FEDERAL UNIVERSITY OF ITAJUBÁ GRADUATION PROGRAM IN INDUSTRIAL ENGINEERING

R&D project selection: which criteria should we use?

Dalton Garcia Borges de Souza

Itajubá, Brazil December 2019 Dalton Garcia Borges de Souza

R&D project selection: which criteria should we use?

Thesis submitted to the Graduation Program in Industrial Engineering, fulfilling part of the requirements to obtain the title of Doctor of Science in Industrial Engineering.

FEDERAL UNIVERSITY OF ITAJUBÁ GRADUATION PROGRAM IN INDUSTRIAL ENGINEERING

Supervisor: Prof. Dr. Carlos Eduardo Sanches da Silva

Itajubá, Brazil December 2019

FEDERAL UNIVERSITY OF ITAJUBÁ GRADUATION PROGRAM IN INDUSTRIAL ENGINEERING

Dalton Garcia Borges de Souza

R&D project selection: which criteria should we use?

Thesis approved by the examination board in December 10^{th} of 2019, fulfilling part of the requirements to obtain the title of Doctor of Science in Industrial Engineering.

Banca Examinadora:

Prof. Dr. Carlos Eduardo Sanches da Silva (Supervisor)
Prof. Dr. Pedro Paulo Balestrassi (UNIFEI)
Prof. Dr. Adler Diniz de Souza (UNIFEI)
Prof. Dr. Nei Yoshihiro Soma (ITA)
Prof. Dr. Daniel Capaldo Amaral (USP)

Itajubá, Brazil December 2019

To my grandmother, Alda Barbosa de Souza, the first and most important teacher I had.

ACKNOWLEDGEMENTS

Thank you first and foremost to my research advisor, Dr. Carlos Eduardo Sanches da Silva, for his guidance throughout this process, and for introducing me to much of the methodology that underlies this work.

Thank you to the Federal University of Itajubá for creating this incredible opportunity. Specially to the professors of the graduation program in industrial engineering, technical-administrative staff, cleaning staff, and all those that directly or indirectly made this work happen.

Thank you to all students, university staff and experts that gave indispensable contributions to this thesis.

Thank you to CNPq, FAPEMIG, CAPES, European Commission and IFORS, for promoting and providing funds to this research.

Thank you to my parents, Rosangela and Joel (in memorian), to my aunt Izabel, and to my grandmother Alda, of whom provided the encouragement, support and guidance that I needed to be where I am.

Last but not least, a special thank you to my wife, Rafaela, the key inspiration that made this project possible.

"Our comforting conviction that the world makes sense rests on a secure foundation: our almost unlimited ability to ignore our ignorance." (Daniel Kahneman)

ABSTRACT

Many companies around the world lay on R&D their chances to be profitable and still standing in a dynamic market. To keep the changes going, many ideas surge and some are transformed into projects. Since the resources are limited, organizations are obliged to select only the most suitable projects to attend their objectives. This is an old practice. However, project portfolio characteristics has changed. The portfolio objectives of today go beyond profit: strategy, environment and society has also become import, along with many other decision criteria. The computational power was also enhanced, making multidata decision approaches feasible, even for small-profitable organizations. On the last half century, many authors have proposed multicriteria decision making (MCDM) methods for project portfolio selection (PPS) on Research and Development (R&D). However, only a few gave importance to the criteria used, which would be a central issue on any multicriteria decision. Thus, in order to contribute to R&D PPS field of study, this thesis investigates two propositions: (1) most criteria used in R&D PPS may be represented by a smaller list of criteria, and (2) the criteria used in R&D PPS can be selected in a fuzzy environment, according to their influence and importance. To do so, we explore the 227 criteria used in R&D PPS from 1970 to 2019, summarizing them in a list of 23 criteria with broader scopes and 8 criteria groups. We have also performed a Systematic Literature Review to get to the initial 227 criteria and to lighten the research opportunities in MCDM-based R&D PPS explored by this thesis. We also propose a novel MCDM approach for criteria selection, that integrates Fuzzy-based DEMATEL and Fuzzy-AHP Extend Analysis methods. Experts from a representative electrical-public Brazilian R&D organization have built and validated both list and method. Experts from other representative public Brazilian R&D organizations have also contributed in other research steps. All involved organizations manage together R&D portfolios valued around US\$ 5 billion each year, which account for 38% of all Brazilian annually expenditures in R&D projects. In a overall manner, the results provide guidance on the topic and facilitate knowledge accumulation and creation concerning the criteria selection process in MCDM-based R&D PPS.

Keywords: Criteria Selection, Project Portfolio, AHP, DEMATEL, Fuzzy, MCDM

LIST OF FIGURES

Figure 1.1 – General research framework, chapters and sections.	8
Figure 2.1 – Filters applied.	13
Figure 2.2 – Nature of the alternatives	17
Figure 2.3 – Type of integration approach.	17
$Figure \ 2.4-Number \ of \ publications \ by \ nature \ of \ alternatives \ over \ the \ years \ 1970-2019.$	18
Figure 2.5 – Most used MADM methods used in the articles	19
Figure 2.6 – Most used MODM methods used in the articles	22
Figure 2.7 – Uncertainty related to the variables.	25
Figure 2.8 – Main R&D application domains in MCDM-based R&D PPS	26
Figure 2.9 – Number of projects in the portfolios.	26
Figure 2.10–Yearly variation of the portfolio's size.	27
Figure 2.11–Programming Languages, Solvers and Software used in R&D PPS	28
Figure 2.12–Map with part of the information about MCDM-based R&D PPS articles	29
Figure 2.13–Publication pattern of MCDM applications in R&D PPS over the years $~$	
1970-2019	32
Figure 2.14–Most relevant correspondent authors on the subject considering their	
yearly citation average	33
Figure 2.15–Top ten countries in MCDM-based R&D PPS	33
Figure 2.16–Most representative journals in MCDM-based R&D PPS	34
Figure 2.17–Four-quadrant IRM.	38
Figure 2.18–Hierarchy structure of AHP	40
Figure 2.19–Triangular membership function	43
Figure 2.20–Trapezoidal membership function	44
Figure 2.21–Gaussian membership function	44
Figure 4.1 – IRM Generated in Fuzzy-based DEMATEL and recommended groups	
of criteria.	68
Figure D.1–Proposed software: user interface - Overvier	145
Figure D.2–Proposed software: user interface - Preparatory Stage	146
Figure D.3–Proposed software: user interface - Fuzzy-based DEMATEL	147
Figure D.4–Proposed software: user interface - Fuzzy-AHP Extent Analysis \ldots	148
Figure G.1–Pearson's correlation coefficients between the proposed criteria	156

LIST OF TABLES

Table 1.1 -	- Relation between objectives, methods and tools	6
Table 2.1 -	- Inclusion and exclusion criteria	11
Table 2.2 -	- Strings used to perform the search	12
Table 2.3 -	- Articles included in the literature review - Part $1/3$	14
Table 2.4 –	- Articles included in the literature review - Part $2/3$	15
Table 2.5 –	- Articles included in the literature review - Part $3/3$	16
Table 2.6 –	- MADM methods acronyms, meanings and first references	20
Table 2.7 -	- Main categories of MADM methods	23
Table 2.8 –	- MCDM-based R&D PPS articles: Number of projects, methods and	
	application domains - Part 1/2	30
Table 2.9 –	- MCDM-based R&D PPS articles: Number of projects, methods and	
	application domains - Part 2/2	31
Table 2.10	–Most cited papers in MCDM-based R&D PPS from 1970 to 2019 \ldots . 3	34
Table 2.11	-Research questions to guide further research	35
Table 2.12	-Advantages and disadvantages of classical DEMATEL	36
Table 2.13	-Advantages and disadvantages of classical AHP.	39
Table 2.14	-Scales of Judgement of importance in AHP	11
Table 2.15	-Random consistency index RI for n compared criteria $\ldots \ldots \ldots \ldots $	42
Table 3.1 -	- Scales of Judgement of importance in Fuzzy AHP Extent Analysis 5	52
Table 4.1 -	-Brazilian R&D public organizations: project portfolios and used docu-	
	ments	59
Table 4.2 -	- Experts, their qualifications and tasks	50
Table 4.3 –	- Theoretical list of criteria $\ldots \ldots \ldots$	61
Table 4.4 –	- Theoretical list of criteria - $1/3$	52
		53
Table 4.6 –	- Theoretical list of criteria - $3/3$	64
Table 4.7 -	- Individual direct-influence matrix for Decision-Maker 1 $\ldots \ldots \ldots $	35
Table 4.8 –	- Individual direct-influence matrix for Decision-Maker 2 $\ldots \ldots \ldots $	66
Table 4.9 -	- Individual direct-influence matrix for Decision-Maker 3 $\ldots \ldots \ldots $	66
Table 4.10	-Validation matrices: summary	71
Table 4.11	-AHP: Comparison matrices for Decision Maker 1	72
Table 4.12	-AHP: Comparison matrices for Decision Maker 2	73
Table 4.13	-AHP: Comparison matrices for Decision Maker 3	74
Table 4.14	-Values of W_i , W_d and W_o	75
Table B.1-	-Criteria employed by Petrobras	25
Table B.2-	-Criteria employed by CNPq	26

LIST OF ABBREVIATIONS AND ACRONYMS

AE	Inova Aerodefesa - BNDES Call
AG	Inova Agro - BNDES Call
AHP	Analytic Hierarchy Process
ANEEL	Brazilian Electricity and Regulatory Agency (in Portuguese: Agência Nacional de Energia Elétrica)
ANP	Analytic Network Process Or National Agency of Petroleum, Natural Gas and Bio-fuels (in Portuguese: Agência Nacional do Petróleo, Gás Natural e Biocombustíveis)
ARA	Additive Ration Assessment
BCG	Boston Consulting Group
BNDES	Brazilian Development Bank (in Portuguese: Banco Nacional de De- senvolvimento Econômico e Social)
BSC	Balanced Scorecard
CBA	Cost-Benefit Analysis
CBR	Case Based Reasoning
CCSD	Correlation Coefficient and Standard Deviation
CFCS	Converting Fuzzy data into Crisp Scores
CFPR	Consistent Fuzzy Preference Relations
CMR	Commercial & Market Risk
CNPq	National Council for Scientific and Technological Development (in Por- tuguese: Conselho Nacional de Desenvolvimento Científico e Tecnológico)
COA	Center of the Area
COG	Center-of-gravity
COI	Corporate Image

COM	Competitiveness
COP	Competitiveness and Partnership
COPRAS	Complex Proportional Assessment
CP	Compromise Programming
CRITIC	Criteria Importance ThroughInter-criteria Correlation
CUR	Customer Requirements
DEA	Data Envelopment Analysis
DEMATEL	Decision-Making Trial and Evaluation Laboratory
EEI	External Environment Income
ELECTRE	ELimination and Choice Expressing Reality (in French: ELimination Et Choix Traduisant la REalité)
EN	Inova Energia - BNDES Call
ENI	Environmental Impact
EVAMIX	Evaluation of Mixed Data
EXT	Extendibility
FER	Feasibility Requirements
FIB	Financial Benefit
FII	Financial Income
FINEP	Financing Institution of Research and Innovation (in Portuguese: Financiadora de Inovação e Pesquisa)
GA	Genetic Algorithm
GER	General Risk
GRA	Gray Relational Analysis
IEI	Internal Environment Income
IHD	Impact in Human Development
IRM	Impact-Relation Map

- MADA Multi-Attribute Decision Analysis or Multi-Attribute Decision Aiding
- MADM Multi-Attribute Decision Making
- MAP Market Potential
- MAR Material Resources
- MAUT Multi-Attribute Utility Theory
- MAVT Multi-Attribute Value Theory
- MCDA Multi-Criteria Decision Analysis or Multi-Criteria Decision Aiding
- MCDM Multi-Criteria Decision Making
- MCTIC Brazilian Minister of Science, Technology, Innovations and Communication (in Portuguese: Ministério da Ciência, Tecnologia, Inovações e Comunicações)
- MI Inova Mineral BNDES Call
- MME Brazilian Ministry of Mines and Energy (in Portuguese: Ministério de Minas e Energia)
- MODA Multi-Objective Decision Analysis or Multi-Objective Decision Aiding
- MODM Multi-Objective Decision Making
- MOGA Multiple objective genetic algorithm
- MOORA Multi-Objective Optimization on the basis of Ration Analysis
- MPA Market Potential & Attractiveness
- MULTIMOORA Multiplicative form with Multi-Objective Optimization on the basis of Ration Analysis
- NAIADE Novel Approach to Imprecise Assessment and Decision Environments
- NFB Non-Financial Benefit
- ORR Organizational Requirements
- PE Inova Petro BNDES Call
- PMBOK Project Management Body of Knowledge

PPM Project Portfolio Management PPS **Project Portfolio Selection** PROMETHEE Preference Ranking Organization Method for Enrichment of Evaluations QTR Quality Requirements REMBRANDT Ratio Estimation in Magnitudes or Decibels to Rate Alternatives which are Non-Dominated R&D Research and Development R&R Repeatability and Reproducibility ROA **Real Options Analysis** SA Inova Saúde - BNDES Call SAW Simple Additive Weighting SCR Scope Risk SLR Systematic Literature Review SMART Simple Multi-Attribute Rating Technique SOI Social Impact STF Strategic Fitness SU Inova Sustentabilidade - BNDES Call SWARA Step-wise Weight Assessment Ration Analysis TAR Technical Attractiveness & Relevance Technical Contribution & Innovativeness TCI ΤE Inova Telecom - BNDES Call TER Technical Risk TIC Technical Issues & Constraints TIR Timing Requirements TOPSIS Technique for Order Preference by Similarity to Ideal Solution UIS **UNESCO** Institute for Statistics

xiii

UTADIS Utilities Additives Discriminates
VIKOR Multi-criteria Optimization and Compromise Solution (in Serbian: VIseKriterijumska Optimizacija I Kompro-misno Resenj)
WASPAS Weighted Aggregated Sum Product Assessment
WOR Work Resources
WPM Weighted Product Method
WSM Weighted Sum Method

 \mathbf{xiv}

LIST OF SYMBOLS

λ	Autovalue
A_k	Comparison matrix between every pair of alternatives based on criterion \boldsymbol{k}
a_{ij}	importance of alternative i related to alternative j
С	Group direct-influence matrix (in classic DEMATEL) or Pairwise com- parison matrix for criteria (in classic AHP)
$ ilde{C}$	Group direct-influence fuzzy matrix (DEMATEL) or Aggregated fuzzi- fied pairwise compariton matrix (AHP)
\overline{C}	Normalized group direct-influence matrix (in classic DEMATEL) or Normalized Pairwise comparison matrix for all criteria (in classic AHP)
сс	Correlation coefficient
C_k	Individual direct-influence matrix
\tilde{C}_k	Individual direct-influence fuzzy matrix
\tilde{C}^k	Fuzzified pairwise comparion matrix
CI	Consistency Index
c_{ij}	Importance (in classic AHP) or Influence (in classic DEMATEL) of criterion i related to criterion j
$\tilde{c_{ij}}$	Influence of criterion i related to criterion j in triangular fuzzy scale
CR	Consistency Ratio
D	Dispatcher Group
\tilde{D}	Fuzzy dispatcher Group
$ ilde{G}$	Inner dependece fuzzy matrix
k_{max}	Highest possible score in a given scale
k_{min}	Lowest possible score in a given scale
М	Generic comparison matrix

R	Receiver group
$ ilde{R}$	Fuzzy receiver Group
RI	Random Index
\tilde{S}_i	Fuzzy synthetic extent to criterion i^{th}
Т	Total-influence matrix
$ ilde{T}$	Total-influence fuzzy matrix
V	Degrees of possibility
W^T	Eigenvector
W^{\prime}	Final normalized vector of classic AHP
W_o	Vector of overall weights.

CONTENTS

	Acknowledgements	v
	Abstract	vi
	List of Figures	vii
	List of Tables	viii
	List of Abbreviations and Acronyms	xv
	List of Symbols	xvii
1	INTRODUCTION	1
1.1	Research Context	1
1.2	Investigated Propositions and Objectives	3
1.2.1	General objectives	4
1.2.2	Specific Objectives	4
1.3	Research Delimitation's	5
1.4	Methodology	5
1.5	Structure of the Thesis	6
2	SCIENTIFIC FOUNDATIONS	9
2 2.1	SCIENTIFIC FOUNDATIONS	9 9
	SCIENTIFIC FOUNDATIONS	
2.1	SCIENTIFIC FOUNDATIONS	9
2.1 2.1.1	SCIENTIFIC FOUNDATIONS MCDM-based R&D PPS: A Systematic Literature Review SLR Methodology	9 10 11
2.1 2.1.1 2.1.2	SCIENTIFIC FOUNDATIONS MCDM-based R&D PPS: A Systematic Literature Review SLR Methodology MCDM-based R&D Project Portfolio Selection	9 10 11 31
2.1 2.1.1 2.1.2 2.1.3	SCIENTIFIC FOUNDATIONS MCDM-based R&D PPS: A Systematic Literature Review SLR Methodology SLR Methodology MCDM-based R&D Project Portfolio Selection Bibliometric Analysis Bibliometric Analysis Opportunities and new paths State of the second	9 10 11 31
 2.1 2.1.1 2.1.2 2.1.3 2.1.4 	SCIENTIFIC FOUNDATIONS MCDM-based R&D PPS: A Systematic Literature Review SLR Methodology MCDM-based R&D Project Portfolio Selection Bibliometric Analysis	9 10 11 31 33
 2.1.1 2.1.2 2.1.3 2.1.4 2.2 	SCIENTIFIC FOUNDATIONS MCDM-based R&D PPS: A Systematic Literature Review SLR Methodology SLR Methodology MCDM-based R&D Project Portfolio Selection Selection Bibliometric Analysis Selection Selection Opportunities and new paths Selection Selection MCDM Methods Selection Selection	 9 10 11 31 33 34
 2.1.1 2.1.2 2.1.3 2.1.4 2.2 2.2.1 	SCIENTIFIC FOUNDATIONS MCDM-based R&D PPS: A Systematic Literature Review SLR Methodology MCDM-based R&D Project Portfolio Selection Bibliometric Analysis Opportunities and new paths MCDM Methods Decision-Making Trial and Evaluation Laboratory (DEMATEL)	 9 10 11 31 33 34 35
 2.1.1 2.1.2 2.1.3 2.1.4 2.2 2.2.1 2.2.2 	SCIENTIFIC FOUNDATIONS MCDM-based R&D PPS: A Systematic Literature Review SLR Methodology MCDM-based R&D Project Portfolio Selection MCDM-based R&D Project Portfolio Selection Bibliometric Analysis Opportunities and new paths MCDM Methods Decision-Making Trial and Evaluation Laboratory (DEMATEL) Analytic Hierarchy Process (AHP)	 9 10 11 31 33 34 35 39
 2.1.1 2.1.2 2.1.3 2.1.4 2.2 2.2.1 2.2.2 2.3 	SCIENTIFIC FOUNDATIONS MCDM-based R&D PPS: A Systematic Literature Review SLR Methodology MCDM-based R&D Project Portfolio Selection MCDM-based R&D Project Portfolio Selection Bibliometric Analysis Opportunities and new paths MCDM Methods Decision-Making Trial and Evaluation Laboratory (DEMATEL) Analytic Hierarchy Process (AHP) Fuzzy-logic applied to MCDM approaches	 9 10 11 31 33 34 35 39 42
 2.1.1 2.1.2 2.1.3 2.1.4 2.2 2.2.1 2.2.2 2.3 2.3.1 	SCIENTIFIC FOUNDATIONSMCDM-based R&D PPS: A Systematic Literature ReviewSLR MethodologyMCDM-based R&D Project Portfolio SelectionBibliometric AnalysisOpportunities and new pathsOpportunities and new pathsMCDM MethodsDecision-Making Trial and Evaluation Laboratory (DEMATEL)Analytic Hierarchy Process (AHP)Fuzzy-logic applied to MCDM approachesFuzzification approaches	 9 10 11 31 33 34 35 39 42 43
 2.1.1 2.1.2 2.1.3 2.1.4 2.2 2.2.1 2.2.2 2.3 2.3.1 2.3.2 	SCIENTIFIC FOUNDATIONSMCDM-based R&D PPS: A Systematic Literature ReviewSLR MethodologyMCDM-based R&D Project Portfolio SelectionBibliometric AnalysisOpportunities and new pathsMCDM MethodsDecision-Making Trial and Evaluation Laboratory (DEMATEL)Analytic Hierarchy Process (AHP)Fuzzy-logic applied to MCDM approachesFuzzification approachesFuzzy operations	 9 10 11 31 34 35 39 42 43 45

4	THE PROPOSED BANK OF CRITERIA
4.1	Selecting organizations and experts
4.2	A theoretical list of criteria
4.3	A theoretical grouped list of criteria
4.4	A grouped list of criteria (Validation)
4.5	Ranking the criteria
5	CONCLUSIONS
	BIBLIOGRAPHY 80
	ANNEX A – CRITERIA USED BY THE SLR PAPERS 94
	ANNEX B – CRITERIA EMPLOYED BY THE BRAZILIAN R&D PUBLIC ORGANIZATIONS
	ANNEX C – VALIDATION MATRICES
	ANNEX D – A POSSIBLE USER INTERFACE TO THE PRO- POSED INTEGRATED MODEL AND SOFTWARE . 144
	ANNEX E – PROPOSED PSEUDO-CODE
	ANNEX F – NON-VERIFIED THEORETICAL LIST OF CRITE- RIA FOR R&D PPS
	ANNEX G – INTER-CRITERIA CORRELATION COEFFICIENTS 156

1 INTRODUCTION

1.1 Research Context

In the last 50 years, many authors have suggested project selection approaches for different topics, such as: healthcare, construction and public sector. One of the most relevant topics is Research and Development (R&D), with many articles indexed in scientific databases. According to Thore (2002), towards the end of the 20th century, as a result of the unbridled growth of communication and information technology, a new economy has emerged, recognized as "Knowledge economy". The drivers of this new economy are the R&D projects. That is why R&D managers frequently need to develop systems and procedures, which will improve the probability of success of their business. The associated risks in executing R&D projects has proved to have great impact, since the selection of inadequate projects may result in significant losses of financial and human resources (JAFARIZADEH; KHORSHID-DOUST, 2008; MONTAJABIHA *et al.*, 2017). In this case, the effect of corporate strategy is usually better perceived in the selection of R&D projects (CONKA *et al.*, 2008). Thus, connecting all projects with the strategic direction of the organization is crucial to better utilize the resources (GRAVES; RINGUEST, 1992; LIBERATORE, 1988; LIBERATORE, 1986).

