UNIVERSIDADE FEDERAL DE ITAJUBÁ

ABUNDÂNCIAS QUÍMICAS EM ASSOCIAÇÕES ESTELARES JOVENS CASO AB DORADUS

Orlando José Katime Santrich

Itajubá, Fevereiro de 2009

UNIVERSIDADE FEDERAL DE ITAJUBÁ PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA E MATEMÁTICA APLICADA

Orlando José Katime Santrich

ABUNDÂNCIAS QUÍMICAS EM ASSOCIAÇÕES ESTELARES JOVENS CASO AB DORADUS

Dissertação submetida ao Programa de Pós-Graduação em Física e Matemática Aplicada como parte dos requisitos para a obtenção do Título de Mestre em Ciências em Física e Matemática Aplicada.

Área de concentração: Astrofísica Orientador: Prof. Dr. Bruno Vaz Castilho

> Fevereiro de 2009 Itajubá - MG

Das Utopias Se as coisas são inatingíveis... ora ! Não é motivo para não querê-las... Que tristes os caminhos, se não fora A presença distante das estrelas ! Mário Quintana, do livro "Espelho mágico".

Para Tomy, Abigail, Estela, e Miriam

Agradecimentos

Tenho um especial agradecimento para minha familia, principalmente minha mãe (Tomy), vovó (Abigail) e tias (Estela e Miriam) pela torcida e palavras de apoio na distância. Elas ocupam um lugar destacado no meu coração e sem dúvida o impulso dado foi fundamental para terminar todo este processo que começou com dificuldades que infelizmente nada tinham que ver com as atividades profissionais de pesquisa em astrofísica e que perturbaram o tempo de desenvolvimento desta dissertação.

Quero agradecer ao LNA pela chance que teve de usar a sua infra-estrutura, em especial ao diretor Dr. Albert Bruch, ao Dr. Clemens Gneiding e ao meu orientador Prof. Dr. Bruno Castilho porque facilitaram este processo. Tenho também um especial agradecimento aos pesquisadores Dr. Carlos A. Torres e o Dr. Germano Quast pela disposição dos espectros e por terem respondido algumas dúvidas das suas observações que foram fundamentais nesta dissertação, assim mesmo à maioria dos funcionarios e bolsistas do LNA pela ajuda, assessoria, e amizade durante estes dois anos e meio.

Também quero agradecer ao IAG/USP por ter dado a posibilidade de utilizar os seus recursos computacionais e logísticos, os meus agradecimentos vão especialmente para a Prof. Dra. Beatriz Barbuy que facilitou o acesço a estes recursos sem nenhuma complicação e ao meu colega Dr. Alan Alves Brito quem dedicou-me tempo do seu trabalho para explicações e assessorias que foram fundamentais na hora de usar as ferramentas computacionais nesta dissertação.

Resumo

Apresentamos neste trabalho os parâmetros estelares, metalicidade e abundância do Lítio para as estrelas da associação AB Doradus, determinadas através de fotometria e espectroscopia. A fotometria utilizada foi obtida da literatura e de por Torres et al. (2006a) e os espectros de alta resolução foram obtidos com os espectrógrafos FEROS (telescópio de 1,52m do ESO) e Coudé (telescópio de 1,60m do OPD).

Os parâmetros atmosféricos foram determinados através de fotometria, utilizando as calibrações fotométricas de Alonso et al. (1996b) e Houdashelt et al. (2000) e espectroscopia, através razões de linhas de Padgett (1996), curvas de crescimento (Spite e Spite 1967) e síntese espectral (Gray & Corbally 1994). Os parâmetros determinados para as estrelas estão na faixa de $T_{ef} = [4486, 6031]K$, $\log(g_s) = [3.90, 4.60]$, $[Fe/H] = [-0.20, 0.15], V_{mt} = [1.00, 2.50]Km/s$ e $\log(N(Li)) = [0.64, 2.89]$.

Nossos resultados confirmam que as estrelas identificadas por Torres et al. (2006a), como membros da associação, são estrelas jovens e tem parâmetros e abundâncias compatíveis com a pertinência à associação *AB Doradus*. Os resultados mostram também concordância com as hipóteses levantadas por Travaglio et al. (2001) com relação ao comportamento do Lítio na pré-sequência principal e na sequência principal.

Abstract

We present in this work the stellar parameters, metallicity and abundance of lithium in the stars of the association AB Doradus, determined by photometry and spectroscopy. The photometric data was taken from the literature and by Torres et al. (2006a) and the high-resolution spectra were obtained with the *FEROS* spectrograph (1.52*m* telescope of the *ESO*) and Coudé spectrograph (1.60*m* telescope of the *OPD*).

The atmospheric parameters were determined by photometry, using the photometric calibrations of Alonso et al. (1996) and Houdashelt et al. (2000) and spectroscopy, by line ratios (Padgett 1996), curves of growth (Spite and Spite 1967) and spectral synthesis (Gray & Corvally 1994). The parameters determined for the stars are in the range of $T_{ef} = [4486, 6031]K$, $log(g_s) = [3.90, 4.60]$, [Fe/H] = [-0.20, 0.15], $V_{mt} = [1.00, 2.50]Km/s$ and log(N(Li)) = [0.64, 2.89].

Our results confirm that the star identified by Torres et al. (2006a), as members of the association, are young stars and have parameters and abundances compatible with the membership in the association AB Doradus. The results also show agreement with the hypothesis raised by Travaglio et al. (2001) in respect to the behavior of lithium abundance in the pre-main sequence and main sequence.

Conteúdo

1	Intr	rodução	1
	1.1	Associações estelares	1
	1.2	O projeto SACY	3
	1.3	A associação AB Doradus	5
	1.4	Motivação desta dissertação	7
2	Abı	ındâncias químicas	10
	2.1	Parâmetros estelares	11
	2.2	Modelos de atmosfera	15
	2.3	Abundâncias do lítio	16
3	Met	todologia utilizada	22
	3.1	As observações	24
	3.2	Calibrações fotométricas	30
		3.2.1 Equações de Alonso	30
		3.2.2 Equações de Houdashelt	36
	3.3	Razões de linha	38
	3.4	Ajuste da SPIZ v s $\mathrm{Log}(g)$	39
	3.5	Curva de crescimento	40
		3.5.1 Renoir e DAOSPEC	43
	3.6	Síntese espectral	44
4	Res	ultados e análise	48
5	Dise	cusões e conclusões	90
6	Ref	erências Bibliográficas	92
A	nexo	I	104

Lista de Figuras

1.1	Distribuição de estrelas do SACY na esfera celeste	4
1.2	Expansão das associações na direção X	6
1.3	Expansão para estrelas com paralaxes de Hipparcos	6
1.4	Concentrações estelares de AB Doradus	8
2.1	Diagrama Cor-Magnitude das Pleiâdes	12
2.2	Diagrama Cor-Magnitude de $M67$	13
2.3	Diagrama Cor-Magnitude das Hyades	14
2.4	Abundância do Lítio em função da temperatura efetiva nas Pleiades .	19
2.5	Abundância do Lítio em função da temperatura efetiva no Hyades	20
2.6	Abundância do Lítio em função da temperatura efetiva em $M67$	21
3.1	Diagrama da metodologia usada	23
3.2	Espectro obtido com o espectrógrafo $FEROS$	25
3.3	Dispersão das larguras equivalentes medidas	44
3.4	Curva de crescimento do Sol	45
3.5	Sínteses preliminares de <i>AB Doradus</i>	46
4.1	Dispersão de Temperaturas fotométricas	49
4.2	Curvas de crescimento de AB Doradus	84
4.3	Curvas de crescimento de estrelas com baixo (S/N)	85
4.4	Sínteses espectrais em AB Doradus $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	86
4.5	Abundâncias de Lítio em função das temperaturas de AB Doradus	87
4.6	Metalicidades em função das temperaturas de $AB \ Doradus$	87
4.7	Abundâncias de Lítio em função das metalicidades $AB\ Doradus$	88
4.8	Abundâncias de Lítio em função das gravidades superficiais de AB	
	Doradus	88
4.9	Sequência Principal de Idade Zero e diagrama HR de AB Doradus.	89

Lista de Tabelas

1.1	Associações identificadas no SACY	5
3.1	Características observacionais da amostra.	26
4.1	Cores fotométricas da amostra.	51
4.2	Extinções interestelares das cores	54
4.3	Cores e temperaturas fotométricas.	58
4.4	Características e parâmetros espectrais	61
4.5	Magnitudes, luminosidades, raios e distâncias	63
4.6	Comparação das temperaturas obtidas	67
4.7	Comparação das gravidades obtidas.	71
4.8	Abundâncias espectrôscopicas e fotométricas	75
4.9	Parâmetros estelares e abundâncias finais de <i>AB Doradus</i>	79

Capítulo 1

Introdução

1.1 Associações estelares

O primeiro a falar de associações estelares foi o astrônomo russo Viktor Ambartsumian em um artigo publicado nos anais do observatório Burakan da Academia de Ciências da Armênia em 1947. Ele descreve a existência de pequenos grupos de estrelas, da ordem de dezenas, que poderiam estar espalhadas em algumas regiões da galáxia e que seria muito difícil conseguir identificá-los. Daquela época até os últimos anos o conhecimento das associações estelares melhorou notavelmente. Agora sabese com mais certeza que estes grupos de estrelas não podem ser considerados aglomerados abertos nem globulares. As características que diferenciam as associações dos aglomerados podem se resumir em: pequeno número de estrelas $\sim (10 - 100)$ estrelas e baixa densidade estelar (~ número de estrelas $\times Pc^{-3}$); não possuem uma ligação gravitacional forte apesar de apresentarem movimento sistêmico, e com um tempo de evaporação do grupo estelar menor do que das estrelas dos aglomerados; sendo essa evaporação conseqüência da fraca ligação gravitacional. O tempo de evaporação mostra que as associações são menos compactas do que os aglomerados, e como é conferido pelas observações, com as suas estrelas espalhando-se. O movimento sistêmico apresenta-se apesar da fraca ligação e do espalhamneto, sendo este movimento em conjunto a característica que leva ao primeiro processo de identificação de uma associação visto que os movimentos próprios de cada estrela mostram um movimento comum e concentrações de estrelas em alguma região determinada do espaço. (veja a figura 1.1).

As associações também apresentam algumas características similares aos dos aglomerados, especialmente com relação à idade das estrelas. A hipótese de que as estrelas em uma associação tenham a mesma idade, leva a pensar que provavelmente formaram-se ao mesmo tempo, de fato, isto é uma idéia generalizada em astrofísica quando se fala de um grupo de estrelas em um certo volume dentro de uma nuvem molecular. Esta idéia está fundamentada em observações que mostram que os processos de formação das estrelas começam ao mesmo tempo. A idéia de igualdade na idade leva a supor que também tenham a mesma composição química. Esta hipótese será mostrada nos resultados das metalicidades para cada estrela da associação AB Doradus.

Existem três tipos principais de associações estelares: associações OB, associações R e associações T. No primeiro caso, a associação é formada principalmente por estrelas tipo $O \in B$, supõe-se que elas se originaram em pequenos volumes de uma nuvem molecular gigante. Estas associações possuem uma idade menor pois as estrelas $O \in B$ têm uma vida estelar de alguns poucos milhões de anos. A literatura diz que a maioria das estrelas na Via Láctea foram formadas em associações OB (Ambartsumian 1958). O segundo tipo são as associações R que são grupos de estrelas da seqüência principal que iluminam as nebulosas de reflexão. Supõese que essas nebulosas são as regiões onde as estrelas dessa associação se formaram (Herbst 1976), consequentemente as associações não podem ser muito massivas, caso contrário haveria disperssão da nuvem. O terceiro tipo de associação é o objeto de estudo deste trabalho, as associações de estrelas jovens principalmente formadas por TTS (iniciais do inglês "T-Tauri Stars") e post-TTS. As principais características delas serão mostradas nesta dissertação. É bom comentar que sempre que se fala de associações estelares jovens vai ser suficiente dizer associações estelares porque as estrelas O, B e as das associações R são jovens, e as estrelas TTS ainda mais, então as associações estelares contém necessariamente estrelas jovens.

1.2 O projeto SACY

O SACY (por a sua sigla em inglês Search for Associations Containing Young stars) é o desenvolvimento de um catálogo para a procura de associações de estrelas jovens; este projeto é uma parceria entre o Laboratorio Nacional de Astrofísica LNA, o Observatório Nacional ON, e o ESO (European Sourthen Observatory) (Torres et al. 2006b). O SACY foi fundamental para o desenvolvimento desta dissertação pois os espectros utilizados foram obtidos das noites de observação concedidas ao projeto e os resultados mostraram uma quantidade significativa de estrelas anãs jovens nunca antes reportadas na literatura e que não têm os parâmetros estelares, as abundâncias químicas nem suas características espectrais calculadas ou identificadas. Como antecedentes que conduziram ao desenvolvimento do SACY podemos citar: o postulamento da existência de estrelas post T-Tauri (PTTS por suas siglas em inglês) (Herbig 1978); a possível existência de TTS isoladas Quast et al. (1987) e de la Reza et al. (1989); a descoberta de 150 TTS candidatas a não estar ligadas a regiões de formação estelar (Gregorio-Heten et al. 1992); a verificação do carácter de associação de TW Hyades (Kastner et al. 1997); a identificação das associações Horologium e Tucana e a sua proximidade (Torres et al. 2000).

Após estes antecedentes o projeto concentrou-se na procura das associações através da análise da contrapartida óptica de fontes de raios-X do ROSAT e na obtenção dos movimentos próprios (determinados pelos satélites Tycho 2 e Hipparcos) para todo o hemisfério sul e deste modo encontrar as velocidades radiais e por sua vez calcular as velocidades espaciais UVW. Devido ao fato que o Li é um indicador de junventude para estrelas mais frias do que G0 somente estrelas com $(B-V) \ge 0.6$ fizeram parte da amostra (mesmo assim na amostra existem algumas estrelas tipo F). Ficaram excluídas as estrelas muito quentes e algumas outras por não terem medidas fidedignas das velocidades radiais. O SACY está completo até declinação de +10°, exceto na faixa de ascensão reta de [09 15 00, 18 00 00] onde só vai até o equador (figura 1.1), 1810 estrelas pertencem ao hemisfério sul e 91 ao norte.

O método que procura identificar associações estelares determinando quais estrelas fazem parte de uma determinada associação constitui-se de uma análise de convergência e um método estatístico de probabilidades. Para mais detalhes ao respeito pode-se consultar Torres et al. (2006a).

Figura 1.1: Distribuição de estrelas do SACY na esfera celeste

A figura 1.1 é uma versão atualizada do gráfico 1 desse artigo, ele mostra a distribuição das estrelas jovens identificadas pelo SACY na esfera celeste em projeção polar, a amostra total contém 2200 estrelas.

O principal resultado do projeto SACY é a identificação de 9 associações estelares com as respectivas pertinências estelares establecidas. Estas 9 associações não pertecem à *Scorpion-Centaurus*, veja a tabela 1.1. Além da identificação das associações, foram observadas duas características: nenhuma tem distribuição esférica definida e observa-se uma correlação positiva entre a velocidade U e a coordenada X para estrelas mais jovens do que 30MYr que pode ser interpretada como uma expansão na direção X. Esta expansão se apresenta não somente nas estrelas das associações (com exceção de Octantis e ϵ Cha) como também na distribuição espacial das associações mesmas. A figura 1.2 é uma versão atualizada do grafico 16 de Torres et al. (2006b), nele é ilustrada esta expansão, a figura 1.3 ilustra a mesma expansão de estrelas com dados tomados de *Hipparcus*. Como resultados secundários podem ser citados: A obtenção de velocidades radiais e de rotação de boa qualidade a partir dos espectros do FEROS; uma classificação espectral obtida da biblioteca de Montes et al. (1997) e pelo método desenvolvido por Torres et al. (1999); e uma

Associação	U	V	W	Distância	Idade	N_e
	(Km/s)	(Km/s)	(Km/s)	Pc	$\times 10^{6}$ anos	
β Pic	-10.1 ± 2.1	-15.8 ± 0.8	-9.0 ± 0.9	30 ± 20	10	45
Tucana-Horologium	-9.6 ± 0.9	-20.9 ± 0.8	-1.3 ± 0.9	46 ± 4	30	36
Columba	-12.5 ± 1.1	-22.0 ± 0.7	-5.8 ± 0.8	76 ± 24	30	22
Carina	-10.5 ± 0.4	-23.2 ± 0.8	-4.3 ± 1.6	88 ± 38	30	21
TW Hyades	-10.5 ± 0.9	-18.0 ± 1.5	-4.9 ± 0.9	48 ± 13	8	22
ϵ Cha	-11.0 ± 1.2	-19.9 ± 1.2	-10.4 ± 1.6	108 ± 9	5	24
Octantis	-13.6 ± 2.5	-2.7 ± 1.4	-9.4 ± 1.0	128 ± 26	10	11
Argus	-22.0 ± 0.3	-14.4 ± 1.3	-5.0 ± 1.3	109 ± 53	40	63
AB Doradus	-6.9 ± 1.2	-27.3 ± 1.0	-13.5 ± 1.6	31 ± 22	70	89

Tabela 1.1: Associações identificadas no SACY.

quantidade significativa de estrelas anãs nunca antes reportada na literatura.

Ainda não se tem uma ideia consistente sobre a formação destas estrelas jovens próximas. Um trabalho recente de Makarov (2007) traz a idéia de que elas poderiam ter se formado por interações ou encontros próximos das suas nuvens moleculares progenitoras com algumas nuvens encontradas distantes hoje.

1.3 A associação AB Doradus

Na literatura encontram-se vários artigos com observações de AB Doradus em faixas do espectro, desde os raios-X até as ondas de rádio (Lim et al. 1992; Mewe et al. 1996; Vilhu et al. 1998; Gödel et al. 2001), por isso ela pode ser considerada como a associação estelar bem conhecida e estudada. Entretanto não há estudos amplos sobre os parâmetros atmosfericos nem as abundâncias químicas das suas estrelas na literatura.

Antes de ser identificada como uma associação propriamente dita foram encontradas três estrelas na constelação do Doradus chamadas de AB Dor A AB Dor B, e AB Dor C identificadas por Guirado et al. (1997). Alguns anos depois o trabalho de Close et al. (2005) mostrou que na realidade este é um sistema quádruplo e talvez uma delas, AB Dor B seja uma binária tipo cerrada. Neste artigo o autor também faz uma descrição completa de AB Dor C, tipo espectral, idade, órbita, massa e a compara com os modelos evolutivos.

Figura 1.2: Expansão das associações na direção X.

Figura 1.3: Expansão para estrelas com paralaxes de Hipparcos.

Nos trabalhos de Torres et al. (2003) e Zuckerman (2004) *AB Doradus* passou a ser considerada como uma associação, ou em outras palavras como um grupo de estrelas que se movem em conjunto, sendo o sistema quádruplo parte deste grupo. Atualmente estima-se que esta associação possa estar formada por cerca de 90 estrelas, a maioria delas anãs e algumas outras sub-anãs (da Silva et al. 2008; Torres et al. 2006a; e Torres et al. 2006b).

A tabela 3.1 é uma versão ampliada da encontrada em Torres et al. (2006b). Após a publicação desse artigo, novas observações foram feitas (Torres et al. 2008, comunicação privada), algumas estrelas foram adicionadas à associação e outras saíram da amostra. Além dos trabalhos de Torres e Zuckerman mencionados acima, Lopez-Santiago (2006) também propôs alguns possíveis membros para *AB Doradus* dos quais 6 fazem parte desta amostra.

Sobre a origem desta associação há poucas informações na literatura mas o artigo de Ortega et al. (2007) usando dinâmica galáctica propõe a ideia que AB Doradus é um remanescente estelar do processo de formação no qual também se formaram as Pleiâdes. Essa ideia tem sido comentada por Zuckerman et al. (2004); e os resultados do projeto SACY parecem reforçá-la.

A figura 1.4 representa combinações subespaciais do espaço UVWXYZ. Nela são mostrados os efeitos das concentrações tanto cinemática como espacial que apresentam as estrelas de AB Doradus.

1.4 Motivação desta dissertação

O processo de formação e evolução das estrelas embora razoavelmente conhecido ainda apresenta problemas muito interessantes para serem desvendados e para que o processo seja completamente compreendido. Entre eles está a ligação das abundâncias químicas com o processo e eficiência da formação estelar assim como a diferenciação das etapas evolutivas. Neste sentido as associações estelares jovens são laboratórios ideais para se estudar o comportamento estelar pois apresentam ainda a composição química do gás genitor e podemos estudar várias estrelas formadas da

Figura 1.4: Concentrações espaciais e cinemâticas.

mesma nuvem. Especificamente, o estudo das associações ajuda no entendimento da co-relação formação estelar \rightarrow meio inter-estelar pois as abundâncias químicas das associações estão relacionadas com o material inter-estelar, o gás e a poeira nebular, estes pontos vão ser mais explorados no capítulo 2.

Nos últimos anos o estudo das associações de estrelas jovens ganhou um interesse adicional na procura de planetas extra-solares pois a teoria pre diz que a formação planetária é desenvolvida a partir de estrelas jovens de metalicidade relativamente alta. Além disto, devido à quantidade importante de estrelas jovens nunca antes reportada na literatura que o SACY consiguiu identificar, é necessario calcular os seus parâmetros estelares e abundâncias químicas. Este é um dos objetivos do secundários do SACY e esta dissertação é precisamente um dos quatro trabalhos que estão focalizados nessa direção. Não obstante, a diferença entre esta dissertação e os trabalhos de Viana Almeida et al. (2008), Mentuch et al. (2008), e da Silva et al. (2009) é a variedade de técnicas espectroscópicas e fotométricas usadas que conduzem para uma análise mais completa.

A proposta deste trabalho é a determinação de parâmetros estelares e abundâncias químicas, especificamente, temperaturas efetivas, gravidades superficiais, velocidades de microturbulência e abundâncias químicas de Ferro e Lítio, em estrelas jovens através de uma metodologia que consiste no uso de algumas técnicas fotométricas e espectroscópicas especialmente desenvolvidas pelos diferentes autores focalizadas em estrelas do tipo espectral [F - K]. Inicialmente nossa análise foi realizada nas estrelas de baixa massa da associação *AB Doradus* descrita na seção anterior. Para determinar os parâmetros utilizamos inicialmente calibrações fotométricas e refinamos os resultados preliminares com o método de curvas de crescimento. Para a determinação das abundâncias químicas utilizamos tanto o método de curvas de crescimento.

Este trabalho está distribuído da seguinte maneira: o capítulo 2 descreve a importância das abundâncias químicas e os parâmetros estelares em astrofísica e o contexto global desta dissertação. No capítulo 3 é descrita a metodologia utilizada para calcular os parâmetros estelares e as abundâncias assim como as observações e algumas características da amostra utilizada. No capítulo 4 são apresentados os resultados obtidos e as suas respectivas análises. Finalmente no capítulo 5 fazemos algumas discussões que conduzem às conclussões desta dissertação.

Capítulo 2 Abundâncias químicas

As abundâncias químicas são um tópico de muita importância em astrofísica, sendo fundamentais e referenciadas em vários temas. A astrofísica estelar, o estudo das galáxias e inclusive a cosmologia são exemplos do grau de interesse que o cálculo das abundâncias dos elementos químicos têm em astronomia. De fato sendo mais específicos, um melhor conhecimento delas seria útil na pesquisa das reações nucleares estelares; no estudo de como é misturada a matéria no interior estelar; na estimativa da profundidade da zona convectiva; ajudaria no entendimento da difusão; e inclusive faria possível um melhor conhecimento da interação meio inter-estelar estrela pois ajudaria a entender a acresção de material do espaço inter-estelar.

Nesta dissertação o interesse fundamental concentra-se nas abundâncias de FeI, FeII e LiI porque são determinantes no cálculo dos parâmetros estelares. No caso do lítio é ainda mais pois é um indicador de juventude da estrela, lembrando o capítulo anterior, a prescença dele no espectro estelar foi um fator fundamental para resolver se uma estrela fazia parte de uma determinada associação. De fato, conhecendo as abundâncias do lítio nas associações jovens reportadas no SACY, pode ser melhorado o estudo da história da formação estelar local na galáxia, conduzindo talvez a um aporte importante nas pesquisas da evolução química galáctica e porém da evolução da Via Láctea. Além disso, um estudo químico das associações pode oferecer uma melhor descrição da fase de transição entre a perda do disco da estrela e o processo de formação planetária.

2.1 Parâmetros estelares

Uma estrela pode ser caracterizada por um número limitado de parâmetros que indicam o seu tipo e classe espectral. Os parâmetros estelares são a temperatura efetiva, a gravidade superficial, a metalicidade, e a velocidade de microturbulência. Como vai ser confererido ao longo deste trabalho, estes parâmetros são fundamentais para tentar desvendar o que pode estar acontecendo nas associações estelares jovens ou em qualquer grupo de estrelas em geral.

O cálculo das temperaturas efetivas é relativamente simples. Segundo a teoria, de fato, somente é necessario utilizar a conhecida equação: $T_{ef} = [L/4\pi R^2\sigma]^{1/4}$, onde L é a luminosidade observada, R é o raio estelar, e σ é a constante de Stefan-Boltzman. No caso do Sol, por exemplo, onde é possível medir o fluxo de energia na Terra e onde a extinção interestelar é desprezível, encontra-se um valor de $T_{ef} \sim 5800K$. Não obstante, quando trocamos de estrela a situação é muito diferente já que não existe um método confiável de medir os diâmetros estelares. Além disso, o problema da extinção interestelar para estrelas muito distantes do Sol é outro fator que dificulta o cálculo das temperaturas efetivas. Devido à dificultade de se obter medidas fidedignas dos diâmetros estelares o cálculo das temperaturas efetivas gerou na literatura uma série de técnicas especializadas que em alguns casos mostra resultados aceitáveis e em outros produzem incertezas que continuam deixando espaço para a especulação.

Estas técnicas necessariamente envolvem ferramentas fotométricas e espectroscópicas. Nesta dissertação foram usadas duas calibrações fotométricas: as equações de Alonso et al (1996) e as equações de Houdashelt et al. (2000); e três técnicas espectroscópicas: as razões de linha de Padgett (1996), o método da curva de crescimento (software Renoir de M. Spite) e a síntese espectral (software SPECTRUM de R. Gray 1994). Consequentemente isto permitiu calcular quatro temperaturas efetivas sendo que a temperatura final foi obtida da média. Nos casos onde uma das temperaturas geradas estava muito longe das outras, essa simplesmente não era levada em conta.

Uma vantagem da obtenção das temperaturas efetivas em função das cores é possibilidade de fazer transformações de diagramas HR teóricos para observacionais e vice versa. Outra questão interessante das temperaturas e as cores através da chamada relação Cor-Temperatura (CT) e as Correções Bolomêtricas (CB) é

Figura 2.1: Diagrama Cor-Magnitude das Pleiâdes

que proporcionam uma ferramenta importante para inferir propriedades físicas das estrelas trasladando o plano teórico Temperatura efectiva-Luminmosidade ao plano observacional Cor-Magnitude (daqui em diante CMD do inglês "Color Magnitude Diagram"), sendo este diagrama uma ferramenta clássica no estudo dos aglomerados, nos gráficos 2.1, 2.2 e 2.3 são mostrados os CMD das *Pleiâdes*, *M67* e *Hyades*. As relações CT teóricas são geralmente produzidas por modelos que usam perfis de transmissão de filtros fotométricos e espectros sintéticos de estrelas com valores conhecidos de temperaturas efetivas, abundâncias químicas, e gravidades superficiais.

A gravidade superficial pode ser obtida através da equação clássica: $g_s = GM/R^2$, onde M é a massa estelar, R é o raio estelar, e G é a constante de Cavendish; esta expressão descreve o comportamento dos gradientes de pressão na atmosfera estelar e da densidade necessária para a formação de linhas, uma vez que g_s influi nos coeficientes de absorção da linha e do contínuo. Neste trabalho realizamos duas determinações da gravidade: usando a inclinação da seqüência principal de ordem zero com $\log(g)$ e a curva de crescimento; a gravidade final é uma média das duas determinações. Além disso, os dois valores foram comparados com a gravidade teórica, sendo M a massa obtida através da luminosidade observada. As gravidades e as temperaturas efetivas identificam uma estrela ao longo da sua evolução no CMD.

Figura 2.2: Diagrama Cor-Magnitude de M67

A metalicidade [Fe/H] é um fator determinante no estudo das associações, aglomerados e de qualquer grupo de estrelas em geral, porém como já foi comentado, é fundamental também na análise das teorias de evolução estelar e galáctica. A prescença do FeI na atmosfera estelar é um tracador dos metais que poderiam também estar presentes. O FeI é muito utilizado pois tem várias transições atômicas no espectro, e devido ao seu potencial de excitação, as linhas do ferro estão presentes em superfícies de estrelas numa grande faixa de temperaturas efetiva. Nas estrelas muito quentes, $O, B \in A$, o ferro não pode ser detectado facilmente porque seus átomos estão ionizados. Fazendo uma inversão do CMD e com uma relação idademetalicidade consistente pode se contribuir para o estudo da história da formação estelar na Via Láctea, Tolstoy (2005) e Cole et al. (2005). Neste sentido, os aglomerados abertos e as associações jovens são ferramentas relevantes pois todas as estrelas da amostra têm aproximadamente a mesma idade e metalicidade. Em um cenário como este, onde a amostra é suficientemente grande, pode-se-ia pesquisar se a metalicidade afeta propriedades globais das estrelas jovens tais como rotação, abundâncias de ⁷Li, atividade magnética e multiplicidade.

O comportamento da metalicidade ao longo do tempo na nossa galáxia também foi estudado extensamente na literatura. Os trabalhos de Carlberg et al. (1985) e Twarog (1980) parecem mostrar que a metalicidade na faixa de tempo de (12 - 5)GYr aumentou por um fator de 2 a 5. Além disto, apresentam uma provável

Figura 2.3: Diagrama Cor-Magnitude das Hyades

diminuição do enriquecemento químico nos útlimos 4GYr. Não obstante, alguns trabalhos como Boesgaard e Friel (1990); Friel e Boesgaard (1990); Balachandran, Lambert, e Stauffer (1990); Boesgaard (1989); mostraram que a metalicidade não está corelacionada com a idade em estrelas de alguns poucos Giga anos. Como exemplos pudemos citar: Hyades de 700MYr com $[Fe/H] = [0.13\pm0.02]$ comparado com os valores $[Fe/H] = (-0.03\pm0.02)$ e 70MYr para as Pleiades ou para o aglomerado Coma que tem a mesma idade das Hyades e $[Fe/H] = [-0.08\pm0.04]$. Este último poderia significar que o tempo necessário para o enriquecemento químico do gas é maior do que 1GYr. Edvardsson et al. (1993) rejeitaram a possibilidade que a metalicidade aumente com a idade no disco galáctico e contrariamente mostraram o aumento da metalicidade com a diminuição da idade.

Outro fator que nos últimos anos tem contribuído para aumentar a importância da metalicidade é a procura de planetas extra-solares. A determinação da metalicidade de estrelas TTS de linhas fracas em regiões de formação estelar próximas ganhou um particular interesse pois nos últimos anos foi mostrado que estrelas com alta probabilidade de hospedar planetas do tipo Júpiter são ricas em metais, quando comparados com aquelas que não hospedam planetas extra-solares. Laughlin et al. (2000), concluíram que o fator principal para saber se uma estrela pode chegar abrigar planetas é a sua metalicidade.

2.2 Modelos de atmosfera

Em astrofísica, um modelo de atmosfera ou, simplemente uma atmosfera, é a descrição de como mudam certos parâmetros nas camadas exteriores de uma estrela em função da profundidade. Estes parâmetros são escritos como função da profundidade óptica em um certo comprimento de onda. A profundidade óptica é uma grandeza adimensional que determina a fração de energia, em um certo comprimento de onda, irradiada por uma camada atmosférica que chega à superfície estelar sem ser absorvida. Quanto maior é a profundidade óptica, maior é a energia absorvida. Os parâmetros que são escritos como função da profundidade óptica são as variáveis termodinâmicas: temperatura, pressão do gás, pressão eletrônica, densidade e pressão de radiação; os modelos geralmente utilizados assumem uma geometria esférica e homogênea em equilíbrio hidrostático e termodinâmico local (daqui em diante LTE por sua sigla em inglês "Local Termodinamical Equilibrium"). Além das variáveis termodinâmicas, as opacidades das linhas atômicas e moleculares também são levadas em conta no modelo, sendo descritas como função da profundidade óptica.

