friendship net-
work (Resnick et al. 1997). See ?faux.dixon.high for the ERGM that was fit to the original
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Figure 1: Lazega’s network undirected graphs.
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Figure 2: Faux Dixon High School network directed graphs.

data, generating the network dataset. The network comprises 248 nodes representing stu-
dents. Information on the following nodal attribute variables is available: sex, race, grade.

R> data("faux.dixon.high", package = "ergm")
R> dixon <- faux.dixon.high

The code used to plot the network graphs in Figures 1 and 2 is included in the R replication
code of the supplementary files.

4. Exponential random graph models
Networks are relational data defined as a collection of actors interacting with each other and
connected in a pairwise fashion. Networks can be represented as graphs consisting of a set
of n nodes and a set of edges which define some sort of relationships between pairs of nodes
(dyads). The connectivity pattern of a graph can be described by an n× n adjacency matrix
Y encoding the presence or absence of an edge between nodes i and j:

Yij =
{

1, if i and j are connected,
0, otherwise.

If the network is undirected, then yij = yji and the adjacency matrix is symmetric, otherwise
the network is directed. Edges connecting a node to itself (self-loops) are not allowed in many
applications and will not be considered in this context.
Introduced by Holland and Leinhardt (1981) to model individual heterogeneity of nodes and
reciprocity of their edges, the family of ERGMs was generalized by Frank and Strauss (1986),
Wasserman and Pattison (1996) and Snijders, Pattison, Robins, and Handcock (2006) in
order to account for higher-order dyadic relationships. ERGMs constitute a broad class of
network models (see Robins et al. 2007 for an introduction) assuming that the probability of
an observed network y can be explained in terms of the relative prevalence of a set of network
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statistics s(y):

f(y | θ) =
exp

{
θ⊤s(y)

}
z(θ) , (1)

where θ ∈ Θ ⊆ Rd is the vector of d model parameters associated with s(y) (Hunter and
Handcock 2006; Snijders et al. 2006), z(θ) =

∑
y∈Y exp

{
θ⊤s(y)

}
is the likelihood normalizing

constant consisting of a sum across Y which is the set of all possible graphs on n nodes.
Additionally, ERGMs allow for incorporation of covariate information X, e.g., the number of
network statistic configurations within the same attribute category.
The normalizing constant z(θ) is computationally tractable only for trivially-small networks,
as Y involves 2(n

2) and 2n(n−1) possible undirected and directed graph configurations respec-
tively. The network statistics s(y) often represent a series of counts of sub-graph configurations
(e.g., the number of edges, stars, triangles, functions of degree distributions, edgewise shared
partners), that capture the relevant information of the global connectivity structure of the
network graph (Snijders et al. 2006).
Given Equation 1 we can express the distribution of the Bernoulli variable Yij under the
conditional form

logit {P(Yij = 1 | y−ij , θ)} = θ⊤δs(y)ij ,

where δs(y)ij = s(y+
ij) − s(y−

ij) denotes the vector representing the change in the vector of
network sufficient statistics when the value of yij is toggled from a 0 (empty dyad, y−

ij) to
a 1 (edge, y+

ij), holding the rest of the network fixed: y−ij = y \ {yij}. Strauss and Ikeda
(1990) applied the pseudo-likelihood method of Besag (1977) to social networks which aims
to approximate the full joint distribution in Equation 1 by the product of the full conditional
probabilities of the network dyads:

fPL(y | θ) =
∏

i ̸=j ∪ i<j

p(yij | y−ij , θ), (2)

where the conditions i ̸= j and i < j hold for directed and undirected networks, respectively.
The pseudo-likelihood is equivalent to a logistic regression model (Wasserman and Pattison
1996) and ignores strong dependencies that might exist among network edges (e.g., transitivity
effect) in the data: it can therefore lead to a biased estimation.

5. Parameter estimation
Bayesian analysis is a fully probabilistic treatment of uncertainty related to models and
model parameters. A major advantage of the Bayesian approach is the flexibility with which
prior information on the uncertainties related to the models and their parameters can be
incorporated. In fact, the Bayesian approach permits the researcher to use both data and prior
(e.g., expert-judgment) information in a consistent manner. For example, prior information
about the data and/or from previous studies can easily be incorporated through an informative
prior distribution (see for example Caimo, Pallotti, and Lomi 2017; Balest, Secco, Pisani, and
Caimo 2019). This can be done by simply placing prior probability distributions on the
possible values of the unknown parameters or models.
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Let p(θ) be the prior distribution for the model parameters, θ. The posterior distribution of
the parameters given the data can be obtained by using the Bayes’ theorem:

π(θ | y) = f(y | θ) p(θ)
π(y) ,

where π(y) =
∫

Θ f(y | θ)p(θ) dθ is the normalizing function for the posterior distribution,
termed marginal likelihood or model evidence. In the ERGM context, both z(θ) and π(y)
are typically intractable and the posterior distribution is therefore computationally doubly-
intractable.