Project-driven companies that depend on innovation have the obligation to develop and implement new products and processes to achieve a continued competitiveness and a strong presence in the market. So, research and development (R&D) is the main task in their strategic management framework (MEADE; PRESLEY, 2002). According to UNESCO Institute for Statistics (UIS), the annual global spenditure on R&D projects has reached a record of almost US\$ 1.7 trillion in 2018 (UIS, 2018). However, were all these projects well succeeded? Certainly not. Balachandra e Friar (1997) reminds us that in 1991, around 90% of a sample of 16,000 new product development projects failed. It is an old reference, but the problem and the numbers persist until today, at least for the pharmaceutical segment, which registered a 11.7% of clinical success rate in 2007 (PAUL *et al.*, 2010). To avoid project failure, companies are forced to find better ways of managing and selecting their projects portfolios, using the scarce resources with the objective to maximize some utility measure or benefit or, in other cases, minimize the risk or costs of their projects (BHATTACHARYYA, 2015).

About 90% of all projects conducted across the globe are inserted in a context of multiple projects (SHOU; HUANG, 2010). Thus Project Portfolio Selection (PPS) is a knapsack problem, where a set of projects compete with each other for scarce resources (human, time, budget) and are carried out under the sponsorship of a particular organi-

zation (SCHIFFELS *et al.*, 2018; GHASEMZADEH; ARCHER, 1999). Regardless of the adopted methodology, portfolio management aims to ensure that organizations perform only the right projects, rather than correctly performing any possible project (PMI, 2013).

In contrast to former R&D PPS applications (LIBERATORE, 1986; STEWART, 1991), the propagation and popularization of computational power of today also enables the proposition of models and software that does not seemed viable to R&D organizations and practitioners in the past. It is observed not only in PPS, but in almost all decision fields (BERALDI *et al.*, 2011; BJØRN *et al.*, 2020).

The decision-making process in Research and Development (R&D) Project Portfolio Selection (PPS) is quite similar to decision-making in other fields. In fact, the decision-making frameworks does not conceptually change depending on the portfolios' characteristics and application domain. Nevertheless, the used selection methods do. This is the reason why there are several scientific papers addressing different methodologies for R&D PPS. The main difference in R&D PPS are: (a) the spending in projects represents sizable investments; (b) those are investments that companies make in their future; thus, (c) the projects must be tied to corporate strategy; (d) the returns from R&D projects have long lead times, are risky and multidimensional in nature; and (e) the environment is turbulent and the results uncertain (LIBERATORE, 1987; MEADE; PRESLEY, 2002; WANG; HWANG, 2007). These unique features make it difficult to make good or optimal decisions.

On the other hand, R&D PPS still have difficulties that are shared by PPS in other fields. Commonly, the selection process may consider:

- 1. A big portfolio, with several projects (ARRATIA *et al.*, 2016; GUSTAFSSON; SALO, 2005; STEWART, 1991);
- Qualitative and quantitative data (MOHAGHAR *et al.*, 2012; TOLGA; KAHRA-MAN, 2008);
- Uncertainty generated by imprecise information (COLLAN; LUUKKA, 2014; HAS-SANZADEH et al., 2014; KARSAK, 2006);
- Uncertainty generated by limited data (MARCONDES et al., 2017; RINGUEST et al., 2004; STEWART, 2016);
- 5. Multiple interdependent and/or conflicting criteria (attributes and/or goals) (JUNG; SEO, 2010);
- Interdependence and interrelation among projects (BHATTACHARYYA et al., 2011; CZAJKOWSKI; JONES, 1986; STUMMER; HEIDENBERGER, 2003);

- 7. Mutually exclusive projects or cannibalization (EILAT *et al.*, 2008; ESHLAGHY; RAZI, 2015; MONTAJABIHA *et al.*, 2017; ORAL, 2012; RABBANI *et al.*, 2006);
- 8. Resource constraints (HEIDENBERGER, 1996; MEDAGLIA et al., 2007);
- 9. The optimal schedule (HEYDARI *et al.*, 2016; IMOTO *et al.*, 2008; SUN; MA, 2005);
- 10. Human resource allocation (TAYLOR *et al.*, 1982);

Regarding the methods used in PPS, Multi-criteria Decision-Making (MCDM) methods are the most scientific investigated approaches. MCDM supports the decision-makers on ranking and/or choosing the best alternatives on the basis of several and conflicting criteria. They range from simple (BITMAN; SHARIF, 2008) to complex approaches (WANG; HWANG, 2007), from usual (BARD *et al.*, 1988) to unusual (WU *et al.*, 2009), and from individual (MEADE; PRESLEY, 2002) to integrated ones (CHENG *et al.*, 2017).

However, despite being a scientifically active topic, Reza Afshari (2015) states that in the literature most of the reviewed studies on project selection do not provide a systematic method for criteria selection. Neglecting the use of an appropriate and systematic criteria selection technique might cause an inaccurate result in the final decision and, consequently, the validity of the MCDM method will be reduced. Bilalis *et al.* (2002) indicate that certain objective goals and criteria are difficult to be measured by distinct values in project selection, making it crucial the establishment of a proper system to identify the criteria and find the relative importance for selecting R&D projects. Thus, adding a systematic method for the criteria identification and selection, would induce more satisfactory results (YEH, 2003).

1.2 Investigated Propositions and Objectives

According to Morabito *et al.* (2018) the literature distinguishes hypothesis from propositions. Hypothesis is verified by quantitative metrics and indicators, while a proposition is verified by qualitative indicators. Thus, this thesis investigates two propositions: (1) Most criteria used in R&D PPS can be represented by a smaller list of criteria; and (2) the criteria used in R&D PPS can be selected according to their influence, importance and uncertainty, by integrating AHP (Analytic Hierarchy Process) and DEMATEL (Decision-Making Trial and Evaluation Laboratory) in a fuzzy environment.

According to the research relevance and needs exposed in the previous subsection, and the investigated hypothesis, this doctorate thesis seeks the following general and specific objectives.

1.2.1 General objectives

This thesis has two general objectives. The first one is to propose, cluster and validate a bank of criteria, that could be used by those interested in R&D project portfolio selection, such as researchers, organizations and decision-makers. No similar work has been done on the R&D PPS literature. The second one is to propose, verify, and validate a integrated fuzzy-based AHP-DEMATEL approach, suitable for criteria selection and unprecedented in the context of project selection. Despite the individual benefits of the both AHP and DEMATEL methods, the proposed approach simultaneously evaluates the criteria according to their overall importance and influence over each other, considers the uncertainty related to data imprecision, do not let residual weights on expandable criteria, and is easy to code and to be used by small-sized R&D organizations.

The objectives are complementary and, with the computational power of today, different R&D managers could use the bank of criteria and the proposed model according to their different realities.

1.2.2 Specific Objectives

The specific objectives related to the fist general objective are:

- find on the two main research databases, Scopus[®] and Web of Science Core Collection[®], articles about R&D PPS and list the criteria used in the project selection process.
- propose a shorter list of criteria, that could represent the criteria found on the literature. Affinity Diagram is used in this step.
- group the proposed criteria in a hierarchical structure by using fuzzy-based DEMA-TEL.
- validate the proposed criteria and groups of criteria in practice. In this step experts from the main Brazilian R&D public organizations compare the proposed criteria to the criteria they use in practice.

The specific objectives related to the second general objective are:

- combine AHP and DEMATEL in a novel approach: a Fuzzy-based Analytical Hierarchy Process Integrated to Decision-Making Trial and Evaluation Laboratory. Excel was used, since the general objective is to produce an approach that could used by small-sized/profitable organizations.
- verify the integrity of the results by implementing the approach in other software. Python was used.

• validate the approach applicability for the data of the Brazilian Electricity and Regulatory Agency (ANEEL).

1.3 Research Delimitation's

The results of this thesis are delimited to the following aspects:

- (a) Research area: the scope of this work is limited to Research and Development (R&D) Project Portfolio Selection (PPS). The proposed bank of criteria and MADM approach may be suitable to other fields of study inside or outside PPS.
- (b) Research databases: the Systematic Literature Review (SLR) we perform is limited to Scopus[®] and Web of Science Core Collection[®]. Other articles in the subject may be found on other databases.
- (c) Research keywords: the keywords used to find the articles may not be enough to return all viable results, yet it was intended to do so.
- (d) Focused PPS step: the thesis focus only in the step of criteria selection. Other steps are not included in the scope of this work, such as decision-maker selection, project-selection and scheduling.
- (e) The approach: the proposed criteria selection approach is the result of integrating in a fuzzy environment two well known MADM methods, AHP and DEMATEL. Yet the fuzzy approach we propose is unprecedented in R&D PPS, similar crisp approaches may be found in other research fields.
- (f) The validation: the proposed approach and bank of criteria were validated by experts from a public-electrical Brazilian R&D organization. We expect it could be extended to other portfolios and research fields.
- (g) Overcame disadvantages: the proposed approach still present some disadvantages of individual applications AHP and DEMATEL, such as the impossibility to take into account aspiration level of alternatives (which are tackle by VIKOR and TOPSIS methods), the impossibility to obtain partial ranking orders of alternatives (such as ELECTRE approaches), the difficult applicability to sets of criteria that require many pairwise comparisons, and the impossibility to consider constraints (such as mathematical models do).

1.4 Methodology

The research enlightened by this Thesis may follow many classifications. Regarding its nature, it is an **applied** research, showing practical interest on solving real world problems (APPOLINARIO, 2009). Regarding its objectives, it is a **normative** research, seeking to improve techniques and approaches already available on the literature (BERTRAND; FRANSOO, 2002). Regarding the problem approach, it is classified as **quantitative**, since it translates most results into numbers (GERHARDT; SILVEIRA, 2019).

Two research methods are employed: Modelling and Systematic Literature Review. While modelling is used to abstract a complex problem (BRAILSFORD *et al.*, 2019), systematic literature review is used to collect data, critically appraise research studies, and synthesize findings qualitatively or quantitatively (ROWLEY; SLACK, 2004). Table 1.1 shows how the research methods are connected to the research objectives.

General Objectives	Specific Objectives	Research Methods	Tools and Software	
Propose, cluster and validate a bank of	Find and list the criteria used in the R&D PPS	Systematic Litera- ture Review	Parsifal and Excel	
criteria	Propose a shorter list of criteria		Affinity Diagram	
	Group the proposed criteria in a hierar- chical structure	Modelling	Proposed model - partially (only Fuzzy- based DEMATEL)	
	Validate the pro- posed criteria and groups of criteria in practice		Comparison Matrix	
Propose, verify, validate an integrated	Combine AHP and DEMATEL in a novel approach		Proposed model (Ex- cel)	
fuzzy-based AHP-DEMATEL approach	Verify the integrity of the results by im- plementing the ap- proach in other soft- ware Validate the ap-		Proposed model (Python)	
	proach applicability			

Table 1.1 – Relation between objectives, methods and tools

1.5 Structure of the Thesis

This thesis is structured in five more chapters. The second one presents the Scientific Foundations. The third one introduces the proposed MCDM integrated method, followed by the forth chapter, that presents the construction process of the proposed bank of criteria. Lastly, the fifth chapter presents the conclusions. The content of each chapter is briefly commented below:

- Chapter 2: First of all, the systematic literature review (SLR) is presented. The SLR mainly find as unprecedented the main contributions of this thesis. Then, we present the used MADM methods, DEMATEL and AHP and. Lastly, we give an overview of the main fuzzy-logic concepts that are used in this thesis.
- Chapter 3: Presents the proposed method for criteria selection. In this chapter the verification step is also presented.
- **Capítulo 4**: Explains how the bank of criteria was build. The figure of the organizations and experts are presented, as well as the bank of criteria construction and validation.
- **Capítulo 5**: Presents the conclusions and the recomendations for further research on the subject.

Figure 1.1 presents the general research framework of this paper.



Figure 1.1 – General research framework, chapters and sections.

2 SCIENTIFIC FOUNDATIONS

This chapter presents the scientific foundations needed to perform this work. First, we present a systematic literature review on the topic. The main contributions of this section is to provide an overview of the topic and to find research opportunities that could be explored by this thesis and future research. Later, the classic MCDM methods AHP and DEMATEL are introduced, followed by a section that briefly introduces fuzzy-logic in the context of MCDM approaches.

2.1 MCDM-based R&D PPS: A Systematic Literature Review

In this chapter we offer a broad and extensive picture of the role of MCDM methods in R&D PPS. We classify, compare and analyze the various MCDM approaches used in previous articles. Our aim is to explore the area and provide a state-of-art reference of MCDM-based R&D project portfolio selection. To do this, we systematically collected and analyzed every paper published in the subject from 1970 to 2019, which were indexed on the two main widespread databases available: Scopus[®] and Web of Science Core Collection[®]. Considering this, the main research questions addressed in this review are:

- Regarding the methods. Which MCDM methods are used in R&D PPS? Which are the nature of their alternatives? Are the methods used as individual or integrated approaches? What are the most used MADM (Multi-attribute decision making) and MODM (Multi-objective decision making) methods? How the usage of those methods changed with time? How they are used? How uncertainty is considered by the models?
- Regarding the portfolios. How big they are? Which application domains are mostly explored? Which software, solvers or programming languages are employed in the selection process? Which attention the papers give to the criteria used?
- Regarding the research field. The publications timeline could be split into periods of theory intensification? Which are the mostly cited articles? Who are the top authors? Where are they?
- Regarding the hole data. Which data are correlated? Which conclusions can be made by looking at those correlations?
- Regarding research opportunities and trends. Which extensions of previous works could be done? Which research opportunities could be explored? This topic is especially important, since it highlights unexplored opportunities

Hopefully, besides grounding this thesis, the findings will be beneficial to the community of academics and practitioners in R&D PPS, as well as PPS in general.

2.1.1 SLR Methodology

This chapter reports both literature review and bibliometric analysis about MCDMbased R&D PPS. The research methodology follows the recommendations of Rowley e Slack (2004) to conduct a systematic literature review and is also based on the frameworks proposed by Jahangirian *et al.* (2010) and Diaby *et al.* (2013). However, it is expanded to pre-search steps, as shown on Fig. 2.1. The online application Parsifal[®] was also used as checklist to guide the SLR process.

Firstly, a bibliometric search was performed to obtain the most cited articles on MCDM bibliometric analysis and literature reviews (ANANDA; HERATH, 2009; GOVIN-DAN *et al.*, 2015; HO *et al.*, 2010; MALCZEWSKI, 2006; MARDANI *et al.*, 2016; MENDOZA; MARTINS, 2006; POHEKAR; RAMACHANDRAN, 2004; RIBEIRO, 1996; STEWART, 1992; WANG *et al.*, 2009; ZAVADSKAS *et al.*, 2014). From these articles, related to many research domains, several keywords associated to MCDM could be obtained. These keywords are formed by acronyms, synonyms and correspondent words to MCDM and its most cited methods. Afterwards, they were combined to keywords related to R&D and PPS. Thus, a total of 134 keywords, resulting a total of 2604 Boolean combinations, were used to find articles related to MCDM-based approaches in R&D PPS. The articles were found according to their Title, Abstract and Article Keywords. The searching keywords can be seen on Table 2.2.

The search was performed in the two main widespread databases available: Scopus[®] - the largest multidisciplinary database, including approximately 15,000 peer-reviewed journals and over 4,000 publishers (JAHANGIRIAN *et al.*, 2010); and Web of Science[®] Core Collection, a database that includes around 10,000 peer-reviewed journals and was for years the only citation database covering all scientific research domains (CHADEGANI *et al.*, 2013). The search started in January 1st 2019 and the last update was finished by November, 3rd 2019. A Total of 309 results from 1970 (the year when the first article is dated) to 2019 could be found. From those, we have considered for the next steps only non-duplicated articles, in English and published in peer-reviewed journals. Then, three screening steps were performed. Firstly, the titles were analyzed and articles that did not suit the scope of this work were rejected. Afterwards, articles were rejected based on their abstracts and subsequently on the full text. A total of 63 articles were finally selected (see, Tables 2.3, 2.4 and 2.5). The inclusion and exclusion criteria are given by Tab., as well as the correspondent screening steps.

Ctor	Inclusion Criteria	Exclusion Criteria
Step		
Title screening	Articles related or that could be related to project portfolio in general. Since the title briefly introduce the main topic of the article, many works that per- forms MCDM-based R&D PPS as a secondary topic could fall out the SLR.	Papers that do not present ap- proaches or cases related to project portfolio were left out. This is the case of articles intro- ducing MCDM methods to gen- eral applications, other fields of study or other subjects inside the big area of project man- agement, such as expert assess- ment, market assessment and performance evaluation of al- ready concluded projects.
Abstract screening	Articles related to R&D PPS in general. Since some abstracts do not present the methods and approaches employed, we have decided to check this informa- tion later.	Additionally to the exclusion criteria performed in the first step, were left out the SLR arti- cles that are addressing PPS to other areas rather than R&D, or are selecting other elements rather than projects, such as technology, suppliers, products and others.
Text screening	Only articles that present MCDM-based approaches to select R&D projects.	Additionally to the exclusion criteria performed in the two previous steps, articles address- ing mono-criteria project selec- tion or that do not find a set of optimal projects were left out.

Table 2.1 –	Inclusion	and	orrol	naion	onitonio
Table $2.1 =$	Inclusion	ana	exci	usion	cinteria

2.1.2 MCDM-based R&D Project Portfolio Selection

In general, MCDM has represented one of the fastest growing issues in several disciplines. The main problem is how to analyze a collection of alternatives influenced by several conflicting criteria (TRIANTAPHYLLOU, 2010; ZAVADSKAS *et al.*, 2014). This is why it has grown as a part of operational research area, concerning the design of computational and mathematical tools, techniques, models or methods that supports the subjective evaluation of criteria performance made by decision makers (ZAVADSKAS *et al.*, 2014; BANAITIENE *et al.*, 2008; BEHZADIAN *et al.*, 2012; MARDANI *et al.*, 2015). MCDM methods help improving the decisions quality by making them more explicit, rational and efficient (POHEKAR; RAMACHANDRAN, 2004). The negotiation, quantification and communication of priorities are also facilitated by using these methods (ANANDA; HERATH, 2009).