A estrutura matemática de um modelo de atmosfera é determinada principalmente por equações da teoria cinética, do transporte radiativo e da mecânica estatística fundamentadas na hipótese do LTE, deste modo a pressão e a temperatura nas camadas atmosféricas é determinada pela equação dos gases perfeitos :

$$P_q = nkT \tag{2.1}$$

Onde n é a densidade de partículas e k é a constante do Boltzmann. A distribuição de partículas nas camadas da atmosfera obedece à função de distribuição de Maxwell Boltzmann (Gray 2005):

$$\frac{dn}{n} = 4\pi\nu^2 (\frac{m}{2\pi kT})^3 e^{-m\nu_2/2kT}/2d\nu$$
(2.2)

Lembrando que esta equação descreve como estão distribuídas as partículas com velocidades entre ν e ($\nu + d\nu$) na camada atmosfêrica.

A estatística também permite distinguir os níveis de energia de átomos, moléculas, íons e núcleos; nas condições de equilíbrio termodinâmico, o número relativo das partículas em dois diferentes estados de ionização pode ser calculado com a equação:

$$\frac{n_l}{n_j} = \frac{g_l}{g_j} e^{-\frac{\chi_l - \chi_j}{kT_{ex}}}$$
(2.3)

Sendo T_{ex} a temperatura de excitação, $g_l \in g_j$ os pesos estatísticos dos estados $n_l \in n_j$, $\chi_l \in \chi_j$ os respectivos potenciais de excitação.

Outra equação importante em qualquer modelo de atmosfera é a de Saha:

$$\frac{n_{j+1}}{n_j} = \frac{(kT)^{5/2} (2\pi m)^{3/2} 2u_{j+1}(T)}{h^3 P_e U_j(T)} e^{-I_{j,j+1}/kT}$$
(2.4)

Através desta expressão é possível determinar as populações nos estados de ionização, sendo P_e a pressão eletrônica, $I_{j,j+1}$ é a energia necessária para levar a energia do nível de ionização j ao nível j + 1; $u_j \in u_{j+1}$ são as respectivas funções de partição.

Utilizamos os modelos de atmosfera de Kurucz (1999), nos quais foram feitas algumas melhorias no tratamento da convecção e da opacidade pois utilizando-se mais linhas de ferro soluciona-se o problema da perda de opacidade no ultra violeta. Estes modelos melhorados de Kurucz foram fundamentais para a simulação que a curva de crescimento faz e no cálculo das abundâncias do Lítio por síntese espectral.

2.3 Abundâncias do lítio

Os primeiros artigos analiçando o Lítio em astrofísica são os artigos de de Herbig (1965), Reeves et al. (1974) e Boesgaard (1976), posteriormente foram realizadas pesquisas do lítio em diferentes cenarios como os estágios da evolução estelar, o cálculo da abundância em aglomerados, o lítio produzido por raios-X no meio interestelar, e cálculos do Lítio gerado na nucleossínteses primordial (Travaglio et al. 2001 e Sestito & Randich 2005).

No interior estelar o lítio é fácilmente destruído em condições de temperaturas maiores do que $10^6 K$ pelas reações ⁷Li $(P, \alpha)^4$ He e 6 Li $(P, \alpha)^3$ He. Durante a evolução Pré-Seqüência Principal (idades < 5Myr) as TTS são completamente convectivas e as temperaturas não são suficientes para queimá-lo; por isso a quantidade de Lítio num espectro é uma característica que indica se uma estrela é jovem e pode pertencer a uma determinada associação, aglomerado ou região de formação estelar.

Em 1982, Spite e Spite apresentaram resultados da distribuição de Lítio 10 vezes maiores em anãs de população II no halo da Via Láctea do que no Sol, além disto mostraram um comportamento constante para temperaturas na faixa [5500 - 6200]K. Concluíram que a quantidade calculada não poderia ter sido produzida nos interiores daquelas estrelas nem transportada para a atmosfera e que poderia ser lítio da nucleosínteses primordial alterado por algum processo físico. Um estudo posterior de Duncan e Hobbs (1987) confirmou os valores do Lítio mas não a hipótese do lítio primordial alterado. Posteriormente Spite e Spite (1993) mostraram que a abundância do Lítio aumenta num fator de $(1-2) \times 10^9$ devido aos raios-X cósmicos e pelos ventos estelares. Continuando com o lítio primordial, se, por exemplo fosse possível medir a quantidade dele nas estrelas muito antigas, ou seja naquelas que se formaram pouco após do Big-Bang, ter-se-ia uma oportunidade de comparar os resultados com os valores dos modelos teóricos pois se espera uma quantidade relativa de Lítio proporcional à quantidade total de matéria produzida. Essas primeiras estrelas do universo continham somente hidrogênio, deutério, hélio e quantidades pequenas de Lítio, berílio e boro, mas aquelas da geração estelar seguinte possuíam outros elementos que foram herdados do gás enriquecido pela nucleosíntese da primeira geração. Repetidamente, cada geração estelar é enriquecida pelo gás interestelar do processo que gera novas estrelas; todo este processo é conhecido como evolução química da galáxia. Essa evolução nos mostra que estrelas antigas possuem menos elementos pesados do que as estrelas mais jovens precisamente por elas tem-se formado de um gás mais primordial do que as últimas, por isso a composição química de uma estrela é um indicador da idade.

O comportamento do Lítio na superfície e no interior estelar está longe de ser entendido, tanto é que não pode ser predito como uma função da massa, estágio evolucionário, idade, ou metalicidade. O processo de destruição do Lítio é aparentemente bem conhecido em estrelas de massa muito baixa; pensa-se que o principal mecanismo responsável pela depleção é a convecção, mas em estrelas de massa superior ela não pode ser o único fenômeno responsável pela destruição e nem mesmo o principal. Uma espécie de processos de mistura pouco conhecidos parecem ser os responsáveis de algumas características observadas na SP como, por exemplo, a depleção do Lítio em estrelas tipo solar e em estrelas tipo F com zonas convectivas pouco espessas ao deixar a SP Balachandran (1990). O Sol, cuja abundância do Lítio não pode ser explicada somente por convecção, é um exemplo da necessidade de um mecanismo adicional que complemente a depleção (Chaboyer et al. 1995 e Pinsonneault 1997). As observações mostram que estrelas tipo solar de campo e do aglomerado M67 têm abundâncias de Lítio iguais à do Sol ou mais baixas, em contraste com os resultados de Spite e Spite (1982) mencionados acima (veja também Spite et al. 1987, García Lopez et al. 1988, e Pasquini et al. 1997), e com os de Dravins et al. (1993), que mostram a existência de estrelas mais velhas do que o Sol ricas em Lítio. A estrela $G2IV \beta Hyi$ é um exemplo deste caso pois é mais velha do que o Sol, ligeramente mais massiva, está num estágio evolucionário posterior e apresenta abundância de Lítio 30 vezes superior. A evolução do Lítio em anãs e estrelas gigantes de campo não é um processo totalmente compreendido, no estágios evolucionarios intermediários a incerteza é ainda maior. Randich et al. (1999) concluiram que as subgigantes, tal como as gigantes e as anãs, apresentam uma dispersão grande em log N(Li), e que não há evidência de existir uma correlação Lítio \rightarrow idade nem Lítio \rightarrow Massa. De fato, é conhecido que estrelas de campo velhas na SP e de M67 apresentam Lítio em quantidades iguais à do Sol e até 10 vezes maiores. Isto, e particularmente o fato que estrelas semelhantes á βHyi não são mais ricas em Lítio do que as estrelas semelhantes ao Sol, sugere que as estrelas evoluídas ricas em Lítio similares ao βHyi são a contraparte evoluída das estrelas que têm depletado o Lítio durante a SP e não estrelas tipo solar pobres em metais que no final da SP que drenaram o Lítio espalhando-o e armazenando-o na zona convectiva. Randich et al. (1999) calcularam que a primeira drenagem do Lítio, independente da massa ou da metalicidade, acontece com temperaturas efetivas na faixa de [5600 - 5700]K e cor de (B-V) = 0.7. Nas figuras 2.4, 2.5, e 2.6 são mostradas as abundâncias do Lítio em função da temperatura efetivas para os aglomerados Pleiades, Hyades e M67

A fim de visualizar melhor os problemas atuais na evolução do Lítio na pré-SP e na SP podem ser listadas as siguintes questões:

Pré-SP: estrelas G com temperaturas efetivas > 5300K na SPIZ em aglomerados abertos têm abundâncias do Lítio somente um pouco menores do que a abundância inicial prevista para as estrelas de população I. Isto implica uma quantidade muito maior de Lítio depletado do que predizem os modelos standard. Estrelas tipo K em aglomerados com aproximadamente a mesma temperatura efetiva apresentam diferenças grandes nas abundâncias do Lítio, o que ainda não foi explicado.

Figura 2.4: Abundância do Lítio em função da temperatura efetiva nas Pleiâdes.

• SP: segundo as predições dos modelos standard, em algomerados mais velhos do que as *Pleiâdes*, as estrelas tipo solar devem depletar seu Lítio após de ter alcançado a SP.

Outra coisa interessante é que as estrelas F na faixa de (6700 - 7000)K nas Hyades e em aglomerados de idade similar ou até mais velhos, apresentam abundâncias de Lítio até 30 vezes menores do que teoricamente deveriam ter para essa faixa de temperaturas efetivas. Tal "gap" do Lítio pode aparecer em estrelas tão jovens como 200MYr. Baseados nos dados da literatura podese dizer que não há certeza se a depleção do Lítio para estrelas tipo solar em algomerados abertos velhos com idades maiores do que Hyades aconteceu rápido ou devagar. De fato, estrelas com idade e metalicidade solar em M67apresentam muita dispersão no Lítio; enquanto que em outros aglomerados velhos como IC4651, NGC3680, e NGC188, observam-se pequenas dispersões de Lítio com abundâncias similares às encontradas no envoltório superior das estrelas de M67 e somente 2 vezes inferiores do que às estrelas similares de Hyades. O aglomerado Cr267 também apresenta dispersão embora não seja tão grande como a encontrada em M67. Estrelas de campo tipo solar apresentam dispersões do Lítio similares às de M67 (Pasquini 1994).

Figura 2.5: Abundância do Lítio em função da temperatura efetiva no Hyades.

 A depleção do Lítio não parece depender fortemente dos diferentes valores de metalicidade dos aglomerados em ~ ±0.2dex. De fato, tanto os velhos quanto os aglomerados jovens têm valores próximos de abundâncias do Lítio.

Os fatos comentados acima e nas páginas anteriores levam a pensar que a depleção do Lítio não é levada a cabo unicamente por convecção e que devem aparecer outros processos combinando-se com a convecção ou entre si; outra hipotese é a aparição de outros processos que inibem a depleção do Lítio na pré-SP.

Sestito & Randich (2005) mostram que diferentes valores da metalicidade em aglomerados de mesma idade não estão relacionados com a depleção do Lítio; também mostram que a escala de tempo da depleção do Lítio é de [8.0, 9.5]GYr com uma faixa de temperaturas de [5500-6350]K. O comportamento qualitativo da depleção para estrelas $G \in F$ tipo tardio nas faixa de T_{ef} comentadas acima apresenta similaridades que podem indicar: uma pequena quantidade de Lítio destruído na pre-SP; uma queda da depleção nas primeiras etapas da SP; depleção na SP; e queda da depleção nas etapas post-SP. Este último também indica uma possível idade na qual começam os processos de mistura-extra e os mecanismos não standards.

Muitos processos não standard foram propostos nos últimos anos para explicar ou complementar os processos de depleção do Lítio. Entre eles podem ser citados: mistura conduzida (mixing driven) por rotação ou por ondas internas; campos

Figura 2.6: Abundancia do Lítio em função da temperatura efetiva em M67.

magnéticos que podem forçar a rotação estelar rígida ou produzir rotação diferencial; difusão microscópica que determina a separação de espécies no gás interestelar; perda de massa através de ventos que pode ocasionar dilução do Lítio; e um processo hidrodinâmico chamado de "tachocline" que consiste na aparição de uma pequena camada pouco espessa que separa a zona convectiva do núcleo radiativo, neste processo a região convectiva roda diferencialmente e o núcleo o faz como um corpo rígido.

Travaglio et al. (2001) mostram que, na faixa de metalicidade [-3.0, -1.0], para todas as fontes consideradas (estrelas do ramo gigante assintótico, o meio interestelar, estrelas de campo, supernovas, e gigantes de baixa massa), a abundância do Lítio permanece quase constante, enquanto que na faixa de [-1, 0] as diferenças para cada valor de metalicidades aumentam, por sua vez aumentando também as incertezas; a principal característica dos gráficos do referido artigo é que nos últimos anos da evolução estelar há uma queda da abundância do Lítio e, dependendo da massa e metalicidade, esta queda tem formas diferentes. Além disso, outro efeito interessante é que para aglomerados de diferentes idades, a abundância do Lítio somente apresenta pequenas diferenças enquanto que, nos cassos de NGC3680 e NGC752, com a mesma idade, apresentam-se ligeiras diferenças nas abundâncias.

Capítulo 3

Metodologia utilizada

O procedimento de cálculo dos parâmetros estelares e as abundâncias de lítio é explicado neste capítulo. A metodologia está conformada por duas calibrações fotométricas: as calibrações de Alonso et al. (1999) e Houdashelt et al. (2000); três técnicas espectroscópicas: as razões de linha de Padgett (1996), a curva de crescimento e a síntese espectral; e uma de carater teórico através do ajuste da Seqüência Principal de Idade Zero (SPIZ).

No caso das temperaturas efetivas, há 4 valores calculados, sendo dois fotométricos e dois espectroscópicos, e um quinto valor de referência através da grade atmosférica usada na síntese espectral. Para as gravidades superficiais foram usados o ajuste inicial teórico através da *SPIZ* e o valor final obtido da espectroscopia através da curva de crescimento, o valor das gravidades na grade de Kurucz é também um valor de referência. No caso das metalicidades, há um processo principal que é a obtenção espectroscópica através da curva de crescimento, não obstante, antes de usar a espectroscopia, foi calculado um valor de referência através da fotometria usando os polinômios de Alonso et al. (1996), o valor na grade atmosférica usada na síntese espectral também foi usado como uma referência para efeitos de comparação. As velocidades de microturbulência são um parâmetro livre, o que significa que um valor inicial qualquer em referência ao Sol foi usado para esboçar esta velocidade nas anãs de *AB Doradus*, os valores finais foram obtidos da espectroscopia através da curva de crescimento. A última variável calculada foram as abundâncias de Lítio obtidas somente através da síntese espectral.

A figura 3.1 representa a metodologia utilizada nesta dissertação, ela ilustra as relações entre a espectroscopia, fotometria, parâmetros estelares e abundâncias

Figura 3.1: Diagrama da metodologia usada

químicas. As elipses representam os parâmetros e as abundâncias e os retângulos as técnicas utilizadas.

Como pode ser observado a temperatura é a variável mais crítica pois pode ser obtida usando as 4 técnicas citadas acima, além disso, apresenta três "loops" de realimentação. O primeiro deles é formado pela relação Temperatura efetiva \rightarrow Abundância de Ferro \rightarrow Fotométria de Alonso (setas azuis), o segundo "loop" é formado pela co-relação Temperatura efetiva \rightarrow curva de crescimento (seta vermelha de duplo sentido), o terceiro loop é a co-relação Temperatura efetiva \rightarrow Síntese espectral (seta verde para baixo e seta preta para cima). O primeiro "loop" representa a influência da calibração de Alonso et al. (1996) na determinação do valor de entrada da temperatura na curva de crescimento, o uso do valor da temperatura que arroja a curva T_r para calcular a metalicidade espectroscópica $[Fe/H]_r$, e o ajuste final feito na Temperatura de Alonso (T_a) usando a metalicidade $[Fe/H]_r$ fechando assim o ciclo. O segundo "loop" representa o valor da temperatura obtido das calibrações fotométricas e razões de linha enviado como valor de entrada na curva e esta por sua vez reajusta a temperatura obtendo o valor (T_r) . O terceiro "loop" é uma situação parecida a anterior, a seta para cima representa o uso dos previamente calculados parâmetros estelares $(T_r, g_f, V_{mt}, e [Fe/H]_r)$ no software SPECTRUM

para calcular log N(Li), a seta para baixo representa a media aritmética entre T_r e a temperatura na grade de Kurucz T_g para determinar a temperatura final T_f , há casos onde essas duas temperaturas têm uma pequena diferença.

A metalicidade é o segundo fator mais crítico pois faz parte do primeiro "loop" da temperatura e apresenta um "loop" com a fotometria de Alonso (seta verde para baixo e seta preta para acima), este "loop" representa o previamente explicado na terceira parte do primeiro ciclo: Temperatura efetiva \rightarrow Abundância do Ferro \rightarrow Fotometria Alonso, mais a metalicidade fotométrica $[Fe/H]_a$ calculada previamente como valor de referência antes de calcular o valor final da metalicidade $[Fe/H]_r$ com a curva de crescimento.

Outra coisa interessante deste diagrama é que permite analisar a funcionalidade das técnicas observacionais usadas neste trabalho, por exemplo, podemos observar que a técnica mais ativa é a curva de crescimento já que permite obter todos os parâmetros estelares. A síntese espectral também é importante porque calcula $\log N(Li)$, a outra técnica crítica é a calibração de Alonso pelo fato de gerar os dois ciclos de realimentação comentados acima.

Antes de continuar explicando mais detalhes das técnicas usadas neste trabalho é bom falar das observações que permitiram fazer esta análise.

3.1 As observações

As observações foram realizadas com o espectrógrafo FEROS nos telescópios de 1.52m e 2.20m do ESO em la Silla, Chile. Algumas das observações foram feitas no OPD/LNA com o espectrografo Coudé. Nos dois casos as observações consistem de espectros de alta resolução; o FEROS tem resolução R = 48000 cobrindo uma faixa de [3800-8500]Å. O espectrografo Coudé cobre uma região [4500-6500]Åcom uma resolução R = 25000. A redução dos dados foi levada à cabo usando "pipeline" do FEROS da forma indicada por Torres et al. (2006a), os espectros foram corrigidos em velocidade radial usando o pacote *dopcor* do software *IRAF*. Na figura 3.2 é mostrado um exemplo de um espectro obtido do FEROS, ele foi curtado na faixa de [6550, 6725]Å para mostrar a linha de H_{α} e a linha de Lítio.

Figura 3.2: Espectro obtido com o espectrógrafo FEROS curtado na faixa de [6550, 6725]Å.

As cores fotométricas foram obtidas de várias fontes: entre elas das noites de observação com o telescópio Zeiss de 0.60m no OPD/LNA usando o fotômetro FOTRAP, de dados disponíveis nos catálogos fotométricos de *Hipparcus* e *Tycho*, e outra parte foi obtida de dados do *SIMBAD*. Veja Torres et al. (2006b) para maiores detalhes sobre a obtenção dos espectros e cores fotométricas da amostra, eles foram cedidos pelos autores (Torres et al. 2007, em comunicação privada). A tabela 3.1 apresenta as características observacionais, ela tambem é obtida de dados de *Hipparcus* e *Tycho* Torres et al. (2006a). No capitulo 4 apresentaremos as tabelas 4.1, 4.2, e 4.3 onde são mostradas as características fotométricas e a tabela 4.4 com as características espectroscópicas.

strela	Ascensão R.	Declinação	M_{α}	M_{δ}	V_r	U		M	X	Y	Z	
	[Hrs Min Seg]	[Gra Min Seg]	[Mas/Yr]	[Mas/Yr]	$[\rm Km/s]$	$[\rm Km/s]$	$[\rm Km/s]$	$[\mathrm{Km/s}]$	[Pc]	[Pc]	[Pc]	
0 1405	$00 \ 18 \ 20.9$	+305722	143.7	-171.5	-11.2	-4.2	-26.4	-15.0	-9.6	20.9	-14.0	
) 4277	$00 \ 45 \ 50.9$	+54 58 40	95.6	-76.9	-15.4	-8.9	-26.5	-15.9	-25.6	40.7	-6.7	
D 6569	$01 \ 06 \ 26.2$	-14 17 47	100.2	-95.2	7.4	-8.5	-30.6	-10.8	-8.7	7.6	-48.7	
IP 6276	$01 \ 20 \ 32.3$	-11 28 04	110.7	-138.9	8.8	-4.4	-27.8	-12.6	-8.7	5.5	-33.5	
D-46644	02 10 55.4	$-46\ 03\ 59$	56.1	-22.2	25.7	-8.3	-27.5	-15.5	-0.8	-29.4	-64.2	
D 13482	$02 \ 12 \ 15.4$	+23 57 29	127.1	-160.4	-0.3	-7.8	-27.7	-12.4	-21.7	14.8	-18.6	
D 16760b	$02 \ 42 \ 21.0$	+38 37 21	81.0	-105.4	-4.1	-8.6	-27.3	-11.5	-37.8	25.9	-16.0	
D 16760	$02 \ 42 \ 21.3$	+38 37 07	76.6	-110.1	-4.2	-7.8	-27.1	-12.7	-37.5	25.7	-15.9	
D 17332b	$02 \ 47 \ 27.2$	+19 22 21	117.8	-160.3	5.3	-9.0	-27.2	-12.3	-24.4	10.3	-19.0	
D 17332a	$02 \ 47 \ 27.4$	$+19\ 22\ 19$	117.8	-160.3	3.7	-7.8	-27.7	-11.3	-24.4	10.3	-19.0	
D 19668	$03 \ 09 \ 42.3$	$-09 \ 34 \ 47$	89.8	-113.1	14.6	-5.3	-29.0	-10.1	-23.7	-4.7	-32.1	
D+21418b	$03 \ 11 \ 12.3$	+22 25 23	59.2	-129.9	4.1	-5.1	-26.5	-15.1	-37.0	13.0	-22.6	
D+21418a	$03 \ 11 \ 13.8$	+22 24 57	56.0	-125.1	5.2	-5.9	-27.5	-16.4	-40.4	14.2	-24.8	
D 21845a	$03 \ 33 \ 13.5$	$+46\ 15\ 27$	67.4	-176.4	-6.0	-5.5	-26.0	-15.7	-28.9	16.8	-4.7	
D $21845b$	$03 \ 33 \ 14.0$	$+46\ 15\ 19$	67.4	-176.4	-6.1	-5.4	-26.0	-15.6	-28.9	16.8	-4.7	
IP 17695	$03 \ 47 \ 23.3$	-01 58 20	186.7	-271.8	16.0	-7.4	-27.3	-10.7	-12.2	-2.1	-10.8	
D 24681	$03 \ 55 \ 20.4$	$-01 \ 43 \ 45$	46.2	-90.2	17.7	-6.7	-27.1	-13.7	-40.5	-7.8	-33.6	
D 25457	$04 \ 02 \ 36.7$	$-00 \ 16 \ 08$	151.2	-252.0	17.6	-7.9	-28.7	-11.9	-15.1	-2.9	-11.5	
D 25953	$04 \ 06 \ 41.5$	$+01 \ 41 \ 02$	39.0	-94.1	15.9	-5.3	-27.3	-13.9	-44.7	-7.5	-31.6	
$899 \ 0026$	$04 \ 52 \ 24.4$	$-16\ 49\ 22$	118.9	-211.9	25.8	-8.0	-27.8	-12.3	-10.6	-7.6	-8.7	
D-561032N	04 53 30.5	-55 51 32	132.8	73.9	30.0	-7.5	-26.8	-13.7	-0.9	-8.6	-6.9	
D-561032S	$04 \ 53 \ 31.2$	-55 51 37	132.8	73.9	29.0	-7.4	-26.0	-13.1	-0.9	-8.6	-6.9	
D 31652	$04 \ 57 \ 22.3$	$-09 \ 08 \ 00$	13.2	-48.5	23.2	-6.5	-26.7	-14.8	-67.3	-35.9	-43.1	
D-401701	$05 \ 02 \ 30.4$	-395913	36.5	-19.8	27.8	-7.2	-25.6	-11.4	-14.5	-29.9	-25.3	

Tabela 3.1: Características observacionais da amostra.
$\Gamma_{\alpha + u \alpha}$	A cooncão D	Doolineeoo	11	14.	/1	TT	/1	//1	4	2	6
PIDIOST	[Hor Min Seg]	Gra Min Seg]	[Mas/Yr]	[Mas/Yr]	$[\mathrm{Km/s}]$	c [Km/s]	$[\rm Km/s]$	W [Km/s]	P_{c}	I	[Pc]
HD 32981	05 06 27.7	-15 49 30	16.2	-44.0	25.8	-7.1	-27.4	-13.6	-56.4	-41.2	-40.6
HD 293857	$05 \ 11 \ 09.7$	-04 10 54	18.7	-57.5	20.8	-6.5	-27.3	-12.0	-64.5	-29.9	-31.9
HD 33999	$05\ 12\ 35.8$	-34 28 48	9.1	-16.6	28.0	-5.4	-25.8	-13.5	-46.9	-74.4	-60.2
HD 35650	$05 \ 24 \ 30.2$	-38 58 11	44.0	-58.4	31.9	-7.7	-27.8	-15.0	-6.6	-13.3	-9.6
HD 36705b	$05 \ 28 \ 44.4$	$-65\ 26\ 47$	53.0	134.0	28.5	-7.5	-26.1	-13.3	1.2	-12.5	-8.2
HD $36705a$	$05 \ 28 \ 44.8$	$-65\ 26\ 56$	48.0	140.5	29.5	-7.9	-26.8	-14.2	1.2	-12.6	-8.2
CD-332353	$05 \ 28 \ 56.5$	-33 28 16	11.1	-31.7	30.1	-6.5	-27.0	-14.7	-26.2	-41.1	-29.1
CD-342331	$05 \ 35 \ 04.1$	-34 17 52	6.7	-21.8	30.4	-6.6	-27.1	-14.8	34.8	-57.4	-38.5
CD-481893	$05 \ 36 \ 55.1$	-47 57 48	25.3	0.0	33.1	-7.6	-28.6	-15.1	-5.4	-19.5	-12.6
HD 37572	$05 \ 36 \ 56.9$	-47 57 53	25.3	0.0	32.6	-7.5	-28.2	-14.8	-5.4	-19.5	-12.6
HD $37551a$	$05 \ 37 \ 12.9$	-42 42 56	11.9	-13.8	31.8	-5.5	-28.9	-13.6	-23.5	-59.4	-38.6
HIP $26401b$	$05\ 37\ 13.2$	-42 42 57	11.9	-13.8	30.7	-5.2	-28.1	-13.0	-23.5	-59.4	-38.6
4779 0394	$05 \ 38 \ 56.6$	$-06\ 24\ 41$	8.5	-37.1	23.3	-7.3	-27.9	-12.2	-94.5	-55.5	-37.8
CP-19878	$05 \ 39 \ 23.2$	-19 33 29	4.5	-44.8	26.2	-6.1	-25.8	-14.6	-47.1	-44.5	-29.3
AC 3511952	$05 \ 41 \ 14.3$	-41 17 59	3.5	-7.2	28.6	-5.6	-25.2	-13.3	-43.2	-101.7	-64.2
CD-262425	$05 \ 44 \ 13.4$	$-26\ 06\ 15$	14.7	-32.4	27.2	-6.7	-26.8	-10.8	-40.4	-49.1	-30.4
HD 39576	$05 \ 52 \ 16.0$	$-28 \ 39 \ 25$	5.4	-19.7	31.1	-9.7	-27.7	-13.5	-47.0	-64.4	-36.7
TY Col	05 57 50.8	$-38 \ 04 \ 03$	9.7	-13.9	30.9	-7.8	-27.9	-12.0	-26.4	-54.7	-30.1
BD-131328	$06 \ 02 \ 21.9$	-13 55 33	-10.0	-91.4	25.6	-7.2	-25.4	-15.9	-28.8	-24.3	-11.6
CD-34 2676	$06 \ 08 \ 33.9$	-34 02 55	4.5	-21.4	31.1	-7.3	-28.3	-12.9	-32.7	-58.2	-28.5
CD-35 2722	$06 \ 09 \ 19.2$	-35 49 31	-6.3	-56.6	31.4	-7.5	-27.4	-14.9	-10.1	-19.5	-9.6
HD 45270	$06\ 22\ 30.9$	-60 13 07	-11.2	64.2	32.0	-7.5	-28.4	-14.6	-10.2	-20.9	-10.6
G8894 0426	$06\ 25\ 56.1$	-60 03 27	-11.2	64.2	31.8	-7.6	-28.4	-14.2	-0.3	-21.0	-10.4
HD 48189	$06 \ 38 \ 00.4$	$-61 \ 32 \ 00$	-26.0	72.4	30.0	-7.2	-26.8	-13.9	0.4	-19.6	-9.2

Tabela 3.1 Continuação

$\operatorname{Estrela}$	Ascensão R.	$\operatorname{Declina}_{ ilde{a}0}$	M_{lpha}	M_δ	V_r	U	V	M	X	Y	Ζ
	[Hor Min Seg]	[Gra Min Seg]	[Mas/Yr]	[Mas/Yr]	$[\rm Km/s]$	$[\rm Km/s]$	$[\rm Km/s]$	$[\rm Km/s]$	[Pc]	[Pc]	[Pc]
CD-611439	$06 \ 39 \ 50.0$	$-61 \ 28 \ 42$	-29.7	75.9	31.7	-7.8	-28.3	-14.7	0.4	-19.9	-9.3
AC 3372872	$06 \ 41 \ 18.5$	-38 20 36	-3.6	-15.1	32.2	-7.0	-29.1	-13.1	-28.3	-67.8	-24.3
G8544 1037	$06\ 47\ 53.4$	-57 13 32	-3.4	7.4	30.5	-6.9	-27.4	-12.8	-7.1	-131.0	-55.7
CD-571654	$07 \ 10 \ 50.6$	-57 36 46	-10.7	8.4	29.7	-6.4	-26.5	-13.6	-2.9	-97.2	-35.7
BD+201790	$07 \ 23 \ 43.6$	$+20 \ 24 \ 59$	-65.8	-228.1	9.3	-6.5	-25.6	-15.3	-23.7	-7.6	7.1
HD 59169	$07 \ 26 \ 17.7$	$-49 \ 40 \ 51$	-16.5	0.5	29.2	-7.9	-25.1	-15.6	-16.9	-112.3	-30.6
CD-294446	$07\ 28\ 51.4$	-30 14 49	-130.9	-131.4	28.1	-8.7	-25.6	-14.0	-5.8	-11.8	-1.4
CD-8480	$07 \ 30 \ 59.5$	-84 19 28	-12.3	52.8	24.2	-6.6	-27.6	-10.7	28.8	-57.2	-31.3
HD 64982	$07 \ 45 \ 35.6$	-79 40 08	-16.5	42.2	25.2	-8.2	-27.6	-11.2	28.3	-70.5	-34.3
BD-072388	$08 \ 13 \ 51.0$	-07 38 25	-25.3	-45.2	21.0	-7.7	-26.7	-13.9	-58.4	-68.5	23.2
CD-455772	$10\ 07\ 25.2$	$-46\ 21\ 50$	-48.8	-29.5	20.4	-5.1	-23.2	-14.7	7.0	-69.6	9.4
BD+012447	$10\ 28\ 55.5$	+005028	-602.3	-731.9	8.4	-7.1	-26.6	-13.8	-1.9	-4.1	4.8
HD 99827	$11\ 25\ 17.7$	-84 57 16	-48.0	12.1	21.1	-6.9	-25.9	-10.1	39.3	-65.5	-31.5
HD 113449	$13 \ 03 \ 49.7$	-05 09 43	-189.8	-219.6	0.0	-5.9	-27.6	-11.3	7.4	-9.3	18.7
HD 139751	$15 \ 40 \ 28.4$	-18 41 46	-69.8	-157.1	-8.9	-7.2	-26.7	-14.6	31.8	-5.9	17.6
HIP 81084	$16 \ 33 \ 41.6$	$-09 \ 33 \ 12$	-67.4	-179.7	-15.0	-7.4	-27.4	-12.9	27.1	3.2	12.7
HD 152555	$16\ 54\ 08.1$	-04 20 25	-38.7	-114.0	-16.5	-5.6	-28.7	-12.4	42.3	10.9	19.0
HD 317617	$17\ 28\ 55.6$	-32 43 57	-22.2	-112.3	-8.2	-10.5	-27.5	-11.8	56.2	-5.0	1.0
HD 159911	$17 \ 37 \ 46.5$	-13 14 47	-16.5	-126.4	-13.9	-6.1	-27.1	-13.2	43.6	9.7	7.7
HD 160934	$17 \ 38 \ 39.6$	+61 14 16	-21.8	43.7	-27.0	-6.8	-24.6	-11.7	-0.1	27.9	17.6
HD 176367	$19 \ 01 \ 06.0$	$-28\ 42\ 50$	3.9	-93.5	-5.7	-5.1	-26.1	-10.2	60.3	8.3	-15.9
HD 178085	$19 \ 10 \ 57.9$	$-60\ 16\ 20$	13.3	-98.9	8.1	-7.0	-25.0	-11.0	47.1	-20.8	-24.8
AC 162461	$19 \ 33 \ 03.8$	+03 45 40	18.0	-65.5	-20.2	-5.8	-27.0	-12.9	52.9	46.1	-9.2
HD 189285	$19 \ 59 \ 24.1$	-04 32 06	14.2	-55.8	-19.1	-7.0	-29.6	-10.7	72.9	54.3	-28.1