5.1. The approximate exchange algorithm

In order to approximate the posterior distribution π(θ | y), the Bergm package uses the
exchange algorithm described in Section 4.1 of Caimo and Friel (2011) to sample from the
following distribution:

π(θ′, y′, θ | y) ∝ f(y | θ) p(θ) ϵ(θ′ | θ) f(y′ | θ′)

where f(y′ | θ′) is the likelihood on which the simulated data y′ are defined and belongs to the
same exponential family of densities as f(y | θ), ϵ(θ′ | θ) is any arbitrary proposal distribution
for the augmented variable θ′. At each MCMC iteration, the exchange algorithm consists of a
Gibbs update of θ′ followed by a Gibbs update of y′, which is drawn from the f(· | θ′) via an
MCMC algorithm (Hunter et al. 2008b). Then an exchange or swap from the current state θ
to the proposed new parameter θ′ is performed.

Parallel adaptive direction sampler

In order to improve mixing a parallel adaptive direction sampler (ADS, Gilks, Roberts, and
George 1994; Roberts and Gilks 1994) is considered: at the i-th iteration of the algorithm
we have a collection of H different chains interacting with one another. By construction,
the state space consists of {θ1, . . . , θH} with target distribution π(θ1 | y) ⊗ · · · ⊗ π(θH | y).
A parallel ADS move consists of generating a new parameter value θ′

h from the difference
of two parameters θh1 and θh2 (randomly selected from other chains) multiplied by a scalar
term γ (called ADS move factor) plus a random proposal ϵ (which is a multivariate Normal
distribution in bergm()).
The format of the model specification is the same as the ergm package formula (to get a
complete list of network statistics implemented in the ergm package use ?ergm-terms). Let
us consider the Lazega’s law Firm network and a model including the following network
statistics:

R> m1 <- lazega ~ edges + nodematch("Office") + nodematch("Practice") +
+ gwesp(0.5, fixed = TRUE)

In this case, our focus is on the density effect captured by the number of edges (edges), the
homophily effect between lawyers working in the same office (nodematch("Office")) and
in the same practice area (nodematch("Practice")), and the transitivity effect captured
by the geometrically weighted edgewise shared partners statistic (GWESP) with fixed decay
parameter equal to 0.5 (gwesp(0.5, fixed = TRUE)) (Snijders et al. 2006).
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As mentioned in Section 5, we can specify prior distributions for the parameters in the model.
The bergm() function allows users to specify the mean vector and variance/covariance matrix
of a multivariate Normal distribution. For example we can create the M.prior object where
we set the mean for the first parameter (corresponding to the edge statistic) to be equal
to -4 which corresponds to assuming a priori that the average conditional odds of an edge
between any two nodes i and j is exp(−4) ≈ 0.018. This reflects our prior assumption of
overall sparsity of the network. The other prior mean values are set to be positive reflecting
our prior assumption of positive homophily effect and transitivity as generally observed in
this kind of social networks. The S.prior object is set to be a diagonal matrix with variances
equal to 4.

R> M.prior <- c(-4, 0.5, 0.5, 1)
R> S.prior <- diag(4, 4)

By adopting the parallel ADS procedure we need to set the number of parallel chains by
using the argument nchains. The number of chains must be greater than 3 and it is by
default set to be twice the model dimension. For each chain, we can then set the number of
burn-in iterations (burn.in) and the number of iterations after the burn-in (main.iters).
The number of iterations used to simulate a network y′ at each iteration is defined by the
argument aux.iters. It is recommended to set aux.iters to be several times the number
of dyads in the network so as to reduce the MCMC sampling error.
The arguments prior.mean and prior.sigma allow us to specify the multivariate Normal
parameter prior distribution defined above.
The total number of iterations, i.e., the size of the posterior sample, is nchains × main.iters.
The proposal covariance structure of the proposal distribution ϵ(·) is defined by the argument
V.proposal which by default is set to be a diagonal matrix with every diagonal entry equal to
0.0025. In many cases, good mixing of the chain is ensured by a sensible tuning of the parallel
ADS move factor gamma and therefore the argument V.proposal can be generally left at its
default value. The parameter gamma can be easily tuned to achieve a suitable acceptance rate
(∼ 20%) by starting from its default value (0.5): the higher the value of gamma the lower the
acceptance rate and vice versa. The range of values that gamma can take depends on the size
of network and the kind of network statistics included in the model. The Bergm functions
can only estimate ERGMs with dimensions greater that 1, meaning that at least 2 network
statistics must be included in the model specification.