MCDM approaches can be classified into many categories, depending on the clas-

Table 2.2 – Strings used to perform the search

	Boolean combination: (MCDM OR MADM OR MODM OR Methods) AND PPS AND R&D
MCDM	"MCDM" OR "multicriteria decision making" OR "multi-criteria decision making" OR "multi criteria decision making" OR "multiplecriteria decision analysis" OR "multi-criteria decision analysis" OR "multiplecriteria dec
MADM	"MADM" OR "multiattribute decision making" OR "multi-attribute decision making" OR "multi attribute decision making" OR "multiple-attribute decision making" OR "multiple attribute decision making" OR "MADA" OR "multiattribute decision analysis" OR "multi-attribute decision analysis" OR "multi-attribute decision analysis" OR "multi-attribute decision analysis" OR "multiple-attribute decision analysis" OR "
MODM	"MODM" OR "multiobjective decision making" OR "multi-objective decision making" OR "multi objective decision making" OR "multiple-objective decision making" OR "multiple-objective decision making" OR "multiple objective decision making" OR "MODA" OR "multiobjective decision analysis" OR "multi-objective decision analysis" OR "multi-objective decision analysis" OR "multiple-objective decision analysis" OR
Methods	"Simple Additive Weighting" OR "Additive Ration Assessment" OR "SWARA" OR "Step-wiseWeight Assessment Ration Analysis" OR "TOPSIS" OR "Technique for Order of Preference by Similarity to Ideal Solution" OR "ELECTRE" OR "Elimination et Choix Traduisant la Réalité" OR "Elimination and Choice Expressing Reality" OR "LINMAP" OR "Linear Programming Technique for Multidimensional Analysis and Preference" OR "AHP" OR "LANAP" OR "Linear Programming Technique for Multidimensional Analysis and Preference" OR "AHP" OR "Analytic Hierarchy Process" OR "ANP" OR "Analytic Network Process" OR "PROMETHEE" OR "The Preference Ranking Organization Method for Enrichment of Evaluations" OR "MOORA" OR "Multi-Objective Optimization on the basis of Ration Analysis" OR "DEA" OR "Multiplicative form with Multi-Objective Optimization on the basis of Ration Analysis" OR "DEA" OR "Data Envelopment Analysis" OR "VIKOR" OR "Visekriterijumska optimizacija i Kompromisno Resenje" OR "Multicriteria Optimization and Compromise Solution" OR "COPRAS" OR "Complex Proportional Assessment" OR "EVAMIX" OR "Evaluation of Mixed Data" OR "DEMATEL" OR "Decision-Making trial and Evaluation Laboratory" OR "WASPAS" OR "Weighted Product Method" OR "Compromise Programming" OR "MAUT" OR "Multi-Attribute Utility Theory" OR "CBR" OR "Case Based Reasoning" OR "Multi-Attribute Value Theory" OR "REMBRANDT" OR "NAIADE" OR "Novel Approach to Imprecise Assessment and Decision Environments" OR "Linear Programming" OR "Non-Linear Programming" OR "Multi-Objective programming" OR "Multi-Objective Programming" OR "Multi-Objective Programming" OR "Non-Linear Programming" OR "Multi-Dipective programming" OR "Multi-Objective Programming" OR "Multi-Objective Programming" OR "Multi-Objective Programming" OR "Non-Linear Programming" OR "Multi-Objective Programming" OR "Non-Linear Programming" OR "Multi-Objective Programming" OR "Multi-Objective Programming" OR "Non-Linear Programming" OR "Multi-Objective Programming" OR "Multi-Objective Programming" OR "Integer Non-Linear Programmin
PPS	"Project Selection" OR "Project Evaluation" OR "Project Portfolio Selection" OR "Project Portfolio Evalu- ation" OR "Project Portfolio" OR "Project Portfolio Management"
R&D	"Research and Development" OR "Research & Development" OR "R&D" OR "R and D" OR "RnD" OR "R n D" OR "R & D"

sification criteria. Regarding the nature of the alternatives, it can be classified into multiobjective decision-making (MODM) and multi-attribute decision-making (MADM), or a combination of both (see Fig. 2.2) (ANANDA; HERATH, 2009; POHEKAR; RA-MACHANDRAN, 2004). In MODM methods there is no predetermined alternatives and the optimal alternative is selected among an infinite and continuous number of possibilities, which may be subjected to a set of constraints. Generally, mathematical approaches are classified as MODM methods. Examples of mathematical approaches are: linear programming, integer linear programming, integer non-linear programming, goal programming, multi-objective programming (HO *et al.*, 2010). On the other hand, MADM methods deal with a discrete and finite number of alternatives, which are designated by a predetermined set of criteria, thus their main task is to perform a rational selection, assessment and ranking among the feasible possibilities (ZAVADSKAS *et al.*, 2014). AHP

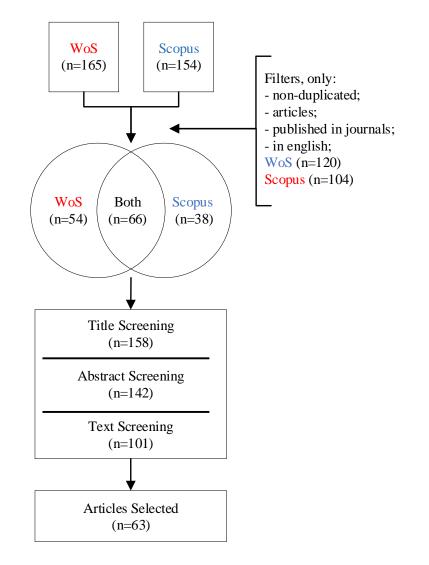


Figure 2.1 – Filters applied.

(Analytical Hierarchy Process) and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) are relevant examples of MADM methods. Therefore, some authors refer to MODM and MADM problems as continuous and discrete problems, respectively (MALCZEWSKI, 2006). In general, PPS problems are approached as knapsack problems that only involves discrete input data for each project. Thus, MODM methods are commonly constrained to work with discrete alternatives. Therefore, the classification in MADM and MODM considers the overall application of the method. Data Envelopment Analysis (DEA) is a controversial method that is normally sliding among classifications. In this work, following the classification made by Chai *et al.* (2013), DEA will be classified as a MODM method.

MCDM methods can also be classified according to their methodology: individual methodology approach and integrated methodology approach, which depends on the number of MCDM methods integrated in the methodology (see Fig. 2.3) (GOVINDAN *et al.*, 2015). The work of Meade e Presley (2002) is a pertinent example of individual

Author	Title	Year
Bell e Read (1970)	The application of a research project selection method	1970
Taylor $et al.$ (1982)	R and D Project Selection and Manpower Alloca- tion with Integer Non-Linear Goal Programming	1982
Madey e Dean (1985)	Strategic Planning for Investment in R&D usiong decision analysis and mathematical programming	1985
Czajkowski e Jones (1986)	Selecting Interrelated R&D projects in Space Tech- nology Planning	1986
Liberatore (1986)	R&D project selection	1986
Liberatore (1987)	Extension of the Analytic Hierarchy Process for In- dustrial R&D Project Selection and Resource Allo- cation	1987
Bard <i>et al.</i> (1988)	An Interactive Approach to R&D Project Selection and Termination	1988
Liberatore (1988)	An expert support system for R&D project selection	1988
Ringuest e Graves (1989)	The Linear Multi-Objective R&D Project Selection Problem	1989
Ringuest e Graves (1990)	The Linear R&D Project Selection Problem: An Alternative to Net Present Value	1990
Oral <i>et al.</i> (1991)	A Methodology for Collective Evaluation and Se- lection of Industrial Research and Development projects	1991
Stewart (1991)	A multi-criteria decision support system for r&d project selection	1991
Graves e Ringuest (1992)	Choosing the best solution in an R&D project se- lection problem with multiple objectives	1992
Heidenberger (1996)	Dynamic project selection and funding under risk: A decision tree based MILP approach	1996
Henig e Katz (1996)	R&D project selection: A decision process approach	1996
Beaujon et al. (2001)	Balancing and optimizing a portfolio of R&D projects	2001
Meade e Presley (2002)	R&D project selection using the analytic network process	2002
Hsu et al. (2003)	Fuzzy multiple criteria selection of government- sponsored frontier technology R&D projects	2003
Stummer e Heidenberger (2003)	Interactive R&D portfolio analysis with project in- terdependencies and time profiles of multiple objec- tives	2003
Kumar (2004)	AHP-based formal system for R&D project evalua- tion	2004
Ringuest et al. (2004)	Mean-Gini analysis in R&D portfolio selection	2004
Gustafsson e Salo (2005)	Contingent portfolio programming for the manage- ment of risky projects	2005
Mohanty et al. (2005)	A fuzzy ANP-based approach to R&D project se- lection: a case study	2005

Table 2.3 – Articles included in the literature review - Part 1/3

methodology approach using ANP (Analytical Network Process), a MADM method. On the other hand, Bard *et al.* (1988) introduce 0-1 integer programming as an individual

Author	Title	Year
Ringuest e Graves (2005)	Formulating optimal R&D portfolios	2005
Sun e Ma (2005)	A packing-multiple-boxes model for R&D project selec- tion and scheduling	2005
Wang <i>et al.</i> (2005)	Analytic hierarchy process with fuzzy scoring in evalu- ating multidisciplinary R&D projects in China	2005
Karsak (2006)	A generalized fuzzy optimization framework for R&D project selection using real options valuation	2006
Rabbani et al. (2006)	A comprehensive model for R and D project portfolio selection with zero-one linear goal-programming	2006
Carlsson et al. (2007)	A fuzzy approach to R&D project portfolio selection	2007
Medaglia $et al.$ (2007)	A multiobjective evolutionary approach for linearly con- strained project selection under uncertainty	2007
Shin <i>et al.</i> (2007)	Applying the analytic hierarchy process to evaluation of the national nuclear R&D projects: The case of Korea	2007
Wang e Hwang (2007)	A fuzzy set approach for R&D portfolio selection using a real options valuation model	2007
Bitman e Sharif (2008)	A conceptual framework for ranking R&D projects	2008
Conka <i>et al.</i> (2008)	A combined decision model for R&D project portfolio selection	2008
Eilat <i>et al.</i> (2008)	R&D project evaluation: An integrated DEA and bal- anced scorecard approach	2008
Fang <i>et al.</i> (2008)	A mixed R&D projects and securities portfolio selection model	2008
Imoto <i>et al.</i> (2008)	Fuzzy regression model of R&D project evaluation	2008
Tolga e Kahraman (2008)	Fuzzy multiattribute evaluation of R&D projects using a real options valuation model	2008
Wu et al. (2009)	Bargaining game model in the evaluation of decision making units	2009
Jung e Seo (2010)	An ANP approach for R&D project evaluation based on interdependencies between research objectives and evaluation criteria	201
Bhattacharyya <i>et al.</i> (2011)	Fuzzy R&D portfolio selection of interdependent projects	201
Eckhause <i>et al.</i> (2012)	An Integer Programming Approach for Evaluating R&D Funding Decisions With Optimal Budget Allocations	2012
Hassanzadeh <i>et al.</i> (2012a)	A Practical Approach to R&D Portfolio Selection Using the Fuzzy Pay-Off Method	2012
Hassanzadeh <i>et al.</i> (2012b)	A practical R&D selection model using fuzzy pay-off method	2012
Mohaghar <i>et al.</i> (2012)	An integrated approach of Fuzzy ANP and Fuzzy TOP- SIS for R&D project selection: A case study	2012
Oral (2012)	Action research contextualizes DEA in a multi- organizational decision-making process	2012
Collan e Luukka (2014)	Evaluating R&D Projects as Investments by Using an Overall Ranking From Four New Fuzzy Similarity Measure-Based TOPSIS Variants	2014

Table 2.4 – Articles included in the literature review - Part 2/3

Author	Title	Year
Hassanzadeh <i>et al.</i> (2014)	Robust optimization for interactive multiobjective pro- gramming with imprecise information applied to R&D project portfolio selection	2014
Bhattacharyya (2015)	A Grey Theory Based Multiple Attribute Approach for R&D Project Portfolio Selection	2015
Collan <i>et al.</i> (2015)	New Closeness Coefficients for Fuzzy Similarity Based Fuzzy TOPSIS: An Approach Combining Fuzzy Entropy and Multidistance	2015
Eshlaghy e Razi (2015)	A hybrid grey-based k-means and genetic algorithm for project selection	2015
Jeng e Huang (2015)	Strategic project portfolio selection for national research institutes	2015
Karaveg $et al.$ (2015)	A combined technique using SEM and TOPSIS for the commercialization capability of R&D project evaluation	2015
Arratia et al. (2016)	Static R&D project portfolio selection in public organizations	2016
Heydari et al. (2016)	Developing and solving an one-zero non-linear goal pro- gramming model to R and D portfolio project selection with interactions between projects	2016
Stewart (2016)	Multiple objective project portfolio selection based on ref- erence points	2016
Cheng <i>et al.</i> (2017)	A Consistent Fuzzy Preference Relations Based ANP Model for R&D Project Selection	2017
Karasakal e Aker (2017)	A multicriteria sorting approach based on data envelop- ment analysis for R&D project selection problem	2017
Marcondes <i>et al.</i> (2017)	Using mean-Gini and stochastic dominance to choose project portfolios with parameter uncertainty	2017
Montajabiha et al. (2017)	A robust algorithm for project portfolio selection problem using real options valuation	2017
Liang $et al.$ (2018)	Method for three-way decisions using ideal TOPSIS solu- tions at Pythagorean fuzzy information	2018
Gracia et al. (2019)	Multicriteria methodology and hierarchical innovation in the energy sector: The Project Management Institute ap- proach	2019
Wei et al. (2019)	Model and Data-Driven System Portfolio Selection	2019

Table 2.5 – Articles included in the literature review - Part 3/3

MODM approach method to select the optimal project portfolio. Liberatore (1987) shows how to integrate MADM and MODM methods by coupling AHP and 0-1 integer linear programming into an integrated approach. The proportion between the type of integration approach also seems to be constant over all period analyzed. However, the the integrated methods have changed: today we increasingly integrate MADM/MADM methods. Until 1995, only MADM-MODM and MODM-MODM integration's were performed. Another possible analysis is that papers addressing more than one model seem not to be interesting as it was in the past. For instance, the last paper addressing both individual and integrated approaches is dating 1988. It also reflects on the greater acceptance for

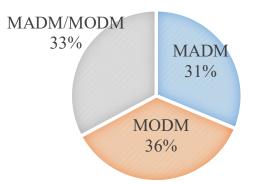


Figure 2.2 – Nature of the alternatives.

specific articles today, rather than the generalist ones.

It is worth mentioning that the usage of MODM methods as Individual Approaches and Integrated Approaches presents a moderate positive correlation coefficient (0.54, pvalue < 0.05) and a moderate negative correlation coefficient (-0.52, p-value < 0.05), respectively. Generally, those articles use only a few criteria, which are introduced as objective functions or constraints of the problem. MADM methods are then spared from one of their main roles in integrated approaches: criteria weight. In this case, a considerable number of papers not even explain the criteria used, which is also pointed out by the moderate negative correlation (-0,51, p-value < 0.05) between Linear Programming (So far, the most used MODM method) and the presence of explained criteria on the paper.

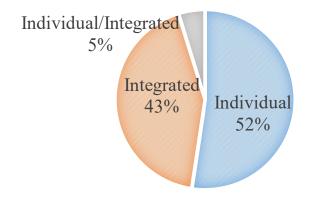


Figure 2.3 – Type of integration approach.

On Fig. 2.4, we can also observe that the pattern regarding the nature of alternatives changes over the years. From 1970 to 1995, only MODM and MADM/MODM approaches were used. This period is also coincident to the publication of the first PM-BoK (Project Management Body of Knowledge), in 1996 (COMMITTEE *et al.*, 1996), and will define in our study a first period of theory intensification. In this period many forms of 0-1 integer programming were explored in several articles (BARD et al., 1988; CZAJKOWSKI; JONES, 1986; LIBERATORE, 1986; LIBERATORE, 1987; MADEY; DEAN, 1985; TAYLOR et al., 1982). In the same period, AHP was the most integrated MADM method, exclusively with 0-1 integer linear programming and by Liberatore (1986), Liberatore (1987), Liberatore (1988). From 1996 to the present, our second period of theory intensification, individual MADM and integrated MADM-MADM approaches have emerged. AHP and its variations were the most used individual methods (HSU et al., 2003; KUMAR, 2004; SHIN et al., 2007; WANG et al., 2005), followed by ANP (JUNG; SEO, 2010; MEADE; PRESLEY, 2002) and ROA (Real Option Analysis) (COLLAN; LUUKKA, 2014; KARSAK, 2006; TOLGA; KAHRAMAN, 2008). Regarding Integrated MADM-MADM approaches, there is a variety of combinations with commonly used methods, such as AHP and DEA (BITMAN; SHARIF, 2008; CONKA et al., 2008); TOPSIS (COLLAN et al., 2015; KARAVEG et al., 2015; MOHAGHAR et al., 2012); and DEMATEL (Decision Making Trial and Evaluation Laboratory) (CHENG et al., 2017; JENG; HUANG, 2015). Fig. 2.5 and 2.6 introduce the most used MADM and MODM methods, respectively. Notice that Fig. 2.5 shows only the most used methods, other methods correspond for 14.5% of the total. The meaning of the main MADM methods acronyms are presented on Tab. 2.6, as well as their first reference on literature.

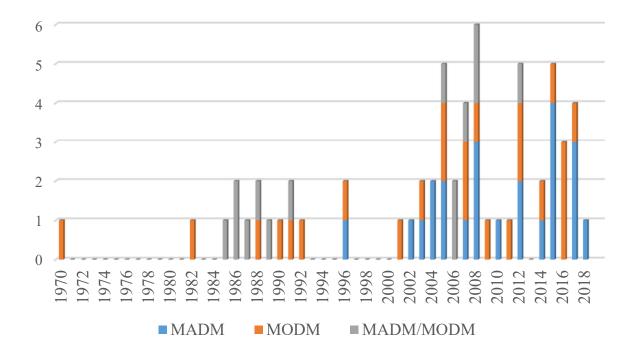


Figure 2.4 – Number of publications by nature of alternatives over the years 1970-2019.

Among all MCDM methods for R&D PPS, AHP is the most appreciated one, appearing in 14 papers. The most cited articles using AHP are those from Liberatore, that

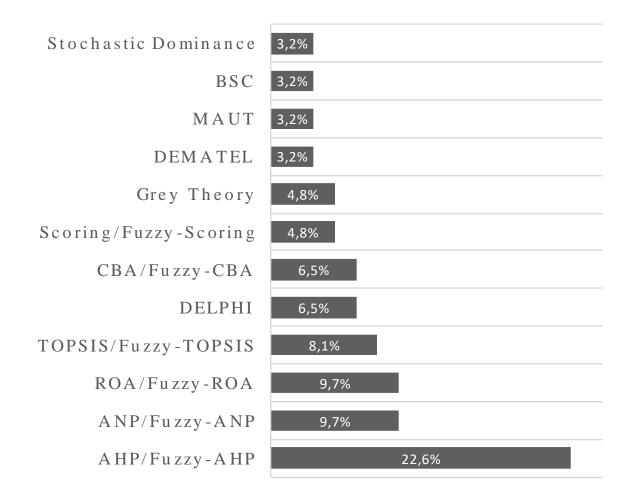


Figure 2.5 – Most used MADM methods used in the articles.

propose in 1987 an extension of the method AHP for industrial R&D project selection, linking it to a spreadsheet model. In 1988, he used cost-benefit analysis and 0-1 linear integer programming, along with the AHP spreadsheet model, for resource allocation (LIBERATORE, 1987; LIBERATORE, 1988). Papers from other authors can also be highlighted, namely Hsu et al. (2003) that presented a fuzzy multiple criteria approach for the selection of government-sponsored R&D projects. They also report the experience in applying it at a national research institute in Taiwan. In this case, AHP was used to evaluate multiple objectives according to the expectations from various interest groups, and a fuzzy approach is employed to score the subjective judgment of the experts. Kumar (2004) go further with judgment quantification, proposing an AHP-based system for R&D project evaluation that employs formal tools in quantification of subjective evaluations where expert judgement is involved. Many articles coupling AHP and fuzzy logic were found, for example: Wang *et al.* (2005) developed a system for evaluating the outcomes of multidisciplinary R&D projects which is structured as a "vertical" AHP with "horizontal" fuzzy scoring. Imoto et al. (2008) employed a principal component model, dual scaling AHP and fuzzy regression analysis to evaluate proposed research projects for single or plural fiscal years. Tolga e Kahraman (2008) integrates the fuzzy analytic hierarchy pro-

Acronym	Method	First Reference	Year		
AHP	Analytic Hierarchy Process	Saaty (1977)	1977		
ANP	Analytic Network Process	Saaty (2001)	2001		
BCG Matrix	Boston Consulting Group Matrix	Group (1970)	1970		
BSC	Balanced Scorecard	Norton e Kaplan (1999)	1999		
CBA	Cost-Benefit Analysis	Mishan e Euston (1976)	1976		
COPRAS	Complex Proportional Assessment	Zavadskas $et \ al. \ (1994)$	1994		
DEMATEL	Decision-Making trial and Evaluation	Gabus e Fontela (1973)	1973		
	Laboratory				
ELECTRE	French: Elimination et Choix Traduisant	Benayoun $et al.$ (1966)	1966		
	la Réalité (Elimination and Choice Ex-				
	pressing Reality)				
MAUT	Multi-Attribute Utility Theory	Keeney e Raiffa (1993)	1976		
PROMETHEE	Preference Ranking Organization Method	Brans e Vincke (1985)	1985		
	for Enrichment of Evaluations				
ROA	Real Options Analysis	Trigeorgis (1995)	1995		
TOPSIS	Technique for Order of Preference by Sim-	Hwang e Yoon (1981)	1981		
	ilarity to Ideal Solution				
VIKOR	Serbian: Visekriterijumska optimizacija i	Opricovic (2011)	2002		
	Kompromisno Resenje (Multicriteria Op-				
	timization and Compromise Solution)				

Table 2.6 – MADM methods acronyms, meanings and first references

cess for the evaluation of R&D projects with a fuzzy real options valuation model. AHP can also be found staging other approaches that involve several MCDM methods and/or mathematical models, such as Rabbani *et al.* (2006), that proposes a comprehensive 0-1 linear goal programming model for R&D project selection, where AHP is used to calculate the quality score of each project. Conka *et al.* (2008) implemented and combined AHP, Data Envelopment Analysis (DEA) and Value Tree Analysis (VTA) in a model to determine the efficient and feasible projects among the alternative R&D projects. AHP and DEA also appears on the work of Karasakal e Aker (2017), to evaluate R&D projects. The most recent article considered in this literature review uses AHP as an individual approach, along with criteria and framework adapted from those recommended by the Project Management Institute (GRACIA *et al.*, 2019).

