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Resumo
Qualidade de Energia não é uma temática nova, porém de forma alguma deve ser negli-
genciada, pois seus parâmetros de performance indicam problemas na adequação entre o
equipamento do consumidor e a rede elétrica. Com as transformações em andamento nos
sistemas elétricos de potência, caracterizados pela alta penetração de fontes renováveis de
energia, inserção massiva de componentes baseados em eletrônica de potência na rede e
descentralização da geração, essas questões se tornam cada vez mais importantes. Nas Re-
des Inteligentes, busca-se soluções cada vez mais avançadas para solucionar questões dos
distúrbios da Qualidade de Energia. Dentro desse contexto, o processamento avançado de
sinais possui um papel importante para tratar as medições da rede e apoiar diversas apli-
cações. A Inteligência Artificial, tem ganhado grande destaque dar suporte para aplicações
com soluções inovadoras em diversas áreas. Esta pesquisa tem como objetivo investigar
o uso de processamento avançado de sinais e técnicas de Aprendizagem Profundo ("Deep
Learning") para reconhecimento de padrões e classificação de sinais com distúrbios da
Qualidade de Energia. Para este propósito, a Transformada Wavelet Contínua com um
banco de filtros é usada para gerar imagens 2-D no domínio do tempo-frequência a partir
de sinais com distúrbios de tensão. O trabalho visa utilizar Redes Neurais Convolucionais
para classificar essas imagens de acordo com a respectiva distorção. Nesta implementação
de Inteligência Artificial, etapas específicas de projeto, treinamento, validação e teste
serão realizadas para um modelo elaborado pelo autor e também utilizando a técnica
de transferência de conhecimento com as redes pré-treinadas SqueezeNet, GoogleNet, e
ResNet-50. O trabalho foi desenvolvido no software MATLAB/Simulink, todas as etapas
de processamento do sinal, projeto de modelos de classificação, simulação e geração dos
dados investigados. Todas as etapas tiveram seus objetivos específicos cumpridos, culmi-
nando na boa execução e desenvolvimento da pesquisa. Os resultados obtidos mostraram
alta precisão para "CNN de Scratch" e ResNet-50 em classificar o conjunto de testes. Os
outros dois modelos obtiveram acurácias não tão altas, e os resultados se mostram con-
sistentes ao comparar com outras metodologias. Considerações sobre os resultados foram
apontadas. Por fim, algumas conclusões foram estabelecidas, assim como uma reflexão
filosófica sobre o papel dos tópicos abordados para os sistemas elétricos de potência.

Palavras-chaves: Qualidade de Energia. Processamento Avançado de Sinais. Inteligência
Artificial. Aprendizado Profundo. Redes Neurais Concolucionais. Redes Inteligentes.



Abstract
Power quality (PQ) is not a new theme, but it should not be neglected in any way, as
its performance parameters will reveal problems in the adequacy between the consumer
equipment and the electrical grid. With the ongoing transformations in electrical power
systems, characterized by the high penetration of renewable energy sources, the massive
insertion of components based on power electronics in the network, and the decentral-
ization of generation, these issues are becoming increasingly important. In Smart Grids,
solutions are sought for more advanced solutions to solve PQ disturbances problems. Ad-
vanced signal processing plays an essential role in dealing with the network and supporting
various applications within this context and Artificial Intelligence (AI), which has gained
significant prominence to feed applications with innovative solutions in several areas. This
research investigates the use of advanced signal processing and Deep Learning techniques
for pattern recognition and classification of signals with PQ disorders. For this purpose,
the Continuous Wavelet Transform with a filter bank is used to generate 2-D images
with the time-frequency representation from signals with voltage disturbances. The work
aims to use Convolutional Neural Networks (CNN) to classify this data according to the
images’ distortion. In this implementation of AI, specific stages of design, training, valida-
tion, and testing were carried out for a model elaborated by the case file and a knowledge
transfer technique with the pre-trained networks SqueezeNet, GoogleNet, and ResNet-50.
The work was developed in the MATLAB/Simulink software, all signal processing stages,
CNN design, simulation, and the investigated data generation. All steps have their objec-
tives fulfilled, culminating in the excellent execution and development of the research. The
results sought high precision for CNN de Scratch and ResNet-50 in classify the test set.
The other two models obtained not-so-high accuracy, and the results are consistent when
compared with different methodologies. Considerations about the results were pointed
out. Finally, some conclusions were established and a philosophical reflection on the role
of AI and advanced signal processing in electrical power systems.

Key-words: Power Quality. Advanced Signal Processing. Deep Learning. Convolutional
Neural Networks. Smart Grids.
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1 Introduction

1.1 General
In the last decades, Power Quality (PQ) has become a significant concern to the

power sector due to deregulation, the widespread use of sensitive loads, power electronic
devices, and the industrial processes transformation (BOLLEN; GU, 2006). The quality
performance problems become more unpredictable due mainly to the increase in dis-
tributed generation, wide insertion of renewable energy sources (RES) and electronic-
based grid components.

These new challenges are associated with the context of the Smart Grid (SG)
development, which has been placed in the focus to seek a more secure, reliable, efficient
and robust energy supply. Future distribution systems will based on the simultaneous
presence of various distributed resources, such as Photovoltaic (PV) power plants and
wind farms, energy storage systems, and controllable/non-controllable loads (BRACALE
et al., 2015). It is also characterized by extensive computerization, the key use of large-
scale Information and Communication Technology (ICT), automation, and two-way flow
of massive data and power. Together, these aspects corroborate a change in the PQ the
panorama and a need for a new treatment of these integrated metrics.

PQ is directly associated with the quality of the voltage/current signal funda-
mental waveform at the analysis point (ARRILLAGA; BOLLEN; WATSON, 2000). The
investigation of events that generate deformations in these signals is the main focus of
quality analysis. The identification and classification these quality problems is an ap-
plication of great importance in this field of power systems. With the increase in the
grid’s complexity, the use of more accurate tools becomes necessary, given the various
possibilities of occurrence. The most common disturbances are voltage sag/swell, oscilla-
tory and impulsive transients, harmonics, and flicker. With the recent transformations,
the know ones can show new behaviours, and the emerging disturbances gain attention.
These events are often associated.

The signal processing has a crucial role in power systems that determine param-
eters for measurement, the accuracy, and method to provide the best characterization
and analysis of the signals to be investigated (RIBEIRO et al., 2013). These parameters
(voltage, current, frequency, power, etc) go through several treatment steps from the trans-
ducers to the final applications, and this constitutes conduction, conversion, filters, and
analysis in different domains. Through advanced processing, it is possible to use techniques
to extract patterns and characteristics from the signals. Signals with PQ disturbances are
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essentially variations in the fundamental frequency of 50/60 Hz, so multi-domain analyzes
are very useful to characterize them.

The pattern recognition uses signal processing techniques in conjunction with clas-
sification algorithms, so it is possible to create a cause and effect relationship in the anal-
ysis of the signals. This pattern recognition will be important in future power systems
due to the variability of electrical signals from diverse generators and loads to help the
system operate correctly, identify problems, and control the grid’s power delivery process
(RIBEIRO et al., 2013). The use of Artificial Intelligence (AI) techniques to assist in the
classification process is increasingly recurrent. Although there are several methods, AI is
highlighted for emulating the way that the human identifies and recognizes patterns.

In power systems, one of the highly bracing and practicable recent advances is the
increasing use of AI techniques at the cutting-edge level of technologies to deal with the
complex problems and a new context of massive data/information for power delivery as-
sociated with SG (MISHRA et al., 2020). This emphasis given to AI is due to the different
systems that are evolving and becoming increasingly complex, demanding sophisticated
and computer-based solutions. In this way, SG’s phenomenon becomes ideal to flourish
ideas and applications that combine advanced fields and innovative techniques.

1.2 Research Objective
This dissertation investigates the use of advanced signal processing and Deep

Learning (DL) in pattern recognition applied to signals with PQ disturbances. For this
purpose, the Continuous Wavelet Transform (CWT) with a filter bank is used to generate
2-D images in the time-frequency domain from oscillographs with voltage disturbances.
This research aims to use Convolutional Neural Network (CNN) to classify these data ac-
cording to their respective distortion from the images. In this AI implementation, specific
design, training, validation, and testing steps will be carried out. This work was devel-
oped in the MATLAB/Simulink software, the stages of signal processing, design CNNs,
simulation, and the investigated data generation. Below are some specific goals:

1. Highlight the role of advanced signal processing and AI in power systems, especially
in this context of SG;

2. Review the state-of-art to verify the importance of the research associated with
pattern recognition for integrated metrics of quality performance;

3. Carry out a theoretical foundation to guide the development of the work;

4. Use a CWT-based method to generate scalograms from signals with PQ disturbance
to characterize them from a color map;
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5. Using Simulink to model a system adapted from IEEE benchmark five bars system;

6. Develop, train, validate, and test CNNs to classify the images generated in the two
previous objectives’ set within the investigated disorders;

7. Perform a performance analysis of the results obtained;

8. Make data, codes, and methods available in public databases to share with the
community of professionals and researchers.

1.3 Research Relevance
Classification of PQ events using pattern recognition is a important field of inves-

tigation on electrical power delivery. Combining advanced signal processing methods with
AI has proved to be advantageous to meet the electrical sector’s needs and developments,
mainly in SGs. When using images to extract characteristics from the signals and demon-
strating an effective and viable way of visualizing PQ disturbances, it also goes in line
with the agenda that has been the development of image-based techniques for pattern
recognition in several applications in the world. Finally, DL techniques has gained some
attention for applications in power systems., which has been recurring in recent times
(MISHRA et al., 2020).

In addition to being innovative, another noteworthy point is that these methods
have been widely explored for applications in different fields of knowledge, which is no
different for electrical engineering and power systems. The use of CWT scalograms with
DL together presents several examples such as detecting respiratory and heart diseases,
diagnosing faults in aviation engines, and diagnosing acoustic fractures in structures,
among many others (GOU et al., 2020; SHUVO et al., 2020; XIN et al., 2020). Therefore,
following this trend of opportunities, the research focused on these methods in applying
diagnostics in electrical systems is crucial and innovative.

1.4 Methodology
The method used is based on the first moment in a literature review to substan-

tiate through the raised theoretical background and the previous important work. The
procedures of signal processing, modeling, and datasets generation are performed in MAT-
LAB/Simulink and the development stages of DL techniques. The software is very friendly
with this type of application, with specific toolboxes for applications of DL, Wavelets, and
modeling of power systems.

The final objects of investigation, the CNNs, are elaborated and chosen with two
design methods: design from scratch and transfer learning. The methodology also provides
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a detailed description of the steps and also the provision of the data used. Qualitative and
quantitative analyzes are carried out to highlight the results obtained and the implications.
Figure 1.1 illustrates the research scope on the PQ events classification steps.

Figure 1.1 – Research scope on the PQ events classification steps.

1.5 Results and Contributions
The results are expected to provide an overview and possibilities of using CNNs to

classify images that describe voltage disturbances. In addition to presenting a performance
analysis, these results can serve as a reference for choosing and developing projects in the
area.

The research brings several contributions since there is not much work in this
specific field of application and addresses them together. Then, the work contributes to
exemplifying how to design a CNN from scratch and employ transfer learning for image
classification in PQ. The use of CWT scalograms to characterize PQ signals also opens the
possibility for applications that use 2-D images to classify these issues.It also provides a
material of reference for future work. Finally, there is a contribution to bringing a research
with an application proposal with cutting edge methods with details to guarantee the
findings’ reproducibility.

1.6 Dissertation Layout
This dissertation is divided as follows:

Chapter 2 presents a literature review on pattern recognition for PQ disturbances.
Besides, the theoretical tools used in this work with advanced signal processing and DL
frameworks are presented. Also, the chapter describes an integrated perspective of SG.

Chapter 3 is directed towards the research’s development procedures, going through
the data generation, featuring extraction, and CNNs design and training steps.
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Chapter 4 presents the results obtained in the CNN test stage and also some key
considerations.

Finally, chapter 5 brings the work’s conclusions, opportunities for future work, and
considerations from a philosophical perspective on the research’s main theme.