R> set.seed(1)
R> p.m1 <- bergm(m1, prior.mean = M.prior, prior.sigma = S.prior, burn.in = 500,
+ main.iters = 3000, aux.iters = 2500, nchains = 8, gamma = 0.6)

It is possible to summarize the posterior results of the MCMC estimation procedure by using
the summary() function.

R> summary(p.m1)

Posterior Density Estimate for Model: y ~ edges + nodematch("Office") +
nodematch("Practice") + gwesp(0.5, fixed = TRUE)
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MCMC output for Model: y ~ edges + nodematch("Office") + nodematch("Practice") + gwesp(0.5, fixed = TRUE)

Figure 3: MCMC diagnostics for model p.m1.

Mean SD Naive SE Time-series SE
theta1 (edges) -5.0984 0.4569 0.002949 0.019210
theta2 (nodematch.Office) 0.9310 0.1803 0.001164 0.007332
theta3 (nodematch.Practice) 0.6472 0.1915 0.001236 0.007827
theta4 (gwesp.fixed.0.5) 1.5093 0.2544 0.001642 0.010416

2.5% 25% 50% 75% 97.5%
theta1 (edges) -6.0246 -5.4075 -5.0813 -4.7687 -4.244
theta2 (nodematch.Office) 0.5882 0.8077 0.9214 1.0521 1.295
theta3 (nodematch.Practice) 0.2585 0.5176 0.6484 0.7799 1.009
theta4 (gwesp.fixed.0.5) 1.0570 1.3259 1.5035 1.6746 2.031

Acceptance rate: 0.19
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The output above shows the results of the MCMC estimation: posterior means, standard
deviations, medians, posterior quantile values and overall acceptance rate. In this example
the 95% credible interval for the edges parameter θ1 lies in the negative region whereas the
95% credible intervals for all the other parameters θ2, θ3, θ4 lie in positive regions. This means
that the baseline edge probability is low and most of the edges of the network tend to connect
nodes within the same office and in the same practice area and they tend to form triadic
relations.
Figure 3 displays the MCMC diagnostic plots produced by the plot() function. The argument
lag allows us to set the maximum lag for which autocorrelation is computed. The overall
acceptance rate is 20% and the autocorrelation is negligible after lag 60; the trace plots
indicate good mixing of the MCMC algorithm.

R> plot(p.m1, lag = 100)

5.2. Missing data augmentation

The estimation algorithm described above can lead to biases if y is not fully observed, because
s(y) cannot be properly calculated. A solution for this problem was proposed by Koskinen
et al. (2010) and has been evaluated by Krause, Huisman, Steglich, and Snijders (2020). Let
I be an indicator matrix of whether a tie variable is observed or missing, with Iij = 1 if yij

is observed and Iij = 0 if yij is missing. Further we use the convention that u represents
the observed part of the data (Iij = 1) and v represents the unobserved part of the data
(Iij = 0). Thus the network can be reassembled as y = (u, v). With the given network we
can define an observation model for I, f(I | y, ζ), which is a probability model for what is
observed and what is not, depending on the network y and some statistical parameter ζ. We
present the algorithm limited to the setting where I is known and fixed and all covariates
are known and fixed; extensions for multiplex networks exist (Krause and Caimo 2019).
Further, the algorithm assumes that the missing data is ignorable, meaning the probability
for data to be missing is independent from the missing values themselves and only dependent
on the observed data. In other words, observations are “missing at random” (or “missing
completely at random”) Rubin (1987). Thus we can ignore the missing data mechanism ζ
in the estimation process. We now use data augmentation to estimate θ under missing data
by alternating between draws from θ | u, v and v | u, θ. We augment the observed data u by
draws from the unobserved data v from the full conditional posterior v∗ ← v | u, θ, creating
the augmented network y∗ = (u, v∗).
This process is implemented in bergmM() by adapting the approximate exchange algorithm
presented above in the following way: an additional step to the MCMC procedure at each
iteration is included if the proposed parameter vector θ′ is accepted. In this additional step
a new draw from v∗ ← v | u, I, θ′ is obtained and the augmented network y∗ is updated.
After which y∗ is fed back to the algorithm as starting point for the next iteration as new
baseline network. The augmented network is used to obtain the sufficient statistics s(y∗),
thus the third step of the algorithm does not optimize s(y′)− s(y), but s(y′)− s(y∗). A naive
imputation is used for the first iteration of the algorithm to obtain an augmented starting
network. In first step we substitute s(y∗) with s(u).
The algorithm can be summarized as shown in Algorithm 1.
The bergmM() function is similar to bergm() with two additional arguments, nImp and
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Algorithm 1
Use a naive imputation to initialize s(y∗)
Initialize θ
for k = 1 to K do