Another MCDM method similar do AHP is ANP, which appears in 9.7% of the articles. Mohanty *et al.* (2005) illustrates an application of fuzzy ANP (analytic network process) along with fuzzy cost analysis in selecting R&D projects aiming to overcome the vagueness in the preferences. The approach is interactive and built on two sets of critical factors. Initially, projects are screened to see if they are at an acceptable level, and if they are reasonably progressing toward completion. Those failing the test are terminated and those remaining are weighed with candidate projects to determine which one should be included in the portfolio. Meade e Presley (2002) discussed the use of Analytic Network Process (ANP) and presented a generic model based on many factors and criteria to

support different situations. Jung e Seo (2010) explored the application of the analytic network process (ANP) approach for the evaluation of R&D projects that are elements of programs with heterogeneous objectives. Jeng e Huang (2015) proposed a decision model for evaluating a project portfolio at the early initiation stage, including a modified Delphi method (MDM), a decision-making trial and evaluation laboratory (DEMATEL) method, and an analytic network process (ANP). Mohaghar *et al.* (2012) presented an integrated fuzzy approach, with Fuzzy ANP and Fuzzy TOPSIS, for selecting R&D projects. In fact DEMATEL and ANP are moderately correlated in the articles (+0.55, p-value < 0.05). It is justified by the usage of the influence matrix given by DEMATAL as an input to ANP ou Fuzzy-ANP.

As frequent as ANP, ROA (Real Option Analysis) is also well used to select R&D Project Portfolios, appearing in 9.7% of the papers. Its first usage in the topic date 2006 (KARSAK, 2006), remaining used until 2014 (COLLAN; LUUKKA, 2014). It is mainly used as a side method in integrated approaches along with other MADM or MODM Methods. It is interesting to notice that all applications of this method are given in the fuzzy environment, with most real option valuation given by a fuzzy pay-off method (HASSANZADEH *et al.*, 2014; HASSANZADEH *et al.*, 2012a; HASSANZADEH *et al.*, 2012b).

TOPSIS/Fuzzy-TOPSIS appears 5 times appearances and DELPHI method and CBA/Fuzzy-CBA (Cost-Benefit Analysis) were used 4 times each, followed by Scoring/Fuzzy-Scoring methods and Grey Theory (3 times each) and then DEMATEL, MAUT (Multi-Attribute Utility Theory), BSC (Balanced Scorecard) and Stochastic Dominance (2 times each). Other methods with 1 apparition each sum up for 14,5% of the MADM applications. In the case of CBA, it mainly appears as an auxiliary method in Integrated Approaches and shows a strong positive correlation (+0.86, p-value < 0.05) with articles that introduce more than one approach to select project portfolios. Similar side role is performed by the methods BCG (Boston Consulting Group) Matrix, BSC and Scoring.

MCDM methods can be classified in different ways (ALMEIDA *et al.*, 2018). A traditional classification divides them into: unique criterion of synthesis methods, outranking methods and interactive methods. It can also be classified into compensatory or non-compensatory methods. In this case, the preference relation will be compensatory if there are trade-offs among criteria, and non-compensatory otherwise. Generally, unique criterion of synthesis methods are also compensatory. On the other hand, outranking methods use non-compensatory rationality. Interactive methods cover the whole spectrum of MODM methods. If we look only at MADM methods, the most classic ones can fit into four categories (HAJKOWICZ; COLLINS, 2007):

• Multi-criteria value functions. The methods are commonly based on a value function, obtained by weighted summation or weighted multiplication. The criteria

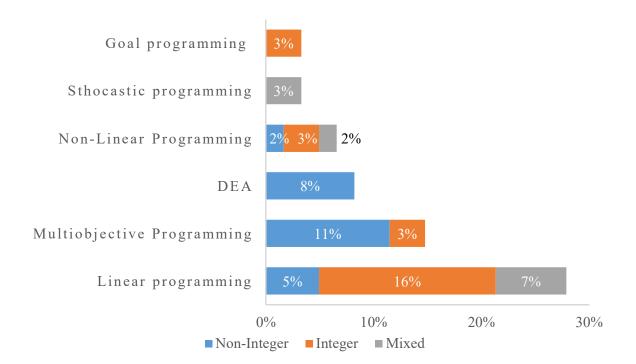


Figure 2.6 – Most used MODM methods used in the articles.

weights are non-negative and sum to 1. If weighted multiplication is used then criteria will be non-compensatory, where a zero score on any individual value will result in an overall zero performance score.

- Outranking approaches. Those methods generally involve the identification of every pair of decision options i and i' givind $n^2 n$ pairs in total. Outranking approaches also apply some utility function, containing criteria weights.
- Distance to ideal point methods. These methods calculate ideal and anti-ideal values for the criteria. Then, decision options that are closest to an ideal solution are preferred, while decision options closest to the anti-ideal solutions are avoided. The concept of Euclidian distance are normally adopted.
- Pairwise comparison methods. These approaches involve comparing criteria and alternatives in every unique pair giving n(n-1)/2 comparisons. The comparisons are made between criteria and also between decision options.

Those categories are compared in Table 2.7, with advantages and disadvantages (VELASQUEZ; HESTER, 2013). Notice that Table 2.7 lists only the methods used by the articles considered in this literature review. Thus, well known outranking methods, such as ELECTRE (in French: ELimination Et Choix Traduisant la REalité - in English: Elimination and Choice Expressing Reality) and PROMETHEE (Preference Ranking Organization Method for Enriched Evaluation) families were not used in R&D PPS context,

which may be interesting in some occasions. Other not used and well know Distance to ideal point methods are VIKOR (in Serbian: VIseKriterijumska Optimizacija I Kompromisno Resenje - in English: Multicriteria Optimization and Compromise Solution) and CP (Compromise Programming).

It is worth mentioning that only a few articles give proper explanations of why they have chosen a specific MCDM method in their R&D PPS context (LIANG *et al.*, 2018; MARCONDES *et al.*, 2017). In fact, there is no framework available on the literature that helps researchers to select the best methods in each PPS case and other MCDM applications (ALMEIDA *et al.*, 2018).

Categories	Methods	Advantages	Disadvantages	Utilization
Multi- criteria value func- tions	Scoring, MAUT, CBA	Can incorporate pref- erences. The results are easy to understand. Some approaches are simple.	The preferences need to be precise. A lot of in- put is needed.	14.5%
Outranking approaches	Not used	It may take uncertainty and vagueness into ac- count. Quantitative cri- teria may assume pref- erence thresholds.	Do not weight the cri- teria in a systematic way. The outcome may be difficult do explain, since strengths and al- ternative are not di- rectly identified.	Not used
Distance to ideal point	TOPSIS	Easy to use and pro- gram. The number and programming efforts of the steps remain the same regardless of the number of criteria and alternatives.	Its difficult to weight and keep consistency of judgement. Qualitative criteria are not easily handled.	8.1%
Pairwise compar- isons	AHP, ANP, DEMATEL	Not data intensive. Easy to use. Can easily handle with qualitative criteria.	Not recommended when there are several criteria and/or several alternatives, which should not be split into smaller comparison matrices. Depending on the number of com- parisons, the process may be tiring and lead to inconsistency.	35.5%

Table 2.7 – Main categories of MADM methods

The classification used in Fig 2.6 is the same used by Chai *et al.* (2013). Linear programming is the most used MODM method with 17 appearances. Subsequently, 10 of them correspond to integer approaches and 4 to mixed-integer approaches. Multi-objective programming is the second most used MODM method, appearing in 9 papers.

From those, 7 are integer approaches and only 1 has used non-linear data. DEA appears in 5 papers, followed by Non-Linear programming, which is used in 4 papers, with 2 integer approaches and 1 mixed-integer approach. Stochastic and Goal Programming have 2 appearances each. In the case of Goal programming, Linear and Non-Linear models are considered together.

Specially associated to AHP, mathematical models are also common approaches to select R&D projects. The 0-1 integer programming is the most used one, appearing in 17 articles. There are several other relevant papers using mathematical models. For instance, Wang and Wang e Hwang (2007) formulates a fuzzy 0-1 integer programming model that can handle both uncertain and flexible parameters to determine the optimal project portfolio. The 0-1 integer programming is also employed by Bard et al. (1988), that developed a methodology to evaluate both active and prospective R&D projects, considering the full range of organizational, environmental, and technical concerns. Stummer e Heidenberger (2003) describe a three-phase approach to assist managers in obtaining the most attractive project portfolio. First, it identifies project proposals that are worthy of further evaluation keeping the number of projects entering the subsequent phase within a manageable size. Second, a multiobjective integer linear programming model determines the solution space of all efficient portfolios. And third, it aims to find a portfolio which fits the decision-maker's notions. Carlsson et al. (2007) developed a methodology for valuing options on R&D projects, when future cash flows are estimated by trapezoidal fuzzy numbers, presenting a fuzzy mixed integer programming model, and discussing how the methodology can be employed to build decision support tools for optimal R&D project selection in a corporate environment. Czajkowski e Jones (1986) proposes a decision support modeling framework for multiproject technology planning and project selection using 0-1 integer programming in which technical and benefit interactions can be explicitly assessed. Sun e Ma (2005) developed and applied a heuristic packing-multiple boxes (PMB, or multi-knapsacks-model) model, based on several 0-1 integer programming methods, where it can be used for both selecting and scheduling R&D projects.

Data Envelopment Analysis (DEA) is also expressive and is used in 8% of the papers. Besides the work of Rabbani *et al.* (2006), two more articles use DEA among their methods. Eilat *et al.* (2008) developed an extended version of Data Evelopment Analysis (DEA) by integrating balanced scorecard and the DEA itself for R&D project evaluation. Oral *et al.* (1991) proposes a methodology for evaluating and selecting R&D projects. While the evaluation process is achieved with the DEA method, the selection process is based on "relative values" and is done through a model-based outranking method.

To solve the mathematical models, genetic algorithm is the main metaheuristic used, appearing in 5% of the articles. Bhattacharyya *et al.* (2011) presented a fuzzy multi-objective programming approach to aid the decision makers to deal with uncertainty and interdependences in R&D project selection and provided a case study to illustrate the proposed method where the solution is provided by genetic algorithm (GA) as well as by multiple objective genetic algorithm (MOGA). Eshlaghy e Razi (2015) proposed a new approach of outranking relation in MCDA methods together with data mining approach for clustering and ranking the best R&D projects in a portfolio, presenting then a two-phase decision model for project portfolio selection problems. In phase 1, k-means algorithm is used for clustering R&D projects in a portfolio with the best combination of projects specification. In phase 2, grey relational analysis (GRA) is applied to select and evaluate the most efficient project in each cluster. Finally, the Pareto front of rank is calculated by genetic algorithm (GA). Stewart (2016) presented a solution for the project portfolio optimization problem using multi-objective programming and genetic algorithm.

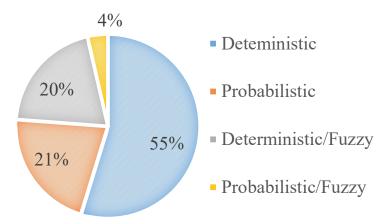


Figure 2.7 – Uncertainty related to the variables.

For Malczewski (2006) the methods can also be classified according to the uncertainty related to the variables (see Fig. 2.7). Deterministic decision-making is performed when the decision-maker has a perfect knowledge of the decision environment. When uncertainty is involved, the decision-making is classified into probabilistic – if the uncertainty is associated to limited information, or fuzzy – if the uncertainty is associated with imprecision (fuzziness) concerning the description of the semantic meaning of the events. Another feature of MCDM approaches is the wide range of decision situations in which they have been applied over the last years (MALCZEWSKI, 2006). Thus, the main R&D PPS application domain of the MCDM approaches are highlighted by Fig. 2.8.

Another interesting information about the papers is the number of projects considered in the model. If the number of projects is excessively large, using pairwise methods, such as AHP, ANP and DEMATEL, is not as interesting to compare projects (KARASAKAL; AKER, 2017; LIBERATORE, 1987; LIBERATORE, 1988). Another issue is that the largest the number of projects is, the grater the influence of uncertainty over the results will be, thus fuzzy and/or stochastic approaches would be considered

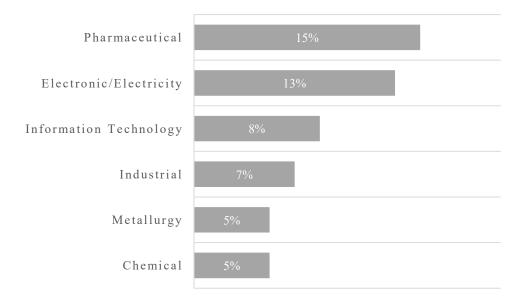


Figure 2.8 – Main R&D application domains in MCDM-based R&D PPS.

(MARCONDES *et al.*, 2017; MONTAJABIHA *et al.*, 2017). Fig. 2.9 shows us the most common sizes of R&D project portfolios.

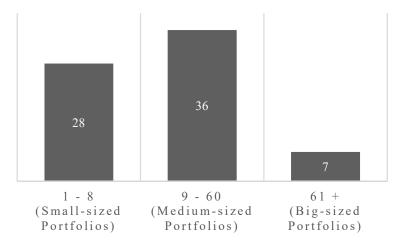


Figure 2.9 – Number of projects in the portfolios.

In Fig 2.10 we can observe that from 1970 to 1995, medium-sized portfolios accounted for 67% of all portfolios analyzed in the papers, against 22% of small-sized portfolios. However, from 1996 to the present small sized portfolios has doubled its occurrence, representing 45% of all case studies addressed by the papers. This variation is connected to the employment of MADM methods today, specially pairwise comparison methods, such as AHP and ANP. This is also linked to the greater offer of software that facilitate the usage of MADM methods. Big-sized portfolios still represent a few number of cases and may configure a opportunity to be explored by future papers, since it may represent the reality of many modern companies with big data-sets. In the case of big-sized portfolios, all papers use traditional MCDM approaches, except for Wei *et al.* (2019), that used correlation analysis as an objective method.

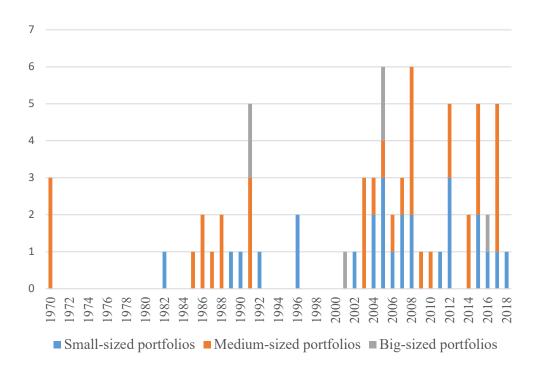


Figure 2.10 – Yearly variation of the portfolio's size.

In some articles, researchers have used software, solvers or programming languages to implement MCDM methods in R&D PPS. Fig. 2.11 illustrates the most used computational approaches to solve their PPS. Complementary to the data of Fig.2.11, Excel is the most used spreadsheet software (8 % of all computational approaches), Lingo/Lindo is the most used solver (16% of all computational approaches), followed by Cplex (3% of all computational approaches). In the case of dedicated software, Expert Choice is the most used one (8 % of all computational approaches) Some obsolete software are also used, such as Lotus 1-2-3 and Steuer's ADBase, both with 3 appearances each. About Programming Languages, 3 appearances are not specified and Fortran, Pascal, and C++ were the most used ones, appearing 2 times each.

Notice that non-mathematical or easy-to-use models are not presented by the articles. In fact, this is a research opportunities in all PPS fields. According to Schiffels *et al.* (2018), quantitative approaches are rarely replicated by other companies and blackbox models are hardly accepted by firms. Thus, managers frequently rely on simple decision rules, since easy-to-use approaches are not available. This opens a wide field of exploration, especially for small-profitable R&D companies, that can not afford for customized solutions

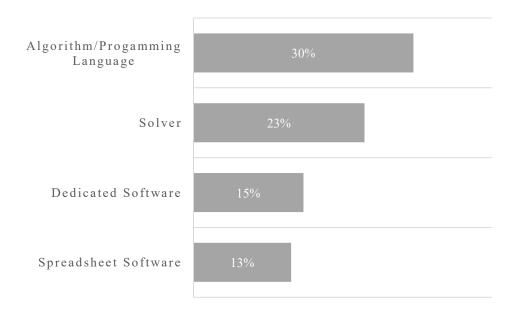


Figure 2.11 – Programming Languages, Solvers and Software used in R&D PPS.

Other important information regards the criteria used by the approaches. Only 21 (33%) out of 63 articles explain the criteria used, while 22 articles (67%) do not explain the criteria used. From the 63 articles, a total of 227 different criteria are used. However, most criteria used in the literature expresses a few perspectives, according to different scales and metrics. Additionally, Selecting and understanding the criteria used is a critical step on project portfolio selection and should not be avoided in real world applications (Reza Afshari, 2015). In fact, from all SLR articles, only Huang e Chu (2011) propose a methodology for criteria selection in technology R&D PPS. In this case Fuzzy-ANP is used and a case for Chinese government is presented. This fact highlights potential research opportunities for future works.

A criterion expresses a perspective and each perspective is instantiated through multiple criteria (BITMAN; SHARIF, 2008). Each criteria should be precisely selected, in order to avoid duplication, overlapping and misalignment with the organization's strategic goals. Thus, the selected criteria must be representative, significant and indispensable for the project selection process (LIN; WU, 2008). In MCDM models, criteria can be also described as attributes, objectives or variables, which can be measured by quantitative/tangible or qualitative/intangible data. Annex A presents all criteria used on the last 49 years in the topic, as consequence of proposing MCDM approaches to deal with R&D PPS.

All classifications performed in this literature review are summarized by Fig. 2.12 and Tables 2.8 and 2.9. All Data is also available online.