Tabela 3.1 Continuação

Estrela	Ascensão R.	Declinação	M_{lpha}	M_{δ}	V_r	U	Λ	M	X	Y	Z
	[Hor Min Seg]	[Gra Min Seg]	[Mas/Yr]	[Mas/Yr]	$[\rm Km/s]$	$[\rm Km/s]$	$[\rm Km/s]$	$[\rm Km/s]$	[Pc]	[Pc]	[Pc]
BD-034778	$20 \ 04 \ 49.4$	-02 39 20	28.6	-71.7	-16.5	-6.2	-26.6	-13.6	52.0	42.2	-21.2
HD 199058	$20 \ 54 \ 21.1$	$+09\ 02\ 24$	37.2	-56.9	-19.9	-7.1	-27.5	-13.2	38.4	57.9	-28.3
AC 422524	20 54 28.0	$+09\ 06\ 07$	34.4	-58.6	-19.0	-5.6	-27.2	-13.0	38.3	57.9	-28.3
HD 201919	$21 \ 13 \ 05.3$	-17 29 13	76.5	-144.1	-7.4	-6.7	-27.4	-13.1	25.8	16.0	-24.5
BD+224409	$21 \ 31 \ 01.7$	+23 20 07	134.1	-144.8	-20.9	-6.0	-27.1	-14.8	6.4	22.7	-8.6
HD 207278	$21 \ 48 \ 48.5$	-39 29 09	41.2	-66.4	3.6	-7.5	-27.9	-12.1	53.5	2.6	-64.7
AC 433594	21 52 10.4	$+05\ 37\ 36$	117.8	-153.9	-13.4	-6.4	-26.5	-13.9	10.9	21.7	-17.5
HIP 110526a	22 23 29.1	+32 27 34	251.3	-207.6	-20.6	-6.2	-27.2	-13.5	-0.0	14.0	-5.3
HIP 110526b	22 23 29.1	+32 27 32	251.3	-207.6	-21.7	-6.2	-28.2	-13.1	-0.0	14.0	-5.3
HD 217343	23 00 19.3	$-26\ 09\ 14$	108.8	-160.4	6.7	-3.0	-26.3	-14.5	11.8	6.5	-29.1
HD 217379	23 00 28.0	$-26\ 18\ 43$	113.6	-162.1	7.0	-3.5	-27.3	-15.1	12.0	6.5	-29.7
HIP 114066	$23\ 06\ 04.8$	+63 55 34	171.0	-58.5	-23.7	-6.3	-27.0	-15.7	-9.2	23.1	1.5
HD $218860S$	23 11 52.1	$-45\ 08\ 11$	87.0	-93.5	11.2	-7.6	-29.4	-12.2	22.0	-6.3	-45.3
HD 218860N	23 11 53.6	$-45\ 08\ 00$	87.0	-93.5	9.8	-8.2	-29.2	-10.9	22.0	-6.3	-45.3
HIP 115162	$23 \ 19 \ 39.6$	$+42 \ 15 \ 10$	78.5	-67.4	-19.7	-4.3	-27.3	-14.4	-12.4	45.3	-14.8
HD 222575	$23 \ 41 \ 54.3$	-35 58 40	69.9	-68.0	11.1	-7.1	-26.9	-13.5	18.5	-0.7	-59.7
HD 224228	$23 \ 56 \ 10.7$	$-39 \ 03 \ 08$	205.9	-185.0	13.1	-7.5	-27.9	-13.4	6.0	-1.8	-21.2

Tabela 3.1 Continuação

3.2 Calibrações fotométricas

Como foi já dito acima, a fotométria usada neste trabalho consiste de duas calibrações diferentes desenvolvidas por Alonso et al. (1994a), (1994b), (1995), (1996a) e (1996b) e calibração desenvolvida por Houdashelt et al. (2000). Nesta dissertação não apresentaremos as equações de transformação entre os sistemas fotométricos, porém é bom comentar que as transformações no vísivel estão bem determinadas, o que não ocurre com os sistemas fotométricos do infra-vermelho. A principal razão são as notáveis diferenças encontradas na transmissão atmosférica nos diferentes observatórios, de fato, não há um sistema padrão, e por isso mesmo cada conjunto de dados fotométricos sempre deve ser transformações aos diferentes sistemas usados no hemisfério norte, conforme Jhonson (Jhonson & Morgan 1966; Lee 1970) e *cit* (Frogel et al. 1978; Elias et al. 1982 e Carney 1983).

3.2.1 Equações de Alonso

Estas equações são uma série de polinômios fundamentados na aplicação do método do fluxo infra-vermelho (IRFM "Infra Red Flux Methode" por sua sigla em inglês). Este método é fortemente dependente dos diâmetros angulares e fluxos bolométricos estelares. O IRFM foi desenvolvido incialmente por Blackwell et al. (1990), basicamente representa uma resposta à carência de um método direto para encontrar as temperaturas efetivas estelares. A teoria mostra que as temperaturas podem ser calculadas através dos diâmetros angulares estelares e de fluxos bolomêtricos (F_{bo}) , não obstante isto somente funciona no caso de estrelas na vizinhança solar (é chamado de método direto) pois na realidade nem todas as estrelas vão pertencer à vizinhança solar (as estrelas da vizinhança solar não são muito afetadas pela extinção interestelar, então o que se faz é usar o avermelhamento E(V-B), se após de aplicá-lo encontram-se valores exagerados então se usa a lei de extinção) para tal propósito são usados os métodos indiretos como o IRFM. Este método calcula a razão fluxo total integrado (F_{bo}) sobre fluxo monocromático (F_{ν}) , ambos são medidos na Terra, o que significa que é aplicável para estrelas com emissão no infra-vermelho; como veremos nas próximas linhas, o IRFM é semi-empírico porque combina os dados observacionais como magnitudes, F_{bo} , e diâmetros angulares com modelos de atmosfera para calcular os fluxos absolutos estelares. Nas estrelas mais

quentes do que K, o F_{bo} é controlado pela temperatura efetiva pois a opacidade infra-vermelha nas bandas moleculares é desprezível. A determinação dos F_{bo} e os diâmetros angulares são variáveis fundamentais no cálculo das temperaturas efetivas. Além da absorção atmosférica em certos comprimentos de onda e da extinção interestelar, a calibração das estrelas padrão também é um fator que atrapalha na hora de obter os F_{bo} pois em algumas estrelas existem incertezas importantes que não permitem obtê-las como ponto de referência, estas incertezas apresentam-se especialmente no ultra-violeta, fator que reduz o estudo das estrelas à faixa espectral [F - K]. Como pontos positivos do IRFM podem ser mencionados o fato de estar baseado em quantidades observacionais corelacionadas diretamente com as temperaturas efetivas, ter concordância com certas considerações teóricas, e que pode ser aplicado a uma amostra grande de estrelas.

A maioria dos trabalhos empíricos na determinação dos F_{bo} são restritos a estrelas de população I. Buser & Kurucz (1992) mostraram a influênca da metalicidade na determinação dos F_{bo} , de fato, alguns trabalhos anteriores como Arribas & Martínez-Roger (1987); Mountain et al. (1985); Bell & Gustafsson (1989); Di Benedetto (1998); Frogel et al. (1979), (1981), e (1983) mostravam problemas do *IRFM* nas estrelas pobres em metais. Nos artigos de Alonso que serão explicados nos proximos parágrafos, os autores tentaram melhorar a aplicação do *IRFM* em estrelas F, Ge K para obter determinações relevantes das abundâncias químicas, interpretações corretas dos diagramas HR e possíveis avaliações dos modelos de atmosfera.

A ideia descrita no primeiro artigo de Alonso é a obtenção de uma calibração semi-empírica do fluxo absoluto através de estimações fidedignas dos diâmetros angulares estelares; os diâmetros foram obtidos pela comparação entre as medições empiricas e os valores obtidos com *IRFM*. Para aquela época existiam mais dúvidas no referente aos parâmetros estelares das anãs de população I, devido a incertezas ligadas com as medições dos diâmetros angulares. Este artigo foi muito importante porque além de esboçar medidas confiáveis dos diâmetros obteve uma calibração para a estrela Vega.

No segundo artigo de Alonso, foi feita a fotomêtria infra-vermelha em JHKpara 360 estrelas através de equações de transformação fotométrica entre a banda JHK e o sistema *cit* Elias et al. (1982) e Carney (1983), o sistema Jhonson & Morgan (1953) e Lee (1970), e o sistema *ESO* Bouchet et al. (1991). Para conferir os resultados fizeram uma comparação com o sistema de banda estreita de Selby et al. (1988). Essa fotometria desenvolvida por Alonso e os seus colaboradores é referenciada na literatura como o sistema infra-vermelho do observatorio de Teide tcs(Telescopio Carlos Sanchez) do IAC (Instituto de Astrofísica de Canarias). Para a calibração das temperaturas foram medidas as magnitudes da banda larga JHK, os autores compilaram e transformaram os catálogos fotométricos publicados gerando uma serie de magnitudes infra-vermelhas usadas para calcular as temperaturas efetivas através do IRFM. É bom comentar que naquela época havia 3 catálogos fotométricos independentes: Schuster e Nisses (1988), (1989b); Sandage e Kowal (1986) e Carney e Latham (1987). Esses catálogos não conseguem fazer uma distinção clara entre as anãs e sub-anãs fotométrica nem cinematicamente; é por isso que a mostra de estrelas de Alonso contém estrelas anãs, sub-gigantes, binárias, e inclusive gigantes.

No terceiro artigo de Alonso os autores concentraram-se na obtenção dos F_{bo} , na procura de avanços específicos nos modelos atmosféricos, no cálculo das opacidades, e nas calibrações fotométricas. O processo para obter os F_{bo} começa com o cálculo numérico de cores e magnitudes sintéticas através dos modelos de atmosfera. Após transformam as magnitudes sintéticas para fluxos medidos nos filtros e calculam os parâmetros atmosféricos através de co-relações com o fluxo na banda (U - K). Após aplicou-se o IFRM para refinar o valor de T_a e determinar o diâmetro angular. Como conclusão os autores percebem uma independência no uso de modelos teóricos, sendo o procedimento descrito uma forma prática de atacar o problema da determinação dos fluxos para uma grande amostra de estrelas pobres em metais. É importante comentar que esses cálculos têm uma faixa de aplicabilidade $(4000K < T_a < 7000K e +0.50 < [Fe/H] < -3.50)$, uma extrapolação pode conduzir a errors.

No quarto artigo os autores aplicam o IRFM a uma mostra de anãs e sub-anãs usando os modelos de Kurucz (1991 e 1993) e obtiveram temperaturas $3500K \leq T_a \leq 8000K$; metalicidades $-3.50 \leq [Fe/H] \leq 0.50$; e gravidades de $3.5 \leq \log(g_s) \leq$ 5.0, daqui em diante T_a é a temperatura efetiva obtida com a fotométria de Alonso. Os resultados também parecem mostrar que para $T_a < 4000K$ o IRFM apresenta falhas pela carência das fontes de opacidade. A calibração do fluxo absoluto infravermelho baseado na determinação dos diâmetros angulares ajusta as temperaturas efetivas já calculadas com o IRFM. A análise óptica e os diagramas cor-cor infra-vermelhos mostram uma faixa espectral de [F0 - K0], com metalicidade de $0.1 > (Fe/H) \ge 3.0$, o que significa que ambos os resultados são perfeitamente aplicáveis à amostra desta dissertação. O método é mais sensível na banda J, por isso T_{aJ} mostra mais erros do que as outras. Perto de 5000K somente T_{aH} e T_{aK} foram estudadas porque o IRFM é muito sensível em R_J ; em baixo de 4000Ksomente T_{aK} foi estudada, na banda H amostra um fluxo muito baixo em infravermelho. O IRFM também é complicado de aplicar para T > 8000K porque essas estrelas emitem mais em comprimentos de onda azuis, e nesses comprimentos a extinção e os F_{bo} têm muitas incertezas. Em resumo os resultados deste artigo têm uma pequena dispersão com outros autores mas é esboçado no artigo que pode ser pelo fato que o IRFM foi melhorado com os modelos de atmosfera do Kurucz de (1991) e (1993), na calibração do fluxo infra-vermelho, e na determinação dos F_{bo} .

No quinto artigo aplicaram também o IRFM numa faixa espectral [F0 - K5] e metalicidades de $+0.50 > [Fe/H] \ge 3.00$; a correlação Temperatura efetiva \rightarrow cor \rightarrow metalicidade ([Fe/H]) foi analisada matematicamente por meio de polinômios da forma $\theta_{ef} = P(cor, [Fe/H])$ onde $\theta_a = 5040/T_a$. O ajuste feito pelos autores foi desenvolvido usando o método dos mínimos quadrados, retirando estrelas com ajuste maior do que 2.5σ . O número e a ordem dos termos no polinômio foi determinado por teste e erro, adicionando potências superiores e conferindo se há uma redução significativa da dispersão. Eles também graficaram T_a vs [Fe/H] e T_a vs *cor* para conferir que não houver desvios da distribuição normal. A comparação dos polinômios para cada cor especifica de Alonso com outras calibrações foi feita nesse artigo mesmo, de fato, o caso da cor (B - V), comparando-a com as de Code et al. (1976) para 0.35 < (B-V) < 0.65 têm uma diferença de 20K, para (B-V) = 0.20há uma diferença mais um pouco maior de 200K. Com respecto à calibração de Böhm-vitense (1981) apresentam-se diferenças de -200K em (B - V) = 0.40 e de 200K para (B - V) = 1.5. Com respeito às outras cores, existem diferenças, em alguns casos significativas, nas calibrações de Alonso e aquelas dos trabalhos prévios empíricos e teóricos, isto pode ser devido às incertezas nos métodos espectroscópicos, à calibração absoluta do IFRM, à faixa de metalicidades consideradas, e aos modelos de atmosfera. Como principais características desta calibração podem ser mencionadas: Uma amostra grande de anãs e sub-anãs com fotometria medida ou tomada da literatura; temperaturas derivadas do IRFM através de medidas relevantes dos diâmetros angulares e usando os modelos de Kurucz de (1993) com linhas metálicas de opacidade revisadas; e metalicidades tomadas da espectroscopia de Cayrel de Strobel et al. (1992). Então, em concordância com o artigo vamos

mostrar como ficam os polinômio de cada banda.

Para todos os casos, os polinômios têm a forma $5040/T_a$, os termos E(J - H), E(J - K), e E(V - K) são os excessos de cor nas respectivas bandas. Então na banda (J - H) o denominador T_a fica assim:

$$(J-H)_{cts} = 0.587 + 0.922(J-H)T_{cs} + 0.218(J-H)T_{cs}^{2} + 0.016(J-H)T_{cs}[Fe/H]$$
(3.1)

Sendo,

$$(J-H)T_{cs} = \left[\frac{0.98\left((J-H) + 0.043\right)}{1.076} - 0.008\right] - E(J-H)$$

O denominador T_a na bandaKfica:

$$(J-K)_{cts} = 0.582 + 0.799(J-K)_{tcs} + 0.085(J-K)_{tcs}^2$$
(3.2)

Onde,

$$(J-K)_{tcs} = \left[\frac{1.014\left((J-K)+0.013\right)}{1.056} - 0.015\right] - E(J-K)$$

Então no caso de $(V - K)_{cts}$ tem-se:

$$(V - K)_{cts} = 0.566 + 0.217(V - K)_{so} - 0.003(V - K)_{so}^{2}$$

-0.024(V - K)_{so}[Fe/H] + 0.037[Fe/H] - 0.002[Fe/H]^{2} (3.3)

Onde,

$$(V-K)so = (V-K)T_{CS} - E(V-K)$$

Nas outras bandas os denominadores dos polinômios estão dados por:

$$(V-I) = 0.424 + 0.61(V-I)j_o - 0.096(V-I)^2 j_o$$
(3.4)

Onde,

$$(V-I)j_o = (V-I)J - E(V-I)$$

$$(V - R) = 0.474 + 0.755(V - R)j_o + 0.005(V - R)^2 j_o$$

+0.003(V - R)j_o[Fe/H] - 0.0027[Fe/H] - 0.007[Fe/H]² (3.5)

Onde,

$$(V - R)j_o = (V - R)J - E(V - R)$$

$$(V-R)J = ((V-R) + 0,03)/0,73$$

$$(R-I) = 0.522 + 1.178(R-I)j_o - 0.32(R-I)^2 j_o$$

+0.003(V-R)j_o[Fe/H] + 0.057[Fe/H] + 0.005[Fe/H]² (3.6)

Onde,

$$(R - I)j_o = (R - I) - E(R - I)$$

$$(B - V) = 0.541 + 0.533(B - V)_o + 0.007(B - V)_o^2$$

-0.019(B - V)_o[Fe/H] - 0.047[Fe/H] - 0.011[Fe/H]² (3.7)

Onde,

$$(B - V)_o = (B - V) - E(B - V)$$

Hanbury-Brown, Davis, & Allen (1974) calcularam calibrações empíricas de temperaturas efetivas de estrelas de baixa massa na SP, este artigo obteve medidas diretas dos diâmetros angulares para estrelas mais jovens do que F5, não obstante para as estrelas posteriores e inclusive para as pobres em metais ainda ficam incertezas. Böhm-vitense (1981) fez uma revissão desta situação e concluiu que alguns casos modelos de atmosfera podem ser aplicados para obter temperaturas efetivas fidedignas, mas em outros casos esses modelos apresentam problemas como por exemplo o fluxo observado no ultra-violeta, sospeita-se que isso esteja relacionado com a perda de opacidade (Magain 1987).

3.2.2 Equações de Houdashelt

Como é sabido da teoria e das observações, a co-relação Cor-Temperatura (CT) e as Correções Bolométricas (CB) podem ser utilizadas para inferir propriedades físicas das estrelas. As isócronas estelares são comparadas com dados observacionais para calcular avermelhamento, idade e composição química de aglomerados estelares e verificar o tratamento teórico de fenômenos como a convecção e o "overshooting". As relações CT teóricas são geralmente produzidas por modelos que usam perfis de transmissão de filtros fotométricos e espectros sintéticos estelares cujos valores de temperatura efetiva, abundância química, e gravidade superficial são conhecidos. Este artigo de Houdashelt apresenta cores e CB para uma grade de estrelas F, Ge K com $T_h = [4000, 6500]K$, $\log(g_s) = [0.0, 4.5]$; e [Fe/H] = [-3.0, 0.0], onde T_h é a temperatura efetiva calculada com os polinômios de Houdashelt; com esses dados foram calculados os modelos de atmosfera usando o codigo MARCS e o espectro sintético usando o codigo SSG. As cores foram medidas convoluindo os espectros sintéticos com os perfis de transmissão dos respectivos filtros. Ao ser colocados nos seus respectivos sistemas fotométricos aplicaram-se correções de ponto zero dos modelos de Vega. As cores sintéticas e as isócronas deste artigo foram verificadas comparando-as com os diagramas CMD do aglomerado M67, as cores mostram alguma tendência a usar polinômios de ordem superior, mas nos cálculos finais foram usadas regresões lineres e de ordem dois. No sistema fotométrico cit/cito (J-K) a concordância entre as cores sintéticas e observadas é muito ruim, enquanto que no sistema Jhonson (J - K) é ótima, isto pode ser devido ao melhor conhecimento do

perfil de transmissão da banda J de Jhonson. Segundo os resultados deste artigo as incertezas na $\log(g_s)$ e a [Fe/H] dominam (U-V) para gigantes frias e anãs quentes; incertezas na T_h têm fortes influenças em (U-V) para anãs frias. Enquanto que as incertezas em cada um dos parâmetros $(T_h, \log(g_s), [Fe/H])$ dominam (B-V)para gigantes frias; T_h somente domina (B-V) para anãs frias; T_h e metalicidade dominam em (B-V) para anãs quentes.

Baseados na isócrona de metalicidade solar, encontram-se diferenças importantes entre gigantes e anãs nas cores $(V-R)c \in (V-I)c$ enquanto que em $(B-V) \in (J-K)$ os dois tipos de estrelas parecem ser iguais. Também se apresentam diferenças em (U-V) que podem ser atribuídas ao grau dos polinômios ou alguma outra forma matemática da equação. Este artigo também mostra que as isócronas das gigantes e as anãs diferem aproximadamente em 5000K, o que poderia ser explicado porque as T_h das anãs frias de campo são sistematicamente mais quentes. Outra possível explicação é que as isocronas predizem uma relação $g_s - T_h$ errada e/ou essa relação é certa mas o modelo de atmosfera ou o espectro sintético estão errados. As T_h de Houdashelt para as gigantes têm pequenas diferenças com os trabalhos de Benedetto & Rabbia (1987), Dyck (1996), e Perrin (1998); no caso das anãs a diferença é maior especialmente nas temperaturas mais frias. A não concordância pode-se dever que as anãs frias são mais azuis do que as cores (B - V) obtidas empiricamente. Em $(V-R) \in (V-I)$ também mostram cores mais azuis, mas menos do que em (B-V). Para encontrar as T_h , Houdashelt fez ajustes quadráticos em função dos tipos de cor empíricos, isso é ilustrado na tabela 6 do artigo, em concordância com ela as equações para cada banda ficam da seguinte forma:

$$(B - V_J) = 8330.06 - 4924.18(B - V)_0 + 1410.47(B - V)_0^2$$
(3.8)

$$(V - R_C) = 8757.630 - 10410.800(V - R)_0 + 6078.040(V - R)_0^2$$
(3.9)

$$(V - I_C) = 9058.780 - 6152.430(V - I)_0 + 1987.840(V - I)_0^2$$
(3.10)

$$(V - K_{cit}) = 8734.720 - 2456.600(V - K)_{cit} + 335.196(V - K)_{cit}^2$$
(3.11)

$$(J - K_{cit}) = 8007.330 - 7197.760(J - K)_{cit} + 3064.100(J - K)_{cit}^2$$
(3.12)

3.3 Razões de linha

O trabalho de Pagdett vai focalizado ao cálculo das temperaturas efetivas das T-Tauri usando a espectroscopia ao invés da fotometria como foi feito com as calibrações anteriores. Antes deste artigo, o trabalho de Cohen & Kuhi (1979) usando espectroscopia de baixa resolução pode ser considerado o primeiro neste tópico. O principal argumento para usar espectroscopia é a prescença do disco oticamente espesso ao redor das T-Tauri clássicas causante do velamento nas linhas de absorção. Esse velamento faz com que o comportamento da temperatura nas T-Tauri seja diferente do que nas estrelas evoluídas, de fato, os modelos desenvolvidos por Calvet, Basri, & Kuhi (1984) mostram que o gradiente de temperatura fotométrica nas T-Tauri é menor do que nas estrelas da SP. A explicação para a existência deste velamento ainda não esta bem explicada mas o artigo de Finkenzeller & Basri (1987) parece mostrar que pode ser devido ao preenchimento de linhas de emissão no espectro de absorção quando existem linhas fortes metálicas com baixos potenciais de excitação. Outros trabalhos têm dado explicações alternativas. Por exemplo nos artigos de Hartigan et al. (1989, 1991) diz-se que o velamento pode ser causado por um contínuo que as vezes é mais brilhante do que o contínuo fotosférico estelar mostrando que o velo parece estar relacionado com a presença de material circunstelar que causa um excesso de contínuo. Além disto, o artigo de Bertout (1989) mostra que muitas linhas de emissão podem ser originadas numa camada limite entre a estrela e um disco de acresção ao redor da mesma.

A técnica espectroscópica de Padgett consiste em calcular razões de linhas com transições altas e baixas de espécies metálicas neutras para encontrar temperaturas efetivas aproveitando o fato que algumas razões são muito sensíveis às temperaturas e quando são calibradas contra relações espectroscópicas padrões de temperaturas bem conhecidas podem ser encontradas temperaturas com boas aproximações. Quando as linhas são muito fracas é de fato díficil calcular as temperaturas, especialmente se as respectivas estrelas têm altos valores $V \sin(i)$ ou baixas (S/N); por isso são usadas razões de elementos neutros como o Ferro FeI e o Vanádio VI.

Existem outros artigos disponíveis na literatura usando razões de linhas, alguns desses artigos são: Boesgaard & Tripicco (1986) e (1987), Basri & Batalha (1990),

Basri et al. (1991); Martin et al. (1994); Patterer et al. (1993); King (1993) e Gregorio-Hetem & Lepine (1992).

Os parâmetros de ajuste da tabela 6 deste artigo mostram o método de encontrar as temperaturas aplicando as respectivas regressões lineares, mesmo assim a equação para calculá-las pode ser generalizada da seguinte forma:

$$T_p = \frac{(W_1/W_2 - y)}{m} \tag{3.13}$$

Onde m é a inclinação, y é a interseção com o eixo y, w_1 e w_2 são as larguras equivalentes do Vanádio VI ou Ferro FeI nos comprimentos de 6119Å, 6199Å e 6216Å para o VI e 6200Å, 6219Å, 6703Å e 6705Å no caso do FeI. Em concordância com a tabela 6, a temperatura efetiva para as linhas VI(6199Å) e FeI(6200Å) ficaria:

$$T_p = \frac{(W_{VI}/W_{FeI} - 4.9)}{-8.3 \times 10^{-4}} \tag{3.14}$$

Para $FeI(6200\text{\AA}) = VI(6216\text{\AA})$ seria:

$$T_p = \frac{(W_{FeI}/W_{VI} + 3.4)}{9.1 \times 10^{-4}} \tag{3.15}$$

Onde T_p é a Temperatura efetiva usando as razões de linha de Pagett, para calcular as outras temperaturas devem se aplicar as regressões com a respectivas inclinações e interseções com o eixo y.

3.4 Ajuste da SPIZ vs Log(g)

Um diagrama HR de $\log(g_s)$ vs $\log T_{ef}$ ao invés do M_v vs tipo espectral é mais útil em nosso caso porque g_s e T_{ef} são dois parâmetros típicos das atmosferas estelares e observáveis nos espectros, este diagrama mostra como variam os parâmetros atmosféricos ao longo da evolução estelar, além disto, as informações que possam ser extraídas do diagrama serão relacionadas diretamente com as observações sem se referir às luminosidades, o que significa que a informação da evolução estelar interpretada deste diagrama é independente da distância, das correções bolométricas e dos paralaxes espectroscópicas. Consequentemente, isto transforma o diagrama $\log(g_s)$ vs $\log T_{ef}$ numa ferramenta poderosa no estudo dos interiores estelares. Além disto, outra coisa que pode ser percebida é que permite fazer comparações entre estrelas de algomerados e de campo e por sua vez com a teoria de um jeito que não é possível com o diagramas HR convencionais conduzindo para luminosidades independentes da idade estelar. O primeiro autor a perceber o alcance de um diagrama deste tipo foi Morgan (1937) e desde então esta sendo utilizado. Em nosso caso usamos as isócronas $\log(g_s)$ vs $\log T_{ef}$ de 50MYr de Siess, L.; Dufour, E. & Forestini, M. (2000) e a equação fica:

$$\log(g_z) = \log \frac{0.76}{R^2} + 4.438 \tag{3.16}$$

Onde $\log(g_z)$ é a gravidade superficial usando este diagrama.

3.5 Curva de crescimento

Sabe-se que o perfil e a profundidade das linhas espectrais são uma amostra aproximada da física da atmosfera estelar, elas refletem certas condições físicas que podem ajudar no cálculo das abundâncias químicas, de fato, a relação entre as linhas de absorção e variáveis como temperaturas efetivas, pressão, radiação, e os campos de velocidade e magnético do gás parecem determinar essas condições atmosféricas.

As larguras equivalentes w das linhas estão determinadas pelas velocidades térmica e de micro-turbulência, além disto, sendo w também uma função da temperatura efetiva é por sua vez função da pressão eletrônica, pressão do gas e da constante de amortecimento γ .

As temperaturas, gravidades (pressões) e abundâncias apresentam diferentes sensibilidades e efeitos nas linhas espectrais dependendo se elas são fracas ou fortes. No caso da temperatura efetiva ela é a variável que mais influi no comportamento da w, por exemplo para as linhas fracas, w apresenta forte dependência exponencial e em algumas potências da temperatura efetiva nos processos de excitação e ionização, um aumento em w está relacionado com um aumento da temperatura efetiva que por sua vez mostra um aumento na excitação e portanto um aumento na pressão eletrônica. Para este tipo de linhas, por exemplo, mudanças em temperatura efetiva (T_{ef}) fazem que as linhas apresentem um pico máximo de w seguido de decaimentos em concordância com o grau de ionização das espécies neutras ou ions. No caso de linhas fortes, com o aumento de T_{ef} as asas das linhas encolhem-se fazendo que a w diminua, esse comportamento pode ser explicado porque a temperatura efetiva depende da constante de amortecimento, existe também o comportamento onde a temperatura afeta só fracamente as w e é no caso de linhas saturadas.

Os efeitos da pressão nas linhas fortes são observáveis de 3 formas: mudanças na razão (absorventes de linha / opacidade contínua), sensibilidade da pressão com

a γ ; dependência da pressão com o alargamento Stark linear do H. Nas estrelas frias os efeitos da pressão traduzem-se em efeitos da gravidade já que as duas pressões, eletrônica e do gás estão relacionadas pelas equações $P_g \sim cteP_e^2$ sendo $P_g \sim C(T)g_s^{2/3}$; isso é observável em estrelas $F, G \in K$ onde ao diminuir a gravidade (ou aumentando a pressão) a w aumenta, outro efeito observável nelas é a sensibilidade com a pressão para as linhas de H o qual é significativo para $T_{ef} \sim 7500K$. Neste caso, os efeitos da pressão (gravidade) são muito mais fracos do que os efeitos da temperatura.

Os efeitos da pressão para linhas fortes depende do estado de ionização dos ions ou atomos, por exemplo, para os ions ou átomos cuja maioria de elétrons apresentam o mesmo estado de ionização baixas pressões ocasionam grandes w; para os ions ou átomos cuja maioria de elétrons estão no estado de ionização inferior a pressão só altera as linhas, por exemplo, para FeI e OI não há sensibilidade com a pressão enquanto que para o FeII há sensibilidade. Os efeitos nas linhas fracas são observáveis no caso do mesmo estado de ionização, aqui é observado um alargamento das linhas de MqI.

Enquanto a abundância, o efeito importante é sobre as asas, de fato, quando a abundância (A) aumenta também o fazem as asas. Mudanças no perfil e na w só dependem fortemente da profundidade óptica da linha, as abundâncias só ocasionam um pequeno incremento na largura equivalente. No caso de linhas fortes, as asas dominam o perfil e a largura equivalente é proporcional à raiz quadrática da abundância.