Generate θ′ using the ADS proposal procedure
Simulate y′ from f(· | θ′)
Update θ → θ′ with the log of the probability:

log α = min
(

0, [θ − θ′]⊤[s(y′)− s(y∗)] + log
[

p(θ′)
p(θ)

])

if θ′ accepted then
Simulate v∗ from f(· | θ′, y∗) and generate a new y∗ = (u, v∗)

end if
end for

missingUpdate. The argument nImp can be used to retain a specified number of imputed net-
works y∗ from the estimation procedure. By default, imputed networks will not be returned.
If more than two networks are to be retained during the estimation (nImp > 2), bergmM()
will automatically space the sampling of y∗ maximally over all iterations in main.iters. The
second argument, missingUpdate, specifies how many tie swaps of the missing tie variables
are simulated to obtain v∗ from f(· | θ′, y∗) for each update of y∗. By default this is set to
the number of missing edges, missingUpdate = sum(is.na(y)).
Below we illustrate the use of bergmM() on the Lazega’s law firm network. Lazega’s data is
fully observed, thus we randomly set all outgoing ties of 4 nodes (11%) to missing. The CPU
time for the bergmM() to complete the estimation is of the order of minutes.

R> set.seed(1)
R> missV <- sample(1:36, 4)
R> lazega[missV, ] <- lazega[, missV] <- NA
R> p.m1.M <- bergmM(m1, prior.mean = M.prior, prior.sigma = S.prior,
+ burn.in = 200, main.iters = 3000, aux.iters = 3000, nchains = 8,
+ gamma = 0.6, nImp = 10)

The object returned by bergmM() is a bergm object, thus the regular functions for assessing
the estimation, obtaining MCMC diagnostics, and goodness of fit (see Section 6) apply.

R> summary(p.m1.M)

Posterior Density Estimate for Model: y ~ edges + nodematch("Office") +
nodematch("Practice") + gwesp(0.5, fixed = TRUE)

Mean SD Naive SE Time-series SE
theta1 (edges) -5.1599 0.4511 0.002912 0.019495
theta2 (nodematch.Office) 0.7903 0.1908 0.001232 0.008157
theta3 (nodematch.Practice) 0.5527 0.2014 0.001300 0.008550
theta4 (gwesp.fixed.0.5) 1.5903 0.2541 0.001640 0.011043
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2.5% 25% 50% 75% 97.5%
theta1 (edges) -6.1095 -5.4350 -5.1462 -4.8603 -4.3220
theta2 (nodematch.Office) 0.4352 0.6562 0.7845 0.9159 1.1903
theta3 (nodematch.Practice) 0.1384 0.4230 0.5534 0.6886 0.9316
theta4 (gwesp.fixed.0.5) 1.1234 1.4104 1.5748 1.7434 2.1397

Acceptance rate: 0.18

In this example, the estimated parameter posterior density summaries obtained by the missing
data estimation procedure are consistent with the ones obtained in Section 5.1.1 with no
missing data. It is possible to get the imputed networks by typing:

R> p.m1.M$impNets

5.3. Fixing parameters during estimation

Sometimes it is necessary for theoretical or practical reasons to fix one or more of the model
parameters during estimation. For instance, Krivitsky, Handcock, and Morris (2011) have
shown that using a fixed offset term during ERGM estimation can reduce the differences in
parameter estimates which can result from networks having different sizes. Similar to the
ergm package (Hunter et al. 2008b), parameters that should be fixed during estimation need
to be given as offset() in the model and a vector with values to which these parameters
are to be fixed needs to be provided with the offset.coef argument. Note that one still
needs to provide prior values for the fixed parameters. These values are, however, ignored
during the estimation. Further, neither positive (Inf) nor negative infinity (-Inf) are valid
inputs for offset.coef, instead one should use extreme numeric values (e.g., for the mutual
parameter values of 100 or −100 can be considered as extreme). This feature is currently
only implemented for the bergm() and bergmM() functions.