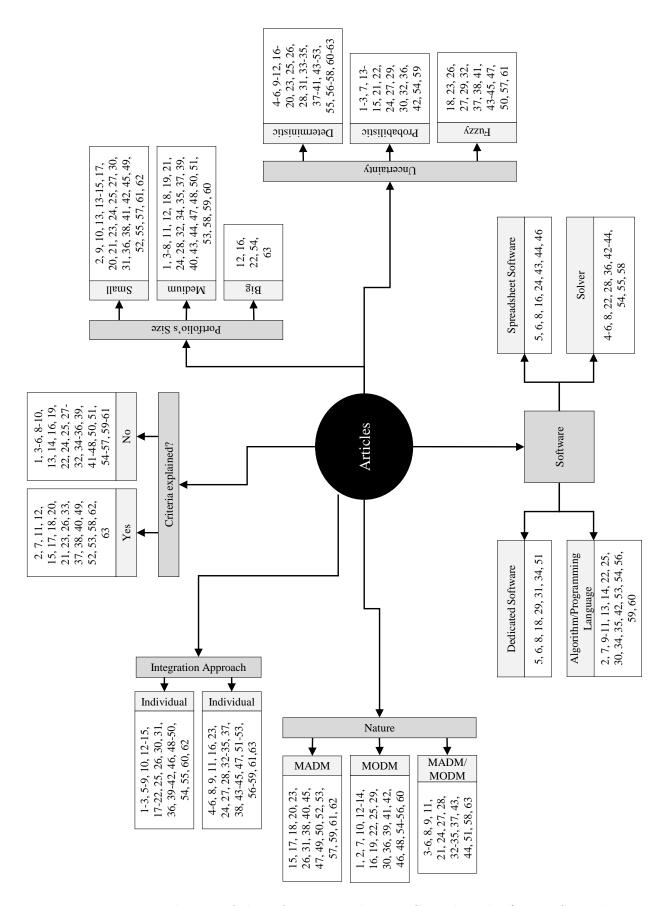


Figure 2.12 – Map with part of the information about MCDM-based R&D PPS articles

ID	Author	Number of projects	Methods	Application Domain
1	Bell e Read (1970)	$40\ /\ 12$ and 22	Linear Programming	Eletronic/Electricity and Chemical
2	Taylor $et al.$ (1982)	7	Non-Linear Integer Goal Pro- gramming MAUT, Mixed-Integer Non-	Textile
3	Madey e Dean (1985)	50	Linear Programming, Multi- objective Programming, Pre- emptive Goal Programming	Aerospacial
4	Czajkowski e Jones (1986)	25	DELPHI, Integer Linear Pro- gramming	Spacial
5	Liberatore (1986)	27	AHP, CBA, Scoring, MAUT, Integer Linear Goal Program- ing	Chemical
6	Liberatore (1987)	27	AHP, CBA, Integer Linear Programming	Chemical
7	Bard et al. (1988)	10	Integer Linear Programming	Eletronic/Electricity
8	Liberatore (1988)	24	AHP, CBA, Integer Linear Programming	Industrial
9	Ringuest e Graves (1989)	4	DELPHI, Multi-objective Lin- ear Programming, Goal Pro-	Non Specified
10	Ringuest e Graves (1990)	4	gramming Multi-objective Linear Pro- gramming	Non Specified
11	Oral <i>et al.</i> (1991)	37	DELPHI, Model-based Out-	Metallurgy
12	Stewart (1991)	20, 50 and 150 / 250	ranking Method, DEA Non-linear Programming	Eletronic/Electricity
13	Graves e Ringuest (1992)	4	Multi-objective Linear Pro- gramming	Non Specified
14	Heidenberger (1996)	2	Mixed-Integer Linear Pro- gramming	Non Specified
15	Henig e Katz (1996)	5	Not-specified MADM method	Biotechnology
16	Beaujon $et al.$ (2001)	400	Integer Linear Programming	Automotive
17	Meade e Presley (2002)	2	ANP	Information Technology
18	Hsu <i>et al.</i> (2003) Stummer e Heiden-	12	Fuzzy-AHP Multi-objective Integer Linear	Industrial
19	berger (2003)	10 and 30	Programming	Industrial
20	Kumar (2004)	6	AHP	Research
21	Ringuest et al. (2004)	5 and 30	Mean-Gini Analysis, Non- Linear Programming, Stochas- tic Dominance	Pharmaceutical
22	Gustafsson e Salo (2005)	1000 and 200	Multi-objective Mixed-Integer Linear Programming	Non Specified
23	Mohanty et al. (2005)	3	Fuzzy-ANP; Fuzzy Cost Anal- ysis	Metallurgy
24	Ringuest e Graves (2005)	5 and 30	Mean-Gini Analysis, Linear Programming	Pharmaceutical
$\frac{25}{26}$	Sun e Ma (2005) Wang $et \ al. (2005)$	8 Non Specified	Integer Linear Programming AHP, Fuzzy-Scoring	Non Specified Information Technology
27	Karsak (2006)	6	Fuzzy Integer Non-Linear Pro-	Information Technology
28	Rabbani <i>et al.</i> (2006)	10	gramming, ROA AHP, Integer Linear Program- ming	Telecommunications
29	Carlsson et al. (2007)	Non Specified	Fuzzy Mixed-Integer Linear Programming	Non Specified
30	Medaglia et al. (2007)	4	Multi-objective Stochastic Lin- ear Programming (Solved by	Non Specified
31	Shin <i>et al.</i> (2007)	5	Evolutionary Algorithm) AHP	Nuclear
32	Wang e Hwang (2007)	20	Fuzzy Integer Linear Program- ming, Fuzzy-ROA (Compound Options)	Pharmaceutical
33	Bitman e Sharif (2008)	Non Specified	AHP, Scoring, BCG Matrix, BSC, DEA	Non Specified

Table 2.8 – MCDM-based R&D PPS articles: Number of projects, methods and application domains - Part 1/2

Table 2.9 – MCDM-based R&D PPS articles:	Number of projects, methods and applica-
tion domains - Part $2/2$	

ID	Author	Number of projects	Methods	Application Domain
34	Conka <i>et al.</i> (2008)	14	AHP, DEA, VTA	Non Specified
35	Eilat <i>et al.</i> (2008)	60 / 50	BSC, DEA, Linear Program- ming	Industrial
36	Fang <i>et al.</i> (2008)	3	Mixed-Integer Stochastic Lin- ear Programming AHP, Fuzzy-Regression Anal- ysis, PCA, Fuzzy Multi-	Non Specified
37	Imoto <i>et al.</i> (2008)	18	objective Integer Linear Programming (Solved by Genetic Algorithm)	Metallurgy
38	Tolga e Kahraman (2008)	6	Fuzzy-AHP, Fuzzy-ROA	Eletronic/Electricity
39 40	Wu et al. (2009) Jung e Seo (2010)	37 14	Nash bargaining game ANP	Non Specified Government Sponsored
41	Bhattacharyya <i>et al.</i> (2011)	6	Fuzzy Multi-objective Integer Linear Programming (Solved by Genetic Algorithm)	Civil, Mechanical, and ers
12	Eckhause et al. (2012)	2 and 3	Integer Linear Programming	Non Specified
13	Hassanzadeh <i>et al.</i> (2012a)	20	Fuzzy Pay-off Method (ROA context), Fuzzy Integer Linear Programming	Pharmaceutical
14	$\begin{array}{llllllllllllllllllllllllllllllllllll$	20	Fuzzy Pay-off Method (ROA context), Fuzzy Integer Linear Programming	Pharmaceutical
15	Mohaghar et al. (2012)	4	Fuzzy-ANP, Fuzzy-TOPSIS	Manufacturing
6	Oral (2012)	Non Specified	E-DEA (Self-Efficiency DEA and Cross-Efficiency DEA)	Non Specified
7	Collan e Luukka (2014)	20	Fuzzy-TOPSIS, Fuzzy pay-off method (ROA context)	Pharmaceutical
8	$\begin{array}{llllllllllllllllllllllllllllllllllll$	14	Multi-objective Integer Linear Programming	Information Technolog
19	Bhattacharyya (2015)	5	Grey Theory Sets	Civil, Mechanical and ers
60	Collan et al. (2015)	20	Fuzzy-TOPSIS Grey Theory, Clustering	Pharmaceutical
51	Eshlaghy e Razi (2015)	20	Method (Solved by GA and K-Means)	Non Specified
52	Jeng e Huang (2015)	5	ANP, DELPHI, DEMATEL	Eletronic/Electricity
3	Karaveg et al. (2015)	45	TOPSIS, SEM	Agriculture, Innovat Textile and others
4	Arratia et al. (2016)	1500	Mixed-integer Linear Pro- gramming	Private/Public Sector
55	Heydari et al. (2016)	6	Non-Linear Integer Goal Pro- gramming	Non Specified
56	Stewart (2016)	Non Specified	Multi-objective Non-linear Programming (Solved by Reference Point, Genetic Algorithm, NIMBUS)	Non Specified
57	Cheng <i>et al.</i> (2017)	5	ANP, DEMATEL, COPRAS- G, Fuzzy Grey Relations	Eletronic/Electricity
58	Karasakal e Aker (2017)	60	UTADIS (DEA based), AHP	Government Sponsored
59	Marcondes et $al.$ (2017)	10	Mean-Gini Analysis, Stochas- tic Dominance	Non Specified
60	$\begin{array}{llllllllllllllllllllllllllllllllllll$	50	Mixed-Integer Linear Pro- gramming	Pharmaceutical
51	Liang <i>et al.</i> (2018)	6	TOPSIS, Pythagorean Fuzzy Theory	Private/Public Sector
52	Gracia et al. (2019)	5	AHP	Energy
53	Wei et al. (2019)	100	Correlation Analysis; Multi- objective Non-Linear Integer Programming	Military

2.1.3 Bibliometric Analysis

Based on the collected papers on MCDM methods employed in R&D PPS, a bibliometric analysis is conducted in this section. The data collected bring quantitative

information about: publications per year, main authors, most productive countries, highly cited papers, and main journals on the topic. The intensions of this bibliometric analysis are: to find out possible research trends; and provide a picture of the field for researchers and other practitioners.

Fig. 2.13 compares the number of published articles on MCDM in R&D PPS over the years. We can graphically observe a warm up in the field over the years 1982-1996 and a general increasing tendency in the number of published articles from 2000 to the present. We can also observe a statistically significant increase in the number of published papers from 1970 to 2019. It is expressed by the overall Person correlation coefficient (0.588 and p = 0.000).

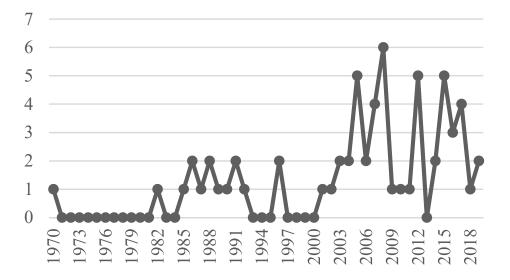


Figure 2.13 – Publication pattern of MCDM applications in R&D PPS over the years 1970-2019.

Fig. 2.14 shows the top-ten first authors in R&D PPS. The numbers are presented in terms of yearly citations average.

Additionally, over the same period of time, the authors publishing from United States have been the most productive ones as they have contributed to 19 out of the 61 papers published in the period. Other countries, such as Turkey, Taiwan, China, Iran, India and Finland brought also significant contributions. In Fig. 2.15, we have only displayed countries with four contributions or more. Other countries contributed with 15 papers, which represents around 25% of all publications.

In Table 2.10, the top ten papers are ordered by their total citations. Together, they sum 16% of all published articles, but contribute to 59% of all citations MCDM methods applied to R&D PPS. The number of citations per year is also presented. The citation numbers were collected from the database where the paper is available. If the paper is

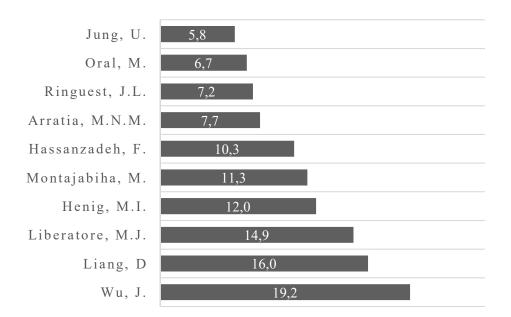


Figure 2.14 – Most relevant correspondent authors on the subject considering their yearly citation average.

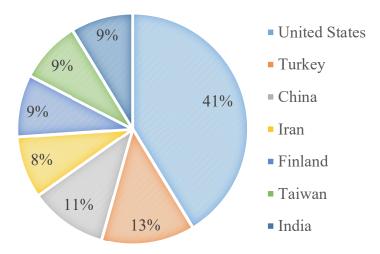


Figure 2.15 – Top ten countries in MCDM-based R&D PPS.

available in both Web of Science and Scopus, only the biggest value was considered.

It should be noticed that ranking articles based upon the total citation not always match the average citation ranking. All top-cited papers are at least 10 years old. Normally, an influential paper establishes many citations only after a certain time, such as the work of Liang *et al.* (2018). Over the review time frame, MCDM applications in R&D PPS were mostly published in the following journals (see Fig. 2.16).

2.1.4 Opportunities and new paths

We also present opportunities that could be explored by researchers and practitioners of R&D PPS in their future works. Formulating research question is an appropriate way to highlight and guide future research, while preventing researchers from pursuing

Papers	Total citations	Citation per year	Database
Meade e Presley (2002)	327	19,24	WoS/Scopus
Liberatore (1987)	141	$4,\!41$	WoS/Scopus
Wang e Hwang (2007)	136	$11,\!33$	WoS/Scopus
Eilat $et al. (2008)$	132	12,00	WoS/Scopus
Oral <i>et al.</i> (1991)	131	$4,\!68$	WoS
Stummer e Heidenberger (2003)	123	$7,\!69$	WoS/Scopus
Mohanty $et al. (2005)$	122	8,71	WoS
Carlsson <i>et al.</i> (2007)	102	8,50	WoS/Scopus
Bard <i>et al.</i> (1988)	73	$2,\!35$	Scopus
Medaglia et al. (2007)	69	5,75	WoS

Table 2.10 – Most cited papers in MCDM-based R&D PPS from 1970 to 2019

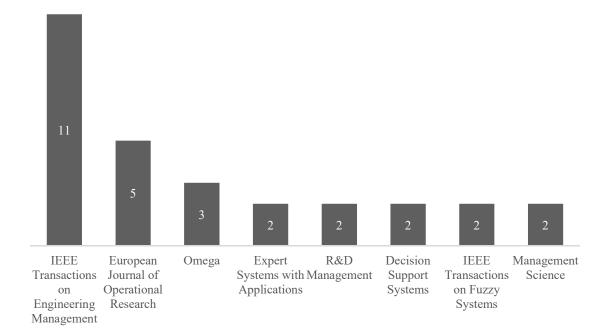


Figure 2.16 – Most representative journals in MCDM-based R&D PPS.

unnecessary and obsolete directions (GARZA-REYES, 2015). Thus, the formulation of clear research questions, derived from data and insights obtained from the papers contained in the literature review, is a guide for future work. The research questions are divided into two groups: research questions presented by recent articles (last three years) as opportunities for future works (last three years), and research questions that could not be answered by the articles considered in the SLR (see, Table 2.11). In the case of this last type of questions, all of them were prior discussed in their correspondent topics.

2.2 MCDM Methods

This section presents classic formulations of the two MCDM methods that are explored by this thesis, DEMATEL and AHP.

Table 2.11 – R	lesearch	questions	to	guide	further	research
		1		0		

Research questions that could not be answered by the articles considered in the SLR

- 1 Which MCDM approaches are more suitable to select project portfolios from several project proposals? Large portfolios are representative in many countries, especially developing countries, where R&D investments are mainly performed by public and governmental agencies though calls, which normally receive several project proposals. The R&D PPS field does not seems to be already impacted by big data.
- 2 Which MCDM approaches are recommended to small-profitable R&D companies? The MCDM approaches proposed in literature are, sometimes, far from the reality of many companies, that do not have personnel to use them, nor money to provide a software running those approaches (SCHIFFELS *et al.*, 2018).
- 3 How to select criteria prior selecting projects? Only one article from the performed SLR presents a methodology for criteria selection (HUANG; CHU, 2011). However, criteria selection is one of the most important steps on PPS in general (Reza Afshari, 2015).
- 4 How outranking MADM methods (such as PROMETHEE and ELECTRE) could be employed in the R&D PPS context? There are none results on literature for these methods when applied to R&D PPS in general, however uncertainty, vagueness and preference thresholds still are characteristics of several R&D project portfolios.
- 5 How to select the best method for each R&D PPS application? Several articles do not explain why they have chosen some methods to PPS among all possible options. When they do, it is mainly based on usage frequency, which is the case of standalone AHP applications (WEI *et al.*, 2019; KUMAR, 2004; SHIN *et al.*, 2007). A framework that helps researchers to select the method to use is a lacuna not only in R&D PPS. It seems to be an opportunity in the hole MCDM context (ALMEIDA *et al.*, 2018).

Research questions presented by recent articles as opportunities for future works

- 1 Is the three-way decisions-based ideal solution, proposed by Liang et al. (LIANG *et al.*, 2018) suitable to other fuzzy environments, rather than the new Pythagorean fuzzy environment?
- 2 Cheng et al. (CHENG *et al.*, 2017) suggested integrating DEMATEL and CFPR-ANP to weight the criteria and then COPRAS-G to rank the projects in a electronic company. Is this approach suitable to organizations of other segments?
- 3 How the method proposed by Karasakal and Aker (KARASAKAL; AKER, 2017) responds to different data sets and different reference sets? They propose integrating Interval AHP, DEA and UTADIS to select governmental R&D projects.
- 4 How to consider resource constraints, interrelations and/or mutual-exclusion among projects in the approach suggested by Marcondes et al. (MARCONDES *et al.*, 2017), that suggest an using Mean-Gini and stochastic dominance to select projects ? How the approach responds to real portfolio?
- 5 How the multi-objective mixed-integer linear programming, proposed by Arratia et al. (ARRATIA *et al.*, 2016) would respond to other features? Such as: uncertainty, resource-allocation in planning-horizon, scheduling and risk-assessment mechanisms

2.2.1 Decision-Making Trial and Evaluation Laboratory (DEMATEL)

DEMATEL is a well-known MADM method created in the early 70s by the Geneva Research Centre of the Battelle Memorial Institute to visualize causal relationships between elements in a matrix (GABUS; FONTELA, 1972; GABUS; FONTELA, 1973). In PPS, DEMATEL has been useful in analyzing cause-effect relationships between projects and selection criteria. For instance, Lin and Wu (LIN; WU, 2008) have developed a MADM approach for R&D where fuzzy-DEMATEL is used to separate the involved criteria into cause and effect groups, helping the decision makers focus on those criteria that provide great influence. An empirical study is also presented in the context of R&D. On the other hand, Altuntas and Dereli (ALTUNTAS; DERELI, 2015) have employed DEMATEL to find causal relations among projects and a case study is presented in a Public PPS context. In a more structure way, DEMATEL can be also integrated to other MADM approaches, in order to weight criteria and projects, such as the work of Büyüközkan and Öztürkcan (BÜYÜKÖZKAN; ÖZTÜRKCAN, 2010), that used DEMATEL to construct interrelations among criteria and then ANP was used to weight the criteria. In fact, DEMATEL-ANP is the most used variation of DEMATEL method in PPS. It is also true for overall DEMATEL applications, since the combined use with ANP corresponds to around 44,5 % of all DEMATEL approaches (SI *et al.*, 2018).

In the case of R&D PPS, two cases could be found, both using DEMATEL-ANP approaches to weight the criteria. In the first article, Jeng and Huang (JENG; HUANG, 2015) use a modified Delphi method to refine and validate the criteria prior the use of DEMATEL-ANP. In the second article, by Cheng et al. (CHENG *et al.*, 2017), a DEMATEL-Fuzzy-ANP calculates preference weights of the criteria and then COPRAS-G method and fuzzy gray relations were employed to resolve conflicts that arouse from differences in information and opinions. According to Si et al. (SI *et al.*, 2018), when solely used DEMATEL has advantages and disadvantages, which are shown on Table 2.12. The disadvantages can be overcome by integrating DEMATEL to other MCDM methods.

Advantages	Disadvantages
It points out cause-effect relationships be-	The criteria or projects are solely analyzed
tween criteria/projects, by analyzing mu-	by their interdependence.
tual influences (with both direct and indi-	
rect effects).	
The interrelationship can be visually ana-	The judgements from different experts are
lyzed via IRM.	not weighted when aggregating individual
	assessments into group assessments.
It can be used to rank the criteria/projects	It cannot take into account aspiration
and also to evaluate their criticality. The	level of alternatives (such as GRA and
criteria/projects are evaluated by their in-	VIKOR), nor obtain partial ranking or-
teractions and dependencies. Unlike other	ders of alternatives (such as ELECTRE
methods that assumes dependences with	approaches).
equal weights (such as ANP), in DEMA-	
TEL these dependencies are weighted.	

Table 2.12 – Advantages and disadvantages of classical DEMATEL.