Quando a abundância do elemento muda no tempo o equilíbrio de ionização se quebra, a absorção no contínuo muda com a mudança dos e^- doadores e o amortecimento colissional pode ser diferente pelas mudanças em P_e e P_g . Há casos onde as abundâncias dos elementos são constantes e a dos doadores de e^- é variável, isto gera um forte efeito nas asas e em menor proporção na w. No caso inverso, os dois parâmetros, asas e profundidade variam, mas as asas o fazem de um jeito não tão dramático e as w de um jeito quase igual ao primeiro; além disso, outro efeito percebido é um enfraquecimento das linhas em concordancia com o aumento do k_{ν} do H^- devido ao aumento dos e^- .

A curva de crescimento é uma forma de analisar o comportamento da largura equivalente em função do número de átomos absorvidos nas respectivas linhas, ela mostra como a absorção que se apresenta nas linhas determina a composição química. De fato, a análise química feita através desta curva é referenciada na literatura como "o método da curva de crescimento" os primeros trabalhos das curvas podem ser encontrados nas citações de Gray (2005), no respeitivo capitulo deste livro o autor faz uma breve introdução histôrica. Deve-se ter cuidado com a definição da curva de crescimento dita acima já que para uma determinada abundância química tem-se um número específico de absorventes que não é possível alterar, então às vezes falar que w está em função do número de absorventes não é tão certo. Uma curva de crescimento está dividida em três faixas de comportamento, no primeiro deles que se apresenta no caso de linhas fracas, é dominado pelo deslocamento Doppler e o perfil cresce proporcional à abundância igual que a largura equivalente. Na segunda parte, acontece quando a profundidade central da linha aproxima-se ao seu valor máximo e as linhas saturam-se assintôticamente. Na terceira parte é quando a profundidade óptica nas asas da linhas são proporcionais ao coeficente de absorção contínuo v_v , sendo $v_v = cte T_{ef}^{-5/2} P_e e^{0.75/kT}$ com P_e a pressão eletrônica. Ainda não se tem certeza sobre a partir de qual valor de A a estrela começa ter dependência do valor de γ , sendo ela dependente da T_{ef} e da P_e .

As curvas de crescimento para as linhas das mesmas espécies com A constante diferem em deslocamentos ao longo do eixo x em concordância com valores de g_n, f, λ , χ , e k_{ν} por isso nas curvas é bom somente usar $\log(w/\lambda) / \log A$. Com o potencial χ também se apresenta a mesma situação, quando χ aumenta a curva desloca-se à direita aumentando também A. A temperatura de excitação θ_{ex} decai lentamente com χ . Na fotosfera as linhas de mais alto χ são formadas nas regiões mais profundas onde as temperaturas são mais altas. As temperaturas efetivas entram no jogo através do equilibrio de excitação que por sua vez atua através das variáveis N_i/N_E , k_{ν} , e θ_{ex} ; a curva em concordância com os valores de T_{ef} desloca-se também ao longo do eixo x variando $\log A$, este deslocamento poder ser para a direita ou esquerda dependendo do valor da T_{ef} , geralmente 100K correspondem a aproximadamente a 0.1 e para as estrelas mais frias correspondem valores menores de log A enquanto que para as estrelas mais quentes terão log A maiores. Com respeito à gravidade, quanto maior é o $\log(g_s)$ maior é $\log A$ deslocando-se a curva à direita; as w de íons são sensiveis à gravidade num fator de $\sim q_s^{-1/3}$ o que significa que as w são sensíveis às abundâncias num fator de $\sim g_s^{1/3}$. Outra coisa interessante da g_s é que devido à dependencia da γ com a pressão
a g_s altera a parte de amortecimento (damping) da curva, grandes $g_s \in \gamma$ podem alterar a parte plana da curva.

3.5.1 Renoir e DAOSPEC

Nesta dissertação a curva de crescimento foi obtida usando o software Renoir dos pesquisadores francesses M. Spite and R. Spite, o software interpola os modelos de atmosfera para um cojunto dado de larguras equivalentes previamente medidas e calcula as abundâncias de FeI, esses resultados são visualizados num gráfico de $\log(w/\lambda)$ vs $\log A$ onde é plotada a curva de crescimento. Os valores prévios dos parâmetros estelares foram obtidos com as técnicas fotométricas e as razões de linha já explicadas acima, é bom comentar que geralmente ao usar Renoir sempre a velocidade microturbulenta é um parâmetro livre que precisa ser determinada primeiro mas isso esta relacionado ao tipo de análise envolvendo modelos de atmosferas e formação de linhas espectrais em 1D.

Especificamente o Renoir lê primeiro as linhas de absorção com suas respectivas larguras equivalentes e parâmetros eletrônicos como potencial de excitação, constante de amortecimento, e $\log(gf)$.

O processo da contagem das linhas e medição das larguras equivalentes pode ser feito "manualmente" usando IRAF ou com software chamado de DAOSPEC desenvolvido por Stetson & Pancino (2004); fundamentalmente o programa encontra as linhas de absorção, mede as largras e ajusta o contínuo a partir de uma lista prévia de linhas em repousso no sistema de laboratório, essa lista de laboratório atualizada foi tomada do site do NIST ("National Instute of Standards and Technology") http: //www.www.nist.gov, então com essa informação é arrangado um arquivo de texto no respectivo formato para que possa ser lido pelo DAOSPEC e por sua vez encontre as linhas no espectro 1D, para efeitos de comparação e avaliação do processo foram identificadas as linhas e medidas as larguras manualmente para um espectro com baixa (S/N), os resultados são mostrados na figura 3.3.

Antes da leitura o espectro deve estar "binearizado" em comprimento de onda e normalizado, para fazer a normalização foi necessario usar o pacote *continuum* do *IRAF*. Como segundo passo está a leitura da grade do respectivo modelo de atmósfera disponível na literatura, com a grade é possível gerar os modelos num formato com extenssão .mod, por exemplo um arquivo chamado de modeles.mod; após deve-se transformar o arquivo de texto de saída do *DAOSPEC* ao formato específico suportado pelo Renoir o qual deve ter o comprimento de onda, o nome do elemento, o potencial de excitação, log(gf), e a largura equivalente. O passo seguinte é rodar o executável do Renoir para que ele começe perguntar os parâmetros estelares já previamente calculados. Após disto ele faz a interpolação calculando as abundâncias de *FeI* em cada linha, o produto final é a curva de crescimento que

Figura 3.3: Comparação das w medidas pelos programas DAOSPEC e IRAF.

por sua vez determinará a abundância média.

O processo de ajuste da curva é iterativo, modificando os parâmetros utilizados no modelo procuramos encontrar a menor disperssão possível das linhas (pontos) medidas, quando isto é conseguido o ajuste da curva de crescimento teórica fornece o valor da metalicidade.

3.6 Síntese espectral

Esta técnica consiste na geração de um espectro teórico que é comparado com outro observacional, a síntese espectral é usada por ser um método mais complexo geralmente para elementos que não têm muitas linhas num espectro como é o caso do Lítio e o Berílio, etc. Neste trabalho para levar a cabo a síntese foi usado o software SPECTRUM do pesquisador americano Richard Gray (1994), dito software é de uso público e esta disponível na internet:

http://www.phys.appstate.edu/spectrum/spectrum.html

O *SPECTRUM* usa as grades de modelos de Kurucz como parâmetro de entrada, após soluciona iterativamente para cada camada na fotosfera estelar um sistema de 7 equações diferenciais não lineares que correspondem às equações de equilíbrio das diferentes espécies e à equação da densidade total, então o software calcula as opacidades de referência e as profundidades ópticas nas respectivas camadas atmosféricas; com esta informação começa o processo de cálculo do espectro

Figura 3.4: Curva de crescimento do Sol.

sintético. Divide o espectro em blocos de 20Å, e para cada um deles são calculados a opacidade e o fluxo emergente do contínuo no centro da faixa, a abundância iônica e a população do nível de uma transição particular são calculadas solucionando-se as equações do Boltzman e Saha; a opacidade de linha, a profundidade ótica, a opacidade e o fluxo do contínuo são usados para calcular a intensidade residual normalizada nesse ponto espectral, para determinar quais linhas do espectro entram no cálculo da opacidade o software usa uma lista que contém todas as possíveis linhas num raio de 10Åao redor de um determinado ponto do espectro, para cada uma dessas linhas o software por sua vez designa um "raio de cálculo" com base no cálculo da profundidade da linha. Então o código faz uma varredura em toda a faixa para seleccionar as linhas candidatas e as envia para uma segunda lista onde vão estar as linhas definitivas que farão parte do cálculo da opacidade. As linhas do H são calculadas levando em conta os alargamentos ressonántes e Stark e a estrutura fina no núcleo, a opacidade de linha em pontos intermediários do espectro é obtida por interpolação de 4 pontos em cada uma das camadas da atmosfera, estas linhas são incluídas no cálculo das opacidades de linha para todos os pontos ao redor do centro da linha. O código do SPECTRUM inclui 17 linhas de Lyman, 250 de Balmer e 246 de Paschen. Linhas HeI são calculadas com base nos desenvolvimentos feitos por Beauchamp, Wesemael & Bergeron (1997). Esses cálculos incluem componentes proibidas, as linhas do HeII não são incluídas atualmente no SPECTRUM, as linhas do HeI são calculadas somente para modelos com $T_{ef} > 8500K$, linhas do HeI no vermelho estão afetadas pelo não-LTE ocassionando que não sejam bem reproduzidas pelo código.

O SPECTRUM gera os espectros sintéticos com suposição de LTE e trata cada linha como se fosse de absorção pura, ou seja, sendo a função da fonte igual à função de Planck, conseqüentemente tem problemas nos espectros de estrelas O onde os efeitos de não-LTE são importantes, também terá problemas nos casos onde uma parte significativa da linha forme-se na cromosfera, para $T_{ef} < 4500K$ o software também não trabalha bem pelo fato de se apresentar uma fonte desconhecida importante de opacidade na região azul-violeta do espectro, entretanto, no vermelho e no infravermelho são gerados espectros razoáveis para $T_{ef} < 4500K$. O SPECTRUM não tem ainda algumas das fontes de opacidade no infravermelho pras estrelas anãs, as opacidades que normalmente podem ser calculadas pelo código são: as ligadolivre e livre-livre do H, HeI e H^- ; as livre-livre do HeII; a opacidade do H_2^+ ; as opacidades devidas a espalhamento de Rayleigh do H_2 e HeI; a opacidade do HeI^- ; as opacidades em baixas e intermediarias temperaturas; e a opacidade do scattering eletrônico. O SPECTRUM não calcula espectros de moléculas triatômicas.

Figura 3.5: Sínteses preliminares de AB Doradus.

O procedimento para obter o espectro sintêtico usando *SPECTRUM* consiste de: a seleção do modelo de atmosfera, de uma lista de linhas, da faixa de comprimento de onda, da velocidade de rotação, da velocidade microturbulenta e dos parâmetros atômicos dos respectivos elementos a serem analisados. O modelo de atmosfera para a respectiva estrela e a velocidade microturbulenta devem ser selecionados da grade de modelos do Kurucz, é importante comentar que o valor da velocidade de microturbulência (V_{mt}) nunca deve ser maior do que mostrado na grade já que esta velocidade influi nas opacidades de linha; a velocidade de rotação (V_{ro}) deve ser selecionada por teste e erro, a lista de linhas utilizada neste trabalho foi a lista padrão fornecida junto com o software. Então, para levar a cabo o processo iterativo de gerar o espectro sintético e obter a melhor simulação possível do espectro observado devem-se subministrar valores iniciais da abundância do Lítio e modificar os valores das velocidades V_{rot} e V_{mt} até encontrar o melhor ajuste. Na figura 3.5 é mostrado este processo.

Capítulo 4

Resultados e análise

Neste capitulo mostramos os resultados da análise dos dados utilizando-se a metodologia explicada no capítulo anterior. Os resultados podem-se resumir assim $T_{ef} = [4486, 6031]K$, $\log(g_s) = [3.90, 4.60]$, [Fe/H] = [-0.20, 0.15], $V_{mt} = [1.00, 2.50]Kms^{-1}$ e $\log N(Li) = [0.64, 2.89]$. Do total de 89 estrelas até agora identificadas como parte de AB Doradus foi possível calcular as temperaturas fotométricas para todas, enquanto que a espectroscópia teve menor cobertura pois algumas estrelas não têm espectro ou porque a relação Sinal/Ruido (S/N) (veja tabela 4.4) para alguns dos espectros disponíveis era muito baixa.

Na tabela 4.1 são mostradas as cores fotométricas obtidas das observações, específicamente cores nas bandas (B - V), (V - I), J, H, e K (JHK são as cores obtidas através do "two mass") as cores do sistema tcs foram obtidas através das transformações de Alonso (1998) e Carpenter (2001) ; as cores do cit por meio das transformações de Carpenter (2001); e a cor (V - I)J através das transformações de Bessel (1979). Na tabela 4.2 estão listadas as extinções interestelares para cada cor, as equações para calculá-las foram obtidas de Riek & Lebofsky (1985); a tabela 4.3 mostra mais cores no sistema cito e as duas temperaturas fotométricas obtidas nesta dissertação, T_a e T_h usando os respeitivos polinômios indicados nas seções 3.2.1 e 3.2.2.

Na tabela 4.4 são mostrados o tipo espectral proposto por Torres et al. (1999), a velocidade radial heliocêntrica observada V_r , o (S/N), a largura a meia altura FWHM, a T_p , a temperatura obtida usando o software Renoir T_r , a temperatura do modelo atmosférico T_g , as gravidades superficiais $\log(g_r)$ obtida usando Renoir e a gravidade $\log(g_g)$ atmosférica utilizada em SPECTRUM. Como vai ser dito no seguinte parágrafo, as gravidades apresentam um comportamento parecido com

Figura 4.1: Dispersão de Temperaturas fotométricas.

ás temperaturas, dispersões entre os três valores de gravidades maiores do que 0.5 somente apresentaram-se em algumas estrelas onde o espectro tem (S/N) < 45.5, é bom comentar que o Renoir permite flexibilidade na grade de entrada e possível usar gravidades de três casas significativas inclusive com faixas de 0.01 enquanto que o SPECTRUM não pode interpolar a grade de modelos.

Na tabela 4.5 aparecem algumas características observacionais como a distância, magnitude absoluta visual M_v , as correções bolométricas teóricas CB_{te} e observadas CB_{ob} , as magnitudes bolométricas observadas M_{bo} e teóricas M_{bt} , as luminosidades teóricas L_{te} e observadas L_{ob} , o raio R, e a massa M.

Na tabela 4.6 fazemos uma comparação entre as diferentes temperaturas obtidas com fotometria e espectroscopia, a temperatura efetiva final T_f em alguns casos foi calculada mediante a média aritmética entre $T_r \in T_g$, em outros os dois valores coincidem. O valor de entrada no Renoir foi calculado com a média aritmética de T_a , $T_h \in T_p$; quando existiam diferenças > 250K entre a fotometria e a espectroscópia e haviam valores relativamente altos da (S/N), então escolha-se T_p como valor de entrada; nas estrelas com (S/N) baixa não encontrou-se dispersão entre T_a , T_h , e T_p ; e no caso onde foi encontrada dispersão entre elas, escolhou-se a temperatura mais proxima da teórica. Para ilustrar melhor a explicação anterior podemos citar os exemplos das estrelas: $HD6569 \in G85441037$; para a HD6569 não existem diferenças significativas entre as temperaturas derivadas da espectroscopia e a fotometria, então a temperatura de entrada no Renoir foi derivada calculando a média aritmética das três temperaturas, para a G85441037 há uma diferença maior do que 250K entre fotometria e espectroscópia mas há um (S/N) aceitável, então a temperatura inicial no Renoir foi obtida tirando as temperaturas fotométricas e usando o valor de T_p . Vale ressaltar que os melhores ajustes na fotometria correspondem às cores do "two mass", enquanto que as cores (B - V) e (V - I) mostraram para algumas estrelas resultados sem sentido. Em termos gerais somente existem dispersões de temperaturas fotométricas significativas para algumas estrelas mas essas diferenças estão relacionados com incertezas ligadas com as observações mesmas veja o grafico 4.1 onde são comparadas as duas calibrações fotométricas, gracias as cores, a fotometria foi o único jeito de obter temperaturas para todas as estrelas da associação. Com respeito as temperaturas espectros onde a diferença entre as técnicas usadas é maior do que 250K, não obstante houve também alguns casos de (S/N) baixa com diferenças de temperaturas menores do que 250K, enquanto que nos espectros de alta (S/N) houve uma boa coincidencia entre as temperaturas.

Na tabela 4.7 comparamos os valores das gravidades, a obtenção da $\log(g_f)$ foi parecida ao caso da T_f , em alguns casos, quando haviam dispersões menores do que 0.5dex, o valor final era obtido da média aritmética de $\log(g_z)$, $\log(g_r)$, e $\log(g_g)$; em outros foi simplemente a media de duas delas; e em outros casos foi somente levado em conta o valor obtido do Renoir $\log(g_r)$ como valor final $\log(g_f)$.

Na tabela 4.8 listamos as metalicidades fotométricas calculadas através dos polinômos de Alonso $[Fe/H]_a$, as metalicidades espectroscópicas usando Renoir $[Fe/H]_r$ e as metalicidades dos modelos atmosféricos utilizados na sintese espectral $[Fe/H]_g$. A $[Fe/H]_a$ somente pode ser considerada um valor prévio antes do cálculo das metalicidades espectroscópicas, a forma de calculá-las foi indicado no inciso 3.2.1. Na maioria dos casos esta forneceu uma faixa ampla de metalicidade na qual estavam incluídos os valores obtidos pela espectroscopia, em poucas estrelas os valores espectroscópicos ficaram ligeiramente deslocados da faixa fotométrica.

Na tabela 4.9 estão listados os parâmetros e as abundâncias das estrelas nas quais foi possível aplicar a metodologia completa. Infelizmente só puderam ser analisadas menos da metade das estrelas pela imposibilidade de ter os espectros de todas ou a maioria delas pois uma quantidade significativa das estrelas de *AB Doradus* não são visíveis no hemisfério sul e pelo fato do baixo (S/N) de alguns espectros.

Estrelas	(B-V)	(V - I)	(V-I)J	(V-K)	(J-K)	(H - H)	$(V-K)_{tcs}$	$(J-K)_{tcs}$	$(J-H)_{tcs}$	$(V-K)_{cit}$	$(J-K)_{cit}$
HD1405	1,00	0,96	1,23	2,47	0,62	0,50	2,46	0,59	0,49	2,45	0,60
HD 4277	0,48	:	:	1,42	0,28	0,24	1,42	0,27	0,25	1,40	0,28
HD 6569	0,91	0.95	1,22	2,10	0,57	0,48	2,09	0,54	0,47	2,08	0,55
HIP 6276	0,79	0,83	1,07	1,87	0,48	0,38	1,87	0,46	0,38	1,85	0,47
CD-46644	0,91	1,16	1,49	2,63	0,68	0,54	2,62	0,65	0,52	2,61	0,66
HD 13482	0,72	0,83	1,07	8,41	0,47	0,37	8,41	0,45	0,37	8,39	0,46
HD 16760 b	0,96	:	:	11,04	0,76	0,48	11,03	0,73	0,47	11,02	0,73
HD 16760	0,65	:	:	9,17	0,40	0,33	$_{9,17}$	0,38	0,33	9,15	0,39
HD 17332 b	0,72	0,76	0.98	8,44	0,33	0,29	8,44	0,31	0,30	8,42	0,32
HD 17332 a	0,60	0,67	0,86	8,67	0,35	0,31	8,67	0,33	0,31	8,65	0,34
HD 19668	0,81	0,84	1,08	8,94	0,46	0,37	8,94	0,44	0,37	8,92	0,45
BD+21 418 b	1,13	:	:	11,18	0,71	0,57	11,17	0,68	0,55	11,16	0,68
BD+21 418 a	0,59	0,66	0,85	8,81	0,30	0,20	8,81	0,29	0,21	8,79	0,30
HD 21845 a	0,68	0,75	0,96	8,73	0,47	0,38	8,73	0,45	0,38	8,71	0,46
HD 21845 b	0,11	:	:	3,70	0,79	0,61	3,69	0,76	0,59	3,68	0,76
Hip 17695	1,50	2,40	3,08	12,38	0,87	0,63	12,37	0,83	0,60	12,36	0,84
HD 24681	0,71	:	:	1,77	0,46	0,32	1,77	0,44	0,32	1,75	0,45
HD 25457	0,52	:	:	5,37	-0,01	-0,13	5,37	-0,01	-0,09	5,35	0,00
HD 25953	0,48	:	:	8,14	0,31	0,19	8,14	0,30	0,20	8,12	0,31
5899 0026	1,52	2,51	3,23	5,61	0,85	0,59	5,60	0,81	0,57	5,59	0,82
CD-56 1032 N	1,56	2,82	3,62	5,26	0,91	0,56	5,25	0,87	0,54	5,24	0,87
CD-56 1032 S	1,54	2,58	3, 32	4,79	0,86	0,58	4,78	0,82	0,56	4,77	0,83
HD 31652	0,76	:	:	1,77	0,40	0,37	1,77	0,38	0,37	1,75	0,39
CD-40 1701	0,88	:	:	11,25	0,68	0,53	11,24	0,65	0,51	11,23	0,66
HD 32981	0,60	:	:	1, 39	0,29	0,22	1, 39	0,28	0,23	1,37	0,29
HD 293857	0,73	0,82	1,05	1,90	0,28	0,28	1,90	0,27	0, 29	1,88	0,28
HD 33999	0,44	:	:	1,63	0,37	0,29	1,63	0,35	0,30	1,61	0,36
HD 35650	1,29	:	:	9,86	0,78	0,59	9,85	0,75	0,57	9,84	0,75
HD 36705 b	÷	2,78	3,57	14,03	0,83	0,51	14,02	0,79	0,50	14,01	0,80
HD 36705 a	0,83	0.94	1,21	7,51	0,63	0,48	7,50	0,60	0,47	7,49	0,61
CD-33 2353	1,06	1,25	1,61	2,79	0,67	0,51	2,78	0,64	0,50	2,77	0,65
CD-34 2331	1.08	:	:	-9,12	0.68	0.55	-9,13	0.65	0.53	-9,14	0.66

Tabela 4.1: Cores fotométricas da amostra.

Tabela 4.1 co	ntinuação										
Estrelas	(B-V)	(V - I)	(V-I)J	(V-K)	(J-K)	(H - H)	$(V-K)_{tcs}$	$(J-K)_{tcs}$	$(J-H)_{tcs}$	$(V-K)_{cit}$	$(J-K)_{cit}$
CD-48 1893	1,19	1,49	1,92	3,19	0,84	0,62	3,18	0,80	0,60	3,17	0,81
HD 37572	0,79	0,89	1,14	4, 19	0,56	0,44	4,18	0,54	0,43	4, 17	0,54
HD 37551a	0,67	0,75	0,96	1,54	0,42	0,36	1,54	0,40	0,36	1,52	0,41
HIP 26401b	0,86	0,96	1,23	1,54	0,42	0,36	1,54	0,40	0,36	1,52	0,41
$4779 \ 0394$	0,73	0,79	1,02	2,26	0,46	0,36	2,26	0,44	0,36	2,24	0,45
CP-19 878	0,86	:	:	1,48	0,62	0,50	1,47	0,59	0,49	1,46	0,60
AC 3511952	0,87	:	:	:	0,69	0,53	12,97	0,66	0,51	12,96	0,67
CD-26 2425	0,86	:	:	1, 13	0,72	0,56	1, 12	0,69	0,54	1, 11	0,69
HD 39576	0,63	0,69	0,89	1,53	0,37	0,33	1,53	0,35	0,33	1,51	0,36
TY Col	0,69	0,82	1,05	1,94	0,50	0,39	1,94	0,48	0, 39	1,92	0,49
BD-13 1328	1,10	:	:	11,65	0,67	0,55	11,64	0,64	0,53	11,63	0,65
CD-34 2676	0,79	:	÷	1,95	0,52	0,40	1,94	0,50	0,40	1,93	0,50
CD-35 2722	1,69	:	:	3,95	0,87	0,64	3,94	0, 83	0,61	3,93	0,84
HD 45270	0,61	0,66	0,85	1,49	0, 39	0,27	1,49	0,37	0,28	1,47	0,38
G8894 0426	:	:	:	13,58	0,88	0,62	13,57	0,84	0,60	13,56	0,85
HD 48189	0,58	0,64	0,82	1,80	0,54	0,33	1,79	0,52	0,33	1,78	0,52
CD-61 1439	1,26	1,53	1,97	3,20	0,80	0,66	3,19	0,77	0,63	3,18	0,77
AC 3372872	1,19	:	:	11,75	0,67	0,54	11,74	0,64	0,52	11,73	0,65
G8544 1037	:	:	:	12,54	0,74	0,55	12,53	0,71	0,53	12,52	0,71
CD-57 1654	0,68	:	:	1,48	0,45	0,38	1,48	0,43	0,38	1,46	0,44
$BD+20\ 1790$	1,15	:	÷	10,69	0,76	0,61	10,68	0,73	0,59	10,67	0,73
HD 59169	0,43	:	:	2,13	0,50	0,40	2,13	0,48	0,40	2,11	0,49
CD-29 4446	1,42	1,66	2,13	4,68	0,90	0,65	4,67	0,86	0,62	4,66	0,86
CD-8480	0,83	:	:	2,04	0,49	0,38	2,04	0,47	0,38	2,02	0,48
HD 64982	0,60	:	:	1,37	0,32	0,23	1,37	0,30	0,24	1,35	0,32
BD-07 2388	0,78	:	:	2,47	0,64	0,46	2,46	0,61	0,45	2,45	0,62
CD-45 5772	1,26	:	:	2,73	0,70	0,58	2,72	0,67	0,56	2,71	0,68
$BD+01\ 2447$	1,51	2,26	2,90	10,52	0,87	0,58	10,51	0, 83	0,56	10,50	0,84
HD 99827	0,45	0,50	0,64	7,94	0,24	0,16	7,94	0,23	0,18	7,92	0,24
HD 113449	0,85	0,89	1,14	8,23	0,54	0,38	8,22	0,52	0,38	8,21	0,52
HD 139751	1,19	1,28	1,65	11,22	0,78	0,59	11, 21	0,75	0,57	11,20	0,75
Hip 81084	1,44	1,77	2,28	12, 13	1,28	1,05	12, 12	1,23	0,99	12,11	1,22
HD 152555	0,59	0,66	0,85	8,16	0,34	0,22	8,16	0,32	0,23	8,14	0,33

Tabela 4.1 co	ntinuação										
Estrelas	(B-V)	(V - I)	(V-I)J	(V-K)	(J-K)	(H - H)	$(V-K)_{tcs}$	$(J-K)_{tcs}$	$(J-H)_{tcs}$	$(V-K)_{cit}$	$(J-K)_{cit}$
HD 317617	0,93	÷	÷	2,59	0,67	0,52	2,58	0,64	0,50	2,57	0,65
HD 159911	1,07	:	:	3, 33	0,79	0,61	3,32	0,76	0,59	3,31	0,76
HD 160934	1,17	1,46	:	:	0,81	0,62	-6,82	0,78	0,60	-6,83	0,78
HD 176367	0,56	0,62	0,80	1,34	0,31	0,18	1,34	0,30	0,20	1,32	0,31
HD 178085	0,59	0,66	0,85	8,66	0,32	0,32	8,66	0,30	0,32	8,64	0,32
AC 162461	0,86	:	:	8,08	0,64	0,52	8,07	0,61	0,50	8,06	0,62
HD 189285	0,71	:	:	1,62	0,42	0,30	1,62	0,40	0,30	1,60	0,41
BD-034778	1,16	:	:	2,18	0,56	0,45	2,17	0,54	0,44	2,16	0,54
HD 199058	0,63	:	:	1,65	0,41	0,37	1,65	0,39	0,37	1,63	0,40
AC 422524	1,28	:	:	2,91	0,67	0,59	2,90	0,64	0,57	2,89	0,65
HD 201919	1,21	1,42	1,83	2,92	0,77	0,61	2,91	0,74	0,59	2,90	0,74
BD+22~4409	1,08	1,23	1,58	9,88	0,69	0,69	9,87	0,66	0,66	9,86	0,67
HD 207278	0,69	0,75	0,96	1,72	0,41	0,33	1,72	0,39	0,33	1,70	0,40
AC 433594	1,53	2,49	3,20	4,73	0,87	0,60	4,72	0,83	0,58	4,71	0,84
Hip110526 a	1,55	2,47	3,17	12,30	0,85	0,85	12,29	0,81	0,81	12,28	0,82
Hip 110526 b	1,55	2,51	3,23	12,40	0,85	0,85	12, 39	0,81	0,81	12,38	0,82
HD 217343	0,64	0,71	0,91	2,71	0,35	0,25	2,71	0,33	0,26	2,69	0,34
HD 217379	1,27	1,43	1,84	3,56	0,78	0,60	3,55	0,75	0,58	3,54	0,75
Hip 114066	1,44	1,77	2,28	11,71	0,84	0,84	11,70	0,80	0,80	11,69	0,81
HD 218860 S	0,75	0,79	1,02	1,80	0,44	0,36	1,80	0,42	0,36	1,78	0,43
HD 218860 N	0,68	:	:	-0,02	0,87	0,64	-0,03	0,83	0,61	-0,04	0,84
Hip 115162	0,75	0,79	1,02	8,33	0, 39	0,39	8,33	0,37	0, 39	8,31	0,38
HD 222575	0,71	0,80	1,03	1,76	0,48	0,33	1,76	0,46	0,33	1,74	0,47
HD 224228	0.96	1.04	1.34	2.29	0.60	0.50	2.28	0.57	0.49	2.27	0.58

Estrela	Ascensão R.	Declinação	E(V-I)	E(B-V)	E(V-K)	E(J-K)	E(J-H)	11
	[Hor Min Seg]	[Gra Min Seg]						
HD1405	$00 \ 18 \ 20.9$	30 57 22	0,01	0,01	0,02	0,00	0,00	1
HD 4277	$00 \ 45 \ 50.9$	$54\ 58\ 40$:	0,01	0,03	0,01	0,00	
HD 6569	$01 \ 06 \ 26.2$	-14 17 47	0,00	0,01	0,04	0,01	0,00	
HIP 6276	$01 \ 20 \ 32.2$	-11 28 03	0,00	0,01	0,03	0,01	0,00	
CD-46644	$02 \ 10 \ 55.4$	$-46 \ 03 \ 59$	0,03	0,02	0,06	0,01	0,01	
HD 13482	$02 \ 12 \ 15.4$	23 57 29	0,01	0,01	0,02	0,00	0,00	
HD $16760 b$	$02 \ 42 \ 21.0$	$38 \ 37 \ 21$:	0,01	0,03	0,01	0,00	
HD 16760	$02 \ 42 \ 21.3$	$38 \ 37 \ 07$:	0,01	0,03	0,01	0,00	
HD 17332 b	$02 \ 47 \ 27.2$	$19\ 22\ 21$	0,00	0,01	0,02	0,00	0,00	
HD 17332 a	$02 \ 47 \ 27.4$	$19\ 22\ 19$	0,00	0,01	0,02	0,00	0,00	
HD 19668	$03 \ 09 \ 42.3$	$-09 \ 34 \ 47$	0,00	0,01	0,03	0,01	0,00	
BD+21 418 b	$03 \ 11 \ 12.3$	$22 \ 25 \ 23$:	0,01	0,03	0,01	0,00	
BD+21 418 a	$03 \ 11 \ 13.8$	$22 \ 24 \ 57$	0,00	0,01	0,04	0,01	0,00	
HD $21845 a$	$03 \ 33 \ 13.5$	$46 \ 15 \ 27$	0,01	0,01	0,02	0,00	0,00	
HD 21845 b	$03 \ 33 \ 14.0$	$46 \ 15 \ 19$:	0,01	0,02	0,00	0,00	
Hip 17695	$03 \ 47 \ 23.3$	-015820	:	0,00	0,01	0,00	0,00	
HD 24681	$03 \ 55 \ 20.4$	$-01 \ 43 \ 45$:	0,01	0,04	0,01	0,00	
HD 25457	$04\ 02\ 36.7$	$-00 \ 16 \ 08$:	0,00	0,01	0,00	0,00	
HD 25953	$04 \ 06 \ 41.5$	$01 \ 41 \ 02$:	0,02	0,04	0,01	0,00	
$5899\ 0026$	$04 \ 52 \ 24.4$	$-16\ 49\ 22$	0,00	0,00	0,01	0,00	0,00	
CD-56 1032 N	$04 \ 53 \ 30.5$	-55 51 32	0,00	0,00	0,01	0,00	0,00	
CD-56 1032 S	$04 \ 53 \ 31.2$	-55 51 37	0,02	0,00	0,01	0,00	0,00	
HD 31652	$04 \ 57 \ 22.3$	$-09 \ 08 \ 00$:	0,03	0,07	0,01	0,01	
CD-40 1701	$05 \ 02 \ 30.4$	-395913	:	0,01	0,03	0,01	0,00	

Tabela 4.2: Extinções interestelares das cores.