6. Goodness-of-fit diagnostics
Hunter, Goodreau, and Handcock (2008a) proposed systematic simulation-based goodness of
fit (GOF) diagnostics for ERGMs, comparing several high-level statistics of observed networks
with those of corresponding networks simulated from the estimated model. In the Bayesian
framework, in order to evaluate the model goodness of fit in terms of posterior predictive as-
sessment, the observed network is compared to a set of networks simulated from the estimated
posterior distribution of the parameters of the model (Caimo and Friel 2011).
The bgof() function is used to carry out the Bayesian goodness-of-fit diagnostic procedure.
The observed network is compared with a randomly simulated network sample (which size
determined by the argument sample.size) drawn from the estimated posterior distribution
using aux.iters iterations for the network simulation step.
In Figures 4 the red lines represent the observed network GOF statistic values, the boxplots
represent the GOF statistics of the simulated networks.
The bgof() function will produce the GOF diagnostic plots according to the type of network
observed (directed or undirected). Depending on the type of network the user can specify
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Figure 4: Bayesian goodness-of-fit diagnostics for the estimated parameter posterior distri-
bution of model p.m1.

the maximum number of GOF distributions to be plotted. The set of statistics used for the
comparison of directed graphs (such as the Lazega network) includes the degree distribution,
the minimum geodesic distance distribution and the edgewise shared partner distribution.
The arguments n.deg, n.dist, and n.esp indicate the number of boxplots to plot starting
from the minimum value for each distribution, respectively.

R> set.seed(1)
R> bgof(p.m1, aux.iters = 5000, n.deg = 15, n.dist = 9, n.esp = 8)

Figure 4 shows that the networks simulated from the estimated posterior distributions are in
reasonable agreement with the observed network as the red line is almost always falling inside
the 95% interval represented by the light grey lines in the GOF plots.

7. Model selection
A model selection (or a model choice, or a model comparison) problem is faced when several
competing statistical models are considered, any of which could serve as an explanation for our
data, and we would like to select the best of them. In the ERGM context, this task translates
into the choice of which subset of network statistics should be included in the model (Caimo
and Friel 2013). Let us assume a countable model set M = {M1,M2,M3, . . .}. Each model
indexed by m is defined by a likelihood function f(y | θm,Mm) = fm(y | θm) and a prior
on the model-specific parameter vector θm ∈ Θm ⊆ Rdm denoted as p(θm | Mm) = pm(θm),
where dm is the dimension of the parameter space Θm. The prior beliefs for each model are
expressed through a prior distribution p(Mm), such that

∑|M|
m=1 p(Mm) = 1 where |M| is the

cardinality of the model set.
Pairwise model comparisons can be performed with the posterior odds ratio between two
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models Mm and Mm′ :

π(Mm | y)
π(Mm′ | y) = π(y | Mm)

π(y | Mm′) ×
p(Mm)
p(Mm′) , (3)

where π(y | Mm)
π(y | Mm′) is the Bayes factor;

π(Mm | y) = π(y | Mm)p(Mm)∑|M|
j=1 π(y | Mj)p(Mj)

is the posterior model probability for model Mm; and

π(y | Mm) =
∫

Θm

fm(y | θm)pm(θm) dθm (4)

is the model evidence or marginal likelihood under model Mm.
The Bergm package assumes a multivariate Normal prior Ndm (µm, Σm) for θm, that leads to
a marginal likelihood which is finite. Only for some elementary cases can the integration in
Equation 4 be evaluated analytically. For moderately high-dimensional problems, Equation 4
is usually computationally intractable, and therefore sophisticated computational methods
based on simulation are usually used to estimate it. There are many approaches based solely
on within-model simulation that provide marginal likelihood estimates by utilizing the poste-
rior samples of separate models. Recent reviews comparing popular methods based on MCMC
sampling (all of which assume a tractable likelihood) can be found in Friel and Wyse (2012)
and in Ardia, Baştürk, Hoogerheide, and Van Dijk (2012).

8. Pseudo-likelihood adjustment for large networks
Motivated by the inefficiency of the correction procedure of Bouranis et al. (2017) for model
comparison (see ?bergmC for more details), Bouranis et al. (2018) presented novel methodol-
ogy for adjusting the pseudo-likelihood function directly as a means to obtain a reasonable
and tractable approximation to the likelihood. These adjustments involve a correction of the
mode, the curvature and the magnitude at the mode of the pseudo-likelihood in Equation 2
and are implemented in the ergmAPL() function. In this function, the model-specific fully
adjusted pseudo-likelihood

f̃m(y | θm) = Cm · fP L,m(y | θ̂MP LE,m + Qm(θm − θ̂MLE,m)), (5)

depends on the maximum likelihood estimate, θ̂MLE,m, the maximum pseudo-likelihood esti-
mate, θ̂MP LE,m, an upper triangular matrix Qm of order dm and the magnitude adjustment
constant Cm > 0. Most crucially, Equation 5 renders the corresponding posterior distribution