19

2 Theoretical Background

This chapter presents the theoretical topics necessary for a good understanding of
the development of this work. Starting with the state-of-art and going through the other
subjects involved in this research.

2.1 State-of-Art
Several works in the literature use pattern recognition to improve power quality

events classification. In Cerqueira et al. (2008), a novel Support Vector Machine (SVM)
based method for power quality event classification is proposed, and a simple approach for
feature extraction is introduced, based on the subtraction of the fundamental component
from the acquired voltage signal. The resulting signal is presented to a support vector
machine for classification, showing improved performance. Silva, Duque e Ribeiro (2016)
introduces the concept and the initial steps for using this powerful tool, here named iPQ-
Google, and which can help utilities, customers, and researchers to investigate and easily
find, compare and diagnose possible PQ waveform deviations saved on the internet.

In Bhavani e Prabha (2017), the authors introduces a novel automatic hybrid clas-
sifier to detect and classify events like Normal, Sag, Swell, and Interruptions are obtained
by modeling a three-phase distribution system using MATLAB Simulink. For classifica-
tion, the system uses the Wavelet Packet Transform (WPT) and Artificial Neural Network
(ANN). The classification performance is compared with Fast Fourier Transform (FFT)
based ANN. The simulation results obtained have significant improvement over exist-
ing methods. The work elaborated by Mahela, Sharma e Manglani (2018) is focused on
presenting an approach based on Discrete Wavelet Transform (DWT) and Fuzzy c-means
clustering for the detection and classification of PQ events. The disturbances such as volt-
age sag, voltage swell, momentary interruption, oscillatory transient, impulsive transient,
harmonics, notch, and spike are simulated in MATLAB with the help of mathematical
expressions. Already in Alshahrani et al. (2015), a detection method and classification
technique of power quality disturbances are presented. The wavelet filters detect and ex-
tract the features of a disturbance at different frequencies, and the classification is done
using artificial neural networks ANN. In Nagata et al. (2020), the authors proposes an
innovative approach to detect, segment and classify voltage sags according to their causes.
To detect and segment, Independent Component Analysis is used, with the advantage of
have a fast execution and with low computational effort in the operational stage. To clas-
sify, Higher-Order Statistics are used for feature extraction and the classifiers are based
on Neural Networks and SVM. Great results were achieved for the simulated and real
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signals.

Focused on DL and signal processing techniques specifically, some works are more
linked to the AI methods.The work in Balouji e Salor (2017) in contrast with the existing
PQ event data analysis techniques, sampled voltage data of the PQ events are not used,
but image files of the three-phase event data are analyzed by taking advantage of the
success of the deep leaning approach on image-file-classification. DIGITS DL platform of
NVIDIA is employed for the application algorithm on PQ event data images, it is shown
that the test data can be classified with 100% accuracy.

The methodology proposed by Wang e Chen (2019) is a classification structure
based on CNN considering 1-D signals. At the proposal of a deep CNN, several units
are stacked to extract resources from samples of massive disturbances automatically. A
typical simulation system is built to analyze the causes of power quality micro-network
problems, and field data from a multiple-micro system are used to prove the validity of
the proposed method. The work by Gong e Ruan (2020), one dimension’s signals are also
considered, using an Inception (Resnet) model modified for classification. It proposes two
training methods and makes comparisons and classifications with varieties of signals. The
technique was impressive from the point of view of accuracy when compared to other
methods. In Qiu et al. (2020a) the one-dimensional composite convolution is proposed to
improve the diversity of network features based on the standard convolution and dilated
convolution. They conduct various experiments to verify the effectiveness of the Multifu-
sion Convolutional Neural Network (MFCNN). Compared with the handcrafted feature
design methods and the general CNN models, the simulation under different noises and
hardware platform-based experiments verify the performance parameters. The exciting
thing about the work in (LI et al., 2020) is that it uses a method that combines empiri-
cal mode decomposition (EMD) with 1D-CNN for PQ DC issues. The proposed network
was also compared with other state-of-the-art deep neural networks, and the experiment
proved its effectiveness. Finally, an example analysis is carried out with the real data
to show the validity of the proposed method for evaluating DC issues in a real case. In
Wang, Xu e Che (2019), Aggarwal et al. (2019) is also possible to find methodologies that
explore alternatives and improvements for DL models for 1-D data classification.

In Dong et al. (2019) was proposed a Multi-Task Convolutional Neural Network
(MTCNN) to realize the multi-label classification of multiple power quality disturbances.
The experiments have demonstrated that this method had better performance and it
can greatly improve the accuracy rate for identifying PQ disturbances under different
conditions. In (QIU et al., 2020b), it is proposed a novel detection framework for complex
PQ disturbances based on Multifusion Convolutional Neural Network (MFCNN). When
compared with the handcrafted feature design methods and the general convolutional
neural network models, the simulation under different noises and hardware platform-based
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experiments verify the effectiveness of noise immunity, higher training speed, and better
accuracy of the method. Lastly, the proposal in Cai et al. (2019) is a hybrid approach
combiningWigner-Ville Distribution (WVD) with CNN for PQ disturbance classification.
The WVD is used to transform the 1-D signal to 2-D image, and uses the CNN for
image classification. This approach is very similar to the one developed in this work, but
the feature extraction for 2-D image is different. The high classification accuracy of test
results is achieved to confirm the effectiveness of the proposed method. The work Xue
et al. (2020) proposed a novel DL method based on deep CNN and spectrogram for PQ
disturbances classification is proposed. Considering the characteristics of PQs problems,
the spectrogram is used to restructure waveforms, and the convolutional base is designed
to capture features, speed up training, and reduce overfitting. Also a novel tagging method
for the issues is proposed and the small sample training is realized.

The doctoral thesis Bagheri (2018), conducted at Sweden, proposes particularly a
Space Phasor Model (SPM) of the three phase-to-neutral voltages as basis for analytic
methods. The SPM is especially suitable as it is a time-domain transform without loss of
any information. Another important contribution of the work is that most of the developed
methods have been applied to a large dataset of about 6000 real-world voltage dips. Two
DL-based (2D-CNN) voltage dip classifier has been developed. In Ekici et al. (2020),
a approach for classifying PQ disturbances such as voltage sag, swell, interruption and
harmonics. In the proposed method, colorized CWT coefficients of the voltage signals are
applied to CNN as an image file. Experiments were conducted on a dataset containing
1500 real-life disturbance signals measured from different locations in Turkey by Turkish
Electricity Transmission Corporation. This work is very similar to this research proposal,
as it indicates how it is possible to achieve high accuracy with simple methodologies and
robust techniques. Finally, the authors in Mishra, Subudhi e Jain (2019), Ahajjam et al.
(2020) propose methodology similar to the last article is used, but it uses signals from
mathematical functions. The results showed relevantly high accuracy.

These works make up the state-of-art related to the concepts and applications of
this research. From them, it is possible to identify the advanced map so far and highlight
the contributions that this work intends to bring. In the next sessions, the theoretical
basis and research topics will be presented and discussed.

2.2 Smart Grid Integrated Perspective
The electric power system has undergone constant transformations. These changes

are associated with an increase in renewables’ penetration, the great revolution of ICTs,
improvement of the computational performance capacity, search for sustainable infras-
tructures, and decentralization of power generation. The complexities pointed out several
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times in this research become part of the different levels of electrical grids. New paradigms
for the consumer’s role, for market dynamics, and technical challenges to maintain the
reliability of energy supply are emerging.

Soon, our energy systems will change further. It is believed that
large-scale power plants will be complemented by a large number
of small scale energy generation units. Among others, individual
households will generate solar or wind energy. It is also believed
that intelligent systems will be used to communicate comprehen-
sively, control, protect, and balance supply and energy demand. The
whole structure of central and local energy generation, transmission
and distribution, and enabling intelligent control and information
systems is called a smart grid. Smart grids will be integrating mi-
crogrids (local systems) and super grids (high voltage transmission
and bulk generation systems) (RIBEIRO; POLINDER; VERK-
ERK, 2012).

The SG will spare no effort to guarantee a more reliable, sustainable, automated
system proposal, characterized by the two-way flow of energy and information. It also
has at its core, a broad application of measurement and integrated sensing. Grids must
be able to have a quick response to undesired events, robust control strategies, and self-
diagnostic capacity to overcome the barriers already mentioned. Below are some features
associated with the SG concept (VIJAYAPRIYA; KOTHARI, 2011; U.S. Department of
Energy, 2008; IEEE SA, 2013; KHUFFASH, 2018):

• Increased use of digital information and controls technology to improve reliability,
security, and efficiency of the electric grid;

• Better facilitate the connection and operation of the traditional and distributed
generation;

• Penetration and integration of distributed resources and generation, including re-
newable resources;

• Capable of meeting increased consumer demand without adding infrastructure;

• Usage of key technologies and applications to improve grid performance;

• Development and incorporation of demand response, demand-side resources, and
energy-efficiency resources;

• Integration of smart appliances and consumer devices;
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• Increasingly resistant to attack and natural disasters, with self-healing aspects;

• Capable of delivering power quality;

• Consider social aspects.

In this way, the new grid architectures appear to meet all these points. It is pos-
sible to divide the complexities of this new context into dimensional, technological, and
stakeholders (RIBEIRO; POLINDER; VERKERK, 2012). Figure 2.1 illustrates this sce-
nario of complexity. This understanding is essential to understand how the approaches
that will be detailed in the next chapters bring SG contributions to PQ.

Figure 2.1 – Integrate perspective of SG complexity (Adapted from (RIBEIRO; POLIN-
DER; VERKERK, 2012)).

2.3 Integrated Metrics of Quality Performance
The term PQ is used to describe the variation of the voltage, current, and frequency

on the power system beyond a limit (JAIN, 2018). These variations are caused by grid
disturbances and are not desired, as they can cause improper operation and damage
to equipment, instability, damage to consumer equipment, among other concerns. It is
practically impossible to eliminate the disturbances (KAZIBWE et al., 1990), but projects
must be concerned with operating within the standards, in addition to measuring, and
identifying these events.
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The main factors influencing PQ are: generation equipment, end-user equipment
and the grid itself (ZAVODA et al., 2018). In addition to the traditional sources (motors,
transformers, nonlinear loads, etc.) of PQ issues, smart grids are mainly affected by the
generation of emissions in the electrical networks by the power electronic converters inter-
faced with PV panels, electrical vehicle chargers, batteries, etc (RÖNNBERG; BOLLEN,
2016). With the modernization and changes in electrical power systems, it is increasingly
necessary to use innovative methods to classify events involving voltage disturbances.

In the past, few disturbances were the focus of research. With new trends and even
changes in traditional ones, there is a need for intelligent and integrated signal processing
techniques to qualify better and treat problems. Figure 2.2 summarizes the context of the
PQ disturbances, highlighting those investigated by this work. The option of select these
classes, is associated with the desired frequency range for application of signal processing
and limit the scope to simplify the modeling and data generation process.

Figure 2.2 – Power Quality Context for Smart Grid.

The IEEE 1159-2019 standard (IEEE, 2019) establishes some definitions, charac-
terizes and discusses some power quality disturbances. This material and other essential
references were guided to model these events and base this research concept. This section
aims to describe the events covered by this research. Table 2.1 resumes the disturbance
parameters.
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Table 2.1 – Features of investigated PQ voltage disturbances (IEEE, 2019).