Estrela	Ascensão R.	Declinação	E(V-I)	E(B-V)	E(V-K)	E(J-K)	E(J-H)
	[Hor Min Seg]	[Gra Min Seg]					
HD 32981	$05 \ 06 \ 27.7$	-15 49 30	:	0,02	0,06	0,01	0,01
HD 293857	$05 \ 11 \ 09.7$	-04 10 54	0,00	0,02	0,06	0,01	0,01
HD 33999	$05 \ 12 \ 35.8$	-34 28 48	÷	0,03	0,09	0,02	0,01
HD 35650	$05 \ 24 \ 30.2$	-38 58 11	:	0,00	0,01	0,00	0,00
HD 36705 b	$05 \ 28 \ 44.4$	$-65 \ 26 \ 47$	0,00	:	0,00	0,00	0,00
HD 36705 a	$05\ 28\ 44.8$	$-65\ 26\ 56$	0,00	0,00	0,01	0,00	0,00
CD-33 2353	$05 \ 28 \ 56.5$	-33 28 16	0,00	0,02	0,04	0,01	0,01
CD-34 2331	$05 \ 35 \ 04.1$	-34 17 52	:	0,02	0,06	0,01	0,01
CD-48 1893	$05 \ 36 \ 55.1$	-47 57 48	0,01	0,01	0,02	0,00	0,00
HD 37572	$05 \ 36 \ 56.9$	-47 57 53	0,01	0,01	0,02	0,00	0,00
HD $37551a$	$05\ 37\ 12.9$	-42 42 56	0,03	0,02	0,06	0,01	0,01
HIP $26401b$	$05\ 37\ 13.2$	-42 42 57	0,00	0,02	0,06	0,01	0,01
4779 0394	$05 \ 38 \ 56.6$	$-06\ 24\ 41$	0,00	0,03	0,09	0,02	0,01
CP-19 878	$05 \ 39 \ 23.2$	-19 33 29	:	0,02	0,05	0,01	0,01
AC 3511952	$05 \ 41 \ 14.4$	-41 17 59	:	0,04	0,11	0,02	0,01
CD-26 2425	$05 \ 44 \ 13.4$	$-26\ 06\ 15$:	0,02	0,05	0,01	0,01
HD 39576	$05 \ 52 \ 16.0$	$-28 \ 39 \ 25$	0,00	0,02	0,07	0,01	0,01
TY Col	05 57 50.8	$-38 \ 04 \ 03$	0,00	0,02	0,05	0,01	0,01
BD-13 1328	$06 \ 02 \ 21.9$	-13 55 33	÷	0,01	0,03	0,01	0,00
CD-34 2676	$06 \ 08 \ 33.9$	$-34\ 02\ 55$:	0,02	0,05	0,01	0,01
CD-35 2722	$06 \ 09 \ 19.2$	-35 49 31	:	0,01	0,02	0,00	0,00
HD 45270	$06\ 22\ 30.9$	-60 13 07	0,00	0,01	0,02	0,00	0,00
G8894 0426	$06\ 25\ 56.1$	-60 03 27	:	÷	0,00	0,00	0,00
HD 48189	$06 \ 38 \ 00.4$	-61 32 00	0,00	0,01	0,01	0,00	0,00

Tabela 4.2 continuação

Estrela	Ascensão R.	Declinação	E(V-I)	E(B-V)	E(V-K)	E(J-K)	E(J-H)
	[Hor Min Seg]	[Gra Min Seg]					
CD-61 1439	$06 \ 39 \ 50.0$	$-61 \ 28 \ 42$	0,00	0,01	0,01	0,00	0,00
AC 3372872	$06 \ 41 \ 18.5$	-38 20 36	:	0,02	0,06	0,01	0,01
G8544 1037	$06\ 47\ 53.4$	-57 13 32	:	÷	:	0,00	0,00
CD-57 1654	$07 \ 10 \ 50.6$	-57 36 46	:	0,03	0,08	0,02	0,01
$BD{+}20\ 1790$	$07 \ 23 \ 43.6$	$20 \ 24 \ 59$:	0,01	0,02	0,00	0,00
HD 59169	$07 \ 26 \ 17.7$	$-49 \ 40 \ 51$:	0,03	0,09	0,02	0,01
CD-29 4446	$07\ 28\ 51.4$	-30 14 49	0,00	0,00	0,01	0,00	0,00
CD-8480	$07 \ 30 \ 59.5$	-84 19 28	:	0,02	0,05	0,01	0,01
HD 64982	$07 \ 45 \ 35.6$	-79 40 08	:	0,02	0,06	0,01	0,01
BD-07 2388	$08 \ 13 \ 51.0$	-07 38 25	:	0,00	0,01	0,00	0,00
CD-45 5772	$10\ 07\ 25.2$	$-46\ 21\ 50$:	0,02	0,04	0,01	0,01
BD+01 2447	$10\ 28\ 55.5$	005028	0,00	0,00	0,00	0,00	0,00
HD 99827	$11 \ 25 \ 17.7$	-84 57 16	0,00	0,02	0,06	0,01	0,01
HD 113449	$13 \ 03 \ 49.7$	$-05 \ 09 \ 43$	0,00	0,00	0,01	0,00	0,00
HD 139751	$15 \ 40 \ 28.4$	-18 41 46	0,00	0,01	0,02	0,00	0,00
Hip 81084	$16 \ 33 \ 41.6$	$-09 \ 33 \ 12$	0,00	0,01	0,02	0,00	0,00
HD 152555	$16\ 54\ 08.1$	$-04 \ 20 \ 25$	0,00	0,01	0,03	0,01	0,00
HD 317617	$17\ 28\ 55.6$	$-32 \ 43 \ 57$:	0,01	0,04	0,01	0,00
HD 159911	$17 \ 37 \ 46.5$	$-13 \ 14 \ 47$	÷	0,01	0,03	0,01	0,00
HD 160934	$17 \ 38 \ 39.6$	$61 \ 14 \ 16$:	0,01	0,02	0,00	0,00
HD 176367	$19 \ 01 \ 06.0$	$-28\ 42\ 50$	0,01	0,02	0,04	0,01	0,01
HD 178085	$19 \ 10 \ 57.9$	$-60\ 16\ 20$	0,00	0,02	0,04	0,01	0,01
AC 162461	$19 \ 33 \ 03.8$	$+03\ 45\ 40$:	0,02	0,05	0,01	0,01
HD 189285	19 59 24.1	-04 32 06	:	0,03	0,07	0,01	0,01

Tabela 4.2 continuação

continuação	
4.2	
Tabela	

Estrela	Ascensão R.	$\operatorname{Declinação}$	E(V-I)	E(B-V)	E(V-K)	E(J-K)	E(J-H)
	[Hor Min Seg]	[Gra Min Seg]					
BD-034778	$20 \ 04 \ 49.4$	-02 39 20	:	0,02	0,05	0,01	0,01
HD 199058	$20 \ 54 \ 21.1$	$+09\ 02\ 24$:	0,02	0,06	0,01	0,01
AC 422524	205428.0	$+09\ 06\ 07$:	0,02	0,06	0,01	0,01
HD 201919	$21 \ 13 \ 05.3$	-17 29 13	0,02	0,01	0,03	0,01	0,00
BD+22 4409	$21 \ 31 \ 01.7$	$23 \ 20 \ 07$	0,01	0,01	0,02	0,00	0,00
HD 207278	$21 \ 48 \ 48.5$	$-39 \ 29 \ 10$	0,04	0,03	0,07	0,01	0,01
AC 433594	21 52 10.4	$+05\ 37\ 36$	0,00	0,01	0,02	0,00	0,00
Hip110526 a	22 23 29.1	$32 \ 27 \ 34$	0,00	0,00	0,01	0,00	0,00
Hip 110526 b	22 23 29.1	$32 \ 27 \ 32$	0,00	0,00	0,01	0,00	0,00
HD 217343	23 00 19.3	$-26\ 09\ 14$	0,00	0,01	0,02	0,00	0,00
HD 217379	23 00 28.0	$-26\ 18\ 43$	0,00	0,01	0,02	0,00	0,00
Hip 114066	$23\ 06\ 04.8$	63 55 34	0,00	0,01	0,02	0,00	0,00
HD $218860 S$	23 11 52.1	$-45\ 08\ 11$	0,02	0,01	0,04	0,01	0,00
HD 218860 N	$23 \ 11 \ 53.6$	$-45\ 08\ 00$:	0,01	0,04	0,01	0,00
Hip 115162	$23 \ 19 \ 39.6$	$42 \ 15 \ 10$	0,00	0,01	0,03	0,01	0,00
HD 222575	$23 \ 41 \ 54.3$	-35 58 40	0,03	0,02	0,05	0,01	0,01
HD 224228	$23 \ 56 \ 10.7$	-39 03 08	0,00	0,01	0,02	0,00	0,00

fotométricas.
temperaturas
e
Cores
1.3:
Tabela 4

T_a [K]	4704	6095	4844	5150	4505	5230	4522	5525	5639	5756	5160	4203	5947	5287	3835	3641	5295	6232	5175	3525	3475	3368	5444	4455	6043	5677	5844	3936	3695	5058	4337
T_h [K]	4774	6244	5029	5330	4737	5401	4630	5710	5685	5879	5311	4508	6007	5523	4194	3939	5496	6164	6311	3985	3811	3975	5570	4838	6127	5650	6098	4284	4201	4985	4572
$(J-K)_{cito}$	0,60	0,27	0,54	0,46	0,64	0,45	0,73	0,38	0,32	0,34	0,44	0,68	0,29	0,45	0,76	0,83	0,44	0,00	0,30	0,82	0,87	0,83	0,38	0,65	0,27	0,27	0,35	0,75	0,80	0,61	0,64
$(V-K)_{cito}$	2,43	1,36	2,04	1,82	2,54	8,36	10,98	9,11	8,39	8,62	8,89	11,12	8,75	8,68	3,65	12, 34	1,71	5,33	8,07	5,58	5,23	4,76	1,68	11,20	1,30	1,82	1,52	9,82	14,01	7,48	2,72
$(J-H)_{tcs}$	0,59	0,26	0,54	0,45	0,64	0,44	0,72	0,38	0,31	0,33	0,43	0,67	0,28	0,44	0,75	0, 83	0,43	-0,01	0,29	0,81	0,87	0,82	0,37	0,64	0,26	0,26	0,34	0,74	0,79	0,60	0,63
$(J-K)_{tcs}$	0,59	0,26	0,54	0,45	0,64	0,44	0,72	0,38	0,31	0,33	0,43	0,67	0,28	0,44	0,75	0, 83	0,43	-0,01	0,29	0,81	0,87	0,82	0,37	0,64	0,26	0,26	0,34	0,74	0,79	0,60	0,63
$(V-K)_{so}$	2,45	1,38	2,05	1,84	2,56	8,38	11,00	9,13	8,41	8,64	8,91	11, 14	8,77	8,70	3,67	12, 36	1,73	5,35	8,09	5,59	5,25	4,78	1,70	11, 21	1,32	1,84	1,54	9,84	14,02	7,49	2,74
$(V-I)_{jo}$	1,22	÷	1,22	1,07	1,46	1,05	÷	:	0,98	0,86	1,08	:	0,85	0,95	:	3,08	:	÷	÷	3, 23	3,62	3, 29	:	:	:	1,05	:	÷	3,57	1,21	1,61
$(V-I)_o$	0,95	:	0.95	0,83	1,13	0,82	:	:	0,76	0,67	0,84	:	0,66	0,74	:	2,4	:	÷	:	2,51	2,82	2,56	:	:	:	0,82	:	:	2,78	0,94	1,25
$(B-V)_o$	0,99	0,47	0,90	0,78	0,89	0,71	0,95	0,64	0,71	0,59	0,80	1,12	0,58	0,67	0,10	1,50	0,70	0,52	0,46	1,52	1,56	1,54	0,73	0,87	0,58	0,71	0,41	1,29	0,00	0,83	1,04
Estrela	HD1405	HD 4277	HD 6569	HIP 6276	CD-46644	HD 13482	HD 16760 b	HD 16760	HD 17332 b	HD 17332 a	HD 19668	BD+21 418 b	BD+21 418 a	HD $21845 a$	HD 21845 b	$\operatorname{Hip}\ 17695$	HD 24681	HD 25457	HD 25953	$5899\ 0026$	CD-56 1032 N	CD-56 1032 S	$HD \ 31652$	CD-40 1701	HD 32981	HD 293857	HD 33999	HD 35650	HD 36705 b	HD 36705 a	CD-332353

T_a [K]	4373	4118	5001	5487	5400	5226	4925	4516	4701	5707	5309	4470	5199	3689	5663	3574	5711	4091	4425	3982	5613	4264	5448	3728	5179	5944	4844	4351	3797	6502	5045
$[K] T_h$	4633	4276	5085	5673	5540	5359	5304	4896	4823	5842	5385	4607	5272	3969	5827	4072	5601	4259	4544	4441	5731	4426	5694	4046	5240	6079	4921	4476	3960	6545	5114
$(J-K)_{cito}$	0,64	0,80	0,54	0,40	0,40	0,43	0,59	0,65	0,68	0,35	0,48	0,64	0,49	0,83	0,38	0,85	0,52	0,77	0,64	0,71	0,42	0,73	0,47	0,86	0,47	0,30	0,62	0,67	0,84	0,23	0.52
$(V-K)_{cito}$	-9,20	3,15	4,15	1,46	1,46	2,15	1,40	12,85	1,05	1,44	1,87	11,60	1,87	3,91	1,45	13,56	1,76	3,16	11,67	12,52	1,37	10,65	2,02	4,65	1,96	1,28	2,44	2,66	10,49	7,85	8.19
$(J-H)_{tcs}$	0,64	0,80	0,53	0,39	0,39	0,42	0,58	0,64	0,68	0,34	0,47	0,64	0,49	0,83	0,37	0,84	0,51	0,76	0,63	0,71	0,41	0,72	0,46	0,86	0,46	0,29	0,61	0,66	0,83	0,22	0.51
$(J-K)_{tcs}$	0,64	0,80	0,53	0,39	0,39	0,42	0,58	0,64	0,68	0,34	0,47	0,64	0,49	0, 83	0,37	0,84	0,51	0,76	0,63	0,71	0,41	0,72	0,46	0,86	0,46	0,29	0,61	0,66	0,83	0,22	0.51
$(V-K)_{so}$	-9,19	3,17	4,17	1,48	1,48	2,17	1,42	12,87	1,07	1,46	1,89	11,62	1,89	3,93	1,47	13,57	1,78	3,18	11,69	12,53	1,39	10,67	2,04	4,66	1,98	1,30	2,46	2,68	10,51	7,87	8.21
$(V-I)_{jo}$:	1,91	1, 14	0,93	1,23	1,02	:	:	:	0,89	1,05	:	:	:	0,85	:	0,82	1,97	:	:	:	:	:	2,13	:	:	:	:	2,90	0,64	1.14
$(V-I)_o$:	1,48	0,88	0,72	0,96	0,79	:	÷	:	0,69	0,82	÷	:	÷	0,66	÷	0,64	1,53	÷	÷	÷	:	:	1,66	÷	:	÷	:	2,26	0,5	0.89
$(B-V)_o$	1,06	1,18	0,78	0,65	0,84	0,70	0,84	0,83	0,84	0,61	0,67	1,09	0,77	1,68	0,60	-0,01	0,57	1,25	1,17	:	0,65	1,14	0,40	1,42	0,81	0,58	0,78	1,24	1,51	0,43	0.85
Estrela	CD-34 2331	CD-48 1893	HD 37572	HD 37551a	HIP $26401b$	$4779 \ 0394$	CP-19 878	AC 3511952	CD-26 2425	HD 39576	TY Col	BD-13 1328	CD-34 2676	CD-35 2722	$HD \ 45270$	G8894 0426	HD 48189	CD-61 1439	AC 3372872	G8544 1037	CD-57 1654	$BD+20\ 1790$	HD 59169	CD-29 4446	CD-8480	HD 64982	BD-07 2388	CD-45 5772	$BD+01\ 2447$	HD 99827	HD 113449

Tabela 4.3 continuação

Estrela	$(B-V)_o$	$(V-I)_o$	$(V-I)_{jo}$	$(V-K)_{so}$	$(J-K)_{tcs}$	$(J-H)_{tcs}$	$(V-K)_{cito}$	$(J-K)_{cito}$	$\begin{array}{c} T_h \\ [\mathrm{K}] \end{array}$	$\begin{array}{c} T_a \\ [\mathrm{K}] \end{array}$
HD 139751	1,18	1,28	1,65	11, 19	0,74	0,74	11,17	0,75	4387	4254
Hip 81084	1,43	1,77	2,28	12,10	1,22	1,22	12,09	1,22	1500	2989
HD 152555	0,58	0,66	0,85	8,13	0,32	0,32	8,11	0,33	5123	4957
HD 317617	0,92	:	:	2,55	0,63	0,63	2,53	0,64	4750	4641
HD 159911	1,06	:	:	3,29	0,75	0,75	3,28	0,75	4322	4249
HD 160934	:	:	:	-6,84	0,77	0,77	-6,85	0,78	4264	4035
HD 176367	0,54	0,61	0,78	1,29	0,29	0,29	1,27	0,30	6115	5996
HD 178085	0,57	0,66	0,85	8,61	0,30	0,30	8,59	0,31	5973	5883
AC 162461	0,84	:	:	8,03	0,60	0,60	8,01	0,61	4939	4598
HD 189285	0,68	:	:	1,55	0,39	0,39	1,53	0,40	5661	5483
BD-03 4778	1,14	:	:	2,12	0,53	0,53	2,11	0,53	4849	4752
HD 199058	0,61	:	:	1,59	0,38	0,38	1,57	0,39	5733	5675
AC 422524	1,26	:	:	2,85	0,63	0,63	2,83	0,64	4448	4335
HD 201919	1,20	1,4	1,81	2,88	0,73	0,73	2,87	0,74	4354	4213
BD+22 4409	1,07	1,22	1,58	9,86	0,66	0,66	9,84	0,66	4559	4442
HD 207278	0,66	0,71	0,93	1,64	0,38	0,38	1,62	0,39	5675	5521
AC 433594	1,52	2,49	3,20	4,70	0,83	0,83	4,68	0,83	3934	3569
Hip110526 a	1,55	2,47	3,17	12,28	0,81	0,81	12,27	0,82	3969	3281
Hip 110526 b	1,55	2,51	3, 23	12,38	0,81	0,81	12,37	0,82	3969	3279
HD 217343	0,63	0,71	0,91	2,68	0,33	0,33	2,66	0,34	5481	5689
HD 217379	1,26	1,43	1,84	3,53	0,74	0,74	3,51	0,75	4251	4132
Hip 114066	1,43	1,77	2,27	11,69	0,80	0,80	11,67	0,80	2242	3383
HD 218860 S	0,74	0,77	0,99	1,76	0,41	0,41	1,74	0,42	5486	5403
HD 218860 N	0,67	÷	:	-0,07	0,83	0,83	-0,08	0,83	4133	3622
Hip 115162	0,74	0,79	1,02	8,29	0,37	0,37	8,27	0,38	5577	6331
HD 222575	0,69	0,77	1,00	1,70	0,45	0,45	1,68	0,46	5496	5396
HD 224228	0.95	1.04	1.33	2.27	0.57	0.57	2.25	0.58	4858	4775

Tabela 4.3 continuação

espectrais.
parâmetros
Características e
Tabela 4.4: (

rela	Ascensão R.	Declinação	Tip.Esp	V_r	S/N	FWHM	T_p	T_r	T_g	$\log(g_r)$	$\log(g_g)$	
	[Hor Min Seg]	[Gra Min Seg]		$[\rm Km/s]$		[mÅ]	[K]	[K]	[K]			
69	$01\ 06\ 26.2$	-14 17 47	K1V	7,4	75,4	6,4	5080	5000	5000	4,50	4,50	
276	$01\ 20\ 32.2$	-11 28 03	:	÷	:	:	5257	÷	:	:	:	
644	$02 \ 10 \ 55.4$	$-46\ 03\ 59$	K3V	25,7	95,2	19,7	4947	4750	:	:	:	
4681	03 55 20.4	$-01 \ 43 \ 45$:	:	÷	:	5157	÷	:	:	:	
0026	$04\ 52\ 24.4$	$-16\ 49\ 22$	M3V	25,8	6,5	9,5	3890	3500	÷	:	:	
1652	$04\ 57\ 22.3$	-00 08 00	:	÷	÷	:	5491	5450	5500	4,20	4,50	
0 1701	$05\ 02\ 30.4$	-395913	K4V	27,8	45,5	8,0	4839	4600	4750	3,75	4,50	
2981	$05\ 06\ 27.7$	-15 49 30	F9V	25,8	72,2	8,2	5956	6000	0009	4,00	4,00	
93857	$05\ 11\ 09.7$	-04 10 54	:	÷	:	:	5593	5500	5500	4,00	4,00	
3999	$05\ 12\ 35.8$	-34 28 48	F8V	28,0	140,4	10,5	5798	÷	÷	:	:	
$3\ 2353$	$05\ 28\ 56.5$	-33 28 16	K3V	30,1	81,4	19,8	4808	4750	÷	4,50	:	
$4\ 2331$	$05 \ 35 \ 04.1$	-34 17 52	K4V	30,4	31,2	12,9	4844	4750	÷	:	:	
8 1893	$05\ 36\ 55.1$	-47 57 48	K6V	33,1	35,5	15,5	4775	4250	:	:	:	
7572	$05\ 36\ 56.9$	-47 57 53	K0V	32,6	56,3	13,2	5217	5050	:	4,30	:	
7551a	$05\ 37\ 12.9$	-42 42 56	G7V	31,8	41,2	7,5	5595	5750	÷	4,50	4,50	
26401b	$05\;37\;13.2$	-42 42 57	K1V	30,7	36,5	6,6	5181	5350	:	4,40	4,50	
3394	$05\ 38\ 56.6$	$-06\ 24\ 41$:	:	÷	÷	5448	5450	5250	4,20	4,00	
878	$05 \ 39 \ 23.2$	-19 33 29	K1V	26,2	82,1	18,0	5211	÷	÷	÷	:	
511952	$05\ 41\ 14.4$	-41 17 59	K4IV	28,6	12,2	11,0	4630	÷	÷	:	:	
$3\ 2425$	$05 \ 44 \ 13.4$	$-26\ 06\ 15$	÷	:	÷	:	5626	÷	÷	÷	:	
9576	$05\ 52\ 16.0$	-28 39 25	:	÷	÷	:	6306	÷	÷	:	:	
ol	$05\ 57\ 50.8$	$-38 \ 04 \ 03$	G6V	30,9	74,3	14,2	4781	:	:	:	:	
3 1328	$06\ 02\ 21.9$	-13 55 33	:	:	÷	÷	4579	5000	4750	4,50	4,50	
$4\ 2676$	$06\ 08\ 33.9$	-34 02 55	G9V	31,1	23,1	7,9	4383	5500	÷	:	:	
5 2722	$06 \ 09 \ 19.2$	-35 49 31	M1V	31,4	12,8	13,9	4741	:	:	:	:	
5270	$06\ 22\ 30.9$	-60 13 07	G1V	32,0	242,9	16,7	5476	5850	5750	4,35	4,50	
8189	$06\ 38\ 00.4$	-61 32 00	G2V	30,0	210,6	16,6	5576	5550	5750	4,20	4,00	
372872	$06\;41\;18.5$	-38 20 36	K2V	32,2	31,6	17,8	5191	÷	÷	:	:	
$4\ 1037$	$06\ 47\ 53.4$	-57 13 32	K4V	30,5	58,8	7,6	4772	5250	4750	4,00	4,00	
7 1654	$07 \ 10 \ 50.6$	-57 36 46	G2V	29,7	145,2	12,8	5695	6000	5750	4,00	4,00	
9169	$07\ 26\ 17.7$	$-49 \ 40 \ 51$	G7V	29,2	54,8	11,1	5472	5500	5500	4,00	4,00	

Estrela	Ascensão R. [Hor Min Seg]	Declinação [Gra Min Seg]	Tip.Esp	V_r [Km/s]	S/N	FWHM [mÅ]	$[\mathbf{K}]^T$	\mathbf{T}_r [K]	T_g [K]	$\log(g_r)$	$\log(g_g)$
CD-29 4446	$07\ 28\ 51.4$	-30 14 49	M1V	28,1	40,1	20,4	4144	:	:	:	:
HD 64982	$07\ 45\ 35.6$	-79 40 08	:	:	÷	:	5547	÷	:	:	:
BD-07 2388	$08 \ 13 \ 51.0$	-07 38 25	:	÷	÷	:	4917	÷	:	:	:
CD-45 5772	$10\ 07\ 25.2$	$-46\ 21\ 50$	K4V	20,4	30,1	8,1	4616	4500	4500	4,00	4,00
HD 317617	$17\ 28\ 55.6$	-32 43 57	K3V	-8,2	69, 2	6,5	4804	4700	4750	4,15	4,00
HD 159911	$17\ 37\ 46.5$	-13 14 47	K4V	-13,9	90,3	17,5	4427	÷	:	:	:
AC 162461	$19\ 33\ 03.8$	$+03 \ 45 \ 40$	K3V	-20,2	82,0	10,7	4773	4650	4750	4,15	4,00
HD 189285	19 59 24.1	-04 32 06	G7V	-19,1	82,4	10,1	5386	5500	5500	4,50	4,50
BD-03 4778	$20 \ 04 \ 49.4$	-02 39 20	K1V	-16,5	86,8	9,6	5132	5000	5000	4,50	4,50
HD 199058	205421.1	+09 02 24	G5V	-19,9	95,9	10,4	5460	5750	5750	4,20	4,00
AC 422524	205428.0	$+09\ 06\ 07$	K4V	-19,0	53,4	16,5	4790	4500	4500	4,30	4,50
HD 201919	$21 \ 13 \ 05.3$	-17 29 13	K6V	-7,4	54,1	10,2	4541	4500	:	:	÷
HD 207278	$21\ 48\ 48.5$	$-39 \ 29 \ 10$	G7V	3,6	76,4	11,3	5649	5500	5500	4,50	4,50
AC 433594	$21\ 52\ 10.4$	$+05\ 37\ 36$	M3V	-13,4	28, 8	16,0	4975	:	:	:	:
HD 217343	$23\ 00\ 19.3$	$-26\ 09\ 14$	G5V	6,7	110,8	12,9	5624	5700	5750	4,45	4,50
HD 217379	$23\ 00\ 28.0$	$-26\ 18\ 43$	K7V	7,0	28,5	8,0	4448	÷	:	:	÷
HD 218860 S	$23\ 11\ 52.1$	$-45 \ 08 \ 11$	G8V	11,2	90,8	8,1	5430	5250	5250	4,60	4,50
HD 222575	$23 \ 41 \ 54.3$	-355840	G8V	11,1	77, 4	15,9	5840	:	:	:	:
HD 224228	$23\ 56\ 10.7$	-39 03 08	K2V	13,1	103,3	5,9	4912	4950	5000	4,40	4,50

Tabela 4.4 Continuação
												П
$\operatorname{Estrela}$	Paralaxe	Distância	M_v	BC_{te}	BC_{ob}	M_{bo}	M_{bt}	L_t	L_{ob}	R	M	
		[Pc]										
HD1405	37,20	23,7	6,97	-0,42	-0,36	6,60	6,55	0, 19	0,18	0,66	0,50	1
HD 4277	20,60	47,9	4,34	-0,16	-0,07	4,27	$4,\!18$	1,72	1,58	1,15	0,96	
HD 6569	20,00	38, 3	$6,\!48$	-0,37	-0,26	6,21	6,11	0,29	0,26	0,72	0,60	
HIP 6276	28,50	31,5	5,90	-0,36	-0,19	5,71	5,55	0,49	0,42	0,85	0,83	
CD-46644	14,10	88,4	$6,\!44$	-0.57	-0,36	6,08	5,87	0,36	0,30	0,89	0.92	
HD 13482	31,00	32,3	5,56	-0,42	-0,17	5,38	5,14	0,71	0,57	1,00	0,00	
HD 16760 b	20,60	48.5	6,74	-0,42	-0,45	6,29	6,32	0,24	0,25	0,78	0,71	
HD 16760	20,70	48,3	5,19	-0,20	-0,11	5,07	4,99	0,82	0,76	0,96	0,67	
HD 17332 b	30,70	32,6	5,56	-0,31	-0,11	$5,\!45$	5,25	0,64	0,53	0,83	$0,\!80$	
HD 17332 a	30,70	32,6	4,96	-0,19	-0,09	4,87	4,77	1,00	0,91	0,99	0,89	
HD 19668	24,90	40,2	6,00	-0,18	-0,19	5,80	5,82	0,38	0, 39	0,75	0,52	
BD+21 418 b	22,10	45,3	7,59	-0,42	-0,08	7,51	7,17	0,11	0,08	0,32	0,00	
BD+21 418 a	20, 20	49,5	4,88	-0,21	-0,06	4,82	$4,\!67$	1,09	0,95	0.98	1,10	
HD $21845 a$	29,60	33,8	5,36	-0,21	-0,15	5,21	5,15	0,71	0,67	0,96	1,06	
HD $21845 b$	29,60	33,8	2,51	-1,38	-1,00	:	÷	:	:	:	:	
Hip 17695	60,90	16,4	$9,\!48$	-0,42	-1,55	7,93	9,06	0,02	0,05	0,32	0,19	
HD 24681	$18,\!80$	50,1	$5,\!48$	-0,40	-0,17	5,30	5,08	0,75	0,61	1,03	$1,\!21$	
HD 25457	52,00	98,1	4,58	-0,15	-0,04	4,54	$4,\!43$	1,37	1,24	1,02	0,76	
HD 25953	18,10	55,3	4,32	-0,42	-0,05	4, 27	3,90	$2,\!22$	1,58	1,34	0,00	
$5899\ 0026$	63,80	38,1	9,58	-2,31	-1,81	7,77	7,27	0,10	0,06	0,76	1,06	
CD-56 1032 N	89,40	29,6	9,79	-2,31	-2,28	7,51	7,48	0,08	0,08	0,72	0,96	
CD-56 1032 S	89,40	19,4	9,69	-2,31	-2,06	7,62	7,38	0,09	0,07	0,75	1,02	
HD 31652	11,40	74,7	5,67	-0,40	-0,14	5,54	5, 27	0,63	0, 49	0,88	0,89	
CD-40 1701	24,20	41,3	6,35	-0,42	-0,39	5,96	5,93	0,34	0,34	0,89	0,92	

Tabela 4.5: Magnitudes, luminosidades, raios e distâncias.