π̃(θ | y,Mm) = f̃(y | θm,Mm)p(θm | Mm)
π̃(y | Mm) = f̃(y | θm,Mm)p(θm | Mm)∫

Θm
f̃(y | θm,Mm)p(θm | Mm) dθm

(6)

amendable to standard evidence estimation methods from the Bayesian toolbox, allowing for
Bayesian model selection of ERGMs.
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In Bergm, the evidence() function estimates π̃(y | Mm) in Equation 6 using the Chib-
Jeliazkov method (Chib and Jeliazkov 2001) or the power posterior method (Friel and Pettitt
2008; Friel, Hurn, and Wyse 2014).
Let us consider the Faux Dixon High School network and specify a higher dimensional model
together with its parameter prior distribution. We assume that the model, labeled M1, is
almost identical to the model used to generate the simulated data (see ?faux.dixon.high)
and includes density (edges), mutuality (mutual) and transitivity (gwesp) effects, plus ho-
mophily effects for race, sex and grade; the number of nodes of in-degree 0 and 1 and the
number of nodes of out-degree 0 and 1. We also assume that the normal parameter prior
means are centered at 0 except for the edges parameter which is centered at -5, and that the
variance/covariance matrix S.prior1 is diagonal with entries equal to 5.

R> m1 <- dixon ~ edges + mutual + absdiff("grade") +
+ nodefactor("race") + nodefactor("grade") + nodefactor("sex") +
+ nodematch("race", diff = TRUE, levels = c("B", "O", "W")) +
+ nodematch("grade", diff = TRUE) + nodematch("sex", diff = FALSE) +
+ idegree(0:1) + odegree(0:1) + gwesp(0.1, fixed = TRUE)
R> M.prior1 <- c(-5, rep(0, 26))
R> S.prior1 <- diag(5, 27)

The evidence() function is used to carry out MCMC sampling from the posterior distribu-
tion of Equation 6. The total number of iterations per chain is burn.in + main.iters, with
the first burn.in MCMC draws removed from the posterior sample. The covariance structure
of the multivariate Normal proposal distribution for the MCMC run can be modified by the
argument V.proposal, which can be easily tuned to achieve a suitable acceptance rate by
starting from its default value (1.5). The approximate contrastive divergence (CD) proce-
dure (specified by the estimate argument) is faster but less accurate than the approximate
maximum likelihood procedure for θ̂MLE,m, as the function ergm() that is called from the
ergmAPL() function may require several minutes to estimate the θ̂MLE,m, due to the large
size of the network and the higher dimensionality of the parameter space. The importance
sampling algorithm for estimating the magnitude adjustment constant Cm > 0 was carried
out using ladder = 200 path points, aux.iters = 2500 auxiliary iterations used for drawing
the first network from the ERGM likelihood at each iteration, n.aux.draws = 50 auxiliary
networks drawn from the ERGM likelihood and aux.thin = 50 auxiliary iterations between
each of the n.aux.draws network draws after the first network is drawn.

R> cj1 <- evidence(evidence.method = "CJ", formula = m1,
+ prior.mean = M.prior1, prior.sigma = S.prior1, aux.iters = 2500,
+ n.aux.draws = 50, aux.thin = 50, ladder = 200, V.proposal = 0.5,
+ burn.in = 5000, main.iters = 30000, num.samples = 25000,
+ estimate = "CD", seed = 1)

The posterior summaries can be obtained by using the summary() function.

R> summary(cj1)

Posterior Density Estimate for Model: y ~ edges + mutual +
absdiff("grade") + nodefactor("race") +
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nodefactor("grade") + nodefactor("sex") +
nodematch("race", diff = TRUE, levels = c("B", "O", "W")) +
nodematch("grade", diff = TRUE) + nodematch("sex", diff = FALSE) +
idegree(0:1) + odegree(0:1) +
gwesp(0.1, fixed = TRUE)