Categories Spectral Duration Magnitude
1. Transients
1.1. Impulsive

1.1.1. Nanosecond 5 ns rise < 50 ns
1.1.2. Microsecond 1 𝜇s rise 50 ns - 1 ms
1.1.3. Millisecond 0.1 ms rise > 1 ms
1.2. Oscillatory

1.2.1. Low Frequency <5 kHz 0.3-50 ms 0 - 4 pu
1.2.2. Medium Frequency 5-500 kHz 20 𝜇s 0 - 8 pu

1.2.3. High Frequency 0.5-5 MHz 5 𝜇s 0 - 4 pu
2. Short-term RMS variations

2.1. Instantanous
2.1.1. Sag < 0.5 - 30 cycles 0.1 - 0.9 pu

2.1.2. Swell 0.5 - 30 cycles 1.1 - 1.8 pu
2.2. Momentary

2.2.1. Interruption 0.5 cycle - 3 sec < 0.1 pu
2.2.2. Sag 30 cycle - 3 sec 0.1 - 0.9 pu

2.2.3. Swell 30 cycle - 3 sec 1.1 - 1.4 pu
2.3. Temporary

2.3.1. Interruption >3 sec - 1 min < 0.1 pu
2.3.2. Sag >3 sec - 1 min 0.1 - 0.9 pu

2.3.3. Swell >3 sec - 1 min 1.1 - 1.2 pu
3. Waveform distortion

3.1 Harmonics 0 - 9 kHz steady state 0–20%

2.3.1 Impulsive Transient

An impulsive transient is a sudden, unidirectional in polarity, nonpower frequency
change from the nominal condition of voltage, generally characterized by peak value and
duration times (IEEE, 2019). Lighting strikes are the most common causative events.
It can hit any part of electrical system and damage equipment or connected loads from
High Voltage (HV) and Low Voltage (LV) (RIBEIRO et al., 2013). This event’s damaging
effects can be immediate to the event or gradual (it deteriorates equipment materials
over time) since the amplitude surge can generate several problems. Figure 2.3 shows a
Impulsive transient waveform.

2.3.2 Oscillatory Transient

An oscillatory transient is a sudden, nonpower frequency change in the steady-
state condition of voltage, with a bidirectional behaviour in polarity (IEEE, 2019). In
other words, the instantaneous voltage or current value of an oscillatory transient varies
its polarity quickly. "Oscillatory transients show a damped oscillation with a frequency
ranging from a few hundred Hertz up to several megahertz" (BOLLEN; STYVAKTAKIS;



Chapter 2. Theoretical Background 26

Figure 2.3 – Impulsive Transient in a Substation.

GU, 2005). A particular type of this event is the capacitor switching transient that begins
with a negative transient followed by a positive transient of 1.2x to 1.8x the typical value
of the sine wave, and then followed by an oscillatory transient of 400-2000 Hz standard,
an endless quarter cycle or less (IEEE, 2019). Figure 2.4 shows a oscillatory transient
waveform.

2.3.3 Voltage Sag

Voltage sag is a momentary decrease in voltage outside the typical tolerance. In
IEEE 1159 2009 standard is defined as: "A sag is a decrease in RMS voltage to between 0.1
pu and 0.9 pu and duration from 0.5 cycles to 1 min" (IEEE, 2019). These can be caused
by a heavy motor starting, faults and also heavy load changes or switching. Figure 2.5
shows a voltage sag waveform. The effects related to this disturbance are "malfunctions
of electronic drives, converters and equipment with an electronic input stage, relays and
contractors can drop out, and asynchronous motor can take a current higher than its
starting current at recovery process" (MORENO-MUÑOZ, 2007).

2.3.4 Voltage Swell

Swell is the opposite of sag, a short duration phenomenon of increase in RMS
voltage between 1.1 and 1.8 pu, and duration of the event ranges from 0.5 cycles to 1 min.
Swells are rare events as compared to sags (CHATTOPADHYAY; MITRA; SENGUPTA,
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Figure 2.4 – Oscillatory Transient in a Distribution System.

Figure 2.5 – Voltage Sag in a 88 kV Medicine Facility.

2011). Swells are more difficult to occur when compared to sags. This disturbance are
normally associated with fault conditions and can also be caused by switching off a large
load and load shedding (IEEE, 2019). The effects are similar to sags, and also can trip-out
protection circuits of power electronics. Figure 2.6 shows a voltage swell waveform.
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Figure 2.6 – Voltage Swell in a 34 kV Iron Mineration Facility.

2.3.5 Interruption

Interruption is defined as a reduction in the supply voltage, or load current, to
a level less than 0.1 pu for a time of not more than 1 minute, that can be caused by
system faults, equipment failures or control and protection misoperation (IEEE, 2019).
As it is also a short-term variation of the voltage RMS, the expected effects are the same
as those of sag, with worsening due to drastic reduction. Figure 2.7 shows a interruption
waveform.

2.3.6 Harmonics

Harmonics are periodic sinusoidal distortions of the supply voltage or load current,
and are measured in integer multiples of the fundamental supply frequency of 50/60 Hz
(COLLINSON; STONES, 2001). The electronic-based equipment is a significant source
of harmonics in power systems, like rectified input, switching power supplies, and also
nonlinear loads (IEEE, 2019). In smart grids context, with the extensive penetration of
renewables that are based on equipment with this emitting characteristic, harmonics con-
tinue to be the object of concern and research, both in the academic environment and
in the industry. Harmonics are common in the power systems and can be observed in
measurements. The grid operator concern is always to keep the level within the recom-
mendations of the standards and grid codes. Figure 2.8 shows a voltage waveform with
harmonics. The main harmonic effects are (WIECHOWSKI, 2006; DUGAN et al., 2012;
HAMEED; YOUSAF; Khan Sial, 2016):
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Figure 2.7 – Interruption in a 88 kV Medicine Facility.

• The possibility of amplification of harmonic levels resulting from series and parallel
resonances;

• Degradation of the power factor;

• Overheating of the phase and neutral conductors;

• Efficiency of the generators is reduced day by day due to harmonics;

• Eddy current and hysteresis losses in transformers;

• Overheating of the system components e.g. generators, motors and transformers etc;

• Interference problem with telecommunication ;

• Developed disturbing moments and noise in rotating machines;

• triplen harmonics may overload neutral conductor in LV networks;

• Among others.

2.4 Signal Processing Framework
This session will cover signal processing, both the advanced framework and the

concepts involving CWT and scalograms. These points are essential to substantiate what
research proposes for development.
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Figure 2.8 – Harmonic Distortion in a 34 kV Iron Mineration Facility.

2.4.1 Advanced Signal Processing for Power Systems

The use of signal processing in power system applications is widespread. Analysis
of the signals measured in the electrical grid is of paramount importance for the proper
functioning, guaranteeing the quality and reliability of services. For this, the measurement
aspects and characteristics of each voltage/current signal must be well known for the
effective use of the techniques.

Measurement and analysis of signals at different points in the system allow the
complete assessment of the grid condition (RIBEIRO et al., 2013). The rising of complexity
in power systems requires a wide and comprehensive signal monitoring together with
the suitable signal processing for characterizing, identifying, diagnosing, protecting, and
also for better unfolding the nature of certain phenomena and events (SILVA; DUQUE;
RIBEIRO, 2015). In the context of SG, where there is a philosophy of mass measurement
and sensing for all levels of power systems, the advanced signal processing leads as one of
the tools that can enable several other applications. It is reflected in the various fields of
this new network structure: communication, control, protection, automation, operation,
power quality, etc. Figure 2.9 shows the general application scheme for advanced signal
processing and highlights this work scope.

The results that can be obtained through signal processing have a variability of
utility and applications in power systems. Also, the different techniques that can be ap-
plied generate a range of results as well. SGs can take full advantage of these aspects
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Figure 2.9 – General application scheme for advanced signal processing (Adapted from
(RIBEIRO et al., 2013)).

to improve identification, characterization, and analysis. The advanced SP uses various
types and domains, allowing you to choose the one that best fits the application.

The smart grid of future will require not only advanced signal processing for iden-
tification of parameters but also intelligent methods and assessment for identifying par-
ticular patterns of behavior (RIBEIRO et al., 2013). In this way, pattern recognition
becomes a powerful application for power system diagnostic and monitoring solutions.
Given this, several classification methods use signal processing for feature extraction of
signals. The techniques based on wavelets present satisfactory results for this type of
application, besides being widely used.

2.4.2 Continuous Wavelet Transform (CWT)

"Wavelet transform is known as a mathematical microscope, which provides a
multiresolution analysis of the data under consideration" (GHAREKHAN et al., 2010).
The CWT allows the analysis of non-stationary signals at multiple scales and uses a
window to extract signal segments. The window is called a wavelet (SHOEB; CLIORD,
2006). For comparison, CWT is a generalization of Short-Time Fourier Transform (STFT)
to overcome the resolution limitations. In this transformation, it is possible to shorten or
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lengthen the window depending on the wavelet scale, besides the translation. In that case,
the lower the scale, the greater the sensitivity to variations in frequency. The 2.1 describes
CWT.

𝐶(𝑎, 𝜏) =
∫︁ 1√

𝑎
Ψ(𝑡− 𝜏

𝑎
)𝑥(𝑡)𝑑𝑡 (2.1)

Where 𝐶 is the transformation, 𝑎 is the scale factor, 𝜏 is the translation time, Ψ
is the mother wavelet function and 𝑥(𝑡) is the input signal in fuction of time.

When the wavelet is contracted (𝑎 smaller then 1) the wavelet offers high spectral
resolution, when the wavelet is dilated (𝑎 bigger then 1) the wavelet offers high temporal
resolution. In the first case, it is ideal for transient events, while the second is ideal for
determining frequencies in phenomena in steady-state.

The main properties that the wavelet function must obey are that of finite en-
ergy and the admissibility condition. These are described in the equations 2.2 and 2.3,
respectively.

𝐸 =
∫︁ ∞

−∞
|𝜓(𝑡)|2𝑑𝑡 (2.2)

∫︁ ∞

−∞
𝜓(𝑡)𝑑𝑡 = 0 (2.3)

Where 𝐸 is the energy of the wavelet and Ψ is the wavalet mother function.

The graphical representation of the correlation between the signal and the wavelets
scaled over time is called a Scalogram. The CWT automatically adjusts its time and
frequency resolution depending of activity by dilating or contracting the analysis window
(SHOEB; CLIORD, 2006). It is a time-scale representation with the distribution of the
signal’s energy and expressed in power per frequency unit, just like a spectrogram (RIOUL;
VETTERLI, 1991). The scalogram of the signal ”𝑥(𝑡), is defined by 2.4. Fig.2.10 shows
one example of a scalogram generated in MATLAB.

𝑆(𝑎, 𝜏) = |𝐶(𝑎, 𝜏)|2 (2.4)

The multiresolution analysis of CWT can be computed through a filter bank,
these are a set of filters that compose the signal in specific frequency ranges. Fig. 2.11
illustrates a scheme of filters associated with three levels. The low-pass and high-pass
filtering branches of compute respectively the approximations and details of the signal
x(k), which is the sampled signal. For a special set of filters L(z) and H(z) this structure
is called the DWT, the filters are called wavelet filters (MERRY, 2005).
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Figure 2.10 – Example of scalogram generated in MATLAB.

Figure 2.11 – A three level bank filter scheme.

In this work, the CWT method with filter banks is performed to extract, through
time-frequency analysis, a 2-D representation of the voltage signals. These representa-
tions will allow differentiating the events by an image with DL techniques, subject to be
addressed in the following section, for pattern recognition and classification. For power
system electromagnetic transient signals, the wavelet basis should have two desirable char-
acteristics (GALLI; HEYDT; RIBEIRO, 1996): reduce the number of wavelet components
that describe the signal, and reveal the natural transient oscillatory components of the
signal.

In references (MERRY, 2005; RIOUL; VETTERLI, 1991; PERCIVAL; WALDEN,
2000), it is possible to find a more in-depth approach to the subject, with all the details
and which also served as a guide and basis for the concepts described here.

2.5 Deep Learning Framework
In this part of the text, the framework involving AI and DL is presented. Thus,

intertwined concepts are also raised and are essential for the flow of research.
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2.5.1 Deep Learning and AI

AI is the term used to attribute machine knowledge, which emulates human men-
tal skills and activities, such as perception, understanding, learning, behavior, decision-
making, etc (KIM, 2020). It can also be described as the ability of a computer algorithm
to perform the human brain. From this concept, several sets of methods, models, and
algorithms are used in different applications, including power and energy systems. The
branches that involve this subject are Natural Language Processing, Robotics, Expert
Systems, Fuzzy Logic, Machine Learning (ML), and DL.