The formulating step-by-step of classical DEMATEL can be summarized as follows (ALTUNTAS; DERELI, 2015; BÜYÜKÖZKAN; ÖZTÜRKCAN, 2010; CHENG *et al.*,

2017; SI et al., 2018):

Step 1: Generate the group direct-influence matrix C. If there are n criteria in the evaluation system, a group of experts specify the degree of direct influence of each criterion i on each criterion j. An integer scale with four levels is used: no influence (0), low influence (1), medium influence (2), high influence (3), and very high influence (4). Then, an individual direct-influence matrix C_k for 1 experts is formed. Later, if there is a decision group, the l direct-influence matrices are aggregated and the group direct-influence matrix C is obtained.

$$C_{k} = [c_{ij}^{k}]_{nxn} = \begin{bmatrix} 0 & c_{12}^{k} & \dots & c_{1j}^{k} \\ c_{21}^{k} & 0 & \dots & c_{2j}^{k} \\ \vdots & \vdots & \ddots & \vdots \\ c_{i1}^{k} & c_{i2}^{k} & \dots & 0 \end{bmatrix}$$
(2.1)

$$c_{ij} = \frac{1}{l} \sum_{k=1}^{l} c_{ij}^{k}, \quad i, j \in \{1, 2, \dots, n\}$$
(2.2)

$$C = [c_{ij}]_{nxn} = \begin{bmatrix} 0 & \frac{1}{l} \sum_{k=1}^{l} c_{12}^{k} & \dots & \frac{1}{l} \sum_{k=1}^{l} c_{1j}^{k} \\ \frac{1}{l} \sum_{k=1}^{l} c_{21}^{k} & 0 & \dots & \frac{1}{l} \sum_{k=1}^{l} c_{2j}^{k} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{l} \sum_{k=1}^{l} c_{i1}^{k} & \frac{1}{l} \sum_{k=1}^{l} c_{i2}^{k} & \dots & 0 \end{bmatrix}$$
(2.3)

Step 2: Obtain the normalized group direct-influence matrix \overline{C} .

$$\overline{C} = \left[Min \left(\frac{1}{\max_{1 \le i \le n} \sum_{j=1}^{n} |c_{ij}|}, \frac{1}{\max_{1 \le j \le n} \sum_{i=1}^{n} |c_{ij}|} \right) \right] . C \qquad i, j \in \{1, 2, \dots, n\}$$
(2.4)

Step 3: Construct the total-influence matrix T summing the direct and all indirect effects from \overline{C} .

$$T = \lim_{i \to \infty} \left(\overline{C}^1 + \overline{C}^2 + \dots + \overline{C}^i \right) = \sum_{i=1}^{\infty} \overline{C}^i = \overline{C} (1 - \overline{C})^{-1}, \quad when \lim_{i \to \infty} \overline{C}^i = 0 \quad (2.5)$$

Step 4: Compute dispatcher group and receiver group. For the total-relation matrix T, calculate the sum of rows D and columns R for the elements t_{ij} (i, j = 1, 2, ..., n)

$$D = [d_i]_{nx1} = \left[\sum_{j=1}^n t_{ij}\right]_{nx1} , \quad i \in \{1, 2, \dots, n\}$$
(2.6)

$$R = [r_j]_{1xn} = \left[\sum_{j=1}^n t_{ij}\right]_{1xn} , \quad j \in \{1, 2, \dots, n\}$$
(2.7)

Step 5: Create an Influential Relation Map (IRM). First, calculate the "Prominence" horizontal axis (R + D) and the "Relation" vertical axis (R - D). If $(r_j - d_j)$ is positive, then Criterion c_j belongs to the cause group and has net influence on the other criteria; if $(r_j - d_j)$ is negative, then criterion c_j belongs to the effect group and is being influenced by other criteria. Finally, map the dataset of (R + D, R - D) and create the IRM. As shown on Figure 1, the IRM can be divided into four quadrants, where: (a) indicates core criteria or intertwined givers, (b) contains driving or autonomous criteria, (c) indicates independent criteria or autonomous receivers, and (d) shows us impact criteria or intertwined receivers.

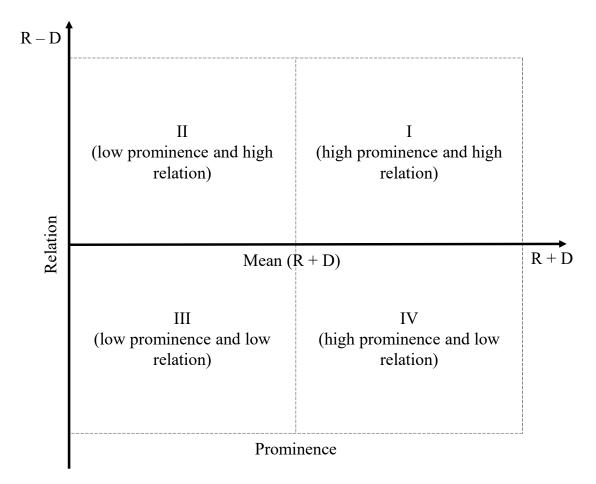


Figure 2.17 – Four-quadrant IRM.

Notice that classical DEMATEL does not rank the alternatives according to their influence over each other. It ends after creating the IRM and analyzing cause-effect between alternatives.

2.2.2 Analytic Hierarchy Process (AHP)

AHP an easy and well-known MCDM method that allows the decision makers to deal with complex situations and with different levels of subjectivity. It was first enunciated by Saaty (1977), an article that has already received more than 8.000 citations and that summerizes all advantages of AHP in simplicity and clarity. It is the most used MADM method in decision-making. Only in Scopus[®], more than 33 thousand articles results from searching for "Analytic Hierarchy Process" OR "AHP". Among the MCDM Methods used in R&D PPS, AHP and its variations is the most used one, appearing in 21% of the papers considered in this work as an isolated method or associated to other approaches.

The utilization of this method in R&D PPS was discussed on the second subsection of 2. AHP is also a pairwise comparison method, just like DEMATEL, however, it ranks the alternatives according to their importance. According to (GRACIA *et al.*, 2019; OGUZTIMUR, 2011), it also features advantages and disadvantages, which are presented by Table 2.13.

Advantages	Disadvantages	
It weights alternatives according to their	The criteria or projects are solely analyzed	
relative and overall importance's.	by their importance over each other.	
It is able to consider hierarchical struc-	Large comparison matrices (usually more	
tures, which may reflect the decision re-	than 8 alternatives) are confusing and tir-	
ality in most cases.	ing to be responded, which may result in	
	long and inaccurate processes and results.	
It greatly deals with qualitative judg-	Quantitative data may required pre-	
ments, which are commonly used to com-	processing prior utilization.	
pare criteria and projects in many organi-		
zational environments.		
It features a consistency index, which	The computational and personal effort	
helps decision-makers on completing the	may be considerable to large problems.	
matrices		

Table 2.13 – Advantages and disadvantages of classical AHP.

The formulating step-by-step of classic AHP can be summarized as follows (SAATY, 1977; SAATY, 1980; SAATY, 1990; VAIDYA; KUMAR, 2006):

Step 1: Structure the problem in a hierarchy of different levels, with goal, criteria, sub-criteria and alternatives (see, Figure 2.18).

Step 2: Stablish pairwise comparisons judgments for criteria: let m be the number of criteria considered in the problem. The comparison matrix C(mxm) contains the relative importances between every pair of criteria. The fundamental scale of AHP (Table 2.14) was used to compare the criteria and the alternatives (SAATY, 1990). In a general

Figure 2.18 – Hierarchy structure of AHP

notation, for every matrix M, we have $m_{ij} = 1/m_{ji}$ and $m_{ij} = 1$ for i = j.

$$C = [c_{ij}] = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1j} \\ c_{21} & c_{22} & \dots & c_{2j} \\ \vdots & \vdots & \ddots & \vdots \\ c_{i1} & c_{i2} & \dots & c_{ij} \end{bmatrix}_{mxm}$$
(2.8)

Where, c_{ij} = importance of criterion *i* related to criterion *j*.

Step 3: Similarly, establish pairwise comparison judgments for the *n* alternatives individually considering the m criteria of Step 2. The comparison matrix $A_k(nxn)$ contains the relative importances between every pair of alternatives based on criterion *k*.

$$A_{k} = [a_{ij}]_{k} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} \\ a_{21} & a_{22} & \dots & a_{2j} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} \end{bmatrix}_{nxn, k}$$
(2.9)

Where, a_{ij} = importance of alternative *i* related to alternative *j*.

Absolute	Verbal scale	Explanation
scale		
1	Equal importance	Two criteria contribute equally to the objective
3	Moderate importance	Experience and judgement slightly favor one over
	of one over another	another
5	Strong importance	Experience and judgement strongly favor one over
		another
7	Very strong impor-	A criterion is very strongly favored one over an-
	tance	other. Its dominance is demonstrated in practice
9	Extreme importance	The evidence favoring one over another is of the
		highest possible order of affirmation.
2, 4, 6, 8	Intermediate impor-	When needed, intermediate values between the
	tance	two adjacent judgements may be used.

Table 2.14 – Scales of Judgement of importance in AHP

Step 4: Normalize all the matrices. For instance, the normalization of matrix C results in matrix C'.

$$\overline{c}_{ij} = \frac{c_{ij}}{\sum_{i=1}^{n} c_{ij}} \tag{2.10}$$

$$\overline{C} = [\overline{c}_{ij}] = \begin{bmatrix} \frac{c_{11}}{\sum_{i=1}^{n} c_{i1}} & \frac{c_{12}}{\sum_{i=1}^{n} c_{i2}} & \cdots & \frac{c_{1j}}{\sum_{i=1}^{n} c_{ij}} \\ \frac{c_{21}}{\sum_{i=1}^{n} c_{i1}} & \frac{c_{22}}{\sum_{i=1}^{n} c_{i2}} & \cdots & \frac{c_{2j}}{\sum_{i=1}^{n} c_{ij}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{c_{i1}}{\sum_{i=1}^{n} c_{i1}} & \frac{c_{i2}}{\sum_{i=1}^{n} c_{i2}} & \cdots & \frac{c_{ij}}{\sum_{i=1}^{n} c_{ij}} \end{bmatrix}_{mxm}$$
(2.11)

Step 5: Obtain the eigenvector for each matrix. For instance, $W^T = [w_1, w_2, ..., w_i]$ is the eigenvalue of a normalized matrix and w_i is set. For instance, in the case of C', its eigenvalue will be given by $2]w_i$.

$$w_i = \frac{\sum_{j=1}^n \bar{c}_{ij}}{n} \tag{2.12}$$

$$W_{\overline{c}}^{T} = \begin{bmatrix} \sum_{j=1}^{n} \overline{c}_{1j} & \sum_{j=1}^{n} \overline{c}_{2j} \\ n & n \end{bmatrix}_{nx1} (2.13)$$

In order to accept the estimate of each eigenvector W, the correspondent matrix should present a Consistency Ratio (CR) lower than 10% (SAATY, 1990). The CRdepends on the values given by a Consistency Index (CI) and a Random Index (RI)

$$CR = \frac{CI}{RI} \tag{2.14}$$

Table 2.15 – Random consistency index RI for n compared criteria

n	2	3	4	5	6	7	8
RI	0	0.58	0.9	1.12	1.24	1.32	1.41

Following the calculations of CI and the autovalue λ_{max} are presented, respectively. RI relates to CI's from random matrices, usually found in standardized tables (SAATY, 1980).

$$CI = \frac{(\lambda_{m\acute{a}x} - n)}{n - 1} \tag{2.15}$$

$$\lambda = \frac{\sum_{i=1}^{n} \frac{w'_i}{w_i}}{n} \tag{2.16}$$

Vector W' is calculated by multiplying the matrix by its vector W. For instance, W' for the criteria matrix is:

$$W' = C.W = [c_{ij}]_{mxm} \cdot [w_i]_{mx1} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1j} \\ c_{21} & c_{22} & \dots & c_{2j} \\ \vdots & \vdots & \ddots & \vdots \\ c_{i1} & c_{i2} & \dots & c_{ij} \end{bmatrix}_{mxm} \cdot \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_i \end{bmatrix}_{mx1}$$
(2.17)

2.3 Fuzzy-logic applied to MCDM approaches

A fuzzy set of a discourse universe U is characterized by a membership function μ_A , which takes the values in the unit interval [0, 1]. It is an extension of classical set theory and the operations are themselves extensions of the fundamentals set theory operations of complement (MIZUMOTO; TANAKA, 1981).

$$\mu_A: U \to [0,1] \tag{2.18}$$

In MCDM approaches, fuzzy-logic is used to tackle the uncertainty of data imprecision. Almost all fuzzy-MCDM approaches will start with the fuzzification of crisp values, which are assigned by decision-makers or data collecting routines. Then, the operations of the method will be whole or partially (more common) performed in a fuzzy environment and then, the fuzzy sets will be reconverted into crisp value, throughout a defuzzification method. In the following subsections an overview of fuzzification and defuzzification methods in MCDM approaches will be given, as well as a short overview of the most used operations.

2.3.1 Fuzzification approaches

Before getting to fuzzy operations, the first step is to convert crisp values into fuzzy numbers. To do so, it must be decided which fuzzy membership function will me used. The most common membership functions are called: impulsive, triangular, Gaussian and trapezoidal (LING, 2010). A membership function allows a fuzzy set to be graphically represented. The x axis represents the universe of discourse, and y axis represents the degrees of membership in a [0, 1] interval.

In a general manner, the impulsive fuzzy membership function is the most simple and used one, it is denoted only denoted by the value m.

$$\mu_A(X) = \begin{cases} 1 & x = m \\ 0 & otherwise \end{cases}$$
(2.19)

The triangular membership function is the most common one in MCDM-based R&D PPS applications (MOHANTY *et al.*, 2005). It is defined by a lower limit (l), a middle value (m), and a upper limit (u), where:

$$\mu_A(X) = \begin{cases} 0, x \le l \\ \frac{x-l}{m-u}, l < x \le m \\ \frac{b-x}{b-m}, m < x < u \\ 1, x \ge u \end{cases}$$
(2.20)

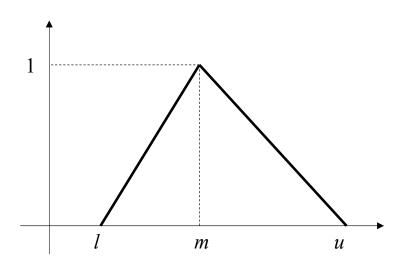


Figure 2.19 – Triangular membership function

The trapezoidal membership function is also recurrent on MCDM-based R&D PPS applications (CARLSSON *et al.*, 2007). It is defined by a lower limit (l), a lower support

limit (m), and a upper support limit (n), and a upper limit (l) where:

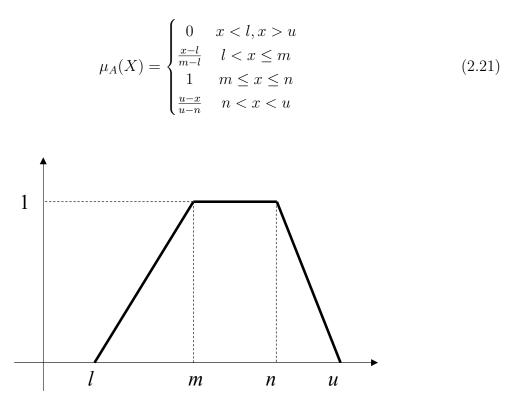


Figure 2.20 – Trapezoidal membership function

The Gaussian membership function is less used, however it is an interesting function that features a central value m and a standard deviation k > 0. It is given by:

$$\mu_A(X) = e^{-\frac{(x-m)^2}{2k^2}} \tag{2.22}$$

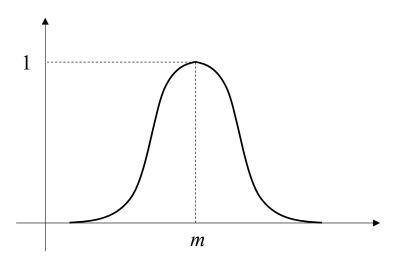


Figure 2.21 – Gaussian membership function

2.3.2 Fuzzy operations

Fuzzy sets can perform operations just like crisp values. However, it follows a singular logic and symbols. Suppose there are two fuzzy sets, A and B. Several operations can be performed, for example (MIZUMOTO; TANAKA, 1981): Union:

$$A \cup B \Leftrightarrow \mu_{A \cup B} = \mu_A \lor \mu_B \tag{2.23}$$

Intersection:

$$A \cap B \Leftrightarrow \mu_{A \cap B} = \mu_A \wedge \mu_B \tag{2.24}$$

Complement:

$$\bar{A} \Leftrightarrow \mu_{\bar{A}} = 1 - \mu_A \tag{2.25}$$

Algebraic Product:

$$A.B \Leftrightarrow \mu_{A.B} = \mu_A \mu_B \tag{2.26}$$

Algebraic Sum:

$$A + B \Leftrightarrow \mu_{A+B} = \mu_A + \mu_B - \mu_A \mu_B = 1 - (1 - \mu_A)(1 - \mu_B)$$
(2.27)

Bounded-Sum:

$$A \oplus B \Leftrightarrow \mu_{A \oplus B} = 1 \land (\mu_A + \mu_B) \tag{2.28}$$

Bounded-Difference:

$$A \ominus B \Leftrightarrow \mu_{A \ominus B} = 0 \lor (\mu_A - \mu_B) \tag{2.29}$$

Bounded-Product:

$$A \odot B \Leftrightarrow \mu_{A \odot B} = 0 \lor (\mu_A + \mu_B - 1) \tag{2.30}$$

2.3.3 Defuzzification methods

Defuzzification methods are used to convert fuzzy number into crisp values. It is essential step prior making decisions based in fuzzy models. A veriety of defuzzification methods can be employed, depending on the fuzzy context.

To Si *et al.* (2018) one the most used defuzzifiation method is the centroid method, also called center-of-gravity (COG) or center of the area (COA). It has a simple approach. For a triangular fuzzy number $\tilde{y} = (l.m.u)$, its crisp value can be found by:

$$y = l + \frac{(m-l) + (u-l)}{3}$$
(2.31)

or

$$y = \frac{l+m+u}{3} \tag{2.32}$$

Other authors have propoised variations of this method. Which is the case of Fetanat e Khorasaninejad (2015), that defuzzifies a triangular fuzzy number by given more weight to the middle number.

$$y = \frac{l+2m+u}{4}$$
(2.33)

Similar proposal was made by Patil e Kant (2013).

$$y = \frac{l + 4m + u}{6} \tag{2.34}$$

Sometimes, the defuzzification is performed in a way that the crisp value obtained is the one that divides the area of a fuzzy set into two equal parts (DALALAH *et al.*, 2011).

$$\begin{cases} u - \sqrt{\frac{(u-l)(u-m)}{2}}, u - m > m - l\\ \sqrt{\frac{(u-l)(u-m)}{2}} - l, u - m < m - l\\ m, otherwise. \end{cases}$$
(2.35)

According to Si *et al.* (2018), the CFCS (Converting Fuzzy data into Crisp Scores), proposed by Opricovic e Tzeng (2003), is the most adopted defuzzification algorithm in DEMATEL models. It has a gred advantage when compared to COA, since it differentiates asymmetric fuzzy distributions with the mean.

For a given fuzzy number in DEMATEL $\tilde{y} = (l.m.u)$, the following equation can be used to compute the prominence and relation values.

$$y_i = L + \Delta \times \left(\frac{(m_i - L)(\Delta + u_i - m_i)^2 (R - l_i) + (u_i - L)^2 (\Delta + m_i - l_i)^2}{(\Delta + m_i - l_i)(\Delta + u_i - m_i)^2 (R - l_i) + (u_i - L)(\Delta + m_i - l_i)^2 (\Delta + u_i - m_i)} \right)$$
(2.36)

where y_i is the defuzzified value, $L = min(l_i)$, $R = max(r_i)$ and $\Delta = R - L$.

In the case of AHP, one of the most used defuzzification approaches is the Extension Analysis Method, where a given set of fuzzy numbers will be relatively defuzzified. It was first proposed by Chang (1996) and the following formulation is an adaptation performed by Kannan *et al.* (2013).