Mean SD Naive SE Time-series SE
theta1 (edges) -4.813061 1.5823 0.010007 0.09669
theta2 (mutual) 1.068195 1.4147 0.008947 0.07934
theta3 (absdiff.grade) -0.508263 0.3875 0.002451 0.02156
theta4 (nodefactor.race.H) 0.459097 1.2733 0.008053 0.06932
theta5 (nodefactor.race.O) 0.799284 1.0462 0.006617 0.06150
theta6 (nodefactor.race.W) -0.263883 0.9075 0.005739 0.05285
theta7 (nodefactor.grade.8) -0.089955 0.8364 0.005290 0.04892
theta8 (nodefactor.grade.9) 0.416923 0.7980 0.005047 0.04691
theta9 (nodefactor.grade.10) -0.062195 0.9215 0.005828 0.05516
theta10 (nodefactor.grade.11) 0.273094 0.9639 0.006096 0.05493
theta11 (nodefactor.grade.12) 0.443116 0.8997 0.005690 0.05316
theta12 (nodefactor.sex.2) -0.250685 0.3456 0.002186 0.01953
theta13 (nodematch.race.B) 0.829879 1.3518 0.008549 0.08131
theta14 (nodematch.race.O) 0.161942 2.1373 0.013518 0.11985
theta15 (nodematch.race.W) 1.033112 1.1838 0.007487 0.07116
theta16 (nodematch.grade.7) 0.308318 1.7322 0.010955 0.10153
theta17 (nodematch.grade.8) 0.381694 1.4582 0.009222 0.08130
theta18 (nodematch.grade.9) -0.276393 1.3611 0.008608 0.07937
theta19 (nodematch.grade.10) 0.894538 1.4561 0.009209 0.08502
theta20 (nodematch.grade.11) 0.005533 1.7994 0.011381 0.10349
theta21 (nodematch.grade.12) 0.140412 1.5670 0.009911 0.09003
theta22 (nodematch.sex) -0.106814 0.6738 0.004262 0.03779
theta23 (idegree0) 0.222886 1.4779 0.009347 0.08291
theta24 (idegree1) 0.208954 1.0037 0.006348 0.05965
theta25 (odegree0) 1.084426 1.7162 0.010854 0.10026
theta26 (odegree1) -0.122699 1.1425 0.007226 0.06557
theta27 (gwesp.fixed.0.1) 1.391942 0.5287 0.003344 0.03133

2.5% 25% 50% 75% 97.5%
theta1 (edges) -7.8453 -5.90827 -4.81718 -3.71903 -1.7342
theta2 (mutual) -1.7248 0.15401 1.04661 1.98236 3.9298
theta3 (absdiff.grade) -1.2518 -0.77787 -0.51708 -0.25225 0.2515
theta4 (nodefactor.race.H) -1.9633 -0.41868 0.47257 1.28103 3.0344
theta5 (nodefactor.race.O) -1.2563 0.09420 0.79495 1.54599 2.7617
theta6 (nodefactor.race.W) -1.9805 -0.88429 -0.28089 0.29370 1.6247
theta7 (nodefactor.grade.8) -1.6980 -0.63370 -0.10016 0.46475 1.5430
theta8 (nodefactor.grade.9) -1.1419 -0.13165 0.42863 0.96269 1.9412
theta9 (nodefactor.grade.10) -1.9713 -0.65783 -0.05612 0.55868 1.6874
theta10 (nodefactor.grade.11) -1.5681 -0.41096 0.28435 0.92284 2.2124
theta11 (nodefactor.grade.12) -1.3811 -0.17253 0.45345 1.04748 2.1648
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theta12 (nodefactor.sex.2) -0.8996 -0.48241 -0.26409 -0.01418 0.4563
theta13 (nodematch.race.B) -1.7780 -0.09994 0.80456 1.74570 3.5177
theta14 (nodematch.race.O) -4.1354 -1.27457 0.17541 1.57718 4.3670
theta15 (nodematch.race.W) -1.2894 0.24117 1.00636 1.83519 3.3785
theta16 (nodematch.grade.7) -3.1801 -0.88409 0.30731 1.47915 3.7342
theta17 (nodematch.grade.8) -2.4807 -0.55112 0.34486 1.34164 3.1812
theta18 (nodematch.grade.9) -2.9888 -1.20582 -0.24977 0.65012 2.3832
theta19 (nodematch.grade.10) -1.8870 -0.11321 0.85152 1.83439 3.8801
theta20 (nodematch.grade.11) -3.6269 -1.20096 0.02556 1.23647 3.5722
theta21 (nodematch.grade.12) -3.0377 -0.88408 0.16743 1.22917 3.0526
theta22 (nodematch.sex) -1.3460 -0.58812 -0.12329 0.33952 1.2882
theta23 (idegree0) -2.6020 -0.81089 0.16693 1.26942 3.1648
theta24 (idegree1) -1.7344 -0.48650 0.21102 0.90154 2.1715
theta25 (odegree0) -2.2439 -0.11685 1.08229 2.25297 4.4425
theta26 (odegree1) -2.3276 -0.90311 -0.12563 0.64406 2.1012
theta27 (gwesp.fixed.0.1) 0.3722 1.02480 1.39944 1.76710 2.3987

Acceptance rate: 0.21

Figure 5 displays the MCMC diagnostic plots produced by the plot() function for the first
four model parameters. The overall acceptance rate is about 20% and the autocorrelation
is negligible after lag 100. The posterior parameter estimates obtained by the evidence()
function can be assessed using the bgof() function.