ML is a technique for studying and analyzing data, learning from large databases,
and making decisions based on learning. A key feature of ML is an iterative method
to learn from previous computations and adapt independently (KIM, 2020). DL, on the
other hand, is a subset of ML that uses a neural network model. The latter is one of
the important objects of the research developed, and in this aspect, that will be focused.
Figure 2.12 shows the set of methods associated with ML and where DL is inserted. Within
ML, there are three types of learning: supervised, unsupervised and reinforcement. It will
separate the kinds of methods and techniques used for specific applications. Below is the
explanation of each kind:

• Supervised: These algorithms have prior learning based on a system of labels asso-
ciated with data, which allows them to make decisions, predictions or classifications.

• Unsupervised: These algorithms have no prior knowledge. They deal with massive
lawlessness data sets, intending to find patterns that will somehow allow them to
be organized.

• By reinforcement: The algorithm learns from experience itself. That is, making
the best decision in different situations according to a trial and error process in
which the right choices are rewarded.

DL is a set of algorithms in machine learning that attempt to learn in multiple
levels, corresponding to different levels of abstraction, it is typically used to abstract useful
information from data (CHEN, 2015). It is an AI technique that has been implemented
for several years to classify images, text, data or sound. DL is usually implemented using
a neural network architecture, and the term “deep” refers to the number of layers in the
network, so more layers mean a deeper network (MATHWORKS, 2020). The number of
layers of this type of network can reach more than a hundred. Common DL techniques
include CNNs and Long Short-Term Memory (LSTM) (it is recurrent neural network). The
neural networks architecture are a combination of multiple nonlinear processing layers and
are inspired by biological nervous systems (MATHWORKS, 2020d). It kind of models can
achieve high levels of accuracy in object classification, sometimes can overstep human-level
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Figure 2.12 – Machine Learning examples of methods highlighting DL research applica-
tion.

performance (BEALE; HAGAN; DEMUTH, 2020). Figure 2.13 show the main differences
between DL and ML.

Figure 2.13 – Comparing advantages and disadvantages of DL and classical ML classifi-
cation methods .
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The techniques involving ML, including DL, can be applied for classification, re-
gression/forecasting, and clustering. The use ranges from more straightforward applica-
tions such as games to even cutting-edge smart technologies, such as robotics and aviation.
In electrical power systems, mainly in SG, these techniques are taking on an important
role and will become even more essential for the future network. With the decentral-
ization of systems and the massive flow of data, AI is critical for a reliable, safe and
automated performance. Below are listed some DL applications for power systems (OZ-
CANLI; YAPRAKDAL; BAYSAL, 2020; MISHRA et al., 2020):

• Load forecasting;

• Wind, Hydro and Solar generation forecasting;

• PQ disturbances classification;

• Islanding detection in distributed generation systems;

• Fault type classification;

• Fault location;

• Fault diagnosis for equipments;

• Cybersecurity in SG;

• Theft of electricity in SG;

• Optimization o renewable energy resources;

• Microgrid Energy Management Systems;

• Control and Automation;

• Among others.

In this research, DL is used to classify PQ disturbances employing neural networks
of deep layers. In the next session, the subject and the type of network will be deepened.
Training deep layered neural networks is considerably and time-consuming and requires a
great deal of computational strength. Also, a significantly large data set is needed. On the
other hand, developer interference is minimal, and accuracy can reach unlimited levels.

With few assumptions and little manual interference, structures
similar to the hierarchical cone are being automatically learned
from large amounts of data. These learning approaches are espe-
cially interesting in that, because they learn, they are not fixed for
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any specific task, and they can be used in a variety of applications.
(ALPAYDIN, 2016)

Two methods of development will be considered, design from scratch and transfer
learning. The first is creating the network from scratch and training it appropriately for
a specific task. The other method uses a pre-trained network (with a similar propose) for
reuse with a new data set and classification. It allows less use of labeled data for training
and reduces commuting effort. In (MATHWORKS, 2020b), the process to achieve the
transfer learning is explained:

1. Select a relevant network that has been trained for a task similar to the new task;

2. Replace the classification layers for the new task. If a large dataset is available, it
is possible to tune other layers without overfitting;

3. Train the network on the data for the new task;

4. Test the accuracy of the new model.

2.5.2 Convolutional Neural Networks (CNN)

CNN is used as a DL method to classify images with scolagrams that describe the
signal with voltage disturbance. CNN is feed-forward neural networks that use a spatial-
invariance trick to learn local patterns, most commonly, in images efficiently (LÓPES
et al., 2019). CNN is specially designed considering the structure of images. The input
and output of each stage of a CNN are called feature maps (WANG, 2016). For the first
block, the input is an image, so each block’s output is a feature extraction of the input. It
consists of three types of layers: convolutional layer, activation layer, and pooling layer.
The last block is a fully connected layer which outputs predictions on classes. Fig. 2.14
shows an illustration of a typical CNN’s architecture.

Figure 2.14 – CNN typical architecture.

Several architectures and combinations can be implemented, the most common
being serial arrangements and an arrangement Directed Acyclic Graph (DAG). A DAG
network can have a complexity layout in which layers have inputs from multiple layers and
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outputs to various layers. The series architecture, on the other hand, provides a simple
and direct line of connections. The most common layers in the literature are described
below:

• Convolutional Layer: A convolutional layer is the main component of a CNN that
contain a set of convolutional kernels (filters) which generate an output feature map
by convoluting with a given input (KHAN et al., 2018). When placing the input
image through these filter sets, each activates a feature of the image. As you pass
the consecutive convolutional layers, the size of the filters normally increases. The
equation 2.5 describes the output of the convolutional layer.

𝑦𝑘
𝑗 =

∑︁
𝑖

𝑊 𝑘
𝑖𝑗 * 𝑥𝑘

𝑗 + 𝑏𝑘
𝑗 (2.5)

Where 𝑦𝑘
𝑗 is the output feature map, 𝑥𝑘

𝑗 the imput feature map, 𝑊 𝑘
𝑖𝑗 is the set of

2-D filters and 𝑏𝑘
𝑗 is the trainable bias parameter.

• Rectified Linear Unit or ReLU Layer: It is an activation function that maps
negative inputs to 0. Despite the simplicity of the procedure, it is one of the most
used as far as the author knows due to its operating speed. The equation 2.6 de-
scribes the ReLu function.

𝑓𝑟𝑒𝑙𝑢(𝑥) = 𝑚𝑎𝑥(0, 𝑥𝑟) (2.6)

Where 𝑥𝑟 is the funciton input and 𝑚𝑎𝑥 is a syntax for ramp funcion.

• Pooling Layer: Pooling uses nonlinear downsampling to simplifies the output,
reducing the number of learning parameters. The size of the output feature map
from an max-polling is given by equation 2.7.

ℎ𝑟 = 𝑚𝑎𝑥𝑀𝑥𝑀
1 (𝑥𝑝𝑗) (2.7)

Where ℎ𝑟 is the output feature map, 𝑥𝑝𝑗 is the element of the pooled region 𝑋𝑝𝑟 and
𝑀 is the pooled region’s dimension size.

• Fully Connected Layer: "Correspond essentially to convolution layers with filters
unit size filters, where each unit in a fully connected layer is connected to all the
units of the previous lay" (KHAN et al., 2018). The equation 2.8 describes the layer.

𝑧 = 𝑓(𝑊 𝑇 𝑞 + 𝑏) (2.8)

Where where 𝑞 and 𝑧 are the vector of input and output respectively. 𝑊 denotes
the matrix with the connections weights, and 𝑏 represents the bias term vector.
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• Classification Layer: "A classification layer computes the cross-entropy loss for
multi-class classification problems with mutually exclusive classes" (BEALE; HA-
GAN; DEMUTH, 2020).

To perform the stages of the study of DL and CNNs, the Deep Learning Toolbox
in MATLAB was used, which contains several specific tools that help in the development.
Therefore, when dealing with optimization algorithms for deep-layer neural networks,
attention is paid to the Stochastic Gradient Descent (SGD).

SGD performs a parameter update for each set of input and output
that are present in the training set. As a result, it converges much
faster compared to the batch gradient descent. Furthermore, it is
able to learn in an “online manner”, where the parameters can be
tuned in the presence of new training examples. The only problem is
that its convergence behavior is usually unstable, especially for rel-
atively larger learning rates and when the training datasets contain
diverse examples. When the learning rate is appropriately set, the
SGD generally achieves a similar convergence behavior, compared
to the batch gradient descent, for both the convex and non-convex
problems (KHAN et al., 2018).

Momentum-based training optimization improves SGD with great convergence,
besides solving the delay in the update due to fluctuations (KHAN et al., 2018; MURPHY,
2012). This method is applied in this research and the equation 2.9 describes the algorithm.
Other algorithms such as RMSProp and Adam can also be used, in the references (KHAN
et al., 2018; MATHWORKS, 2020b) presents in greater detail.

𝜃𝜖+1 = 𝛼O𝐸(𝜃𝜖) + 𝛾(𝜃𝜖 − 𝜃𝜖+1) (2.9)

Where is 𝜖 the iteration number, 𝛼 is the learning rate, 𝛼 is the parameter vector,
and 𝐸(𝜃) is the loss function.

In reference (KHAN et al., 2018) and (KIM, 2017), will find more comprehensive
details and other alternatives associated with the design and development of CNN for
various types of application as well. And also CNN architectures for transfer learning.

2.6 Considerations
This chapter presents an overview of the main theoretical tools that will feed

the theoretical basis for the explicit development of Chapter 3. Some references were
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given to point out more details about the concepts that have been well described and
contextualized with the problem.
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3 Research Procedures and Development

This chapter describes the procedures and stages of development. First, the method
and model used to generate power quality signals will be detailed. Soon after, a brief
description and illustration of scalograms extraction from the signals in a way that char-
acterizes them. Finally, the CNN design, choice, and braking procedures are detailed.

3.1 Data Generation
The generation of the data signal is one of the fundamental steps to carry out this

research. As models based on DL require large amounts of data for excellent training per-
formance, experts recommend in the ranges of thousands, at least. For that, the MATLAB
Simulink tool was used. Through the Specialized Power Systems (Simpowersys) library of
Simscape Electrical, a 220 kV transmission system was modeled based on the IEEE 5 bus
benchmark system’s topology. This tool allows the user to use a library with specialized
models for power systems with load components, transmission lines, generation, among
many other equipment and devices. A particular series of analyses for the power system
can also be used and generate common events such as faults, load switching, or capacitor
bank. The variety and possibility are tremendous, and the use among professionals and
researchers in the area is recurrent. Figure 3.1 shows the modeled system.

Figure 3.1 – 220 kV Transmission System in Simulink.

The purpose of using a reference system and typical network values is to get the
signals generated from reality closer to those found in the field measurement. Thus, despite
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the system being based on the IEEE 5 Bus, the transmission line parameters were removed
from (Val Escudero et al., 2019). The 220 kV OHL parameters are detailed in the Table
3.1.

Table 3.1 – 220 KV OHL Parameters.

Parameter Data
Phase Conductors 600ACSR Curlew

Conductors per Phase 1
DC Resistance 0.05527 Ω/𝑘𝑚

GMR 12.75733 𝑚𝑚
Outer Radious 15.8115 𝑚𝑚
Inner Radious 4 𝑚𝑚
Shield Wires None

Phase A Co-ordinates (-8.05,16.4) 𝑚
Phase B Co-ordinates (0,16.4) 𝑚
Phase C Co-ordinates (8.05,16.4) 𝑚
Phase Transposition Yes (perfectly symmetry)

Soil Resistivity 400 Ω.𝑚

With these parameters, the application "Compute RLC parameters" is powered
and can generate RLC parameters of overhead transmission line from its conductor char-
acteristics and tower geometry. The results obtained as positive-sequence, zero-sequence,
and mutual zero-sequence parameters of the transposed line were used. All the details
and math behind the tool can be found at (MATHWORKS, 2020a). For the transmis-
sion line model, the "Distributed Parameters Line" was used. Table 3.2 shows the block
parameters.

Table 3.2 – Distributed Line Parameters block values.

Parameter Value
R1 0.018441 Ω/𝑘𝑚
R0 0.19244 Ω/𝑘𝑚
L1 0.83262 𝑚𝐻/𝑘𝑚
L0 3.9161 𝑚𝐻/𝑘𝑚
C1 0.1395 𝑝𝐹/𝑘𝑚
C0 7.2246 𝑝𝐹/𝑘𝑚

The other parameters of the system, such as distance between bars, and load
power, are described in Table 3.3, and inspired in (BHANDAKKAR; MATHEW, 2018).
The 220V voltage source on bus 1 has the ratio X/R = 7, 60 Hz of fundamental system
frequency, and Short Circuit Level is 3000 MVA. The bar was configured for the "swing"
type.