Lets suppose we have comparison matrix $F = [f_{ij}]$, the fuzzy synthetic extent S_i with respect to i^{th} alternative can be calculate by.

$$\tilde{S}_{i} = (s_{i1}, s_{i2}, s_{i3}) = \sum_{j=1}^{n} \tilde{f}_{ij} \otimes \left[\sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{f}_{ij}\right]^{-1}$$
(2.37)

The, the m(m-1) degrees of possibility between two criteria can be found. In the case of criterion $f_2 = (f_{21}, f_{22}, f_{23}) \ge f_1 = (f_{11}, f_{12}, f_{13})$, the degree of possibility is given by:

$$V(\tilde{S}_2 \ge \tilde{S}_1) = \sup_{y \ge x} \left[\min(\mu_{\tilde{S}_1}(x), \mu_{\tilde{S}_2}(y)) \right] = hgt(\tilde{S}_1 \cap \tilde{S}_2)$$
(2.38)

$$V(\tilde{S}_{2} \geq \tilde{S}_{1}) = \begin{cases} 1, \text{ if } s_{22} \geq s_{12} \\ 0, \text{ if } s_{11} \geq s_{23} \\ \frac{s_{11} - s_{23}}{(s_{22} - s_{23}) - (s_{12} - s_{11})}, \text{ otherwise} \end{cases}$$
(2.39)

Lastly, calculate the m degrees of possibility for a convex fuzzy number to be grater than n = (m - 1) convex fuzzy numbers. Those degrees of possibility will be the final crisp values.

$$V(\tilde{S} \ge \tilde{S}_1, \tilde{S}_2, ..., \tilde{S}_n) = \min V(\tilde{S} \ge \tilde{S}_i), \ i = 1, 2, ..., n$$
(2.40)

3 THE PROPOSED METHOD

The concept of fuzzy sets has been largely applied to DEMATEL approaches, in order to tackle the vagueness of human judgment. Generally, two types of fuzzy-DEMATEL models are used on literature. In the first one, DEMATEL and fuzzy logic are used, but implemented independently. On this model, the conversion of fuzzy numbers into crisp numbers is made just after setting the group direct-influence fuzzy matrix. In the second model, fuzzy logic and DEMATEL are fully coupled. Fuzzy numbers deal with vagueness of human judgment and imprecision involved in the influence degree estimation. The defuzzification occurs at the end of DEMATEL application, just before displaying the IRM (SI et al., 2018). Similarly, incorporating fuzzy logic to the judgments of AHP is the most common way to integrate AHP and fuzzy logic. Such the way used by Hsu et al. (2003) that presented a fuzzy multiple criteria approach for the selection of government-sponsored R&D projects. They also report the experience in applying it at a national research institute in Taiwan. Here, AHP was used to evaluate multiple objectives according to expectations from various interest groups, and a fuzzy approach is used to score the subjective judgment of the experts. Among all AHP variations, the Extent Analysis Method, proposed by Chang (1996) is one of the most effective and tested ones. In R&D, Mohanty et al. (2005) have used the Extent Analysis Method to select project portfolios, however it is coupled with ANP, a general variation of AHP.

Similarly to (KHAZAI *et al.*, 2013), in this work we propose the integration of AHP and DEMATEL. However, instead of performing a crisp integration, we do it in a fuzzy environment. In fact, none of the steps we propose are unprecedented in the crisp theory. Still, the way those steps are put together and the way fuzzy-logic is introduced in the model seems to be unparalleled by the PPS theory. In the model we propose, classic DEMATEL and AHP models are still partially implemented separately, as individual approaches, however steps added recently in both methods, as well as adaptations made to the fuzzy environment, are also considered by the models.

The formulating step-by-step of the fuzzy-based AHP-DEMATEL proposed method follows, as well as the references for each step:

The steps 1, 2, 3 and 4 are recurrent fuzzifications of classical DEMATEL (AL-TUNTAS; DERELI, 2015; BÜYÜKÖZKAN; ÖZTÜRKCAN, 2010; CHENG *et al.*, 2017; SI *et al.*, 2018). Step 3.5 is a fuzzification of a optional step only found on crisp DEMA-TEL. It is a interesting step for large matrices, which is the case of some criteria selection in R&D PPS. Step 5 provides the most used defuzzification method in fuzzy-based DE-MATEL. Step 6 comes from classic DEMATEL and presents the IRM. Once the IRM is built, the decision-makers may establish a hierarchy with all criteria available, in step 6.5. Steps 6.5, 7 and 8 are presented by classic AHP (SAATY, 1977; SAATY, 1980; SAATY, 1990). Steps from 9 to 14 introduce the concept of Fuzzy Extent Analysis (KANNAN *et al.*, 2013). Step 15 shows us how to extract influence coefficients from DEMATEL and how to combine them with the importance coefficients obtained in Step 14.

Step 1: Generate the group direct-influence fuzzy matrix \tilde{C} . If there are *n* criteria in the evaluation system, a group of experts specify the degree of direct influence of each criterion *i* on each criterion *j*. First, an integer scale with four levels is used: no influence (0), low influence (1), medium influence (2), high influence (3), and very high influence (4). Then, the integer scale is converted into a fuzzy linguistic scale, in order to tackle its vagueness. If a triangular membership function is used, then an individual direct-influence matrix C_k is converted into a individual direct-influence fuzzy matrix \tilde{C}_k for *l* experts (Equation 3.1). Later, if there is a decision group, the *l* direct-influence fuzzy matrices are aggregated (Equation 3.2) and the group direct-influence fuzzy matrix \tilde{C} is obtained (Equation 3.3). The triangular membership functions assumes the following values: no influence (0, 0, 1); low influence (0, 1, 2); medium influence (1, 2, 3); high influence (2, 3, 4); and very high influence (3, 4, 4) (SEKER; ZAVADSKAS, 2017).

$$\tilde{C}_{k} = \left[\tilde{c}_{ij}^{k}\right]_{nxn} = \begin{bmatrix} 0 & \tilde{c}_{12}^{k} & \cdots & \tilde{c}_{1j}^{k} \\ \tilde{c}_{21}^{k} & 0 & \cdots & \tilde{c}_{2j}^{k} \\ \vdots & \vdots & \ddots & \vdots \\ \tilde{c}_{i1}^{k} & \tilde{c}_{i2}^{k} & \cdots & 0 \end{bmatrix}_{nxn}$$
(3.1)

$$\tilde{c}_{ij} = \frac{1}{l} \sum_{k=1}^{l} \tilde{c}_{ij}^{k}$$
(3.2)

$$\tilde{C} = [\tilde{c}_{ij}]_{nxn} = \begin{bmatrix} 0 & \frac{1}{l} \sum_{k=1}^{l} \tilde{c}_{12}^{k} & \cdots & \frac{1}{l} \sum_{k=1}^{l} \tilde{c}_{1j}^{k} \\ \frac{1}{l} \sum_{k=1}^{l} \tilde{c}_{21}^{k} & 0 & \cdots & \frac{1}{l} \sum_{k=1}^{l} \tilde{c}_{2j}^{k} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{l} \sum_{k=1}^{l} \tilde{c}_{i1}^{k} & \frac{1}{l} \sum_{k=1}^{l} \tilde{c}_{i2}^{k} & \cdots & 0 \end{bmatrix}_{nxn}$$
(3.3)

Step 2: Obtain the normalized group direct-influence fuzzy matrix N through Equation 3.4.

$$\tilde{N} = \left[Min\left(\frac{1}{\max_{1 \le i \le n} \sum_{i=1}^{n} |c_{ij3}|}, \frac{1}{\max_{1 \le j \le n} \sum_{j=1}^{n} |c_{ij3}|}\right) \right] \odot \tilde{C}$$
(3.4)

Step 3: Construct the total-influence fuzzy matrix \tilde{T} summing the direct and all indirect effects from \tilde{N} (Equation 3.5).

$$\tilde{T} = \lim_{i \to \infty} \left(\tilde{N}^1 \oplus \tilde{N}^2 \oplus \dots \oplus \tilde{N}^i \right) = \sum_{i=1}^{\infty} \tilde{N}^i = \tilde{N} \otimes \left(1\Theta \tilde{N} \right)^{-1}$$
(3.5)

when $\lim_{i \to \infty} \tilde{N}^i = 0.$

Step 3.5 (Optional): Obtain the Inner Dependence Fuzzy Matrix \tilde{G} . Just after obtaining the total-influence fuzzy matrix \tilde{T} , \tilde{G} is obtained by normalizing \tilde{T} through Equation 3.6. Relations whose effects in \tilde{T} are larger than a threshold $\tilde{\alpha}$ are displayed in \tilde{G} .

$$\tilde{G} = \left[\tilde{g}_{ij}\right]_{nxn} = \begin{cases} \tilde{g}_{ij} = \frac{(k_{\max} - k_{\min}) \odot(\tilde{t}_{ij} \Theta \min t_{ij1})}{\max t_{ij3} - \min t_{ij1}} & \text{if } \tilde{t}_{ij} > \tilde{\alpha} \\ \tilde{g}_{ij} = 0, & \text{if } \tilde{t}_{ij} < \tilde{\alpha} \end{cases} (3.6)$$

where k_{min} is the lowest and k_{max} is the highest possible scores in a given scale, which are usually $k_{min} = 0$ and $k_{max} = 4$. The threshold $\tilde{\alpha}$ is used to filter omittable criteria out. It can be determined by many ways, such as performing brainstorms with experts or tanking the average values from matrix \tilde{T} (CHENG *et al.*, 2017; SI *et al.*, 2018).

Step 4: Compute the fuzzy dispatcher group \tilde{D} and fuzzy receiver group \tilde{R} . For the Inner dependent fuzzy matrix \tilde{G} , calculate the sum of rows \tilde{D} (Equation 3.7) and columns \tilde{R} (Equation 3.8) for the elements $\tilde{g}_{ij}(i, j = 1, 2, ..., n)$.

$$\tilde{D} = \left[\tilde{d}_i\right]_{nx1} = \left[\sum_{j=1}^n \tilde{g}_{ij}\right]_{nx1}$$
(3.7)

$$\tilde{R} = \left[\tilde{r}_j\right]_{nx1} = \left[\sum_{j=1}^n \tilde{g}_{ij}\right]_{nx1}$$
(3.8)

Step 5: Convert the fuzzy numbers into crisp numbers using a defuzzification method. The CFCS (Converting Fuzzy data into Crisp Scores) is the most used defuzzification method in fuzzy-based DEMATEL. This method offers greater crisp values with greater membership function and distinguishes two symmetrical triangular fuzzy numbers with the same mean (LIN; WU, 2008; OPRICOVIC; TZENG, 2003). When applied to \tilde{D} and \tilde{R} , the defuzzied D and R values are given by Equations 3.9 and 3.10.

$$d_{i} = L_{D} + \Delta_{D} \times \frac{(\tilde{d}_{i2} - L_{D})(\Delta_{D} + \tilde{d}_{i3} - \tilde{d}_{i2})^{2}(U_{D} - \tilde{d}_{i1}) + (\tilde{d}_{i3} - L_{D})^{2}(\Delta_{D} + \tilde{d}_{i2} - \tilde{d}_{i1})^{2}}{(\Delta_{D} + \tilde{d}_{i2} - \tilde{d}_{i1})(\Delta_{D} + \tilde{d}_{i3} - \tilde{d}_{i2})^{2}(U_{D} - \tilde{d}_{i1}) + (\tilde{d}_{i3} - L_{D})(\Delta_{D} + \tilde{d}_{i2} - \tilde{d}_{i1})^{2}(\Delta_{D} + \tilde{d}_{i3} - \tilde{d}_{i2})}$$
(3.9)

$$r_{j} = L_{R} + \Delta_{R} \times \frac{(\tilde{r}_{j2} - L_{R})(\Delta_{R} + \tilde{r}_{j3} - \tilde{r}_{j2})^{2}(U_{R} - \tilde{r}_{j1}) + (\tilde{r}_{j3} - L_{R})^{2}(\Delta_{R} + \tilde{r}_{j2} - \tilde{r}_{j1})^{2}}{(\Delta_{R} + \tilde{r}_{j2} - \tilde{r}_{j1})(\Delta_{R} + \tilde{r}_{j3} - \tilde{r}_{j2})^{2}(U_{R} - \tilde{r}_{j1}) + (\tilde{r}_{j3} - L_{R})(\Delta_{R} + \tilde{r}_{j2} - \tilde{r}_{j1})^{2}(\Delta_{R} + \tilde{r}_{j3} - \tilde{r}_{j2})}$$
(3.10)

where d_j is the defuzzified value of $\tilde{d}_i = (d_{i1}, d_{i2}, d_{i3})$ with $L_D = \min d_{i1}, U_D = \max d_{i3}, \Delta_R = U_D - L_D$ and r_j is the defuzzified value of $\tilde{r}_j = (r_{j1}, r_{j2}, r_{j3})$ with $L_R = \min r_{j1}, U_R = \max r_{j3}, \Delta_R = U_R - L_R$.

Step 6: Create an Influential Relation Map (IRM). First, calculate the "Prominence" horizontal axis (R + D) and the "Relation" vertical axis (R - D). If $(r_j - d_j)$ is positive, then Criterion c_j belongs to the cause group and has net influence on the other criteria; if $(r_j - d_j)$ is negative, then criterion c_j belongs to the effect group and is being influenced by other criteria. Finally, map the dataset of (R + D, R - D) and create the IRM. As shown on Figure 1, the IRM can be divided into four quadrants, where: (I) indicates core criteria or intertwined givers, II) contains driving or autonomous criteria, (III) indicates independent criteria or autonomous receivers, and (IV) shows us impact criteria or intertwined receivers (see, 2.17).

After obtaining the IRM, we now display the criteria in a hierarchical structure, if need.

Step 6.5 (Optional): Structure the problem in a hierarchy of different levels, with goal, criteria, sub-criteria and alternatives (see Fig. 2.18). The criteria are hierarchy distributed according to the clusters displayed on the IRM of DEMATEL.

Step 7: Stablish pairwise comparisons judgments for criteria for l decision-makers. Let n be the number of criteria considered in the problem, the comparison matrix for each decision-maker $C^k(nxn)$, set by Equation 3.11, contains the comparison values between every pair of criteria. A fundamental scale of AHP (Table 3.1) was used to compare the criteria (SAATY, 1990). In a general notation, for every matrix

$$C = [c_{ij}^{k}] = \begin{bmatrix} c_{11}^{k} & c_{12}^{k} & \dots & c_{1j}^{k} \\ c_{21}^{k} & c_{22}^{k} & \dots & c_{2j}^{k} \\ \vdots & \vdots & \ddots & \vdots \\ c_{i1}^{k} & c_{i2}^{k} & \dots & c_{ij}^{k} \end{bmatrix}_{mxm}$$
(3.11)

where c_{ij} = wheight of criterion *i* related to criterion *j*.

Step 8: Check the Consistency Ratio CR^k for all matrices, to make sure DMs do not make mistakes. First, obtain the normalized comparison matrices N^k for all comparison matrices C^k , where $n^k = \frac{c_{ij}}{\sum_{i=1}^n c_{ij}}$. Then, obtain the eigenvector W^{k^T} for each matrix, where $w_i^k = \frac{\sum_{j=1}^n n_i^k}{n}$.

Absolute scale	Fuzzy scale	Verbal scale	Explanation
1	(1,1,1)	Equal importance	Two criteria contribute equally to the objective
3	(2,3,4)	Moderate impor- tance of one over another	Experience and judgement slightly favor one over another
5	(4,5,7)	Strong importance	Experience and judgement strongly favor one over another
7	(6,7,8)	Very strong impor- tance	A criterion is very strongly fa- vored one over another. Its domi- nance is demonstrated in practice
9	(9,9,9)	Extreme impor- tance	The evidence favoring one over another is of the highest possible order of affirmation.
2, 4, 6, 8	(1,2,3), (3,4,5), (5,6,7), (7,8,9)	Intermediate im- portance	When needed, intermediate val- ues between the two adjacent judgements may be used.

Table 3.1 – Scales of Judgement of importance in Fuzzy AHP Extent Analysis

In order to accept the estimate of each eigenvector W^k , the correspondent matrix should present a Consistency Ratio CR^k lower than 10%, which is calculated by Equation 3.12. The CR^k depends on the values given by a Consistency Index CI^k and a Random Index RI (RI) (see, Table 2.15.

$$CR^k = \frac{CI^k}{RI} \tag{3.12}$$

where CI^k is given by $CI^k = (\lambda_{\max}^k - n)/(n-1)$, with $\lambda_{\max}^k = (\sum_{i=1}^n z_i^k/w_i^k)/n$ and $Z^k = C^k W^k$.

Step 9: Transform the pairwise comparison matrices C^k into a fuzzified pairwise comparison matrices \tilde{C}^k , according to the intensity of importance on a fuzzy scale, given by Table 2.14. A fuzzy membership function must be used, such as triangular membership function, where $\tilde{c}_{ij}^k = (c_{ij1}^k, c_{ij2}^k, c_{ij3}^k)$ and $\tilde{c}_{ji}^k = \left(\frac{1}{c_{ij3}^k}, \frac{1}{c_{ij1}^k}, \frac{1}{c_{ij1}^k}\right)$ if $i \neq j$.

Step 10: Aggregate de l fuzzified pairwise comparison matrices \tilde{C}^k into a aggregated fuzzified pairwise comparison matrix \tilde{C} by using geometric mean method (Equation 3.13).

$$\tilde{c}_{ij} = \left(\prod_{k=1}^{l} c_{ij}^{k}\right)^{\frac{1}{k}} = \left(c_{ij}^{1} \otimes c_{ij}^{2} \otimes \dots \otimes c_{ij}^{k}\right)^{\frac{1}{k}}$$
(3.13)

Step 11: Calculate the fuzzy synthetic extent S_i with respect to i^{th} criterion (Equation 3.14).

$$\tilde{S}_{i} = (s_{i1}, s_{i2}, s_{i3}) = \sum_{j=1}^{n} \tilde{c}_{ij} \otimes \left[\sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{c}_{ij}\right]^{-1}$$
(3.14)

Step 12: Calculate the m(m-1) degrees of possibility between two criteria. In the case of criterion $c_2 = (c_{21}, c_{22}, c_{23}) \ge c_1 = (c_{11}, c_{12}, c_{13})$, the degree of possibility is given by Equations 3.15 and 3.16. Each degree of possibility measures how possible it is to a fuzzy number to dominate other.

$$V(\tilde{S}_{2} \ge \tilde{S}_{1}) = \sup_{y \ge x} \left[\min(\mu_{\tilde{S}_{1}}(x), \mu_{\tilde{S}_{2}}(y)) \right] = hgt(\tilde{S}_{1} \cap \tilde{S}_{2})$$
(3.15)

$$V(\tilde{S}_2 \ge \tilde{S}_1) = \begin{cases} 1, \text{ if } s_{22} \ge s_{12} \\ 0, \text{ if } s_{11} \ge s_{23} \\ \frac{s_{11} - s_{23}}{(s_{22} - s_{23}) - (s_{12} - s_{11})}, \text{ otherwise} \end{cases}$$
(3.16)

Step 13: Calculate the *m* degrees of possibility for a convex fuzzy number to be grater than n = (m - 1) convex fuzzy numbers (Equation 3.17).

$$V(\tilde{S} \ge \tilde{S}_1, \tilde{S}_2, ..., \tilde{S}_n) = \min V(\tilde{S} \ge \tilde{S}_i), \, i = 1, 2, ..., n$$
(3.17)

Step 14: Calculate the normalized importance vector $W = [w_i]_{mx1}$. First, obtain the non-normalized importance vector W' (Equation 3.18), than normalize it, obtaining the normalized importance vector $W = [w_i]_{mx1}$ (Equation 3.19).

$$W' = [d'(A_1), d'(A_2), ..., d'(A_i)]^T$$
(3.18)

$$w_{i} = \frac{w'_{i}}{\sum_{i=1}^{m} w'_{i}}$$
(3.19)

where $d'(A_1) = \min V(\tilde{S}_i \ge \tilde{S}_j)$, for i, j = 1, 2, ..., m and $i \ne j$. Here w_i indicates the importance of each criterion according to the decision makers.

Step 15: Calculate the overall weights w_0 for all criteria. According to Khazai et al. (KHAZAI *et al.*, 2013) The overall weight w_0 of each criterion is computed by correcting the importance weights w_i by its dependency weights of criteria w_d (Equations 3.20 and 3.21).

$$w_0 = w_i \times w_d \tag{3.20}$$

$$w_d = 1 - \frac{r_i - r_{\min}}{r_{\max} - r_{\min}}$$
(3.21)

The overall weight w_0 is the output we seek, it presents a list of weights assigned to each criteria or sub-criteria according to their influence and importance over each other. As noticed in Steps 12 and 13, the values obtained for V may assume null values to unnecessary criteria. The methodology have also considered uncertainty related to data imprecision.