R> plot(cj1)

The set of GOF statistic distributions used for the comparison of directed graphs (such
as the Dixon network) includes the in-degree distribution, the out-degree distribution, the
minimum geodesic distance distribution and the edgewise shared partner distribution. The
arguments n.ideg, n.odeg, n.dist, and n.esp indicate the number of boxplots to plot for
each distribution, respectively.

R> set.seed(1)
R> bgof(cj1, sample.size = 100, aux.iters = 5000, n.ideg = 20, n.odeg = 20,
+ n.dist = 10, n.esp = 7)

Figure 6 shows that the cj1 model performs well in reproducing the observed global network
properties that are not included in the model.
There are three main factors influencing the computational intensity of the estimation meth-
ods: the observed network size, the ERGM model size, and the computational complexity of
the network statistics to include in the model. The adjusted pseudo-likelihood and pseudo-
posterior procedures allow for fast approximate inference of the ERGM parameter posterior
and model evidence for networks on several thousands nodes.
The evidence() function includes an additional feature that allows for estimation of the log-
model evidence using the fully adjusted pseudo-likelihood; it is a wrapper for the functions
evidenceCJ() and evidencePP(), which implement Chib and Jeliazkov’s method and the
power posteriors method, respectively. For this example, Chib and Jeliazkov’s method was
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Figure 5: MCMC diagnostics for model cj1 (first four parameters only).

selected with the option evidence.method = "CJ" and num.samples = 25000 MCMC draws
were kept for estimating the log-evidence.
We proceed with a model selection example by defining model M2, which assumes that the
terms for mutuality and transitivity are removed from M1.

R> m2 <- dixon ~ edges + absdiff("grade") +
+ nodefactor("race") + nodefactor("grade") + nodefactor("sex") +
+ nodematch("race", diff = TRUE, levels = c("B", "O", "W")) +
+ nodematch("grade",diff = TRUE) + nodematch("sex", diff = FALSE) +
+ idegree(0:1) + odegree(0:1)
R> M.prior2 <- c(-5, rep(0, 24))
R> S.prior2 <- diag(5, 25)
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Figure 6: Bayesian goodness-of-fit diagnostics for the estimated parameter posterior distri-
bution of model cj1.

Model Log evidence estimate CPU (mins) BF12
M1 −38079.99 2.92 5.10× 1055

M2 −38208.26 1.61

Table 1: Faux Dixon High School: Log evidence estimates, CPU time in minutes and resulting
Bayes factor (BF) estimate for the models under consideration.

R> cj2 <- evidence(evidence.method = "CJ", formula = m2,
+ prior.mean = M.prior2, prior.sigma = S.prior2, aux.iters = 2500,
+ n.aux.draws = 50, aux.thin = 50, ladder = 200, V.proposal = 0.5,
+ burn.in = 5000, main.iters = 30000, num.samples = 25000,
+ estimate = "CD", seed = 1)

When two models are equally probable a priori, so that p(M1) = p(M2), the Bayes factor
is equal to the posterior odds ratio of M1 and M2 in Equation 3. In this example the
estimated Bayes factor provides strong evidence in favor of modelM1, as expected (Table 1).
This reveals that the transitivity and mutuality effect are important connectivity features of
the observed network but also the homophily effect of race, sex and grade can help explain
the complexity of the observed network data. Under this setting and the increased model
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complexity, the CPU time for each implementation of Chib and Jeliazkov’s method is of the
order of minutes (Table 1). The same estimation would require a few hours using the bergm()
function.

9. Discussion
The software package Bergm aims to help researchers and practitioners in two ways. Firstly,
it provides a simple, efficient and complete range of tools for conducting Bayesian inference
for exponential random graph models. Secondly, Bergm makes available a platform that
can be easily customized, extended, and adapted to address different requirements. The
software package is under continual maintenance and periodic significant upgrading. Future
developments will include uncertainty quantification of the Monte Carlo estimates of the
evidence and extensions to weighted networks (Caimo and Gollini 2020).
The aim of this tutorial is to serve as a useful introduction to the main capabilities of the
package as well as some of the algorithms and methods behind it.
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