Estrela	Paralaxe	Distância	M_v	BC_{te}	BC_{ob}	M_{bo}	M_{bt}	L_t	L_{ob}	R	M
		[Pc]									
HD 32981	12,40	68,3	4,89	-0,17	-0,06	4,83	4,72	1,05	0,95	0.94	0,64
HD 293857	12,80	53,7	5,54	-0,42	-0,12	5,43	5,12	0,72	0,55	0,90	0.94
HD 33999	$9,\!40$	86,8	4,04	-0,16	-0,10	3,94	3,88	2,28	2,15	1,44	1,51
HD 35650	56,40	17,7	$8,\!43$	-0,31	-0,85	7,57	8,12	0,05	0,08	$0,\!42$	0,21
HD 36705 b	66,60	15,0	1,98	-0,42	-1,12	0,86	1,56	19, 21	36,73	9,39	0,00
HD 36705 a	66,40	15,1	6,13	-0,18	-0,25	5,88	5,95	0,34	0,36	0,77	0,43
CD-332353	17,70	45,3	$7,\!22$	-0,57	-0,43	6,80	6,65	0,18	0,15	0,66	0,51
CD-34 2331	13,00	76,9	7,29	-0,57	-0,41	6,88	6,72	0,17	0,14	0,63	$0,\!46$
CD-48 1893	41,90	23,6	7,92	-0,87	-0,60	7,32	7,05	0,12	0,10	0,61	0,44
HD 37572	41,90	64,9	5,92	-0,31	-0,23	5,69	5,61	0,46	0,43	0,88	0,89
HD $37551a$	13,40	60,0	5,25	-0,31	-0,11	5,14	4,94	0,86	0,71	0,98	1,10
HIP $26401b$	13,40	38,7	6,20	-0,37	-0,16	6,04	5,83	0,38	0,31	0,71	0,59
4779 0394	8,60	145,3	5,49	-0,42	-0,16	5,33	5,07	0,76	0,60	1,01	1,18
CP-19 878	14,10	46,5	6,20	-0,37	-0,22	5,98	5,83	0,38	0,33	0,77	0,69
AC 3511952	8,00	125,0	6,16	-0,42	-0,39	5,77	5,74	0,41	0,40	0,98	0,00
CD-26 2425	14,20	46,5	6,20	-0,42	-0,24	5,96	5,78	0,39	0,33	0,82	0,78
HD 39576	11,40	61, 6	5,03	-0,21	-0,07	4,96	4,82	0,96	0,84	0,92	0.98
TY Col	14,90	67,8	5,36	-0,31	-0,20	5,15	5,05	0,77	0,70	1,09	1,38
BD-13 1328	25,40	39,4	7,45	-0,57	-0,40	7,05	6,88	0,14	0,12	0,58	0,39
CD-34 2676	13,80	70,4	5,85	-0,36	-0,23	5,62	5,49	0,51	0,46	0,92	0,99
CD-352722	41,60	13,0	10,42	-1,64	-1,08	9, 34	8,79	0,02	0,01	0,33	0,16
HD 45270	42,60	19,9	5,02	-0,19	-0,10	4,92	4,83	0,95	0,87	1,00	0,91
G8894 0426	42,60	23,5	1,97	-2,31	-1,44	÷	÷	÷	÷	÷	÷
HD 48189	46,20	19,5	4,87	-0,20	-0,12	4,76	4,67	1,09	1,01	1,11	0,90

64

Tabela 4.5 continuação

Estrela	Paralaxe	Distância	M_v	BC_{te}	BC_{ob}	M_{bo}	M_{bt}	L_t	L_{ob}	R	M
		[Pc]									
CD-61 1439	45,60	19,1	8,27	-1,01	-0,78	7,50	7,26	0,10	0,08	0,61	0,43
AC 3372872	12,80	78,1	7,85	-0,42	-0,37	7,48	7,43	0,09	0,08	0,44	$0,\!22$
$G8544 \ 1037$	7,00	142,9	1,78	-0.57	-0,43	÷	÷	:	÷	÷	:
CD-57 1654	9,40	103,1	5,25	-0,42	-0,10	5,15	4,83	0,94	0,70	0.98	0,70
${ m BD+20}\ 1790$	38,70	25,8	7,72	-0,21	-0,61	7,11	7,51	0,08	0,12	0,50	0,29
HD 59169	8,50	156,4	3,99	-0,31	-0,13	3,86	3,69	2,72	2,31	1,80	3,74
CD-29 4446	75,70	18,2	9,08	-1,64	-1,08	8,01	7,44	0,09	0,05	0,62	0,55
CD-8440	13,80	58,5	6,05	-0,36	-0,20	5,85	5,69	$0,\!43$	0,37	0,81	0,75
HD 64982	12,00	63, 2	4,88	-0,18	-0,08	4,80	4,70	1,06	0,97	1,00	0,73
BD-07 2388	:	50,0	5,89	-0,37	-0,30	5,59	5,52	0,50	0,47	0,99	1,13
CD-45 5772	14,20	32,1	$8,\!22$	-0.57	-0.50	7,72	7,65	0,07	0,07	0,44	$0,\!22$
BD+01 2447	151,40	6,6	9,54	-1,89	-1,29	8,26	7,65	0,07	0,04	0,59	0,50
HD 99827	12,10	82,6	4, 14	-0,42	-0,02	4,12	3,72	2,64	1,83	1,27	0,00
HD 113449	45,20	316,1	6,23	-0,37	-0,23	5,99	5,86	0,37	0,32	0,79	0,71
HD 139751	27,20	36,8	7,91	-0,72	-0,63	7,28	7,19	0,11	0,10	0,59	$0,\!40$
$\operatorname{Hip} 81084$	33,20	30,1	9,17	-1,38	0,11	9,27	7,79	0,06	0,02	1,65	0,00
HD 152555	21,00	47,6	4,90	-0,42	-0,25	4,65	$4,\!48$	1,31	1,12	1,50	0,00
HD 317617	17,70	53,3	6,58	-0.57	-0,37	6,21	6,01	0,32	0,26	0, 84	0,82
HD 159911	22,00	37,0	7,30	-0,57	-0,62	6,68	6,73	0,16	0,17	0,72	0,60
HD 160934	30,40	0,3	7,81	-1,01	-0,80	7,01	6,80	0,15	0,13	0,76	0,67
HD 176367	15,90	55,5	4,72	-0,19	-0,06	4,66	4,53	1,25	1,10	1,02	0,75
HD 178085	17,50	57,1	4,87	-0,19	-0,07	4,80	4,68	1,08	0,97	0,99	0,71
AC 162461	14,10	70,9	6,21	-0,57	-0,36	5,85	5,64	$0,\!45$	0,37	0,99	1,14
HD 189285	10,50	61,9	5,42	-0,31	-0,13	5,29	5,11	0,73	0,62	0,94	1,02

 $\mathbf{65}$

Estrela	Paralaxe	Distância	M_v	BC_{te}	BC_{ob}	M_{bo}	M_{bt}	L_t	L_{ob}	R	M
		[Pc]									
BD-03 4778	14,20	70,4	7,71	-0,37	-0,28	7,42	7,34	0,09	0,09	$0,\!42$	$0,\!20$
HD 199058	13,30	50,1	5,05	-0,21	-0,11	4,94	$4,\!84$	0,94	0,85	1,01	1,18
AC 422524	13,30	47,2	8,30	-0.57	-0,48	7,82	7,73	0,07	0,06	$0,\!42$	$0,\!20$
HD 201919	25,30	31,2	8,00	-0,86	-0.56	7,43	7,14	0,11	0,09	0,58	0,39
BD+22 4409	39,60	25,3	7,37	-0,72	-0,49	6,88	6,65	0,18	0,14	0,69	0,56
HD 207278	11,90	72,5	5,32	-0,31	-0,12	5,19	5,01	0,80	0,68	0,97	1,08
AC 433594	31,40	31,3	9,61	-2,31	-0,79	8,82	7,30	0,10	0,02	$0,\!60$	0,66
Hip110526 a	66,90	15,0	9,73	-0,42	-0,61	9,12	9,31	0,02	0,02	$0,\!22$	0,00
Hip 110526 b	66,90	15,0	9,73	-0,42	-0.57	9,16	9,31	0,02	0,02	0,21	0,00
HD 217343	31,20	49,4	5,16	-0,21	-0,11	5,04	4,95	0,85	0,78	0,97	1,09
HD 217379	30,60	19,9	8, 31	-1,01	-0,88	7,42	7,30	0,10	0,09	0,62	$0,\!45$
Hip 114066	40,10	24,9	9,17	-0,42	1,24	$10,\!42$	8,75	0,03	0,01	0,68	0,00
HD 218860 S	19,70	41,8	5,68	-0,40	-0,16	5,52	5,28	0,63	0,50	0,91	0,95
HD 218860 N	19,70	49,2	5,33	-2,31	-1,31	:	÷	:	:	:	:
Hip 115162	20,30	49,3	5,69	-0,42	-0,07	5,62	5,27	0,63	0,46	0,75	0,00
HD 222575	16,00	59,3	$5,\!45$	0,40	-0,14	5,32	5,85	0,37	0,60	0,67	0,52
HD 224228	45,20	19,2	6,77	-0,42	-0.35	6,42	6,35	0,23	0,22	0,71	0,58

Tabela 4.5 continuação

obtidas.
temperaturas
das
Comparação
Tabela 4.6:

Estrela	Ascensão R.	Declinação	T_h	T_a	T_p	T_r	T_g	T_t	T_{f}	
	[Hor Min Seg]	[Gra Min Seg]	$[\mathbf{K}]$	[K]	$[\mathbf{K}]$	[K]	[K]	[K]	[K]	
HD1405	$00 \ 18 \ 20.9$	30 57 22	4774	4704	÷	÷	÷	4900	4739	
HD 4277	$00 \ 45 \ 50.9$	545840	6244	6095	÷	÷	ł	6200	6169	
HD 6569	$01 \ 06 \ 26.2$	-14 17 47	5029	4844	5101	5000	5000	5100	5000	
HIP 6276	$01 \ 20 \ 32.2$	-11 28 03	5330	5150	5257	i	÷	5450	5246	
CD-46644	$02 \ 10 \ 55.4$	$-46 \ 03 \ 59$	4737	4534	4870	4750	4750	4600	4750	
HD 13482	$02 \ 12 \ 15.4$	23 57 29	5401	5230	÷	÷	÷	÷	5316	
HD 16760 b	$02 \ 42 \ 21.0$	$38 \ 37 \ 21$	4630	4522	i	i	i	4900	4576	
HD 16760	$02 \ 42 \ 21.3$	$38 \ 37 \ 07$	5710	5525	÷	i	i	5800	5617	
HD 17332 b	$02 \ 47 \ 27.2$	$19\ 22\ 21$	5685	5639	÷	÷	÷	5650	5662	
HD 17332 a	$02 \ 47 \ 27.4$	$19\ 22\ 19$	5879	5756	÷	i	i	5900	5818	
HD 19668	$03 \ 09 \ 42.3$	$-09 \ 34 \ 47$	5311	5160	i	÷	÷	0009	5235	
BD+21 418 b	$03 \ 11 \ 12.3$	$22 \ 25 \ 23$	7581	4203	i	i	i	÷	5892	
BD+21 418 a	$03 \ 11 \ 13.8$	$22 \ 24 \ 57$	6007	5947	i	÷	÷	5700	5977	
HD $21845 a$	$03 \ 33 \ 13.5$	46 15 27	5523	5287	÷	i	i	5700	5405	
HD 21845 b	$03 \ 33 \ 14.0$	46 15 19	4194	3835	÷	i	i	3800	4015	
$\operatorname{Hip}\ 17695$	$03\ 47\ 23.3$	-015820	3939	3641	÷	÷	÷	3500	3790	
HD 24681	$03 \ 55 \ 20.4$	$-01 \ 43 \ 45$	5496	5295	5157	÷	÷	5600	5316	
HD 25457	$04 \ 02 \ 36.7$	$-00 \ 16 \ 08$	6164	6232	÷	÷	i	6300	6198	
HD 25953	$04 \ 06 \ 41.5$	$01 \ 41 \ 02$	7025	5175	÷	÷	÷	6400	6100	
$5899\ 0026$	$04 \ 52 \ 24.4$	$-16\ 49\ 22$	3985	3525	3890	3500	3500	3500	3500	
CD-56 1032 N	$04 \ 53 \ 30.5$	-55 51 32	3811	3475	÷	÷	÷	3500	3643	
CD-56 1032 S	$04 \ 53 \ 31.2$	-55 51 37	3975	3368	÷	÷	÷	3500	3672	
HD 31652	$04 \ 57 \ 22.3$	-09 08 00	5570	5444	5491	5450	5500	5600	5475	
CD-40 1701	$05\ 02\ 30.4$	-39 59 13	4838	4455	4839	4600	4750	4500	4675	

Estrela	Ascensão R.	Declinação	T_h	T_a	T_p	T_r	T_g	T_t	T_f	
	[Hor Min Seg]	[Gra Min Seg]	[K]							
HD 32981	$05 \ 06 \ 27.7$	-15 49 30	6127	6043	5956	6000	6000	6100	0009	
HD 293857	$05 \ 11 \ 09.7$	$-04\ 10\ 54$	5650	5677	5593	5500	5500	5600	5500	
HD 33999	$05 \ 12 \ 35.8$	-34 28 48	6098	5844	5798	į	÷	6200	5913	
HD 35650	$05 \ 24 \ 30.2$	-38 58 11	4284	3936	:	÷	÷	5650	4110	
HD 36705 b	$05 \ 28 \ 44.4$	$-65 \ 26 \ 47$	4201	3695	i	i	÷	÷	3948	
HD 36705 a	$05 \ 28 \ 44.8$	$-65\ 26\ 56$	4985	5058	i	i	÷	6000	5022	
CD-33 2353	$05 \ 28 \ 56.5$	$-33 \ 28 \ 16$	4572	4337	4757	4750	4750	4600	4750	
CD-34 2331	$05 \ 35 \ 04.1$	$-34\ 17\ 52$	4633	4373	4844	4750	4750	4500	4750	
CD-48 1893	$05 \ 36 \ 55.1$	-47 57 48	4276	4118	4775	4250	4250	4250	4250	
HD 37572	$05 \ 36 \ 56.9$	-475753	5085	5001	5217	5050	5000	5300	5025	
HD $37551a$	$05 \ 37 \ 12.9$	-42 42 56	5673	5487	5595	5750	5750	5650	5750	
HIP $26401b$	$05 \ 37 \ 13.2$	-42 42 57	5540	5400	5181	5350	5250	5100	5300	
$4779 \ 0394$	$05 \ 38 \ 56.6$	$-06\ 24\ 41$	5359	5226	5448	5450	5250	5600	5350	
CP-19 878	$05 \ 39 \ 23.2$	-19 33 29	5035	4925	5211	÷	÷	5100	5057	
AC 3511952	$05 \ 41 \ 14.4$	-41 17 59	4896	4516	4630	÷	i	÷	4680	
CD-26 2425	$05 \ 44 \ 13.4$	$-26\ 06\ 15$	4823	4701	5626	÷	÷	4900	5050	
HD 39576	$05 \ 52 \ 16.0$	-28 39 25	5842	5707	6306	÷	÷	5750	5952	
TY Col	$05 \ 57 \ 50.8$	$-38 \ 04 \ 03$	5385	5319	4856	÷	÷	5650	5186	
BD-13 1328	$06 \ 02 \ 21.9$	-13 55 33	4607	4470	4579	5000	4750	4500	4875	
CD-34 2676	$06 \ 08 \ 33.9$	$-34\ 02\ 55$	5272	5199	4383	5500	5500	5450	5500	
CD-35 2722	$06 \ 09 \ 19.2$	-35 49 31	3969	3689	4268	÷	i	3700	3975	
HD 45270	$06\ 22\ 30.9$	$-60 \ 13 \ 07$	5827	5663	5476	5850	5750	5900	5800	
G8894 0426	$06\ 25\ 56.1$	$-60 \ 03 \ 27$	4072	3574	:	÷	÷	3400	3574	
HD 48189	$06 \ 38 \ 00.4$	$-61 \ 32 \ 00$	5601	5711	5576	5550	5750	5800	5650	

Tabela 4.6 continuação

Tabela 4.6 continuação

Estrela	Ascensão R.	Declinação	T_h	T_a	T_p	T_r	T_{q}	T_t	T_f
	[Hor Min Seg]	[Gra Min Seg]	[K]	[K]	[K]	[K]	[K]	[K]	[K]
CD-61 1439	$06 \ 39 \ 50.0$	$-61 \ 28 \ 42$	4259	4091	:	:	:	4100	4175
AC 3372872	$06 \ 41 \ 18.5$	-38 20 36	4544	4425	5191	i	i	4900	4720
$G8544 \ 1037$	$06\ 47\ 53.4$	-57 13 32	4441	3982	4772	5250	4750	4500	5000
CD-57 1654	$07 \ 10 \ 50.6$	$-57 \ 36 \ 46$	5731	5613	5695	0009	5750	5800	5875
$BD+20\ 1790$	$07 \ 23 \ 43.6$	$20 \ 24 \ 59$	4454	4264	i	÷	÷	5700	4359
HD 59169	$07 \ 26 \ 17.7$	$-49 \ 40 \ 51$	5694	5448	5472	5500	5500	5650	5500
CD-29 4446	$07\ 28\ 51.4$	$-30\ 14\ 49$	4046	3728	4144	i	÷	3700	3973
CD-8480	$07 \ 30 \ 59.5$	-84 19 28	5240	5179	i	i	i	5450	5209
HD 64982	$07 \ 45 \ 35.6$	-79 40 08	6079	5944	5547	i	÷	0009	5857
BD-07 2388	$08 \ 13 \ 51.0$	-07 38 25	4921	4844	4917	ł	÷	5100	4894
CD-45 5772	$10\ 07\ 25.2$	$-46\ 21\ 50$	4476	4351	4616	4500	4500	4650	4500
BD+01 2447	$10\ 28\ 55.5$	00 50 28	3960	3797	i	÷	÷	3600	3878
HD 99827	$11 \ 25 \ 17.7$	-84 57 16	6545	6502	i	÷	÷	i	6524
HD 113449	$13 \ 03 \ 49.7$	-05 09 43	5114	5045	i	÷	÷	5100	5079
HD 139751	$15 \ 40 \ 28.4$	-18 41 46	4387	4254	i	i	i	4400	4320
Hip 81084	$16 \ 33 \ 41.6$	$-09 \ 33 \ 12$	1500	2989	÷	i	i	÷	2245
HD 152555	$16\ 54\ 08.1$	$-04 \ 20 \ 25$	5123	4957	÷	÷	÷	÷	5040
HD 317617	$17\ 28\ 55.6$	$-32 \ 43 \ 57$	4750	4641	4804	4700	4750	4650	4725
HD 159911	$17 \ 37 \ 46.5$	$-13 \ 14 \ 47$	4322	4249	4427	÷	÷	4500	4286
HD 160934	$17 \ 38 \ 39.6$	61 14 16	4264	4035	÷	÷	÷	4100	4150
HD 176367	$19 \ 01 \ 06.0$	$-28\ 42\ 50$	6115	5996	÷	÷	÷	5900	6055
HD 178085	$19 \ 10 \ 57.9$	$-60\ 16\ 20$	5973	5883	÷	÷	÷	5900	5928
AC 162461	$19 \ 33 \ 03.8$	$+03\ 45\ 40$	4939	4598	4773	4650	4750	4650	4700
HD 189285	$19 \ 59 \ 24.1$	$-04 \ 32 \ 06$	5661	5483	5386	5500	5500	5650	5500

[Hor Min Seg] [Gra Min Seg] BD-03 4778 20 04 49.4 -02 39 20 HD 199058 20 54 21.1 +09 02 24 AC 422524 20 54 28.0 +09 06 07 HD 201919 21 13 05.3 -17 29 13 BD+22 4409 21 31 01.7 23 20 07 HD 207278 21 48 48.5 -39 29 10 AC 433594 21 52 10.4 +05 37 36 Hip 110526 a 22 23 29.1 32 27 34 Hip 110526 b 22 23 29.1 32 27 32 Hip 110526 b 22 23 29.1 32 27 32 Hip 110526 b 22 23 29.1 32 27 32 Hip 110526 b 22 23 29.1 32 27 32 Hip 110526 b 22 23 29.1 32 27 32 Hip 110526 b 22 23 29.1 32 27 32 Hip 217343 23 00 19.3 -26 09 14 HD 217379 23 00 28.0 -26 18 43	[Gra Min Seg] -02 39 20 +09 02 24 +09 06 07 -17 29 13 23 20 07 -39 29 10	[K] 4849 5733 4448 4354 4354	[K] 4752 5675 4335	[K]	[K]	[K]	[X]	[K]
BD-0347782004 49.4 -02 3920HD199058 20 54 21.1 $+09$ 02 24 AC422524 20 54 21.1 $+09$ 06 07 HD 201919 21 13 05.3 -17 29 13 BD+22 4409 21 31 01.7 23 20 07 HD 207278 21 48.5 -39 29 10 AC 433594 21 51 48.5 -39 29 10 AC 433594 21 52 10.4 $+05$ 37 36 Hip 110526 22 23 29.1 32 27 32 HD 217343 23 00 19.3 -26 09 14 HD 217379 23 00 23 00 26 18 43	-02 39 20 +09 02 24 +17 29 13 23 20 07 -39 29 10	$\begin{array}{c} 4849 \\ 5733 \\ 4448 \\ 4354 \\ 4559 \end{array}$	4752 5675 4335			-	[• •]	[**]
HD 199058 $20 54 21.1$ $+09 02 24$ AC 422524 $20 54 28.0$ $+09 06 07$ HD 201919 $21 13 05.3$ $-17 29 13$ BD+22 4409 $21 31 01.7$ $23 20 07$ HD 207278 $21 48 48.5$ $-39 29 10$ AC 433594 $21 52 10.4$ $+05 37 36$ Hip 110526 a $22 23 29.1$ $32 27 34$ Hip 110526 b $22 23 29.1$ $32 27 32$ HD 217379 $23 00 19.3$ $-26 09 14$ HD 217379 $23 00 28.0$ $-26 18 43$	+09 02 24 +09 06 07 -17 29 13 23 20 07 -39 29 10	5733 4448 4354 4559	5675	5132	5000	5000	5100	5000
AC 42252420 54 28.0 $+09 06 07$ HD 20191921 13 05.3 $-17 29 13$ BD+22 440921 31 01.723 20 07HD 20727821 48 48.5 $-39 29 10$ AC 43359421 52 10.4 $+05 37 36$ Hip110526 a22 23 29.132 27 34Hip 110526 b22 23 29.132 27 32HD 21734323 00 19.3 $-26 09 14$ HD 21737923 00 28.0 $-26 18 43$	+09 06 07 -17 29 13 23 20 07 -39 29 10	4448 4354 4559	1335	5460	5750	5750	5700	5750
HD 20191921 13 05.3 -17 29 13BD+22 440921 31 01.723 20 07HD 20727821 48 48.5 -39 29 10AC 43359421 52 10.4 $+05$ 37 36Hip110526 a22 23 29.132 27 34Hip 110526 b22 23 29.132 27 32HD 21734323 00 19.3 -26 09 14HD 21737923 00 28.0 -26 18 43	-17 29 13 23 20 07 -39 29 10	4354 4559	nnnt	4790	4500	4500	4500	4500
BD+22 4409 21 31 01.7 23 20 07 HD 207278 21 48 48.5 -39 29 10 AC 433594 21 52 10.4 +05 37 36 Hip110526 a 22 23 29.1 32 27 34 Hip 110526 b 22 23 29.1 32 27 34 Hip 110526 b 22 23 29.1 32 27 34 Hip 110526 b 22 23 29.1 32 27 34 Hip 110526 b 22 23 29.1 32 27 34 Hip 110526 b 22 23 29.1 32 27 34 HiD 217343 23 00 19.3 -26 09 14 HD 217379 23 00 28.0 -26 18 43	23 20 07 -39 29 10	4559	4213	4541	4500	4500	4250	4500
HD 207278 21 48 48.5 -39 29 10 AC 433594 21 52 10.4 +05 37 36 Hip110526 a 22 23 29.1 32 27 34 Hip 110526 b 22 23 29.1 32 27 34 Hip 110526 b 22 23 29.1 32 27 34 Hip 110526 b 22 23 29.1 32 27 34 HiD 217343 23 00 19.3 -26 09 14 HD 217379 23 00 28.0 -26 18 43	-39 29 10		4442	÷	÷	÷	4400	4500
AC 433594 21 52 10.4 +05 37 36 Hip110526 a 22 23 29.1 32 27 34 Hip 110526 b 22 23 29.1 32 27 32 HD 217343 23 00 19.3 -26 09 14 HD 217379 23 00 28.0 -26 18 43		5675	5524	5751	5500	5500	5650	5500
Hip110526 a22 23 29.132 27 34Hip 110526 b22 23 29.132 27 32HD 21734323 00 19.3-26 09 14HD 21737923 00 28.0-26 18 43	+053736	3934	3569	4975	÷	÷	3400	3752
Hip 110526 b 22 23 29.1 32 27 32 HD 217343 23 00 19.3 -26 09 14 HD 217379 23 00 28.0 -26 18 43	32 27 34	5402	3281	÷	÷	÷	÷	4341
HD 217343 23 00 19.3 -26 09 14 HD 217379 23 00 28.0 -26 18 43	32 27 32	5494	3279	÷	÷	÷	÷	4387
HD 217379 23 00 28.0 -26 18 43	$-26\ 09\ 14$	5481	5689	5624	5700	5750	5700	5725
	$-26\ 18\ 43$	4251	4124	3894	i	÷	4100	4188
Hip 114066 23 06 04.8 63 55 34	63 55 34	2242	3383	÷	÷	÷	÷	3383
HD 218860 S 23 11 52.1 -45 08 11	-45 08 11	5486	5403	5430	5250	5250	5600	5250
HD 218860 N 23 11 53.6 -45 08 00	-45 08 00	4118	3622	÷	÷	÷	3400	3622
Hip 115162 23 19 39.6 42 15 10	$42 \ 15 \ 10$	5577	6331	÷	:	÷	÷	5954
HD 222575 23 41 54.3 -35 58 40	-35 58 40	5496	5396	5599	÷	÷	5600	5497
HD 224228 23 56 10.7 -39 03 08	-39 03 08	4858	4775	4912	4950	5000	4900	4975

	Tabela 4.7:	Comparação e	das grav	idades o	btidas.			1
Estrela	Ascensão R.	Declinação	$\log(g_z)$	$\log(g_r)$	$\log(g_s)$	$\log(g_t)$	$\log(g_f)$	I.
	[Hor Min Seg]	[Gra Min Seg]						
HD1405	$00 \ 18 \ 20.9$	$30\ 57\ 22$	4,7	:	:	4,5	4,7	I
HD 4277	$00 \ 45 \ 50.9$	$54\ 58\ 40$	4,2	:	:	4,3	4,2	
HD 6569	$01 \ 06 \ 26.2$	-14 17 47	4,6	:	÷	4,5	4,6	
HIP 6276	$01 \ 20 \ 32.2$	-11 28 03	4,5	:	:	4,5	4,5	
CD-46644	$02 \ 10 \ 55.4$	$-46 \ 03 \ 59$	4, 4	:	:	4,5	4,4	
HD 13482	$02 \ 12 \ 15.4$	23 57 29	4,3	:	:	:	4,3	
HD 16760 b	$02 \ 42 \ 21.0$	$38 \ 37 \ 21$	4,5	:	:	4,5	4.5	
HD 16760	$02 \ 42 \ 21.3$	$38 \ 37 \ 07$	4,4	:	÷	4,3	4, 4	
HD 17332 b	$02 \ 47 \ 27.2$	$19\ 22\ 21$	4,5	:	:	4,5	4.5	
HD 17332 a	$02 \ 47 \ 27.4$	$19\ 22\ 19$	4,3	:	÷	4, 4	4,3	
HD 19668	$03 \ 09 \ 42.3$	$-09 \ 34 \ 47$	4,6	÷	:	4,4	4,6	
BD+21418 b	$03 \ 11 \ 12.3$	$22 \ 25 \ 23$	4,8	:	:	:	4,8	
BD+21418 a	$03 \ 11 \ 13.8$	$22 \ 24 \ 57$	4,3	÷	:	4,5	4,3	
HD $21845 a$	$03 \ 33 \ 13.5$	$46\ 15\ 27$	4,4	:	:	4,5	4,4	
HD 21845 b	$03 \ 33 \ 14.0$	$46\ 15\ 19$:	:	÷	4,6	:	
Hip 17695	$03 \ 47 \ 23.3$	-01 58 20	5,3	÷	÷	4,7	5,3	
HD 24681	$03 \ 55 \ 20.4$	$-01 \ 43 \ 45$	4,3	:	:	4,5	4,3	
HD 25457	$04\ 02\ 36.7$	-00 16 08	4,3	:	:	4,3	4,3	
HD 25953	$04 \ 06 \ 41.5$	$01 \ 41 \ 02$	4,0	:	:	:	4,0	
$5899\ 0026$	$04 \ 52 \ 24.4$	$-16\ 49\ 22$	4,6	÷	÷	4,7	4,6	
CD-56 1032 N	$04 \ 53 \ 30.5$	-55 51 32	4,6	:	:	4,7	4,6	
CD-56 1032 S	$04 \ 53 \ 31.2$	-55 51 37	4,6	:	:	4,7	4,6	
HD 31652	$04 \ 57 \ 22.3$	$-09 \ 08 \ 00$	4,4	4,2	4,5	4,5	4,4	
CD-40 1701	$05 \ 02 \ 30.4$	-39 59 13	4, 4	3,8	4,5	4,5	3.8	

obtid
gravidades
das
uração
Compa
t 4.7:

Estrela	Ascensão R.	Declinação	$\log(q_z)$	$\log(q_r)$	$\log(q_s)$	$\log(q_t)$	$\log(q_f)$	
	[Hor Min Seg]	[Gra Min Seg]						
HD 32981	$05 \ 06 \ 27.7$	-15 49 30	4,4	4,0	4,0	4,3	4,1	
HD 293857	$05 \ 11 \ 09.7$	-04 10 54	4,4	4,0	4,0	4,5	4,1	
HD 33999	$05 \ 12 \ 35.8$	-34 28 48	4,0	:	÷	4,3	4,0	
HD 35650	$05 \ 24 \ 30.2$	-38 58 11	5,1	:	:	4,5	5,1	
HD 36705 b	$05 \ 28 \ 44.4$	$-65 \ 26 \ 47$	2,4	:	:	:	2,4	
HD $36705 a$	$05 \ 28 \ 44.8$	$-65\ 26\ 56$	4,5	:	:	4,3	4.5	
CD-332353	$05 \ 28 \ 56.5$	$-33 \ 28 \ 16$	4,7	:	:	4,5	4,7	
CD-342331	$05 \ 35 \ 04.1$	-34 17 52	4,7	:	:	4,5	4,7	
CD-481893	$05 \ 36 \ 55.1$	-47 57 48	4,7	:	:	4,5	4,7	
HD 37572	$05 \ 36 \ 56.9$	-475753	4,4	4,3	4,5	4,5	4,4	
HD $37551a$	$05 \ 37 \ 12.9$	-42 42 56	4,3	4,5	4,5	4,5	4,4	
HIP $26401b$	$05\ 37\ 13.2$	-42 42 57	4,6	$_{4,4}$	4,5	4,5	4.5	
4779 0394	$05 \ 38 \ 56.6$	$-06\ 24\ 41$	4,3	4,2	4,0	4,5	4,2	
CP-19 878	$05 \ 39 \ 23.2$	-19 33 29	4,5	4,5	:	4,5	4,5	
AC 3511952	$05 \ 41 \ 14.4$	-41 17 59	4,3	:	÷	÷	4,3	
CD-26 2425	$05 \ 44 \ 13.4$	$-26\ 06\ 15$	4,5	:	÷	4,5	4,5	
HD 39576	$05 \ 52 \ 16.0$	-28 39 25	4,4	:	÷	4,5	4,4	
TY Col	05 57 50.8	$-38 \ 04 \ 03$	4,2	:	÷	4,5	4,2	
BD-13 1328	$06 \ 02 \ 21.9$	-13 55 33	4,8	4,5	4.5	4,5	4,6	
CD-34 2676	$06 \ 08 \ 33.9$	-34 02 55	4,4	÷	÷	4,5	4,4	
CD-352722	$06 \ 09 \ 19.2$	$-35 \ 49 \ 31$	5,3	÷	÷	4,6	5,3	
HD 45270	$06\ 22\ 30.9$	$-60 \ 13 \ 07$	4,3	4,4	4.5	4,4	4,4	
G8894 0426	$06\ 25\ 56.1$	-60 03 27	:	:	÷	4,7	:	
HD 48189	$06 \ 38 \ 00.4$	-61 32 00	4,2	4,2	4,0	4,3	4,1	