In Figure 3.1, it is possible to see the blocks connected in busbar 5. They are with
half transparency in the Figure. Each block of this generates a PQ disturbance, one per
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Table 3.3 – Line Lengths and Loads.

Line Length (𝑘𝑚)
1-2 47
1-3 87
2-3 67
2-4 67
2-5 47
3-4 19
4-5 87

Load Power
Bus 1 -
Bus 2 20 MW / 10 MVAR
Bus 3 45 MW / 15MVAR
Bus 4 40 MW / 5 MVAR
Bus 5 60 MW / 10MVAR

batch of simulations to generate the investigated signals. With bus 5 measurements, the
training data set for CNNs is generated. The test set, on the other hand, was developed
using bus 4 as a reference. When combining a MATLAB script with the Simulink model,
through a loop and random variations (normal distribution) in critical parameters that
qualify voltage disturbances, different signals of the same class were obtained. The list
below describes how the disturbance was generated and critical parameters changed in
each simulation.

• Oscillatory Oscillatory: A heavy capacitive load was placed in bus 4. And through
a switch, this capacitor bank is connected. The average value of Capacitive Reactive
Power is 1.5 MVAr with 250 kVAr of variance.

• Impulsive Transient (Lightning Surge): An electrical discharge was applied in
busbar 5 with microsecond duration, in order to simulate a lightning. The average
value of voltage discharge is 100 kV with 20 kV of variance.

• Voltage Sag: For this event, line to line fault was applied, at busbar 5. The param-
eter that creates randomness is the fault resistance value, which presents an average
value of 20 Ω with a 10 Ω variance.

• Voltage Swell: The bus 5 load is disconnected and reconnected through a switch
breaker. The variant parameters to generate the randomness is the load active power,
with an average value 100 MW and 30 MW variance.

• Interruption: A three-phase fault to ground was performed in bus 5 with low fault
resistance. The average value in loop simulation was 3 Ω with variance of 0.5 Ω.
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• Normal operation with harmonics: The variant parameters to generate the
randomness is the load active power, with an average value 100 MW and 30 MW
variance.

Some harmonic current orders (5th, 7th, 11th, and 13th) were injected at bus-
bar 2 through current sources and an associated parallel impedance to characterize the
harmonics in the network, which is common in the real system.

The simulations loop for the training group was 200 iterations for each disturbance.
The loop for the test set was 50 iterations for each disturbance. The codes used to perform
this step can be found in Appendix B. With the generated signals, more signals were
created with typical characteristics of real measurements, including noise. For each PQ
issue class, the data set will receive three noise levels in Signal to Noise Ratio (SNR): 30,
40, and 60 SNRdB. That is, the training set at the end had 4800 signals, and the test set
1200.

3.2 Feature Extraction
After generating, verifying, and collecting the data, the next step is to create

the scalograms from the obtained signals to characterize voltage disturbances. For this,
tools from the MATLAB wavelet toolbox were used. The methodology for visualizing
these events in 2-D images was to use this time-frequency representation to highlight the
increase in frequencies above the fundamental during the investigated events. Scalograms
are adequate because they can highlight the increase in energy associated with a specific
frequency, containing time information.

The CWT with a filter bank has been ideal since the first attempts. It is possible
to define the frequency range to investigate and employ facilitating algorithms within
MATLAB. The script with the code for this step is in Appendix B. The algorithm used
implies the CWT with a filter bank. The input parameters used are Sampling Frequency,
Signal Size, Wavelet Type, Voices per Octave, and Frequency limits. Table 3.4 illustrates
the values used in this work.

Table 3.4 – CWT Filter Bank Parameters.

Parameter Value
Sampling Frequency 200 kHz

Wavelet Type Generalized Morse Wavelet
Voices per Octave 48
Frequency Limits [100 2000] Hz

The functions designed to obtain CWT with a filter bank allow the use of the
analytical wavelet family. These are Generalized Morse Wavelet, Analytic Morlet (Gabor)
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Wavelet, and Bump Wavelet. The number of voices per octave to use for the CWT,
specified as an even integer from 4 to 48. The CWT scales are discretized using the set
number of voices per octave. The energy spread of the wavelet in frequency and time
automatically determines the minimum and maximum scales. The parameters chosen to
generate these scalograms were based on the author’s experience and on a set of attempts
to show the increase in energy for frequencies above 100 Hz associated with voltage
disturbances.

From the coefficients generated by the CWT to analyze the signal, Colour maps of
the "jet 264" style available in MATLAB were assigned so that it was possible to observe
the energy scales in the scalograms. This process is applied to the absolute value of the
coefficients. Figure 3.2 shows the images for each disturbance.

Through this extraction in the time domain, it is also possible to visualize the
expected differences when adding noise to the signals. With this, we will assess whether
the proposed classifiers will achieve good accuracy even in noise signals. Figure 3.3 shows
an example of the difference in images when adding noise.

Finally, after generating all the images, containing only the scalograms, they were
saved in specific folders for each PQ disturbance class. The size of the saved images was
240x240 and in the "png" format. For this, the command "imwrite" and a support code
were used to save many images.

3.3 CNNs Methods and Training
In the DL models’ training stage, two methodologies were chosen, design and train-

ing CNN from scratch, the concept discussed earlier on transfer learning. In the first, the
author’s literature and previous experiences were used as a reference, but an analysis of
performance during training determined the choice. The objective was to guarantee 100%
accuracy on this stage and then proceed to the test stage. In this way, some training
parameters were put to the test, and finally, a network model was chosen for the test-
ing stage. The second method sought to determine three pre-trained CNNs available in
MATLAB’s Deep Learning Toolbox. In (MATHWORKS, 2020a) and in every MathWorks
interaction community, it allows immersion in the topic and the use of the software. Due
to the programming scripts available in Appendix B, training all networks was carried
out.

In the case of pretrained networks, it was enough to replace the last layers to
suit the proposed problem, as described in Chapter 2. The fully concealed layer and
the classification layer were parameterized suitable for only six classes. Some directions
were defined to choose the networks: different accuracy of each original model, varied
computational effort and availability. The following networks were selected: SqueezeNet,
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2 – Scalograms and Oscillographies of PQ disturbance: Impulsive Transient (a),
Oscillatory Transient (b), Voltage Sag (c), Voltage Swell (d), Interruption
(e), and Normal with Harmonics (f).

GoogleNet and ResNet-50. The first has less accuracy and less computational spend on
training. The second presents a computational effort slightly more significant than the
first and also accuracy. The ResNet-50 model, on the other hand, has higher accuracy but
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(a) (b)

(c) (d)

Figure 3.3 – Scalogram Images with Voltage Swell: Noiseless (a), 60 SNRdB (b), 40
SNRdB (c), 30 SNRdB (d).

with a computational effort at the level of precision. More information could be found in
(MATHWORKS, 2020c), also the architectures information. Figure 3.4 shows the CNN
from scratch layout. The Appendix C contains table details of the layers for each CNN.

After that, the training parameters were defined. Below are some criteria.

• The optimization training method fixed was the SGDM. Other available methods
have been tested previously, in the stage of familiarization with the techniques.
The choice was based on the speed of training and the simplicity that the method
updates the weights.

• The final learning rate 𝛼 for CNN elaborated by the author was 0.01, after attempts
at 0.0001, 0.001 and 0.1. For pre-trained networks, the choice was based on the slow
learning characteristics of these networks. Thus,𝛼 =0.0001 was attributed to these
since higher values caused optimization gradient stagnation in a minimum location,
and the accuracy was below 50%.



Chapter 3. Research Procedures and Development 48

Figure 3.4 – CNN from scratch architecture.

• Regarding accuracy, in the training stage the objective was 100% in this stage.

From the image dataset for training, 80% (3840) were separated for training and
20% (960) for validation. The labels are assigned to each PQ disturbance, with the tag
similar to the events’ name. Table 3.5 details the training parameters.

Table 3.5 – CNNs Training Parametrs and Features

Parameters CNN from Scratch SqueezeNet GoogleNet ResNet-50
Optimization SGDM SGDM SGDM SGDM
Learning Rate 0.01 0.0001 0.0001 0.0001

Max Epoch 4 4 4 4
Mini-Batch Size 24 24 24 24

Number of Layers 23 68 144 177
Input Size 240x240x3 227x227x3 224x224x3 224x224x3

It is necessary to highlight that the objective of this final evaluation of the work is
not to determine better values to be used in models, but how the models can be applied
with many times high accuracy and simplicity of implementation. The figure 3.5 shows
the performances of each network.
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(a) (b)

(c) (d)

Figure 3.5 – Deep Networks Training: CNN from Scratch (a), SqueezeNet (b), GoogleNet
(c), and ResNet-50 (d).

It is observed that all of them obtained good results in this training stage, with a
final accuracy of 100%, which remained for most of the training as well, departing almost
nothing from the validation. Thus, it is possible to state that the networks presented
here in this work present a good performance in training. The duration of each training
highlights the computational effort to train each network. As for the duration of each
training, below:

• CNN from Scratch: 87 minutes;

• SqueezeNet: 66 minutes;

• GoogleNet: 111 minutes;

• ResNet-50: 273 minutes.
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The computer used for the training and classification stage is a LENOVO IDEA-
PAD 320, with an Intel (R) Core (TM) i5-8250OU CPU @ 1.60GHz 1.80 GHz, 8 GB of
RAM, and a 64-bit Windows operating system.
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4 Results and Discussion

In this chapter, the results are presented with each proposed CNN classification
results for the tests set. In this way, it is possible to verify the models’ validity and compare
the classification performance through accuracy. A discussion of the results found and
outputs of the methodology is also taken into consideration.

4.1 Performances and Results
In this step, the test set generated in bar 4 of the 230 kV system models was used,

with 300 signals (50 of each class). In this way, the networks classified this set to four
noise levels with SNR= 30, 40 and 60 dB. The confusion matrix and the total and specific
accuracy values of each class were used to illustrate the results. The confusion matrix
allows a numerical visualization between predicted classes and real classes of the test set.
It also indicates the quantity correctly classified, quantity incorrectly typed, and what
confusions were made between the classes. The code used to generate the classification
results and the confusion matrices are found in Appendix B.

The CNN from Scratch showed high accuracy in the test set, with a total accuracy
of 97.67% for signals without noise, 97.33% for signals with 40 and 60 SNRdB, and 96.67%
for signals 30 SNRdB. Figure 4.1 illustrates the confusion matrices obtained for CNN from
Scratch. It is already possible to begin to notice some confusions are the result of wrong
classifications of events that involve short-term variation of RMS. Table 4.1 shows the
accuracy for each class for this results.

Table 4.1 – CNN from Scratch accuracy for each class.

Class Noiseless 60 SNRdB 40 SNRdB 30 SNRdB
Normal 100% 100% 100% 100%

Impulsive 100% 100% 100% 100%
Interruption 100% 100% 100% 100%
Oscillatory 100% 98% 98% 98%

Sag 100% 100% 100% 100%
Swell 86% 86% 86% 82%

SqueezeNet does not present an exciting result in this stage, with a total accuracy
of 72.33% for signals without noise and 40 SNRdB, 72% for signals with 60 SNRdB, and
66.67% for signals with 30 SNRdB. This result reflects a lot the low accuracy characteristic
of this pre-trained network. In the classification performance, this network has often
qualified transient impulsive events and voltage sag as swells, for sags is almost all wrong.
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(a) (b)

(c) (d)

Figure 4.1 – CNN from Scratch Test Results: Noiseless (a), 60 SNRdB (b), 40 SNRdB
(c), and 30 SNRdB (d).

Figure 4.2 shows the confusion matrices for SqueezeNet. Table 4.2 details the accuracy of
each class.

Table 4.2 – CNN SqueezeNet accuracy for each class.