Estrela	Ascensão R.	Declinação	$\log(g_z)$	$\log(g_r)$	$\log(g_s)$	$\log(g_t)$	$\log(g_f)$	
	[Hor Min Seg]	[Gra Min Seg]						
CD-61 1439	$06 \ 39 \ 50.0$	$-61 \ 28 \ 42$	4,8	:	:	4,5	4,8	
AC 3372872	$06 \ 41 \ 18.5$	-38 20 36	5,0	:	÷	4,5	5,0	
G8544 1037	$06\ 47\ 53.4$	-57 13 32	2,5	4,0	4,0	4,5	4,0	
CD-57 1654	$07 \ 10 \ 50.6$	-57 36 46	4,3	4,0	4,0	4,3	4,0	
$BD+20\ 1790$	$07 \ 23 \ 43.6$	$20 \ 24 \ 59$	4,9	:	:	4,5	4,9	
HD 59169	$07 \ 26 \ 17.7$	$-49 \ 40 \ 51$	3,8	4,0	4,0	4,5	4,0	
CD-29 4446	$07\ 28\ 51.4$	-30 14 49	4,7	4,5	:	4,6	4,6	
CD-8480	$07 \ 30 \ 59.5$	-84 19 28	4,5	:	:	4,5	4,5	
HD 64982	$07 \ 45 \ 35.6$	-79 40 08	4,3	:	:	4,3	4,3	
BD-07 2388	$08 \ 13 \ 51.0$	-07 38 25	4,3	:	:	4,5	4,3	
CD-45 5772	$10\ 07\ 25.2$	$-46\ 21\ 50$:	4,0	4,0	4,5	4,0	
$BD+01\ 2447$	$10\ 28\ 55.5$	005028	4,8	:	:	4,6	4,8	
HD 99827	$11 \ 25 \ 17.7$	-84 57 16	4,1	:	÷	÷	4,1	
HD 113449	$13 \ 03 \ 49.7$	$-05 \ 09 \ 43$	4,5	:	÷	4,5	4,5	
HD 139751	$15\ 40\ 28.4$	-18 41 46	4,8	:	÷	4,5	4,8	
$\operatorname{Hip} 81084$	$16 \ 33 \ 41.6$	$-09 \ 33 \ 12$	3,9	:	÷	÷	3,9	
HD 152555	$16\ 54\ 08.1$	-04 20 25	4,0	÷	÷	÷	4,0	
HD 317617	$17\ 28\ 55.6$	-32 43 57	4,5	4,2	4,0	4,5	4,2	
HD 159911	$17 \ 37 \ 46.5$	$-13 \ 14 \ 47$	4,6	÷	÷	4,5	4,6	
HD 160934	$17 \ 38 \ 39.6$	$61 \ 14 \ 16$:	:	÷	4.5	÷	
HD 176367	$19 \ 01 \ 06.0$	$-28\ 42\ 50$	4,3	÷	÷	4,3	4,3	
HD 178085	$19 \ 10 \ 57.9$	$-60\ 16\ 20$	4,3	÷	÷	4,3	4,3	
AC 162461	$19 \ 33 \ 03.8$	$+03\ 45\ 40$	4,3	4,2	4,0	4,5	4,2	
HD 189285	$19 \ 59 \ 24.1$	$-04 \ 32 \ 06$	4,4	4,5	4,5	4,5	4.5	

continuação
4.6
Tabela

Estrela	Ascensão R.	Declinação	$\log(g_z)$	$\log(g_r)$	$\log(g_s)$	$\log(g_t)$	$\log(g_f)$
	[Hor Min Seg]	[Gra Min Seg]					
BD-03 4778	$20 \ 04 \ 49.4$	-02 39 20	5,1	4,5	4,5	4,5	4,5
HD 199058	$20 \ 54 \ 21.1$	+09 02 24	4,3	4,2	4,0	4,5	4,2
AC 422524	$20\ 54\ 28.0$	$+09\ 06\ 07$	5,1	4,3	4,5	4,5	4,4
HD 201919	$21 \ 13 \ 05.3$	-17 29 13	4,8	4,5	:	4,5	4,6
BD+22 4409	$21 \ 31 \ 01.7$	$23 \ 20 \ 07$	4,6	:	:	4,5	4,6
HD 207278	$21 \ 48 \ 48.5$	$-39\ 29\ 10$	4,3	4,5	4,5	4,5	4,4
AC 433594	21 52 10.4	$+05\ 37\ 36$	4,8	:	:	4,7	4,8
Hip110526 a	22 23 29.1	$32 \ 27 \ 34$:	:	:	:	:
Hip 110526 b	22 23 29.1	32 27 32	:	:	:	:	:
HD 217343	23 00 19.3	$-26\ 09\ 14$	4,3	4,5	4,5	4,5	4,4
HD 217379	23 00 28.0	$-26\ 18\ 43$	4,7	:	:	4,5	4,7
Hip 114066	$23 \ 06 \ 04.8$	63 55 34	4,7	:	:	:	4,7
HD 218860 S	23 11 52.1	$-45\ 08\ 11$	4,4	4,6	4,5	4,5	4,5
HD 218860 N	$23 \ 11 \ 53.6$	$-45\ 08\ 00$:	:	:	4,7	:
Hip 115162	$23 \ 19 \ 39.6$	$42 \ 15 \ 10$	4,6	:	:	:	4,6
HD 222575	$23 \ 41 \ 54.3$	-35 58 40	4,7	:	:	4,5	4,7
HD 224228	23 56 10.7	-39 03 08	4.6	4.4	4.5	4.5	4.6

continuação
4.6
Tabela

Estrela	Ascensão R. [Hor Min Seg]	Declinação [Gra Min Seg]	$[Fe/H]_a$	$[Fe/H]_r$	$[Fe/H]_g$	$\log N(Li)$
HD1405	00 18 20.9	305722	0,00	:	:	:
HD 4277	$00 \ 45 \ 50.9$	545840	-0,50		:	:
HD 6569	$01 \ 06 \ 26.2$	-14 17 47	0,15	[0.00, 0.15] 0.10	0,10	1,76
HIP 6276	$01 \ 20 \ 32.2$	-11 28 03	-0,10	÷	:	:
CD-46 644 M	$02 \ 10 \ 55.4$	$-46 \ 03 \ 59$	0,00	:	:	:
HD 13482	$02 \ 12 \ 15.4$	23 57 29	:	:	:	:
HD 16760 b	$02 \ 42 \ 21.0$	$38 \ 37 \ 21$	0,20	:	:	:
HD 16760	$02 \ 42 \ 21.3$	$38 \ 37 \ 07$	0,00	:	:	:
HD 17332 b	$02 \ 47 \ 27.2$	$19\ 22\ 21$	0,05		:	:
HD 17332 a	$02 \ 47 \ 27.4$	$19\ 22\ 19$	0,00	:	:	:
HD 19668	$03 \ 09 \ 42.3$	-09 34 47	0,05	:	:	:
BD+21 418 b	$03 \ 11 \ 12.3$	$22 \ 25 \ 23$:	:	:	:
BD+21 418 a	$03 \ 11 \ 13.8$	$22 \ 24 \ 57$	0,05	:	:	:
HD $21845 a$	$03 \ 33 \ 13.5$	$46 \ 15 \ 27$	0,05		:	:
HD 21845 b	$03 \ 33 \ 14.0$	$46\ 15\ 19$	0,05	:	:	:
$\operatorname{Hip}17695$	$03 \ 47 \ 23.3$	-01 58 20	0,02	:	:	:
HD 24681	$03 \ 55 \ 20.4$	$-01 \ 43 \ 45$	0,00	:	:	:
HD 25457	$04\ 02\ 36.7$	$-00 \ 16 \ 08$	0,15	:	:	:
HD 25953	$04 \ 06 \ 41.5$	$01 \ 41 \ 02$:	:	:	:
$5899 \ 0026$	$04 \ 52 \ 24.4$	$-16\ 49\ 22$	0,00	:	:	:
CD-56 1032 N	$04 \ 53 \ 30.5$	-55 51 32	-0,10	:	:	:
CD-56 1032 S	04 53 31.2	-55 51 37	-0.8	:	:	:
HD 31652	$04 \ 57 \ 22.3$	-09 08 00	0.00	[-0.05, 0.05] 0.0	0.00	2,89
CD-40 1701	$05\ 02\ 30.4$	-395913	-0,15	[0.00, -0.15] - 0.05	-0,10	1,54

Tabela 4.8: Abundâncias espectrôscopicas e fotométricas.

DIA DAL	Ascensão R. [Hor Min Seg]	Declinação [Gra Min Seg]	$[Fe/H]_a$	$[Fe/H]_r$	$[r e/n]_g$	$\log N(Li)$
HD 32981	$05 \ 06 \ 27.7$	$-15\ 49\ 30$	0,10	[0.00, 0.20] 0.10	0,10	2,79
HD 293857	$05 \ 11 \ 09.7$	-04 10 54	0,00	[-0.05, 0.05] 0.0	0,00	2,80
HD 33999M	$05 \ 12 \ 35.8$	$-34 \ 28 \ 48$	-0,70	÷	:	:
HD 35650 M	$05 \ 24 \ 30.2$	-38 58 11	0,00	:	:	:
HD 36705 b	$05 \ 28 \ 44.4$	$-65 \ 26 \ 47$:	÷	:	:
HD 36705 a	$05 \ 28 \ 44.8$	$-65\ 26\ 56$	0,20	:	:	:
CD-33 2353 M	$05 \ 28 \ 56.5$	$-33 \ 28 \ 16$	-0,25	[-0.20, 0.20] 0.00	:	:
CD-34 2331	$05 \ 35 \ 04.1$	$-34\ 17\ 52$	0,50	÷	:	:
CD-48 1893	$05 \ 36 \ 55.1$	-47 57 48	0,10	÷	:	:
HD 37572	$05 \ 36 \ 56.9$	-47 57 53	0.50	[-0.10, 0.20] 0.10	÷	:
HD $37551a$	$05 \ 37 \ 12.9$	-42 42 56	0,20	[0.00, 0.40] 0.20	0,10	:
HIP $26401b$	$05\ 37\ 13.2$	-42 42 57	0,30	[0.10, 0.40] 0.30	0,30	:
$4779 \ 0394$	$05 \ 38 \ 56.6$	$-06\ 24\ 41$	0,00	[-0.05, 0.05] 0.0	0,00	2,16
CP-19 878	$05 \ 39 \ 23.2$	-19 33 29	-0,25	[-0.50, 0.00] -0.20	:	:
AC 3511952	$05 \ 41 \ 14.4$	-41 17 59	÷	÷	:	:
CD-26 2425	$05 \ 44 \ 13.4$	$-26\ 06\ 15$	0,00	÷	:	:
HD 39576	$05 \ 52 \ 16.0$	-28 39 25	0,05	÷	:	:
TY Col	$05 \ 57 \ 50.8$	$-38 \ 04 \ 03$	0,05	÷	i	:
BD-13 1328	06 02 21.9	-13 55 33	-0,01	[-0.05, 0.05] 0.0	0,00	1,94
CD-34 2676	$06 \ 08 \ 33.9$	$-34\ 02\ 55$	0,05	÷	:	:
CD-35 2722 M	$06 \ 09 \ 19.2$	$-35 \ 49 \ 31$	0,10	÷	:	:
HD 45270	$06\ 22\ 30.9$	$-60 \ 13 \ 07$	0,10	[0.00, 0.20] 0.10	0,10	2,54
G8894 0426	$06\ 25\ 56.1$	$-60 \ 03 \ 27$:		:	:
HD 48189 M	$06 \ 38 \ 00.4$	$-61 \ 32 \ 00$	0,00	[-0.10, 0.10] 0.0	-0,10	2,64

Tabela 4.8 Continuação

Estrela	Ascensão R.	Declinação	$[Fe/H]_a$	$[Fe/H]_r$	$[Fe/H]_{q}$	$\log N(Li)$	П
	[Hor Min Seg]	[Gra Min Seg]					I
CD-61 1439	$06 \ 39 \ 50.0$	-61 28 42	0,10		:	:	
AC 3372872	$06 \ 41 \ 18.5$	-38 20 36	0,20	:	:	:	
G8544 1037	$06\ 47\ 53.4$	-57 13 32	0,20	$[0.00, 0.20] \ 0.10$	0,10	1,39	
CD-57 1654	$07 \ 10 \ 50.6$	$-57 \ 36 \ 46$	-0,30	[-0.30, 0.0] -0.20	-0,20	2,67	
${ m BD+20}\ 1790$	$07 \ 23 \ 43.6$	$20 \ 24 \ 59$	0,00	:	:	:	
HD 59169	$07 \ 26 \ 17.7$	$-49 \ 40 \ 51$	0,15	$[0.00, 0.30] \ 0.15$	$0,\!20$	2,17	
CD-29 4446	$07\ 28\ 51.4$	$-30\ 14\ 49$	0,10	:	:	:	
CD-84 80 M	$07 \ 30 \ 59.5$	-84 19 28	0,10	:	:	:	
HD 64982	$07 \ 45 \ 35.6$	-79 40 08	0,00	:	:	:	
BD-07 2388	$08 \ 13 \ 51.0$	-07 38 25	0,10	:	:	:	
CD-45 5772	$10\ 07\ 25.2$	$-46\ 21\ 50$	0,10	[0.00, 0.10] 0.05	0,00	0,64	
$BD+01\ 2447$	$10\ 28\ 55.5$	00 50 28	0,10	:	:	:	
HD 99827	$11 \ 25 \ 17.7$	-84 57 16	:	:	:	:	
HD 113449	$13 \ 03 \ 49.7$	$-05 \ 09 \ 43$	0,15	:	:	:	
HD 139751	$15 \ 40 \ 28.4$	-18 41 46	0,20	:	:	:	
Hip 81084	$16 \ 33 \ 41.6$	$-09 \ 33 \ 12$:	÷	:	:	
HD 152555	$16 \ 54 \ 08.1$	$-04\ 20\ 25$	÷	÷	:	:	
HD 317617	$17\ 28\ 55.6$	$-32 \ 43 \ 57$	-0.05	[-0.03, 0.03] - 0.02	0,00	1,49	
HD 159911	$17\ 37\ 46.5$	$-13 \ 14 \ 47$	0,20	÷	:	:	
HD 160934	$17\ 38\ 39.6$	61 14 16	÷	÷	:	:	
HD 176367	$19 \ 01 \ 06.0$	$-28 \ 42 \ 50$	0,00	÷	:	:	
HD 178085	$19 \ 10 \ 57.9$	$-60\ 16\ 20$	0,00	:	i	•	
AC 162461	$19 \ 33 \ 03.8$	$+03 \ 45 \ 40$	0,00	$[0.10, -0.10] \ 0.00$	0,00	1,62	
HD 189285	$19 \ 59 \ 24.1$	$-04 \ 32 \ 06$	0,05	[0.00, 0.10] 0.05	0,00	2,34	

Continuação
4.8
Tabela

Continuação	
4.8	
Tabela	

Estrela	Ascensão R. [Hor Min Seg]	Declinação [Gra Min Seg]	$[Fe/H]_a$	$[Fe/H]_r$	$[Fe/H]_g$	$\log N(Li)$
BD-03 4778	$20 \ 04 \ 49.4$	-02 39 20	0,05	[0.00, 0.05] 0.02	0,00	2,24
HD 199058	$20 \ 54 \ 21.1$	$+09\ 02\ 24$	0,08	[-0.10, 0.20] 0.08	0,10	2,44
AC 422524	$20 \ 54 \ 28.0$	$+09\ 06\ 07$	0,10	[0.00, 0.10] 0.05	0,00	0,76
HD 201919	$21 \ 13 \ 05.3$	-17 29 13	0,15	[-0.1, 0.2] 0.0	:	:
BD+22 4409	$21 \ 31 \ 01.7$	$23 \ 20 \ 07$	0,10	÷	:	:
HD 207278 M	$21 \ 48 \ 48.5$	$-39 \ 29 \ 10$	0,02	[0.00, 0.20] 0.15	0,10	2,47
AC 433594 M	$21 \ 52 \ 10.4$	$+05\ 37\ 36$	0,05	:	:	:
Hip110526 a	$22 \ 23 \ 29.1$	32 27 34	:	÷	:	:
Hip 110526 b	$22 \ 23 \ 29.1$	32 27 32	:	÷	÷	:
HD 217343	23 00 19.3	$-26\ 09\ 14$	0,05	[0.05, 0.20] 0.10	0,10	2,56
HD 217379M	23 00 28.0	$-26\ 18\ 43$	0,05	÷	÷	:
Hip 114066	$23\ 06\ 04.8$	63 55 34	:	÷	:	:
HD 218860 S M	23 11 52.1	$-45\ 08\ 11$	0,05	[0.00, 0.10] 0.05	0,10	2,51
HD 218860 N M	23 11 53.6	$-45\ 08\ 00$	0,05	÷	:	:
Hip 115162	$23 \ 19 \ 39.6$	$42 \ 15 \ 10$:	÷	:	:
HD 222575 M	$23 \ 41 \ 54.3$	-35 58 40	0,02	÷	÷	:
HD 224228 M	$23 \ 56 \ 10.7$	-39 03 08	0,05	[0.00, 0.10] 0.05	0,10	1,34

	Tabela 4.9: Parâr	netros estelares ϵ	e abund	âncias fin	ais de <i>AB</i>	Doradus	
Estrela	Ascensão R.	Declinação	T_f	$\log(g_f)$	V_{mt}	$[Fe/H]_r$	$\log N(Li)$
	[Hor Min Seg]	[Gra Min Seg]	[K]		$[\rm Km/s]$		
HD1405	$00 \ 18 \ 20.9$	305722	4739	4,7	÷	:	÷
HD 4277	$00 \ 45 \ 50.9$	545840	6169	4,2	:	:	:
HD 6569	$01 \ 06 \ 26.2$	-14 17 47	5000	4,6	:	:	:
HIP 6276	$01 \ 20 \ 32.2$	-11 28 03	5246	4,5	:	:	:
CD-46644	02 10 55.4	$-46\ 03\ 59$	4750	4,4	:	:	:
HD 13482	$02 \ 12 \ 15.4$	23 57 29	5316	4,3	:	:	:
HD 16760 b	$02 \ 42 \ 21.0$	$38 \ 37 \ 21$	4576	4,5	:	:	:
HD 16760	$02 \ 42 \ 21.3$	$38 \ 37 \ 07$	5617	4,4	:	:	:
HD 17332 b	$02 \ 47 \ 27.2$	$19\ 22\ 21$	5662	4,5	:	:	:
HD $17332 a$	$02 \ 47 \ 27.4$	$19\ 22\ 19$	5818	4,3	:	:	:
HD 19668	$03 \ 09 \ 42.3$	$-09 \ 34 \ 47$	5235	4,6	:	:	:
BD+21 418 b	$03 \ 11 \ 12.3$	$22 \ 25 \ 23$	5892	4,8	:	:	:
BD+21 418 a	$03 \ 11 \ 13.8$	$22 \ 24 \ 57$	5977	4,3	:	:	:
HD $21845 a$	$03 \ 33 \ 13.5$	46 15 27	5405	4, 4	:	:	:
HD 21845 b	$03 \ 33 \ 14.0$	$46\ 15\ 19$	4015	:	:	:	:
Hip 17695	$03 \ 47 \ 23.3$	-015820	3790	5,3	:	:	:
HD 24681	$03 \ 55 \ 20.4$	$-01 \ 43 \ 45$	5316	4,3	:	:	÷
HD 25457	04 02 36.7	$-00 \ 16 \ 08$	6198	4,3	:	:	:
HD 25953	$04 \ 06 \ 41.5$	$01 \ 41 \ 02$	6100	4,0	:	:	÷
$5899\ 0026$	$04 \ 52 \ 24.4$	$-16\ 49\ 22$	3500	4,6	:	:	÷
CD-56 1032 N	$04 \ 53 \ 30.5$	-55 51 32	3643	4,6	:	:	÷
CD-56 1032 S	$04 \ 53 \ 31.2$	-55 51 37	3672	4,6	:	:	÷
HD 31652	$04 \ 57 \ 22.3$	-09 08 00	5475	4,4	2,00	0.00	2,89
CD-40 1701	$05 \ 02 \ 30.4$	-395913	4675	3,8	2,25	-0.05	1,54

101
Н
Б
∇
de
ais
fin
cias
dân
abun
Θ
estelares
Parâmetros
4.9:

Estrela	Ascensão R.	Declinação	T_f	$\log(g_f)$	V_{mt}	$[Fe/H]_r$	$\log N(Li)$	
	[Hor Min Seg]	[Gra Min Seg]	[K]		$[\rm Km/s]$			
HD 32981	$05 \ 06 \ 27.7$	-15 49 30	6000	4,1	2,00	0.10	2,79	
HD 293857	$05 \ 11 \ 09.7$	-04 10 54	5500	4,1	2,25	0.00	2,80	
HD 33999	$05 \ 12 \ 35.8$	-34 28 48	5913	4,0	:	:	:	
HD 35650	$05 \ 24 \ 30.2$	-38 58 11	4110	5,1	:	:	:	
HD 36705 b	$05 \ 28 \ 44.4$	$-65\ 26\ 47$	3948	2,4	:	÷	:	
HD 36705 a	$05 \ 28 \ 44.8$	$-65\ 26\ 56$	5022	4,5	:	÷	:	
CD-33 2353	$05 \ 28 \ 56.5$	$-33 \ 28 \ 16$	4750	4,7	:	÷	:	
CD-34 2331	$05 \ 35 \ 04.1$	$-34\ 17\ 52$	4750	4,7	:	:	:	
CD-48 1893	$05 \ 36 \ 55.1$	-47 57 48	4250	4,7	:	:	:	
HD 37572	$05 \ 36 \ 56.9$	-475753	5025	4, 4	2,00	0.10	÷	
HD $37551a$	$05 \ 37 \ 12.9$	-42 42 56	5750	4, 4	2,00	0.20	÷	
HIP $26401b$	$05 \ 37 \ 13.2$	-42 42 57	5300	4.5	2,00	0.30	÷	
$4779 \ 0394$	$05 \ 38 \ 56.6$	$-06\ 24\ 41$	5350	4,2	2,00	0.00	2,16	
CP-19 878	$05 \ 39 \ 23.2$	-19 33 29	5057	4.5	:	:	:	
AC 3511952	$05 \ 41 \ 14.4$	-41 17 59	4680	4,3	:	:	:	
CD-26 2425	$05 \ 44 \ 13.4$	$-26\ 06\ 15$	5050	4.5	:	:	:	
HD 39576	$05 \ 52 \ 16.0$	-28 39 25	5952	4,4	:	:	:	
TY Col	$05 \ 57 \ 50.8$	$-38 \ 04 \ 03$	5186	4,2	:	:	:	
BD-13 1328	$06 \ 02 \ 21.9$	-13 55 33	4875	4,6	2,00	0.00	1,94	
CD-34 2676	$06 \ 08 \ 33.9$	$-34\ 02\ 55$	5500	4,4	:	:	:	
CD-35 2722	$06 \ 09 \ 19.2$	-35 49 31	3975	5,3	:	:	:	
HD 45270	$06\ 22\ 30.9$	$-60 \ 13 \ 07$	5800	4,4	1,50	0.10	2,54	
G8894 0426	$06 \ 25 \ 56.1$	$-60 \ 03 \ 27$	3574	:	:	:	:	
HD 48189	$06 \ 38 \ 00.4$	$-61 \ 32 \ 00$	5650	4,1	1,50	0.00	2,64	

Tabela 4.8 Continuação

Estrela	Ascensão R. [Hor Min Seg]	Declinação [Gra Min Seg]	T_f [K]	$\log(g_f)$	V_{mt} [Km/s]	$[Fe/H]_r$	$\log N(Li)$
CD-61 1439	06 39 50.0	-61 28 42	4175	4,8		:	:
AC 3372872	$06 \ 41 \ 18.5$	$-38 \ 20 \ 36$	4720	5,0	:	:	:
G8544 1037	$06\ 47\ 53.4$	$-57 \ 13 \ 32$	5000	4,0	2,00	0.10	1,39
CD-57 1654	$07 \ 10 \ 50.6$	-57 36 46	5875	4,0	1,65	-0.20	2,67
$BD+20\ 1790$	$07 \ 23 \ 43.6$	$20 \ 24 \ 59$	4359	4,9	:	:	:
HD 59169	$07 \ 26 \ 17.7$	$-49 \ 40 \ 51$	5500	4,0	1,50	0.15	2,17
CD-29 4446	$07 \ 28 \ 51.4$	$-30\ 14\ 49$	3973	4,6	:	:	:
CD-8480	$07 \ 30 \ 59.5$	$-84 \ 19 \ 28$	5209	4,5	:	:	:
HD 64982	$07 \ 45 \ 35.6$	-79 40 08	5857	4,3	:	:	:
BD-07 2388	$08 \ 13 \ 51.0$	-07 38 25	4894	4,3	:	:	:
CD-45 5772	10 07 25.2	$-46\ 21\ 50$	4500	4,0	2,25	0.05	0,64
$BD+01\ 2447$	$10\ 28\ 55.5$	005028	3878	4,8	:	:	:
HD 99827	$11 \ 25 \ 17.7$	-84 57 16	6524	4,1	:	:	:
HD 113449	$13 \ 03 \ 49.7$	$-05 \ 09 \ 43$	5079	4,5	÷	÷	:
HD 139751	$15 \ 40 \ 28.4$	-18 41 46	4320	4,8	:	÷	:
Hip 81084	$16 \ 33 \ 41.6$	$-09 \ 33 \ 12$	2245	3,9	:	÷	:
HD 152555	$16\ 54\ 08.1$	-04 20 25	5040	4,0	:	:	:
HD 317617	$17\ 28\ 55.6$	$-32 \ 43 \ 57$	4725	4,2	2,25	-0.02	1,49
HD 159911	$17 \ 37 \ 46.5$	-13 14 47	4286	4,6	:	:	:
HD 160934	$17 \ 38 \ 39.6$	$61 \ 14 \ 16$	4150	:	:	:	:
HD 176367	$19 \ 01 \ 06.0$	$-28\ 42\ 50$	6055	4,3	:	:	:
HD 178085	$19 \ 10 \ 57.9$	$-60\ 16\ 20$	5928	4,3	:	:	:
AC 162461	$19 \ 33 \ 03.8$	$+03 \ 45 \ 40$	4700	4,2	2,25	0.00	1,62
HD 189285	19 59 24.1	$-04 \ 32 \ 06$	5500	4.5	2,00	0.05	2,34

Continuação
4.8
bela

Estrela	Ascensão R.	Declinação	T_f	$\log(g_f)$	V_{mt}	$[Fe/H]_r$	$\log N(Li)$
	[Hor Min Seg]	[Gra Min Seg]	[K]		$[\mathrm{Km/s}]$		
BD-03 4778	$20 \ 04 \ 49.4$	-02 39 20	5000	4,5	1,25	0.02	$2,\!24$
HD 199058	$20 \ 54 \ 21.1$	+09 02 24	5750	4,2	1,65	0.08	2,44
AC 422524	20 54 28.0	$+09\ 06\ 07$	4500	4, 4	2,25	0.05	0,76
HD 201919	$21 \ 13 \ 05.3$	-17 29 13	4500	4,6	:	0.0	:
BD+22 4409	$21 \ 31 \ 01.7$	$23 \ 20 \ 07$	4500	4,6	:	÷	:
HD 207278	$21 \ 48 \ 48.5$	$-39 \ 29 \ 10$	5500	4, 4	1,55	0.15	2,47
AC 433594	21 52 10.4	$+05\ 37\ 36$	3752	4,8	:	÷	:
Hip110526 a	22 23 29.1	32 27 34	4341	:	:	:	:
Hip 110526 b	22 23 29.1	32 27 32	4387	:	:	:	:
HD 217343	23 00 19.3	$-26\ 09\ 14$	5725	4, 4	1,55	0.10	2,56
HD 217379	23 00 28.0	$-26\ 18\ 43$	4188	4,7	:	:	:
Hip 114066	23 06 04.8	63 55 34	3383	4,7	:	:	:
HD 218860 S	23 11 52.1	$-45\ 08\ 11$	5250	4,5	2,00	0.05	2,51
HD 218860 N	23 11 53.6	$-45\ 08\ 00$	3622	:	:	:	:
Hip 115162	23 19 39.6	$42 \ 15 \ 10$	5954	4,6	:	:	:
HD 222575	$23 \ 41 \ 54.3$	-35 58 40	5497	4,7	:	:	:
HD 224228	23 56 10.7	-39 03 08	4975	4.6	2.00	0.05	1.34

Continuação	
4.8	
Tabela	

Na figura 4.2 são mostradas as curvas de crescimento calculadas em 6 das estrelas de AB Doradus nas quais foi possível aplicar a metodologia completa. As diferenças que se apresentam entre estas curvas e a do Sol mostrada na figura 3.4 são devidas principalmente ao menor (S/N) das estrelas da amostra. Os possíveis erros nos parâmetros das linhas utilizadas não são descartáveis, por exemplo a curva do Sol apresenta dois pontos longe ao lado dereito da curva teórica, um deles também aparece nas curvas estelares de AB Doradus o que indica que não é um problema nos nossos espectros estelares mas sim dos parâmetros da linha.

A figura 4.3 corresponde a duas das estrelas de *AB Doradus* com o (S/N) baixo, este fato fica reflectado na alta dispersão dos pontos, mostrando por sua vez que não é possível obter da curva de crescimento parâmetros coherentes.

Nas figuras 4.4 são mostradas exemplos das sínteses espectrais para algumas estrelas da AB Doradus. Estes graficos representam os ajustes finais nas linhas do ⁷Li após de modificar a log N(Li) inicial. Como pode ser observado, não é uma tarefa fácil pois um ajuste perfeito nunca vai ser conseguido apesar que podem ser obtidos resultados muito bons. O baixo (S/N) para algumas estrelas também atrapalha na síntese pois a linha do ⁷Li mostrava alguns defeitos no seu perfil. A figura 3.5 mostra os passos intermediários antes de chegar ao ajuste final, às vezes a linha sintêtica do ⁷Li ficaba com maior profundidade que a observada ou vice versa, nos melhores ajustes, além do ⁷Li também mostraram uma boa coincidência as linhas vizinhas de $CaI \in FeI$.

Na figura 4.5 mostramos a distribuição do ${}^{7}Li$ na associação *AB Doradus* em função das temperaturas efetivas, fazendo comparação com os trabalhos de Smiljanic (2008), da Silva et al. (2009), Viana Almeida et al. (2008), e Mentuch et al. (2008) mostra-se que a tendência é mantida.

Nas figuras 4.6, 4.7, e 4.8 mostramos a distribuição das metalicidades em função das temperaturas, das $\log N(Li)$ em função das metalicidades, e das $\log N(Li)$ em função das gravidades superficiais de *AB Doradus*. Os trabalhos citados acima também confirmam que não há relação nenhuma entre as variáveis em nenhum dos gráficos.

Na figura 4.9 é feita uma comparação entre a SPIZ e as estrelas de AB Doradus num diagrama HR, a SPIZ foi obtida dos modelos de Siess et al. (2000). Observa-se que a posição das estrelas correspondem com a posição que devem ter num diagrama HR estrelas jovens e do tipo TTS.

Figura 4.2: Curvas de crescimento de algumas estrelas de AB Doradus.

Figura 4.3: Curvas de crescimento de estrelas de AB Doradus com baixo (S/N).

Figura 4.4: Sínteses espectrais de algumas estrelas de AB Doradus.

Figura 4.5: Abundâncias de Lítio em função das temperaturas de AB Doradus.

Figura 4.6: Metalicidades em função das temperaturas de AB Doradus.

Figura 4.7: Abundâncias de Lítio em função das metalicidades de AB Doradus.