Class Noiseless 60 SNRdB 40 SNRdB 30 SNRdB
Normal 100% 100% 100% 100%

Impulsive 34% 34% 34% 2%
Interruption 100% 100% 100% 100%
Oscillatory 100% 98% 98% 98%

Sag 0% 0% 2% 0%
Swell 100% 100% 100% 100%

GoogleNet is a network with relatively low accuracy. It was also reflected in the
results. This CNN showed a total accuracy of 80% for noiseless signals and signals with 60
SNRdB. For signals with 40 SNRdB, it obtained 77.67% and 70.67% for 30 SNRdB. The
network started to err significantly with transient impulsive signals as the noise increased,
presenting a low accuracy for this class and voltage sag. Figure 4.3 shows the confusions
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(a) (b)

(c) (d)

Figure 4.2 – SqueezeNet Scratch Test Results: Noiseless (a), 60 SNRdB (b), 40 SNRdB
(c), and 30 SNRdB (d).

matrices for GoogleNet classification. Table 4.3 details the GoogleNet accuracy of each
class.

Table 4.3 – CNN GoogleNet accuracy for each class.

Class Noiseless 60 SNRdB 40 SNRdB 30 SNRdB
Normal 100% 100% 100% 100%

Impulsive 64% 64% 52% 0%
Interruption 100% 100% 100% 100%
Oscillatory 100% 100% 100% 100%

Sag 16% 16% 14% 24%
Swell 100% 100% 100% 82%

Finally, ResNet-50 achieved the best performance among CNNs. It has achieved
total accuracy greater than CNN from Scratch. The total accuracy obtained is 100% for
noiseless, 60 SNRdB and 40 SNRdB. With only 5 classification errors of the sag class
for swell, it obtained 98.3% for signals with 30 SNRdB. Figure 4.4 shows the ResNet-50
confusion matrices. Table 4.4 details the ResNet-50 accuracy for each class.
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(a) (b)

(c) (d)

Figure 4.3 – GoogleNet Test Results: Noiseless (a), 60 SNRdB (b), 40 SNRdB (c), and
30 SNRdB (d).

Table 4.4 – CNN ResNet-50 accuracy for each class.

Class Noiseless 60 SNRdB 40 SNRdB 30 SNRdB
Normal 100% 100% 100% 100%

Impulsive 100% 100% 100% 0%
Interruption 100% 100% 100% 100%
Oscillatory 100% 100% 100% 100%

Sag 100% 100% 100% 90%
Swell 100% 100% 100% 100%

For an overview of the results, in most cases, the networks were formidable. The
SqueezeNet and GoogleNet networks did not have such good results, showing high ac-
curacy for some classes and others reaching 0%. It causes these networks to lose their
total accuracy and do not get the objective of classifying and pattern recognition for
all categories. On the other hand, CNN from Scratch and ResNet-50 were the result of
state-of-art accuracy. It can be said. Table 4.5 shows a summary of the total accuracy for
CNNs produced in this research work.
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(a) (b)

(c) (d)

Figure 4.4 – ResNet-50 Test Results: Noiseless (a), 60 SNRdB (b), 40 SNRdB (c), and 30
SNRdB (d).

Table 4.5 – Resume of Total Accuracy for each CNN.

CNN Noiseless 60 SNRdB 40 SNRdB 30 SNRdB
CNN from Scratch 97.67% 97.33% 97.33% 96.67%

SqueezeNet 72.33% 72% 72.33% 66.67%
GoogleNet 80% 80% 77.67% 70.67%
ResNet-50 100% 100% 100% 98.3%

The best cases obtained in this work are compared with some references’ accuracy
to highlight the place of the results within state-of-art. The criterion uses references
with similar methodologies and accuracy with noiseless signals since each one applies
different values in dB. Table 4.6 shows that comparison. When comparing with these
other methods, it is possible to verify that satisfactory results were obtained.

Another difference between these and other methodologies is that this work consid-
ers only five classes of PQ events. However, the signals are generated from a transmission
system model that seeks to approach reality. That is, real signs present harmonics and
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Table 4.6 – Comparison with some references.

Method Accuracy
CWT-CNN from Scratch 97.67%

CWT-ResNet50 100%
WVD-CNN (CAI et al., 2019) 99.67%

TSI-CNN (AHAJJAM et al., 2020) 97.84%
CWT-Bayesyan CNN (EKICI et al., 2020) 99.80%

FFT-CNN (XUE et al., 2020) 99.61%
ResNet-50 (WANG; CHEN, 2019) 99.84%

noise. Many methodologies consider these combinations, but they also use signals without
harmonics and are often generated by mathematical functions. In this research, typical
signals were developed for training and testing.

4.2 Discussion and Considerations
The results were able to detect this application’s potential obtaining results with

high accuracy in the classification of PQ disturbances. The exciting thing is that in the
pre-trained models, the characteristic accuracy was reflected in the results. And the model
made from scratch also obtained an optimal performance. Thus, it is possible to affirm
that the objective of creating classification models for pattern recognition in PQ signals
using images obtained by signal processing has been achieved. The use of confusion matrix
and detailing the class’s accuracy brought a positive point to highlight the results since
they were enough to directly and concisely describe the performance. These results will
be highlighted together with an overview of the work in the next chapter.



57

5 Conclusions

In this chapter, a retrospective of what was developed and the conclusions about
the research are presented. Besides, future work opportunities are highlighted, and a
philosophical discussion about the role of key concepts is raised.

5.1 Research Conclusions
This master’s dissertartion is a research product that sought to investigate the

use of advanced signal processing and DL techniques to classify PQ disturbances. In its
first stage, the state-of-art of the use of AI and signal processing for this type of pattern
recognition was highlighted and the main theoretical concepts that served as a basis
for development. The application’s role in the PQ and SG context was also highlighted,
making it favorable in a horizon of transformation and increased complexity of the power
systems.

This work’s main objective was to use CWT with a filter bank to generate scalo-
grams that extrude signal patterns with PQ events through a time-frequency representa-
tion, so it was possible to use CNN to classify these 2-D images. MATLAB software was
used as the primary tool for all stages: modeling a typical system to generate sets of data
for training and classification; use of CWT with filter bank to generate scalograms from
a color map, to highlight the characteristics of each signal class; training of CNNs, one
from scratch and three from the transfer learning method (SqueezeNet, GoogleNet, and
ResNet-50); finally, use the deep layer networks to classify a set of signals for testing.

All stages had their specific objectives completed, culminating in a good execution
and development of the research. The results obtained showed high accuracy for CNN from
Scratch and ResNet-50, within the highest results (noiseless signals) of each network,
they obtained 97.67 % and 100 % accuracy. The other two networks, SqueezeNet and
GoogleNet, got good results only for some classes. For others, they did not have the same
success in the classification process. The justification for these results was evidenced for
transfer learning-based CNN, which has to do with the network’s accuracy for the purpose
it was designed for. When comparing with other methodologies, with some considerations,
the two models with greater accuracy generated in this research are at a high level of
performance in the state-of-art.

The use of typical signals, with harmonics and noises, guarantees an approximation
with real signals, increasing the results’ validity. The work highlighted the role of advanced
signal processing in combination with the DL technique forPQ studies in SG. Making codes
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and programs available also guarantees a starting point for expanding and exploring the
type of application. Along with the detailed description of all stages, it is possible to
highlight the research’s more excellent reproducibility.

5.2 Future Works
Future work should consider the following opportunities:

• Use more massive datasets with real signs. Despite being a problematic proposal due
to the difficulty of having access to a sufficient number of natural and representative
data, this would increase the methodology’s reliability and applicability.

• Use methodologies such as hardware-in-the-loop / processor-in-the-loop for real-time
applications. Besides, greater processing capacity should be sought to expand the
research scope since this type of application with images and DL costs a tremendous
computational effort.

• It should also consider using the DL technique in conjunction with other ML tech-
niques for classification. In this approach, CNN would play the role of feature ex-
traction to increase accuracy of techniques such as decision tree, support vector
machine, multilayer perceptron, etc.

• Finally, using other signal processing techniques for feature extraction and image
generation can be considered, such as Stockwell Transform, Curvelet Transform,
Hilbert-Huang Transform, Space Phasor Model, among others.

5.3 Philosophical Assessment for Advanced Signal Processing and
AI Role in Smart Grids
In this philosophical consideration regarding the role of AI and advanced signal

processing technologies, is presented a holistic perspective on the development and design
of these technologies in the impact of smart grids. Instead, it is essential to highlight
the importance of a normative view of research systems that involve a complex scope,
such as smart grids. The future networks that are being developed in the present must
address complete solutions that consider all the interactions of the power systems and
all interested stakeholders. The emergence of solutions is inherent to normativity and
innovation associated with the concept of SG.

To understand the role of advanced signal processing and AI, the author will make
an analogy for illustration. See, it is possible to compare the power system to a human
body. Both are complex, with critical functioning, dynamic and intelligent. Under this
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umbrella are the PQ issues, which we can easily relate to diseases that affect the human
body. As well as the symptoms, the PQ disturbances indicate a non-adequacy of the
subsystems/bodies within the normality patterns. Thus, advanced signal processing has
the same importance as modern medical examinations that discover hidden or confusing
diseases from a simple point of view. The advancement of medical tests today allows access
to magnetic resonances, tomographies, etc. Also, techniques such as CWT will enable us to
bring visualizations in different electrical signals domains. However, a medical examination
alone does not have the power to activate actions that allow diagnosing the human being.
For that, one must dedicate the specialist knowledge of the medical professional. There
comes the role of artificial intelligence, which will emulate the electrical engineer’s expert
knowledge to classify and efficiently diagnose the different signal processing results.

Therefore, with the increase in criticality and the emergence of new contexts of
complexity in the power systems, it is essential for an excellent and reliable operation of
SG that innovative solutions emerge, especially in PQ.
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APPENDIX B – MATLAB Codes

All MATLAB codes and the Simulink program, can be found at:

• <https://github.com/sallesrds/master_thesis_rafael-s-salles.git>

https://github.com/sallesrds/master_thesis_rafael-s-salles.git
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APPENDIX C – Trained CNN layers details

In this appendix are the tables with details of the layers of the trained CNNs.

C.1 CNN from Scratch
Table C.1 shows the layers details of CNN from Scratch.

Table C.1 – CNN from Scratch Layers.

N° Type Description
1 Image Input 240x240x3 images with ’zerocenter’ normalization
2 Convolution 32 3x8x3 convolutions with stride [1 1] and

padding ’same’
3 Batch Normalization Batch normalization with 32 channels
4 ReLU ReLU
5 Max Pooling 2x2 max pooling with stride [2 2] and padding

’same’
6 Convolution 32 3x16x32 convolutions with stride [1 1] and

padding ’same’
7 Batch Normalization Batch normalization with 32 channels
8 ReLU ReLU
9 Max Pooling 2x2 max pooling with stride [2 2] and padding

’same’
10 Convolution 32 3x32x32 convolutions with stride [1 1] and

padding ’same’
11 Batch Normalization Batch normalization with 32 channels
12 ReLU ReLU
13 Max Pooling 2x2 max pooling with stride [2 2] and padding

’same’
14 Convolution 32 3x64x32 convolutions with stride [1 1] and

padding ’same’
15 Batch Normalization Batch normalization with 32 channels
16 ReLU ReLU
17 Max Pooling 2x2 max pooling with stride [2 2] and padding

’same’
18 Convolution 32 3x128x32 convolutions with stride [1 1] and

padding ’same’
19 Batch Normalization Batch normalization with 32 channels
20 ReLU ReLU
21 Fully Connected 6 fully connected layer
22 Softmax softmax
23 Classification Output crossentropyex with ’harmonics’ and 5 other

classes
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C.2 SqueezeNet
Table C.2 shows the layers details of SqueezeNet.

Table C.2 – SqueezeNet Layers.

N° Type Description
1 Image Input 227x227x3 images with ’zerocenter’

normalization
2 Convolution 64 3x3x3 convolutions with stride [2 2] and

padding [0 0 0 0]
3 ReLU ReLU
4 Max Pooling 3x3 max pooling with stride [2 2] and

padding [0 0 0 0]
5 Convolution 16 1x1x64 convolutions with stride [1 1] and

padding [0 0 0 0]
6 ReLU ReLU
7 Convolution 64 3x3x16 convolutions with stride [1 1] and

padding [1 1 1 1]
8 ReLU ReLU
9 Convolution 64 1x1x16 convolutions with stride [1 1] and

padding [0 0 0 0]
10 ReLU ReLU
11 Depth concatenation Depth concatenation of 2 inputs
12 Convolution 16 1x1x128 convolutions with stride [1 1]

and padding [0 0 0 0]
13 ReLU ReLU
14 Convolution 64 3x3x16 convolutions with stride [1 1] and

padding [1 1 1 1]
15 ReLU ReLU
16 Convolution 64 1x1x16 convolutions with stride [1 1] and

padding [0 0 0 0]
17 ReLU ReLU
18 Depth concatenation Depth concatenation of 2 inputs
19 Max Pooling 3x3 max pooling with stride [2 2] and

padding [0 1 0 1]
20 Convolution 32 1x1x128 convolutions with stride [1 1]

and padding [0 0 0 0]
21 ReLU ReLU
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22 Convolution 128 1x1x32 convolutions with stride [1 1]
and padding [0 0 0 0]

23 ReLU ReLU
24 Convolution 128 3x3x32 convolutions with stride [1 1]

and padding [1 1 1 1]
25 ReLU ReLU
26 Depth concatenation Depth concatenation of 2 inputs
27 Convolution 32 1x1x256 convolutions with stride [1 1]

and padding [0 0 0 0]
28 ReLU ReLU
29 Convolution 128 1x1x32 convolutions with stride [1 1]

and padding [0 0 0 0]
30 Convolution 128 3x3x32 convolutions with stride [1 1]

and padding [1 1 1 1]
31 ReLU ReLU
32 ReLU ReLU
33 Depth concatenation Depth concatenation of 2 inputs
34 Max Pooling 3x3 max pooling with stride [2 2] and

padding [0 1 0 1]
35 Convolution 48 1x1x256 convolutions with stride [1 1]

and padding [0 0 0 0]
36 ReLU ReLU
37 Convolution 192 3x3x48 convolutions with stride [1 1]

and padding [1 1 1 1]
38 Convolution 192 1x1x48 convolutions with stride [1 1]

and padding [0 0 0 0]
39 ReLU ReLU
40 ReLU ReLU
41 Depth concatenation Depth concatenation of 2 inputs
42 Convolution 48 1x1x384 convolutions with stride [1 1]

and padding [0 0 0 0]
43 ReLU ReLU
44 Convolution 192 1x1x48 convolutions with stride [1 1]

and padding [0 0 0 0]
45 ReLU ReLU
46 Convolution 192 3x3x48 convolutions with stride [1 1]

and padding [1 1 1 1]
47 ReLU ReLU
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48 Depth concatenation Depth concatenation of 2 inputs
49 Convolution 64 1x1x384 convolutions with stride [1 1]

and padding [0 0 0 0]
50 ReLU ReLU
51 Convolution 256 3x3x64 convolutions with stride [1 1]

and padding [1 1 1 1]
52 ReLU ReLU
53 Convolution 256 1x1x64 convolutions with stride [1 1]

and padding [0 0 0 0]
54 ReLU ReLU
55 Depth concatenation Depth concatenation of 2 inputs
56 Convolution 64 1x1x512 convolutions with stride [1 1]

and padding [0 0 0 0]
57 ReLU ReLU
58 Convolution 256 1x1x64 convolutions with stride [1 1]

and padding [0 0 0 0]
59 ReLU ReLU
60 Convolution 256 3x3x64 convolutions with stride [1 1]

and padding [1 1 1 1]
61 ReLU ReLU
62 Depth concatenation Depth concatenation of 2 inputs
63 Dropout 50% dropout
64 Convolution 6 1x1x512 convolutions with stride [1 1] and

padding ’same’
65 ReLU ReLU
66 Global Average Pooling Global average pooling
67 Softmax softmax
68 Classification Output crossentropyex with ’harmonics’ and 5 other

classes

C.3 GoogleNet
Table C.3 shows the layers details of GoogleNet.

Table C.3 – GoogleNet Layers.
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N° Type Description
1 Image Input 224x224x3 images with ’zerocenter’

normalization
2 Convolution 64 7x7x3 convolutions with stride [2 2] and

padding [3 3 3 3]
3 ReLU ReLU
4 Max Pooling 3x3 max pooling with stride [2 2] and

padding [0 1 0 1]
5 Cross Channel Normalization cross channel normalization with 5 channels

per element
6 Convolution 64 1x1x64 convolutions with stride [1 1] and

padding [0 0 0 0]
7 ReLU ReLU
8 Convolution 192 3x3x64 convolutions with stride [1 1]

and padding [1 1 1 1]
9 ReLU ReLU
10 Cross Channel Normalization cross channel normalization with 5 channels

per element
11 Max Pooling 3x3 max pooling with stride [2 2] and

padding [0 1 0 1]
12 Convolution 96 1x1x192 convolutions with stride [1 1]

and padding [0 0 0 0]
13 ReLU ReLU
14 Convolution 128 3x3x96 convolutions with stride [1 1]

and padding [1 1 1 1]
15 ReLU ReLU
16 Convolution 64 1x1x192 convolutions with stride [1 1]

and padding [0 0 0 0]
17 ReLU ReLU
18 Convolution 16 1x1x192 convolutions with stride [1 1]

and padding [0 0 0 0]
19 ReLU ReLU
20 Convolution 32 5x5x16 convolutions with stride [1 1] and

padding [2 2 2 2]
21 ReLU ReLU
22 Max Pooling 3x3 max pooling with stride [1 1] and

padding [1 1 1 1]
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23 Convolution 32 1x1x192 convolutions with stride [1 1]
and padding [0 0 0 0]

24 ReLU ReLU
25 Depth concatenation Depth concatenation of 4 inputs
26 Convolution 32 1x1x256 convolutions with stride [1 1]

and padding [0 0 0 0]
27 Max Pooling 3x3 max pooling with stride [1 1] and

padding [1 1 1 1]
28 ReLU ReLU
29 Convolution 128 1x1x256 convolutions with stride [1 1]

and padding [0 0 0 0]
30 ReLU ReLU
31 Convolution 64 1x1x256 convolutions with stride [1 1]

and padding [0 0 0 0]
32 ReLU ReLU
33 Convolution 96 5x5x32 convolutions with stride [1 1] and

padding [2 2 2 2]
34 Convolution 128 1x1x256 convolutions with stride [1 1]

and padding [0 0 0 0]
35 ReLU ReLU
36 Convolution 192 3x3x128 convolutions with stride [1 1]

and padding [1 1 1 1]
37 ReLU ReLU
38 ReLU ReLU
39 Depth concatenation Depth concatenation of 4 inputs
40 Max Pooling 3x3 max pooling with stride [2 2] and

padding [0 1 0 1]
41 Max Pooling 3x3 max pooling with stride [1 1] and

padding [1 1 1 1]
42 Convolution 192 1x1x480 convolutions with stride [1 1]

and padding [0 0 0 0]
43 ReLU ReLU
44 Convolution 16 1x1x480 convolutions with stride [1 1]

and padding [0 0 0 0]
45 Convolution 64 1x1x480 convolutions with stride [1 1]

and padding [0 0 0 0]
46 ReLU ReLU
47 ReLU ReLU
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48 Convolution 48 5x5x16 convolutions with stride [1 1] and
padding [2 2 2 2]

49 ReLU ReLU
50 Convolution 96 1x1x480 convolutions with stride [1 1]

and padding [0 0 0 0]
51 ReLU ReLU
52 Convolution 208 3x3x96 convolutions with stride [1 1]

and padding [1 1 1 1]
53 ReLU ReLU
54 Depth concatenation Depth concatenation of 4 inputs
55 Convolution 112 1x1x512 convolutions with stride [1 1]

and padding [0 0 0 0]
56 ReLU ReLU
57 Max Pooling 3x3 max pooling with stride [1 1] and

padding [1 1 1 1]
58 Convolution 24 1x1x512 convolutions with stride [1 1]

and padding [0 0 0 0]
59 Convolution 224 3x3x112 convolutions with stride [1 1]

and padding [1 1 1 1]
60 ReLU ReLU
61 ReLU ReLU
62 Convolution 64 5x5x24 convolutions with stride [1 1] and

padding [2 2 2 2]
63 ReLU ReLU
64 Convolution 160 1x1x512 convolutions with stride [1 1]

and padding [0 0 0 0]
65 Convolution 64 1x1x512 convolutions with stride [1 1]

and padding [0 0 0 0]
66 ReLU ReLU
67 ReLU ReLU
68 Depth concatenation Depth concatenation of 4 inputs
69 Convolution 128 1x1x512 convolutions with stride [1 1]

and padding [0 0 0 0]
70 ReLU ReLU
71 Convolution 128 1x1x512 convolutions with stride [1 1]

and padding [0 0 0 0]
72 ReLU ReLU
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73 Convolution 24 1x1x512 convolutions with stride [1 1]
and padding [0 0 0 0]

74 ReLU ReLU
75 Convolution 64 5x5x24 convolutions with stride [1 1] and

padding [2 2 2 2]
76 Convolution 256 3x3x128 convolutions with stride [1 1]

and padding [1 1 1 1]
77 ReLU ReLU
78 Max Pooling 3x3 max pooling with stride [1 1] and

padding [1 1 1 1]
79 Convolution 64 1x1x512 convolutions with stride [1 1]

and padding [0 0 0 0]
80 ReLU ReLU
81 ReLU ReLU
82 Depth concatenation Depth concatenation of 4 inputs
83 Convolution 112 1x1x512 convolutions with stride [1 1]

and padding [0 0 0 0]
84 Convolution 144 1x1x512 convolutions with stride [1 1]

and padding [0 0 0 0]
85 ReLU ReLU
86 ReLU ReLU
87 Max Pooling 3x3 max pooling with stride [1 1] and

padding [1 1 1 1]
88 Convolution 64 1x1x512 convolutions with stride [1 1]

and padding [0 0 0 0]
89 ReLU ReLU
90 Convolution 288 3x3x144 convolutions with stride [1 1]

and padding [1 1 1 1]
91 ReLU ReLU
92 Convolution 32 1x1x512 convolutions with stride [1 1]

and padding [0 0 0 0]
93 ReLU ReLU
94 Convolution 64 5x5x32 convolutions with stride [1 1] and

padding [2 2 2 2]
95 ReLU ReLU
96 Depth concatenation Depth concatenation of 4 inputs
97 Convolution 32 1x1x528 convolutions with stride [1 1]

and padding [0 0 0 0]
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98 ReLU ReLU
99 Convolution 160 1x1x528 convolutions with stride [1 1]

and padding [0 0 0 0]
100 Convolution 256 1x1x528 convolutions with stride [1 1]

and padding [0 0 0 0]
101 ReLU ReLU
102 ReLU ReLU
103 Max Pooling 3x3 max pooling with stride [1 1] and

padding [1 1 1 1]
104 Convolution 128 1x1x528 convolutions with stride [1 1]

and padding [0 0 0 0]
105 ReLU ReLU
106 Convolution 128 5x5x32 convolutions with stride [1 1]

and padding [2 2 2 2]
107 ReLU ReLU
108 Convolution 320 3x3x160 convolutions with stride [1 1]

and padding [1 1 1 1]
109 ReLU ReLU
110 Depth concatenation Depth concatenation of 4 inputs
111 Max Pooling 3x3 max pooling with stride [2 2] and

padding [0 1 0 1]
112 Convolution 160 1x1x832 convolutions with stride [1 1]

and padding [0 0 0 0]
113 Convolution 32 1x1x832 convolutions with stride [1 1]

and padding [0 0 0 0]
114 ReLU ReLU
115 Max Pooling 3x3 max pooling with stride [1 1] and

padding [1 1 1 1]
116 Convolution 320 3x3x160 convolutions with stride [1 1]

and padding [1 1 1 1]
117 ReLU ReLU
118 Convolution 256 1x1x832 convolutions with stride [1 1]

and padding [0 0 0 0]
119 ReLU ReLU
120 Convolution 128 5x5x32 convolutions with stride [1 1]

and padding [2 2 2 2]
121 Convolution 128 1x1x832 convolutions with stride [1 1]

and padding [0 0 0 0]
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122 ReLU ReLU
123 ReLU ReLU
124 ReLU ReLU
125 Depth concatenation Depth concatenation of 4 inputs
126 Convolution 192 1x1x832 convolutions with stride [1 1]

and padding [0 0 0 0]
127 ReLU ReLU
128 Convolution 384 3x3x192 convolutions with stride [1 1]

and padding [1 1 1 1]
129 Convolution 384 1x1x832 convolutions with stride [1 1]

and padding [0 0 0 0]
130 ReLU ReLU
131 Max Pooling 3x3 max pooling with stride [1 1] and

padding [1 1 1 1]
132 Convolution 128 1x1x832 convolutions with stride [1 1]

and padding [0 0 0 0]
133 ReLU ReLU
134 ReLU ReLU
135 Convolution 48 1x1x832 convolutions with stride [1 1]

and padding [0 0 0 0]
136 ReLU ReLU
137 Convolution 128 5x5x48 convolutions with stride [1 1]

and padding [2 2 2 2]
138 ReLU ReLU
139 Depth concatenation Depth concatenation of 4 inputs
140 Global Average Pooling Global average pooling
141 Dropout 40% dropout
142 Fully Connected 6 fully connected layer
143 Softmax softmax
144 Classification Output crossentropyex with ’harmonics’ and 5 other

classes

C.4 ResNet-50
Table C.4 shows the layers details of ResNet-50.
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Table C.4 – ResNet-50 Layers.