Figura 4.8: Abundâncias de Lítio em função das gravidades superficiais de AB Doradus.

Figura 4.9: Seqüência Principal de Idade Zero e diagrama HR de AB Doradus.

Capítulo 5

Discusões e conclusões

Nesta dissertação conferimos que as estrelas da nossa amostra têm um alta probabilidade de ser estrelas anãs jovens devido fundamentalmente a:

- A faixa de parâmetros estelares encontradas, ou seja, os resultados das temperaturas efetivas, gravidades superficiais, velocidades de micro-turbulência, e metalicidades confirmam que as estrelas da amostra são estrelas jovens.
- A distribuição das abundâncias do lítio em função das temperaturas efetivas mostradas no gráfico 4.5 confirmam a tendência também encontrada pelos outros trabalhos já citados nesta dissertação. Essa tendência é que o lítio parece cair com a diminuição da temperatura efetiva, o qual reforça a hipótese que pode ser um comportamento generalizado nos grupos de estrelas jovens, aglomerados e associações, de fato, é observável nos gráficos de log $N(Li)vsT_{ef}$ das *Pleiâdes*, de M67 e das Hyades mostrados no capitulo 2. Os resultados do Li em função da T_{ef} também confirmam o comentado nesse capítulo 2 sobre os problemas atuais do Li na pré-SP: estrelas com $T_{ef} > 5300K$ têm log N(Li)significativas confirmando quantidades não preditas pelos modelos standard, além disto confere que em estrelas tipo K com temperaturas proximas apresentam dispersões de Li que podem se considerar significativas. Isto mesmo também se apresenta nos casos das *Pleiâdes*, de M67 e dos Hyades.

Infelizmente não temos mais estrelas com espectro, não obstante para duas estrelas de $T_{ef} \sim 4500K$ foi possível conferir o que Travaglio et al. (2001) diz: uma pequena quantidade do Li destruído na pre-sp. De fato, as há duas estrelas com log N(Li) de ~ 0.65 e ~ 0.67 e segundo algumas predições para TTS estas estrelas deveram ter uma log N(Li) inicial de ~ 0.70, figura 2.3.

A segunda hipótese comentada por Travaglio é dificil de conferir mas foram tomadas duas estrelas da SPIZ de AB Doradus muito proximas na SP e que mais ou menos puderam simular a evolução desde a SPIZ até os primeiros anos na SP, as duas têm T_{ef} de 5496K e 5623K com log N(Li) de 2.3 e 2.4 respeitivamente, o que significa que em principio a queda da depleção nos primeiros anos da SP pode ser uma fenômeno real.

- Outra hipótese conferida nesta dissertação é a independência da log N(Li)com a gravidade e com a metalicidade pois os gráficos mostram que não há relação nenhuma entre a quantidade do Li e essas duas variáveis. No caso de Li vs log (g_s) mostra que pelo fato de ser a amostra formada por estrelas anãs, as estrelas vão ter faixas grandes de log N(Li) = [0.60, 2.90] e uma faixa pequena de gravidades [4.00, 4.60]. Enquanto que para log N(Li) vs [Fe/H]a situação é parecida mas a faixa de metalicidades é mais reduzida, de fato, estrelas na faixa log N(Li) = [1.60, 2.90] apresentam a mesma metalicidade ~ 0.00 , uma situação parecida se apresenta para $[Fe/H] \sim 0.10$ com faixas de log N(Li) = [1.40, 2.80]. Estes dois valores de metalicidade são tipicos para estrelas anãs.
- Continuando com a metalicidade, o gráfico mostra-nos uma situação parecida as anteriores, não parece haver uma relação entre [Fe/H] e a temperatura, não obstante para metalicidade zero existe uma faixa de $T_{ef} \sim [5600, 4600]K$ e de [Fe/H] = 0.10 para $T_{ef} = [4600, 5700]K$ que são também valores típicos para anãs jovens.

Capítulo 6

Referências Bibliográficas

Alonso, A.; Arribas, S.; Martinez-Roger, C. The empirical scale of temperatures of the low main sequence (F0V - K5V). Astronomy & Astrophysics, v.313, 1996.

Alonso, A.; Arribas, S. & Martinez-Roger, C. A semi-empirical absolute flux calibration in the near infrared: Direct stellar diameters vs. *IRFM* determinations. Astronomy & Astrophysics, vol. 282, 1994.

Alonso, A.; Arribas, S. & Martinez-Roger, C. Broad band *JHK* infrared photometry of an extended sample of late type dwarfs and subdwarfs. Astronomy & Astrophysics Supplement Series vol. 107, 1994.

Alonso, A.; Arribas, S. & Martinez-Roger, C. Determination of bolometric fluxes for F, G and K subdwarfs. Astronomy & Astrophysics, vol. 297, 1995.

Alonso, A.; Arribas, S. & Martínez-Roger, C. Determination of effective temperatures for an extended sample of dwarfs and subdwarfs (F0 - K5). Astronomy and Astrophysics Supplement Series, vol.117, 1996.

Alonso, A.; Arribas, S. & Martinez-Roger, C. Broad-band JHK(L') photometry of a sample of giants with 0.5 > [Fe/H] > -3. Astronomy & Astrophysics Supplement, v.131, 1998.

Ambartsumian, V. A. On the Problem of the Mechanism of the Origin of Stars in Stellar Associations.**Cosmical Gas Dynamics**, **Proceedings from** *IAU* **Symposium no. 8. Edited by Johannes Martinus Burgers and Richard Nelson Thomas.** n. 8, 1958. Arribas, S. & Martinez Roger, C. Application of the infrared flux method to globular cluster stars. The M 3 giant branch. Astronomy & Astrophysics, vol. 178, 1987.

Balachandran, Suchitra; Lambert, David L.; Stauffer, John R. Lithium in lower-main-sequence stars of the Alpha Persei cluster. **The Astrophysical Journal**, vol. 333, 1988.

Balachandran, S. Lithium depletion and rotation in main-sequence stars. Astrophysical Journal, vol. 354, 1990.

Basri, G. & Batalha, C. Hamilton echelle spectra of young stars. I-Optical veiling. Astrophysical Journal, vol. 363, 1990.

Basri, G.; Martin, E. L. & Bertout, C. The lithium resonance line in T Tauri stars. Astronomy & Astrophysics, vol. 252, no. 2, 1991.

Spectroscopic Studies of DB White Dwarfs: Improved Stark Profiles for Optical Transitions of Neutral Helium. Astrophysical Journal Supplement, v.108, 1997.

Bell, R. A. & Gustafsson, B. The effective temperatures and colours of G and K stars. Monthly Notices Royal Astronomical Society, vol. 236, 1989.

Bessell, M. S. The Cousins (Cape-Kron) *BVRI* system, its temperature and absolute flux calibration, and relevance for two-dimensional photometry. **Du-dley Observatory reports**, no. 14, 1979.

Blackwell, D. E.; Petford, A. D.; Arribas, S.; Haddock, D. J. & Selby, M. J. Determination of temperatures and angular diameters of $114 \ F - M$ stars using the infrared flux method (IRFM). Astronomy & Astrophysics, vol. 232, no. 2, 1990.

Boesgaard, A. M.; Tripicco, M. J. Lithium in the Hyades Cluster. Astrophysical Journal Letters, vol. 302, 1986.

Boesgaard, A. M. & Tripicco, M. J. Lithium in F stars of known age. Astrophysical Journal, vol. 313, 1987.

Boesgaard, Ann Merchant. Metallicity in galactic clusters from high signalto-noise spectroscopy. **The Astrophysical Journal**, vol. 336, 1989. Boesgaard, Ann Merchant; Friel, Eileen D. Chemical composition of open clusters. I - [Fe/H] from high-resolution spectroscopy. The Astrophysical Journal, vol. 351, 1990.

Boesgaard, A. M. Stellar abundances of lithium, beryllium, and boron. **Pu-blications Astronomical Society of the Pacific**, vol. 88, 1976.

Böehm-Vitense, E. The effective temperature scale. In: Annual review of astronomy and astrophysics, vol. 19, 1981.

Bertout, Claude. T-Tauri stars - Wild as dust. Annual review of astronomy & astrophysics, vol. 27, 1989.

Buser, R. & Kurucz, R. L. A library of theoretical stellar flux spectra. I - Synthetic UBVRI photometry and the metallicity scale for F to K type stars. Astronomy & Astrophysics, vol. 264, 1992.

Calvet, N.; Basri, G. & Kuhi, L. V. The chromospheric hypothesis for the T Tauri phenomenon. Astrophysical Journal, vol. 277, 1984.

Carlberg, R. G.; Dawson, P. C.; Hsu, T.; Vandenberg, D. A. The age-velocitydispersion relation in the solar neighborhood. **The Astrophysical Journal**, vol. 294, p. 674-681.

Carney, B. W. A photometric search for halo binaries. I - New observational data. Astronomical Journal, vol. 88, 1983.

Carney, B. W. & Latham, D. W. A survey of proper-motion stars. I - *UBV* photometry and radial velocities. Astronomical Journal, vol. 93, 1987.

Carpenter, J. M. Color Transformations for the 2MASS Second Incremental Data Release. **The Astronomical Journal**, vol. 121, 2001.

Cayrel de Strobel, G. G and K stars as indicators of the galactic evolution. Wissenschaftliche Tagung, Strasbourg, France. Astronomische Gesellschaft, no. 57, 1982.

Chaboyer, B.; Demarque, P.; Pinsonneault, M. H. Stellar models with microscopic diffusion and rotational mixing. 1: Application to the Sun. **The** Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 441, 1995.

Close, L. M.; Lenzen, R.; Guirado, J. C.; Nielsen, E. L.; Mamajek, E. E.; Brandner, W.; Hartung, M.; Lidman, C. & Biller, B. A dynamical calibration of the mass-luminosity relation at very low stellar masses and young ages. **Nature**, Vol. 433, 2005.

Cohen, M.; Kuhi, L. V. Observational studies of pre-main-sequence evolution. Astrophysical Journal Supplement Series, vol. 41, Dec. 1979.

Cole, A. A.; Tolstoy, E.; Gallagher, J. S.; Smecker-Hane, T. A. Spectroscopy of Red Giants in the Large Magellanic Cloud Bar: Abundances, Kinematics, and the Age-Metallicity Relation. **The Astronomical Journal**, Vol. 129, 2005.

Herbst, W. R associations. I - UBV photometry and MK spectroscopy of stars in southern reflection nebulae. Astronomical Journal, vol. 80, 1976.

da Silva, L.; Torres, C.A.O.; de la Reza, R.; Quast, G.R.; Melo, C.H.F. e Sterzik, M.F. Ages and *Li* abundances in Young Stellar Associations. **Astronomy** & Astrophysics submetido 2009.

De la Reza, R., Torres, C. A. O., Quast, G., Castilho, B. V. & Vieira, G. L. Discovery of new isolated T-Tauri stars. Astrophysical Journal, 343, L61, 1989.

di Benedetto, G. P. Towards a fundamental calibration of stellar parameters of A, F, G, K dwarfs and giants. Astronomy Astrophysics, v.339, 1998.

Dravins, D.; Lindegren, L.; Nordlund, A. & Vandenberg, D. A. The distant future of solar activity: A case study of Beta Hydri. I - Stellar evolution, lithium abundance, and photospheric structure. Astrophysical Journal, vol. 403, 1993.

Duncan, D. K. & Hobbs, L. M. *Li* Production in the Big Bang. *IAU*, Meeting on Nucleosynthesis in the Galaxy from the Study of Low-mass Stars, New Delhi, India, Nov. 27, **Journal of Astrophysics & Astronomy**, vol. 8, 1987.

Dyck, H. M.; Benson, J. A.; van Belle, G. T.; Ridgway, S. T. Radii and Effective Temperatures for K and M Giants and Supergiants. Astronomical Journal, v.111, 1996.

Edvardsson, B.; Andersen, J.; Gustafsson, B.; Lambert, D. L.; Nissen, P. E.; Tomkin, J. The Chemical Evolution of the Galactic Disk - Part One - Analysis and Results. Astronomy & Astrophysics V.275, 1993.

Elias, J. H.; Frogel, J. A.; Matthews, K. & Neugebauer, G. Infrared standard stars. Astronomical Journal, vol. 87, 1982.

Finkenzeller, U. & Basri, G. The atmospheres of T-Tauri stars. I- High-resolution calibrated observations of moderately active stars. Astrophysical Journal, vol. 318, 1987.

Friel, Eileen D. & Boesgaard, Ann Merchant. Chemical Composition of Open Clusters. II. C/H and C/FeI in F Dwarfs from High-Resolution Spectroscopy. **The Astrophysical Journal**, v.351, 1990.

Frogel, J. A.; Persson, S. E.; Matthews, K. & Aaronson, M. Photometric studies of composite stellar systems. I - CO and JHK observations of E and S0 galaxies. Astrophysical Journal, vol. 220, 1978.

Frogel, J. A.; Persson, S. E. & Cohen, J. G. Infrared colors, CO band strengths, and physical parameters for giants in *M*71. **Astrophysical Journal**, vol. 227, 1979.

Frogel, J. A.; Persson, S. E. & Cohen, J. G. Infrared photometry of red giants in the globular cluster 47 Tucanae. Astrophysical Journal, vol. 246, 1981.

Frogel, J. A.; Persson, S. E. & Cohen, J. G. Infrared photometry, bolometric luminosities, and effective temperatures for giant stars in 26 globular clusters. Astrophysical Journal Supplement Series, vol. 53, 1983.

García-Lopez, R. J.; Rebolo, R. & Beckman, J. E. Lithium abundances and metallicities in stars near the main-sequence turnoff and a giant in *M*67. Astronomical Society of the Pacific Publications vol. 100, 1988.

Gregorio-Hetem, J., Lepine, J. R. D., Quast, G. R., Torres, C. A. O., & de la Reza, R. A search for T-Tauri stars based on the *IRAS* point source catalog **Astronomical Journal**, 103, 549, 1992.

Gregorio-Hetem, J. & Lepine, J. R. D. Lithium Abundance and Spacial Distribution of T-Tauri Stars(cp). Astrochemistry of Cosmic Phenomena: Proceedings of the 150th Symposium of the International Astronomical Union, held at Campos do Jordão, São Paulo, Brazil, Edited by P. D. Singn, 1992.

Gödel, M.; Audard, M.; Briggs, K.; Haberl, F.; Magee, H.; Maggio, A.; Mewe, R.; Pallavicini, R.; Pye, J. The XMM-Newton view of stellar coronae: X-ray spectroscopy of the corona of *AB Doradus*. Astronomy & Astrophysics Letters, v.365, 2001.

Guirado, J. C.; Reynolds, J. E.; Lestrade, J.-F.; Preston, R. A.; Jauncey, D. L.; Jones, D. L.; Tzioumis, A. K.; Ferris, R. H.; King, E. A.; Lovell, J. E. J.; McCulloch, P. M.; Johnston, K. J.; Kingham, K. A.; Martin, J. O.; White, G. L.; Jones, P. A.; Arenou, F.; Froeschle, M.; Kovalevsky, J.; Martin, C.; Lindegren, L.; Soderhjelm, S. Astrometric Detection of a Low-Mass Companion Orbiting the Star AB Doradus. Astrophysical Journal, v.490, p.835.

Gray, R. O. & Corbally, C. J. The calibration of MK spectral classes using spectral synthesis. 1: The effective temperature calibration of dwarf stars. **Astronomical Journal**, vol. 107, 1994.

Gray, D.F. The Observation and Analysis of Stellar Photospheres. Third edition. Cambridge, 2005.

Hanbury Brown, R.; Davis, J. & Allen, L. R. The angular diameters of 32 stars. Montly Notice Royal Astronomical Society, Vol. 167, 1974.

Hartigan, P.; Hartmann, L.; Kenyon, S.; Hewett, R. & Stauffer, J. How to unveil a T-Tauri star. Astrophysical Journal Supplement Series, vol. 70, 1989.

Hartigan, P.; Kenyon, S. J.; Hartmann, L.; Strom, S. E.; Edwards, S.; Welty, A. D. & Stauffer, J. Optical excess emission in T-Tauri stars. Astrophysical Journal, vol. 382, 1991.

Herbig, G. H. 1978 in Problems of Physics and Evolution of the Universe, ed.L. V. Mirzoyan Erevan: Armenian Acad. Sci., 171, 1978.

Herbig, G. H. Lithium Abundances in F5 - G8 Dwarfs. The Astrophysical Journal, vol. 141, 1965.

Houdashelt, M. L.; Bell, R. A. & Sweigart, A. V. Improved Color-Temperature Relations and Bolometric Corrections for Cool Stars. **The Astronomical Journal**, vol. 119, 2000.

Fundamental stellar photometry for standards of spectral type on the revised system of the Yerkes spectral atlas. **The Astrophysical Journal**, vol. 117, 1953.

Kastner, J. H.; Zuckerman, B.; Weintraub, D. A. & Forveille, T. X-ray and molecular emission from the nearest region of recent star formation. Science, Vol. 277, No. 5322, 1997.

King, J. R. Lithium abundances of intermediate-mass, pre-main-sequence stars in Orion IC. Astronomical Journal, vol. 105, no. 3, 1993.

Kurucz, R. 1999 TiO linelist from Schwenke (1998). Kurucz CD-ROM No.
24. Cambridge, Massachusets. Smithsonian Astrophysical Observatory, 1999.

Kurucz, R. ATLAS9 Stellar Atmosphere Programs and 2km/s grid. Kurucz CD-ROM No. 13. Smithsonian Astrophysical Observatory, 1993.

Kurucz, R. L. New Opacity Calculations. In: Stellar Atmospheres: Beyond Classical Models, Proceedings of the Advanced Research Workshop, Trieste, Italy, Dordrecht, D. Reidel Publishing Co., 1990, p.441, 1991.

Laughlin, G. Mining the Metal-rich Stars for Planets. **The Astrophysical Journal**, vol. 545, 2000.

Lee, T.A. *UBVRI* Photometry of Infrared Stars. Publications of the Astronomical Society of the Pacific, Vol. 82, 1970.

Lim, J. Rotational Modulation of Radio Emission from the *KI* Dwarf Star AB Doradus (HD 36705). Cool stars, stellar systems, and the sun. **Proceedings** of the 7th Cambridge Workshop, ASP Conference Series (ASP: San Francisco), vol. 26, p. 322, 1992.

López-Santiago, J.; Montes, D.; Crespo-Chacón, I.; Fernández-Figueroa, M. J. The Nearest Young Moving Groups. **The Astrophysical Journal**, Volume 643, 2006.
The missing opacity and the temperature calibration of solar-type stars. Astronomy & Astrophysics, vol. 181, no. 2, July 1987.

Makarov, Valeri V. Signatures of Dynamical Star Formation in the Ophiuchus Association of Pre-Main-Sequence Stars. **The Astrophysical Journal**, Volume 670, Issue 2, pp. 1225-1233, 2007.

Martin, E. L.; Rebolo, R.; Magazzu, A. & Pavlenko, Ya. V. Pre-main sequence lithium burning. 1: Weak T-Tauri stars. Astronomy & Astrophysics, vol. 282, no. 2, 1994.

Mentuch, E.; Brandeker, A.; van Kerkwijk, M. H.; Jayawardhana, R.; Hauschildt, P. H. Lithium Depletion of Nearby Young Stellar Associations. **The Astrophysical Journal**, Vol. 689, 2008.

Mewe, R.; Kaastra, J. S.; White, S. M.; Pallavicini, R. Simultaneous EUVE & ASCA observations of AB Doradus: temperature structure and abundances of the quiescent corona. Astronomy & Astrophysics ,v.315, p.170-178, 1996.

Montes, D.; Martin, E. L.; Fernandez-Figueroa, M. J.; Cornide, M.; de Castro, E. Library of high and mid-resolution spectra in the *CaII H & K*, H_{α} , H_{β} Na i D1, D2, and *He* i D3 line regions of *F*, *G*, *K* and *M* field stars. Astronomy & Astrophysics Supplement series, Vol. 123, 473-485, 1997.

Mountain, C. M.; Selby, M. J.; Leggett, S. K.; Blackwell, D. E. & Petford, A.
D. Measurement of the absolute flux from VEGA at 4.92 microns. Astronomy & Astrophysics, vol. 151, 1985.

NIST, do inglês, National Institute of Standards and Technology. Atomic Spectra Database. Disponível em: http://physics.nist.gov/PhysRefData/ASD/index.html Por última vez accesado em julho 2008.

Ortega, V. G.; Jilinski, E.; de La Reza, R.; Bazzanella, B. On the common origin of the *AB Doradus* moving group and the Pleiades cluster. Monthly Notices of the Royal Astronomical Society, Volume 377, 2007.

Padgett, Deborah L. Atmospheric Parameters and Iron Abundances of Low-Mass Pre-Main-Sequence Stars in Nearby Star Formation Regions. **The Astrophysical Journal** v.471, 1996. Pasquini, L.; Randich, S.; & Pallavicini, R. Lithium in *M*67: evidence for spread in a solar age cluster. Astronomy & Astrophysics, vol. 325, 1997.

Pasquini, L.; Liu, Q. & Pallavicini, R. Lithium abundances of nearby solar-like stars. Astronomy & Astrophysics, vol. 287, 1994.

Patterer, R. J.; Ramsey, L.; Huenemoerder, D. P. & Welty, A. D. Lithium line variations in weak-lined T-Tauri stars. Astronomical Journal, vol. 105, no. 4, 1993.

Perrin, G.; Coude Du Foresto, V.; Ridgway, S. T.; Mariotti, J.-M.; Traub, W. A.; Carleton, N. P.; Lacasse, M. G. Extension of the effective temperature scale of giants to types later than *M*6. Astronomy & Astrophysics, v.331, 1998.

Pinsonneault, M. Mixing in Stars. Annual Review of Astronomy and Astrophysics, Vol. 35, 1997.

Quast, G. R., Torres, C. A. O., de la Reza, R. & Mello, G. F. P. Isolated post-T Tauri stars. Revista Mexicana de Astronomia e Astrofisica. 14, 1987.

Randich, S.; Gratton, R.; Pallavicini, R.; Pasquini, L. & Carretta, E. Lithium in population I subgiants. Astronomy & Astrophysics, v.348, 1999.

Reeves, R. On the origin of the light elements. The Annual review of astronomy & astrophysics. V. 12. 1974.

Rieke, G. H. & Lebofsky, M. J. The interstellar extinction law from 1 to 13 microns. Astrophysical Journal, vol. 288, 1985.

Sandage, A. & Kowal, C. New subdwarfs. IV - *UBV* photometry of 1690 high-proper-motion stars. Astronomical Journal, vol. 91, 1986.

Schuster, W. J. & Nissen, P. E. Four-color *UVBY* and H-beta photometry of high-velocity and metal-poor stars. I - The catalogue of observations. Astronomy & Astrophysics Supplement Series, vol. 73, no. 2, 1988.

Schuster, W. J. & Nissen, P. E. Uvby-beta photometry of high-velocity and metal-poor stars. II - Intrinsic color and metallicity calibrations. Astronomy & Astrophysics, vol. 221, 1989.

Sestito, P. & Randich, S. Time scales of *Li* evolution: a homogeneous analysis of open clusters from *ZAMS* to late-*MS*. Astronomy & Astrophysics, Vol. 442, 2005.

Selby, M. J.; Hepburn, I.; Blackwell, D. E.; Booth, A. J.; Haddock, D. J.; Arribas, S.; Leggett, S. K. & Mountain, C. M. Narrow band 1 micron-4 micron infrared photometry of 176 stars. Astronomy & Astrophysics Supplement Series, vol. 74, 1988.

Siess, L.; Dufour, E. & Forestini, M. An internet server for pre-main sequence tracks of low- and intermediate-mass stars. Astronomy & Astrophysics, v.358, 2000.

Smiljanik, R. H. Elementos Leves: Traçadores da Mistura Convectiva e da Formação da Galáxia. **Tese de Doutorado**. *IAG/USP* 2008.

Spite, M. & Spite, F. Comunicação privada. Comunicação privada do Observatório de Paris. 1967.

Spite, M. & Spite, F. Abundance of lithium in unevolved halo stars and old disk stars - Interpretation and consequences. Astronomy & Astrophysics, vol. 115, no. 2, 1982.

Spite, F. & Spite, M. Lithium abundance in a few extremely metal-poor stars and strontium-poor stars. Astronomy & Astrophysics vol. 279, 1993.

Spite, M. & Spite, F. Lithium abundance at the formation of the Galaxy. **Nature**, vol. 297, 1982.

Spite, F.; Spite, M.; Peterson, R. C. & Chaffee, F. H. Measurement of lithium abundance in dwarf stars of *M*67. Astronomy & Astrophysics vol. 171, 1987.

Stetson, P. B. & Pancino, E. *DAOSPEC*: An Automatic Code for Measuring Equivalent Widths in High-Resolution Stellar Spectra. **The Publications of the Astronomical Society of the Pacific**, vol. 120, 2008.

Tolstoy, E. The chemical composition of Local Group dwarf spheroidals. Nearfields cosmology with dwarf elliptical galaxies, IAU Colloquium Proceedings 198, Held 14-18 March, Switzerland, edited by Jerjen, H.; Binggeli, B. Cambridge: Cambridge University Press, 2005. Torres, C. A. O. & Quast, G. R. Comunicação privada. Comunicação privada do Laboratório Nacional de Astrofísica. 2008.

Torres, C. A. O.; Quast, G. R.; da Silva, L.; de La Reza, R.; Melo, C. H. F.; Sterzik, M. Search for Associations Containing Young stars (*SACY*). I. Sample and searching method. **Astronomy & Astrophysics**, Vol. 460, 2006.

Torres, C. A. O.; Quast, G.R; Melo, C.H; Sterzik, M.F. Small Loose Young Associations. Handbook of Low Mass Star Forming Regions. ASP Conference Series, vol. B. Reipurth, ed. 2006.

Torres, C. A. O.; Quast, G. R.; de La Reza, R.; da Silva, L.; Melo, C. H. F. SACY-Present Status. In Galactic Star Formation Across the Stellar Mass Spectrum, ASP Conference Series, Vol. 287, em La Serena, Chile. Editado por James M. De Buizer and Nicole S. van der Bliek. Astronomical Society of the Pacific. 2003

Torres, C. A. O., da Silva, L., Quast, G. R., de la Reza, R. & Jilinski, E. 2000, A New Association of Post-T Tauri Stars near the Sun. Astronomical Journal, 120, 1410.

Torres, C. A. O. Publicação Especial do Observatório Nacional, 10, 1

. Travaglio, C.; Randich, S.; Galli, D.; Lattanzio, J.; Elliott, L. M.; Forestini, M.; Ferrini, F. Galactic Chemical Evolution of Lithium: Interplay between Stellar Sources. **The Astrophysical Journal**, Vol. 559, 2001.

Twarog, B. A. The chemical evolution of the solar neighborhood. II - The age-metallicity relation and the history of star formation in the galactic disk. **The Astrophysical Journal**, vol. 242, 1980.

Viana Almeida, P. Search for Associations Containing Young stars (SACY): Chemical abundances of stars in 11 young associations in the Solar neighborhood. Astronomy & Astrophysics, submetido 2008.

Vilhu, O.; Muhli, P.; Huovelin, J.; Hakala, P.; Rucinski, S. M.; Collier Cameron, A. Ultraviolet Spectroscopy of AB Doradus with the Hubble Space Telescope: Impulsive Flares and Bimodal Profiles of C IV lambda1549 in a Young Star. **The Astronomical Journal**, vol. 115, 1998.

Zuckerman, B.; Song, I.; Bessell, M. S. The *AB Doradus* Moving Group **The** Astrophysical Journal, vol. 613, 2004.

Anexo 1

Pare levar a cabo esta dissertação foi funfamental instalar o software pgplot que por sua vez é um requerimento para que o DAOSPEC e o Renoir puderam funcionar adeqüadamente, na literatura disponível somente existem roteiros para verssões antigas do Fedora, quando foi tentado instalar o pgplot numa maquina con verssões mais recentes nunca funcionaou por inconpatibiliadeds de algumas librarias ou pacodes, então por isso foi resolvido gerar esta guia de instalação do pgplot para verssões de Fedora 8 em diante. Os passos serem desenvolvidos são:

- baixar o arquivo pgplot52.tar.gz de $http: //astro.caltech.edu/ \sim tjp/pgplot/$
- Destarar, e descomprimir o arquivo:

tar-zxvfpgplot 5.2.tar.gz

Colocá-lo na pasta principal do respectivo usuário, neste caso seria em /home/usuario

• Agora é precisado renomear essa pasta para pgplot-src e criar outra nesta mesma pasta chamada pgplot.

 $mvpgplotpgplot - src\ mkdirpgplot$

- Entre ao pgplot-src e cole o arquivo drivers.list á pasta pgplot cdpgplot - src cpdrivers.list/home/usuario/pgplot
- Editê-lo, use qualquer editor de textos e tire as siguintes linhas emacsdrivers.list &

e tire as seguintes linhas (ou seja tire o signo de exclamação):

PNDRIV 1,2 : PNG figures (requires that the package libpng3-devel or an equivalent libpng-devel) PSDRIV 1,2,3,4 : EPS figures XWDRIV 1,2 : X-window output (requires libxorg-x11-devel or libX11-devel).

• Prepara o arquivo makefile para linux mais o compilador gcc, então para isso deve-se estar na pasta /home/usuario/pgplot

/home/usuario/pgplot-src/makemake/home/usuario/pgplot-srclinuxg77_gcc Isso criara os arquivos: grexec.f, grpckg1.inc, makefile, pgplot.inc, e rgb.txt.

• Se a versão de g
cc é superior á 4.0 então deve-se editar o arquivomakefile

 $emacsmake file\ \&$

Sustituir nele as seguintes linhas

"FCOMPL = g77" na linha 25 por: "FCOMPL = gfortran" "FFLAGC = -u - Wall - fPIC - O" na linha 26 por: "FFLAGC = -ffixed - form - ffixed - line - length - none - u - Wall - fPIC - O"

• Continuar editando o makefile, sustituir

```
"<br/>pndriv.o:./png.h./pngconf.h./zlib.h./zconf.h" na linha 880 por:<br/> "pndriv.o:"
```

- Continuando ainda na mesma pasta compila-se a parte de Fortran, escrevemosmake

Para isso é precisado *libpng_devel* ou *libX11_devel*.

Logo compila-se a parte de ${\cal C}$ ligada com Fortran

makecpg

 Editar o arquivo makehtml que esta em /home/usuario/pgplot – src cd/home/usuario/pgplot – src emacsmakehtml &

Para isso deve-se sustituir a primeira linha por #!/usr/bin/perl

• Logo voltando á pasta anterior */home/usuario/pgplot* produze-se a documentação html, ou seja:

makepgplot.htmlmakeclean

- Deve-se ir até /usr/local/lib cd/usr/local/lib
 e linkar as librarias estaticas de F77 e C ln - s/home/usuario/pgplot/libpgplot.alibpgplot.a ln - s/home/usuario/pgplot/libcpgplot.alibcpgplot.a
 Colar nesta pasta libpgplot.so que esta em /home/usuario/pgplot cd/home/usuario/pgplot/
 cplibpgplot.so/usr/local/lib
 Isso vai adiantar para establecer as librarias dinâmicas.
 Nesta mesma pasta editar o arquivo ld.so.con f
- Nesta mesma pasta editar o arquivo *ta.so.conf* emacs/etc/ld.so.conf & Adicionando-lhe a linha /usr/local/lib
- Actualizar o caminho para as librarias e linkar o arquivo cpgplot.h /sbin/ldconfig - v ln - s/home/usuario/pgplot/cpgplot.h/home/usuario/pgplot/cpgplot.h
- Editar o arquivo .bashrc emacs.bashrc &

Para isso devem-se adicionar as linhas: $exportPGPLOT_DIR = home/usuario/pgplot$ $exportPGPLOT_DEV = /xwin$ $exportLD_LIBRARY_PATH = home/usuario/pgplot$ $exportPGPLOT_FONT = home/usuario/pgplot/grfont.dat$

 Ir até home/usuario/pgplot e rodar um demo cd/home/usuario/pgplot
 ./pgdemo1