N° Type Description
1 Image Input 224x224x3 images with ’zerocenter’

normalization
2 Convolution 64 7x7x3 convolutions with stride [2 2] and

padding [3 3 3 3]
3 Batch Normalization Batch normalization with 64 channels
4 ReLU ReLU
5 Max Pooling 3x3 max pooling with stride [2 2] and

padding [1 1 1 1]
6 Convolution 64 1x1x64 convolutions with stride [1 1] and

padding [0 0 0 0]
7 Convolution 256 1x1x64 convolutions with stride [1 1]

and padding [0 0 0 0]
8 Batch Normalization Batch normalization with 256 channels
9 Batch Normalization Batch normalization with 64 channels
10 ReLU ReLU
11 Convolution 64 3x3x64 convolutions with stride [1 1] and

padding ’same’
12 Batch Normalization Batch normalization with 64 channels
13 ReLU ReLU
14 Convolution 256 1x1x64 convolutions with stride [1 1]

and padding [0 0 0 0]
15 Batch Normalization Batch normalization with 256 channels
16 Addition Element-wise addition of 2 inputs
17 ReLU ReLU
18 Convolution 64 1x1x256 convolutions with stride [1 1]

and padding [0 0 0 0]
19 Batch Normalization Batch normalization with 64 channels
20 ReLU ReLU
21 Convolution 64 3x3x64 convolutions with stride [1 1] and

padding ’same’
22 Batch Normalization Batch normalization with 64 channels
23 ReLU ReLU
24 Convolution 256 1x1x64 convolutions with stride [1 1]

and padding [0 0 0 0]
25 Batch Normalization Batch normalization with 256 channels
26 Addition Element-wise addition of 2 inputs
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27 ReLU ReLU
28 Convolution 64 1x1x256 convolutions with stride [1 1]

and padding [0 0 0 0]
29 Batch Normalization Batch normalization with 64 channels
30 ReLU ReLU
31 Convolution 64 3x3x64 convolutions with stride [1 1] and

padding ’same’
32 Batch Normalization Batch normalization with 64 channels
33 ReLU ReLU
34 Convolution 256 1x1x64 convolutions with stride [1 1]

and padding [0 0 0 0]
35 Batch Normalization Batch normalization with 256 channels
36 Addition Element-wise addition of 2 inputs
37 ReLU ReLU
38 Convolution 512 1x1x256 convolutions with stride [2 2]

and padding [0 0 0 0]
39 Batch Normalization Batch normalization with 512 channels
40 Convolution 128 1x1x256 convolutions with stride [2 2]

and padding [0 0 0 0]
41 Batch Normalization Batch normalization with 128 channels
42 ReLU ReLU
43 Convolution 128 3x3x128 convolutions with stride [1 1]

and padding ’same’
44 Batch Normalization Batch normalization with 128 channels
45 ReLU ReLU
46 Convolution 512 1x1x128 convolutions with stride [1 1]

and padding [0 0 0 0]
47 Batch Normalization Batch normalization with 512 channels
48 Addition Element-wise addition of 2 inputs
49 ReLU ReLU
50 Convolution 128 1x1x512 convolutions with stride [1 1]

and padding [0 0 0 0]
51 Batch Normalization Batch normalization with 128 channels
52 ReLU ReLU
53 Convolution 128 3x3x128 convolutions with stride [1 1]

and padding ’same’
54 Batch Normalization Batch normalization with 128 channels
55 ReLU ReLU
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56 Convolution 512 1x1x128 convolutions with stride [1 1]
and padding [0 0 0 0]

57 Batch Normalization Batch normalization with 512 channels
58 Addition Element-wise addition of 2 inputs
59 ReLU ReLU
60 Convolution 128 1x1x512 convolutions with stride [1 1]

and padding [0 0 0 0]
61 Batch Normalization Batch normalization with 128 channels
62 ReLU ReLU
63 Convolution 128 3x3x128 convolutions with stride [1 1]

and padding ’same’
64 Batch Normalization Batch normalization with 128 channels
65 ReLU ReLU
66 Convolution 512 1x1x128 convolutions with stride [1 1]

and padding [0 0 0 0]
67 Batch Normalization Batch normalization with 512 channels
68 Addition Element-wise addition of 2 inputs
69 ReLU ReLU
70 Convolution 128 1x1x512 convolutions with stride [1 1]

and padding [0 0 0 0]
71 Batch Normalization Batch normalization with 128 channels
72 ReLU ReLU
73 Convolution 128 3x3x128 convolutions with stride [1 1]

and padding ’same’
74 Batch Normalization Batch normalization with 128 channels
75 ReLU ReLU
76 Convolution 512 1x1x128 convolutions with stride [1 1]

and padding [0 0 0 0]
77 Batch Normalization Batch normalization with 512 channels
78 Addition Element-wise addition of 2 inputs
79 ReLU ReLU
80 Convolution 1024 1x1x512 convolutions with stride [2 2]

and padding [0 0 0 0]
81 Batch Normalization Batch normalization with 1024 channels
82 Convolution 256 1x1x512 convolutions with stride [2 2]

and padding [0 0 0 0]
83 Batch Normalization Batch normalization with 256 channels
84 ReLU ReLU
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85 Convolution 256 3x3x256 convolutions with stride [1 1]
and padding ’same’

86 Batch Normalization Batch normalization with 256 channels
87 ReLU ReLU
88 Convolution 1024 1x1x256 convolutions with stride [1 1]

and padding [0 0 0 0]
89 Batch Normalization Batch normalization with 1024 channels
90 Addition Element-wise addition of 2 inputs
91 ReLU ReLU
92 Convolution 256 1x1x1024 convolutions with stride [1 1]

and padding [0 0 0 0]
93 Batch Normalization Batch normalization with 256 channels
94 ReLU ReLU
95 Convolution 256 3x3x256 convolutions with stride [1 1]

and padding ’same’
96 Batch Normalization Batch normalization with 256 channels
97 ReLU ReLU
98 Convolution 1024 1x1x256 convolutions with stride [1 1]

and padding [0 0 0 0]
99 Batch Normalization Batch normalization with 1024 channels
100 Addition Element-wise addition of 2 inputs
101 ReLU ReLU
102 Convolution 256 1x1x1024 convolutions with stride [1 1]

and padding [0 0 0 0]
103 Batch Normalization Batch normalization with 256 channels
104 ReLU ReLU
105 Convolution 256 3x3x256 convolutions with stride [1 1]

and padding ’same’
106 Batch Normalization Batch normalization with 256 channels
107 ReLU ReLU
108 Convolution 1024 1x1x256 convolutions with stride [1 1]

and padding [0 0 0 0]
109 Batch Normalization Batch normalization with 1024 channels
110 Addition Element-wise addition of 2 inputs
111 ReLU ReLU
112 Convolution 256 1x1x1024 convolutions with stride [1 1]

and padding [0 0 0 0]
113 Batch Normalization Batch normalization with 256 channels
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114 ReLU ReLU
115 Convolution 256 3x3x256 convolutions with stride [1 1]

and padding ’same’
116 Batch Normalization Batch normalization with 256 channels
117 ReLU ReLU
118 Convolution 1024 1x1x256 convolutions with stride [1 1]

and padding [0 0 0 0]
119 Batch Normalization Batch normalization with 1024 channels
120 Addition Element-wise addition of 2 inputs
121 ReLU ReLU
122 Convolution 256 1x1x1024 convolutions with stride [1 1]

and padding [0 0 0 0]
123 Batch Normalization Batch normalization with 256 channels
124 ReLU ReLU
125 Convolution 256 3x3x256 convolutions with stride [1 1]

and padding ’same’
126 Batch Normalization Batch normalization with 256 channels
127 ReLU ReLU
128 Convolution 1024 1x1x256 convolutions with stride [1 1]

and padding [0 0 0 0]
129 Batch Normalization Batch normalization with 1024 channels
130 Addition Element-wise addition of 2 inputs
131 ReLU ReLU
132 Convolution 256 1x1x1024 convolutions with stride [1 1]

and padding [0 0 0 0]
133 Batch Normalization Batch normalization with 256 channels
134 ReLU ReLU
135 Convolution 256 3x3x256 convolutions with stride [1 1]

and padding ’same’
136 Batch Normalization Batch normalization with 256 channels
137 ReLU ReLU
138 Convolution 1024 1x1x256 convolutions with stride [1 1]

and padding [0 0 0 0]
139 Batch Normalization Batch normalization with 1024 channels
140 Addition Element-wise addition of 2 inputs
141 ReLU ReLU
142 Convolution 2048 1x1x1024 convolutions with stride [2 2]

and padding [0 0 0 0]
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143 Batch Normalization Batch normalization with 2048 channels
144 Convolution 512 1x1x1024 convolutions with stride [2 2]

and padding [0 0 0 0]
145 Batch Normalization Batch normalization with 512 channels
146 ReLU ReLU
147 Convolution 512 3x3x512 convolutions with stride [1 1]

and padding ’same’
148 Batch Normalization Batch normalization with 512 channels
149 ReLU ReLU
150 Convolution 2048 1x1x512 convolutions with stride [1 1]

and padding [0 0 0 0]
151 Batch Normalization Batch normalization with 2048 channels
152 Addition Element-wise addition of 2 inputs
153 ReLU ReLU
154 Convolution 512 1x1x2048 convolutions with stride [1 1]

and padding [0 0 0 0]
155 Batch Normalization Batch normalization with 512 channels
156 ReLU ReLU
157 Convolution 512 3x3x512 convolutions with stride [1 1]

and padding ’same’
158 Batch Normalization Batch normalization with 512 channels
159 ReLU ReLU
160 Convolution 2048 1x1x512 convolutions with stride [1 1]

and padding [0 0 0 0]
161 Batch Normalization Batch normalization with 2048 channels
162 Addition Element-wise addition of 2 inputs
163 ReLU ReLU
164 Convolution 512 1x1x2048 convolutions with stride [1 1]

and padding [0 0 0 0]
165 Batch Normalization Batch normalization with 512 channels
166 ReLU ReLU
167 Convolution 512 3x3x512 convolutions with stride [1 1]

and padding ’same’
168 Batch Normalization Batch normalization with 512 channels
169 ReLU ReLU
170 Convolution 2048 1x1x512 convolutions with stride [1 1]

and padding [0 0 0 0]
171 Batch Normalization Batch normalization with 2048 channels
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172 Addition Element-wise addition of 2 inputs
173 ReLU ReLU
174 Global Average Pooling Global average pooling
175 Fully Connected 6 fully connected layer
176 Softmax softmax
177 Classification Output crossentropyex with ’harmonics’ and 5 other

classes
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