3.1 Implementing and verifying the model

After formulating the model, it was implemented in MS Excel[®]. MS Excel[®] was purposely chosen to partially attend to research opportunities highlighted by the SLR articles. First of all, it is a common and easy to use tool. Which makes the approach more useful to small-sized/profitable organizations. The second reason is that choosing a software already used by many organizations makes the model easier to be replicated by organizations that already perform R&D PPS. It would enhance the usage of structured criteria selection approaches.

The MS Excel[®] model was tested to a small set of criteria and it returned possible results. However, since the model we propose is unprecedented, we could not verify the spreadsheet validity by comparing it to pre-processes data. Then, to verify the capability of MS Excel[®] to return results aligned to the proposed model, we have also developed an application in Python Programming Language. The application was registered and an user utilization pseudo-code and framework are proposed in Annexes D and E. Both application, in MS Excel[®] and Python language returned the same results. The python code is also available in: <htp://bit.ly/33we3C5>

Since one positive future of the proposed model is the possibility to assign zero value to the final weights, it also causes an issue when just ranking a couple of criteria. When comparing just a few criteria (i.e., only three), most criteria may display overall

weight zero. It is caused mainly by the extent analysis method, that works with the concept of fuzzy domination. Thus, the method is better explored when also choosing the criteria, ant not only ranking a few number of already selected criteria.

Other important feature of the method is the IRM, which is displayed before proceeding to AHP. It seemed very useful to group the criteria, which significantly reduces the number of interactions in AHP. However, it also makes disadvantages of classic AHP and DEMATEL to still persist in the proposed approach. For instance, the effort required to complete big matrices (usually greater than 8 compared items). It is mainly noticed on the fuzzy-DEMATEL part of the method, since no hierarchy can be used. Some authors propose hierarchical DEMATEL approaches, which mitigates the efforts to complete big matrices, however the grouping step is not contemplated in the model (TSENG, 2010; WU; LEE, 2007; ZHOU *et al.*, 2011).

Another possible question about the method concerns the usage of CFCS defuzzification approach, instead of combine all results prior using the Extent Analysis method. In fact, this is a possible option, that would significantly reduce computational effort and also simplify the proposed model. However, since it would not generate crisp values after using AHP, the grouping stage may not be performed. It is only possible if the IRM is displayed.

4 THE PROPOSED BANK OF CRITERIA

In this chapter we present the proposed bank of criteria, which is composed by the criteria we took from the literature review (see, Annex A), and the proposed criteria and groups of criteria, which may represent the criteria found on the literature. To obtain the proposed criteria and groups of criteria, 5 steps were performed, which one using different tools.

First of all, a list of 27 criteria were proposed to represent the 227 criteria we found on the literature. In this step affinity diagram was employed. Then, the scopes of the 27 criteria were verified by an other group of experts, which reduced the 27 criteria to 23. Then, the 23 criteria were grouped in 8 groups of criteria. In this step, the proposed model (see, Chapter 3 was partially employed (until step 6). Once we had the hierarchical structure of groups of criteria and criteria, it was validated by all experts that helped us in this research. Lastly, the same experts that performed the six first steps of the proposed model, also performed the other steps of the model, obtaining a ranking of criteria according to their importance and influence over each other. This last step served as test, not only to validate the proposed bank of criteria, but also to validate the proposed model.

All those steps are discussed on the next subsections. However, firstly we detail the selection process of organizations and experts, which are the bases to perform all other steps.

4.1 Selecting organizations and experts

Brazil has experienced increasing investments in R&D on the last years. From 2000 to 2016, the amount invested in R&D has grown more than 500%. The investment of US\$ 3,3 billion in 2000 is far behind the US\$ 21 billion invested in 2016. In these 17 years, the average amount invested in R&D went around US\$ 10,3 billion. From those, US\$ 5,4 billion (around 53%) comes from public sources and US\$ 4,9 billion (around 47%) from corporate sources. This proportion of public and corporate investments is close to yearly averages of 52% and 48%, respectively, pointing out a parity of investment between the sectors (MCTIC, 2018). This proportion of expenditure in R&D is not similar to those practiced by developed countries. In general, public sources in these countries spend much less capital in R&D when compared to the total invested. In 2013, for example, public capital in Germany, Japan and United States of America was respectively responsible for 29%, 17% and 28% of the total invested in R&D (IPEA, 2016).

Thus, this work searched for public Brazilian organizations that invest high amounts of money in R&D, in order to contribute to some steps of this work. It is not only justified because public investments in R&D are expressive in Brazil, but also due to the unavailability of public data concerning R&D PPS in private organizations. Thus, we have selected only those organizations that publicly provide guidelines to select project portfolios and that list all criteria used in the process, which are: CNPq, FINEP, ANEEL, BNDES and ANP. In 2018, those companies have invested US\$ 5 billion in R&D projects, which represent 38% of all Brazilian investment in R&D. A brief introduction of the selected organizations is given bellow:

- CNPq: The National Council for Scientific and Technological Development (CNPq) is a governmental agency belonging to the Brazilian Minister of Science, Technology, Innovations and Communications (MCTIC). CNPq was founded in 1951 with the main function of promoting scientific and technological research over the country. In 2015, CNPq has invested US\$ 623 millions in R&D. From those, 87% was dedicated to research grants in Brazil and to Brazilians abroad.
- FINEP: The Financing Institution of Research and Innovation (FINEP) is a Brazilian public organization attached to the MCTIC. It was created in 1967 with the purpose of promoting innovation and R&D in Brazilian companies, universities and public institutions. In 2018, FINEP invested US\$ 250 million in innovative initiatives. Several Brazilian agencies rely on FINEP resources to sponsor R&D projects, such as BNDES and CNPq.
- ANEEL: The Brazilian Electricity and Regulatory Agency (ANEEL) is an autarky founded in 1997 under a special regime and linked to Brazilian Ministry of Mines and Energy. Its purpose is to regulate the Brazilian electric sector. At the end of 2018, ANEEL approved a budget for energetic development in 2019 of US\$ 5,2 billion. From 2008 to 2017, ANEEL made available around US\$ 1,2 billion to finance R&D projects in the electricity sector, of which around 89% were used.
- BNDES: The Brazilian Development Bank (BNDES) started its activities in 1952 and today is one of the largest development banks in the world. It is the Brazilian federal government's largest instrument to finance long-term projects in all economic segments. Along with companies and public organizations, BNDES makes specific portfolio selections to promote innovation and national research and development. The last updated project portfolio selections available in its website add together resources up to US\$ 4 billion.
- ANP: The National Agency of Petroleum, Natural Gas and Biofuels (ANP) was created in 1997 and is responsible for regulate the Brazilian activities in Petroleum,

Natural Gas and Biofuels. It is an autarky linked to the Brazilian Ministry of Mines and Energy. From 1998 to 2018, the agency has invested US\$ 4 billion in R&D projects. Only in 2018, the total investment sum up US\$ 147 million. All ANP R&D investments are implemented by other organizations in the segment. Petrobras, the 256^{th} worldwide most innovative organization (PWC, 2018), was responsible for 74% of those investments in 2018.

For all the five organizations, we have selected the most financially representative open calls. When open calls were not available, the last call available on the organization's website was considered. From now on, the "calls" will be treated here as documents that provide guidelines for project portfolio selection. These guidelines offer general instruction on how to select project portfolios and, mainly for this work, they list the used criteria in each selection. From the used documents, we have collected all the 85 available criteria to select project portfolios. From those, the 74 criteria taken from documents from ANP, CNPq and BNDES are not explained by the organizations. On the other hand, FINEP and ANEEL provide descriptions for the 11 criteria collected from their documents. Thus, 87% of collected criteria are solely defined by their name.

For Petrobras and FINEP, only one document was found and used, both dating 2018. In the case of CNPq, four documents dating 2018 could be found. The first one, named Universal Call (in Portuguese – Chamada Universal) provides instructions to select RD projects in all scientific fields. For CNPq, only Universal Call documentation was used, due to its greater coverage of scientific topics and, mainly, because its value is much higher than the other three documents together, US\$ 52,4 million against US\$ 1,9 million. In the case of ANEEL, the selection criteria are well presented in a document called Manual 2012, which is the latest version of the document. Other information regarding the value of the portfolios could be found on the ANEEL's website. For BNDES, we have considered eight documents, all related to specific portfolios but with big budgets, all dating between 2013 and 2017. Table 4.1 provides additional information about those project portfolios.

Other considerations can be made about the criteria weights, weighting method and the number of decision makers. ANP does not specify the weight given to each criterion. It just provides a 1-4 scale to weight the projects in each criterion, but the grades are not explained. The projects are evaluated by two decision makers and when the given grades are to different, a third decision maker will decide the final grade. The method used to weight the criteria is not specified. CNPq and BNDES use the weighted mean method to weight the criteria. Both make group decision making but do not specify the number of decision makers involved in the process. The scale to evaluate the projects is not pointed out. FINEP and ANEEL give equal importance to all criteria by using simple mean weighting in the evaluation process. In both cases the decisions are made by three decision makers and a 1-5 scale, with single-worded descriptions to each grade,

	Petrobras	CNPq	FINEP	ANEEL	BNDES
Validity	2018	2018	2018 and	Annually,	Multiples, from 2013
of the			2019	from 2012	to 2019
document				to 2017	
Annual	US $$47,1$ mil-	US $$$ 52,4	US\$ 7,8	US\$ 130,6	US\$ 968,6 million
amount	lion	million	million	million	(the documents va-
available					lidity vary from 2 to
(average)					7 years)
Total	US\$ 47,1 mil-	US $$$ 52,4	US\$ 15,7	US\$ 785,3	US\$ 4 billion (sum
amount	lion	million	million	million	of all documents val-
made avail-					ues)
able in the					
period					
Maximum	24 months	36 months	Not Speci-	60 months	48 or 60 months, de-
duration of			fied		pending on the port-
the project					folio
Documents	Petrobras	Universal	Finep	ANEEL's	Inova Energia, In-
that pro-	Socio-	Call (in	Startup	website and	ova Saúde, Inova
vide guide-	Environmental	* 0		Manual	Aerodefesa, Inova
lines to	Program (in	Chamada		2012	Agro, Inova Sus-
select the	portuguese:	Universal)			tentabilidade, Inova
project	Programa				Telecom, Inova
portfolios	Petrobras So-				Petro, Inova Mineral
	cioambiental)				(DNDE0 0019
Reference	(ANP, 2018)	(CNPQ, 0010)	(FINEP,	(ANEEL,	(BNDES, 2013c;
		2018)	2018)	2012;	BNDES, 2013d;
				ANEEL,	BNDES, 2013a;
				2018)	BNDES, 2013b;
					BNDES, 2013e;
					BNDES, 2013f; BN- DES 2014; BNDES
					DES, 2014; BNDES, 2017b; BNDES,
					20170; BNDES, $2017a)$
					2017a)

Table 4.1 – Brazilian R&D public organizations: project portfolios and used documents

is used to evaluate the projects in each criterion.

From these organizations we selected ten experts in R&D project selection, to aid us in this work. The inclusion criteria were: (1) mainly, the expert must have been responsible for creating guidelines for R&D PPS in the selected organizations (2) or the expert must have participated as a decision maker in at least one of the selected organizations; (3) or, on the last case, the expert must have been a project manager of at least one project selected by one the five organizations. Their attributions were: (a) merge the 227 criteria from literature in new criteria with boarder scopes, (b) Verify these criteria, (c) Clusterize these new criteria into groups of criteria, (d) Validate this grouped list of criteria, (e) and rank the criteria. Table 4.2 introduces the experts and shows us in which tasks each one have made contributions.

#	Experience	e Experienc	e Higher ed-	Participation as	Organization	Tasks
	in PPS	in PPS	ucation de-			per-
	in the		gree			formed
	organi-					
	zation					
E1	5 years	5 years	M. Sc	Project manager	ANP	b, d
E2	7 years	8 years	M. Sc.	Project manager	ANP	b, d
E3	3 years	3 years	Doctorate	Decision maker	CNPq	b, d
E4	9 years	9 years	Doctorate	Decision maker	CNPq	b, d
E5	3 years	10 years	Doctorate	Decision maker	FINEP	b, d
E6				Decision maker	FINEP	b, d
${ m E7}$	17 years	17 years	Doctorate	Decision maker	ANEEL	a, c, d, e
$\mathbf{E8}$	3 years	10 years	Doctorate	Decision maker	ANEEL	a, c, d, e
E9	3 years	5 years	Doctorate	Board Director	ANEEL	a, c, d, e
				Member (Responsi-		
				ble for implementing		
				guidelines for R&D		
				PPS)		
E10	3 years	10 years	Doctorate	Project manager	BNDES	b, d

Table 4.2 – Experts, their qualifications and tasks

4.2 A theoretical list of criteria

We have grouped all 217 criteria in new criteria with boarder scopes. The grouping method is an adaptation of the one proposed by Jiro (KAWAKITA, 1991) and used in many grouping approaches (AWASTHI; CHAUHAN, 2012; AWASTHI; OMRANI, 2019): the Affinity Diagram (also known as KJ Method, named after its author, Kawakita Jiro). By using the Affinity Diagram, we group criteria based on their natural relationships, which were obtained through brainstorming. Ten experts in R&D PPS were employed in the process. The steps are described as follows:

- Step 1: The criteria were split in 227 digital cards and a document referencing and explaining the criteria was provided.
- Step 2: The cards were divided in same proportions (one third) and given to three experts. Then the cards were placed in groups of affinity.
- Step 3: The formed groups were then accessed by the experts. They could move the cards among groups by arguing with the other experts.
- Step 4: A consensus was reached when all experts have stopped moving the cards.
- Step 5: 27 groups of criteria were obtained, named and described by the experts by using references from the 227 initial criteria (see, Annex F).
- Step 6: The next step was to verify this list. The verification intended to evaluate the internal consistency of the list of criteria. By consistency we understand the

lack of internal contradiction or intersection among the criteria. To perform this verification step, 7 experts in R&D PPS were interviewed. From them, a list of suggested modification (see, Table was collected and a verified theoretical list of criteria could be built. This new list, a theoretical list of criteria, presents 23 criteria.

• Step 7: After the verification the suggested changes were presented to all experts, that accepted all changes.

	Suggestion	Why?	By who?	Accepted by?
1	General risk is redun- dant and should be re- moved.	The general risk is the result of combining Technical Risk, Com- mercial & Market Risk and Scope Risk. All already presented on the list.	Expert 3	All
2	Market Potential and Technical Attractive- ness and Relevance should be merged.	Both indicates the receptivity of project outcomes by the mar- ket. There is intersection between them.	Expert 8	All
3	Feasibility Require- ment is too vague and should be removed	The metrics associated to this criterion should be split and fit to other groups, such as: orga- nizational requirement, strategic fitness, and technical issues and constraints.	Expert 8	All
4	Customer Require- ment is redundant to other criteria and should be removed.	The metrics associated to this criterion should be split and fit to other groups, mainly organi- zational requirement. Normally, customer requirements will be processed and converted into or- ganizational requirements.	Expert 8	All
5	The name of the crite- rion Competitiveness should be reworked.	The potential of partnerships is also presented by the criterion. The name should highlight it.	Expert 7, 9	All

Table 4.3 – Theoretical list of criteria

Other minor modifications can be observed by comparing the tables of Annex F and Tables 4.4, 4.5 and 4.6.

The theoretical list of criteria is shown on Tables 4.4, 4.5 and 4.6. The numbers of papers that used the criteria are also displayed.

Mathematical and computational grouping/clustering approaches were not employed, such as K-Means Method and Hierarchical Clustering Algorithms. They would require great effort from the experts to perform quantitative or qualitative judgments to

#	Criteria	Description	Utilization
1	Commercial&MarketRisk(CMR)	Is related, in a general manner, to the uncertainty of a project to induce the commercial success (MOHANTY <i>et al.</i> , 2005; LIBERATORE, 1986; EILAT <i>et al.</i> , 2008).	3~(5%)
2	Competitiveness and Partnership (COP)	Measures the potential of a project to enhance the com- pany's participation on the market more than its com- petitors. It can be achieved, for example, by the con- catenation with Science & Technology (S&T) policy or with the development, use and commercialization of proprietary technology (HSU <i>et al.</i> , 2003).	10 (16%)
3	Corporate Image (COI)	Describes the potential of a project to enhance the com- pany's visibility before the society or with a specific company or with an economic segment. Some authors like Liberatore (LIBERATORE, 1986) used corporate image as a criteria and others indirectly achieved this by pursuing other goals, such as the contribution of a project to the national economy (WANG <i>et al.</i> , 2005).	5 (8%)
4	Environmental Impact (ENI)	Measures the capacity of a project to generate any environmental benefit (KARASAKAL; AKER, 2017; STEWART, 1991). Besides the internal environment, it can also be associated to the external environment, such as the project ecological implications (BITMAN; SHARIF, 2008) or its sustainability (KARAVEG <i>et al.</i> , 2015).	5 (8%)
5	Extendibility (EXT)	Is related to the capacity of a project to enhance its company's growing by the addition of new components or integrating the project to other public polices. It can be measured, for example, by the applicability of a project results in other products and process (MEADE; PRESLEY, 2002), the potential technical interaction with existing products (MOHANTY <i>et al.</i> , 2005) and the compatibility with other projects (LIBERATORE, 1986).	9 (15%)
6	External Envi- ronment Income (EEI)	Considers all factors and criteria that are not within the company and are out of its control, such as the existence of competitors (MOHANTY <i>et al.</i> , 2005), unexpected volatilities (MONTAJABIHA <i>et al.</i> , 2017) and regulations (MOHANTY <i>et al.</i> , 2005; MOHAGHAR <i>et al.</i> , 2012).	28 (46%)
7	Financial Benefit (FIB)	Expresses the financial return of the project to an or- ganizational and can be measured by different indica- tors, such as net present value (NPV) (RABBANI <i>et al.</i> , 2006), present value of return (BARD <i>et al.</i> , 1988), real options value (ROV) (TOLGA; KAHRAMAN, 2008) and others.	41 (67%)

Table 4.4 – Theoretical list of criteria - 1/3

each criterion, due to the number of criteria and the nonexistence of clustering attributes that would cover all criteria. It also would happen with clustering approaches based on

#	Criteria	Description	Utilization
8	Financial Income (FII)	Is related to all financial resources needed to perform the project and they are able to be measured in terms of cost, budget, cash flow, total investment and other met- rics (LIBERATORE, 1988; BHATTACHARYYA <i>et al.</i> , 2011; CHENG <i>et al.</i> , 2017; RINGUEST; GRAVES, 1990; KARSAK, 2006).	48 (79%)
9	Impact in Human Development (IHD)	Associates to any criteria related to the improvement and training of human resources (EILAT <i>et al.</i> , 2008; STEWART, 1991).	9 (15%)
10	Internal Envi- ronment Income (IEI)	Comprehends the criteria related to factors inside an organization, like workplace safety and manufacturing capability (MEADE; PRESLEY, 2002; CHENG <i>et al.</i> , 2017).	20 (33%)
11	Market Potential & Attractiveness (MPA)	Includes criteria exclusively related to the market and the receptivity by the market to the outcomes of the project (CONKA <i>et al.</i> , 2008; KUMAR, 2004), such as sales, market acceptance, interactions, trends, po- tential and possible market share (MOHANTY <i>et al.</i> , 2005; MADEY; DEAN, 1985).	3 (5%)
12	Material Re- sources (MAR)	Includes the criteria related to resources that will be consumed, like raw material and energy (WANG <i>et al.</i> , 2005; CHENG <i>et al.</i> , 2017).	38 (62%)
13	Non-Financial Benefit (NFB)	Expresses the non-financial gains of the project to an organizational, such as patents (JUNG; SEO, 2010) and academic papers (CONKA <i>et al.</i> , 2008).	38 (62%)
14	Organizational Requirements (ORR)	Comprehends the criteria imposed by the organization, like the objective of R&D, priority, congruence and im- portance (IMOTO <i>et al.</i> , 2008; EILAT <i>et al.</i> , 2008; SUN; MA, 2005), clarity of definition (KUMAR, 2004) and, product life cycle (MOHANTY <i>et al.</i> , 2005).	17 (28%)
15	Quality Require- ments (QTR)	Put together all the criteria that may interfere on the overall quality of the project, such as customer feedback, customer satisfaction and the quality proposal (HSU <i>et al.</i> , 2003; EILAT <i>et al.</i> , 2008), and expected utility (MOHANTY <i>et al.</i> , 2005).	21 (34%)
16	Scope Risk (SCR)	Measures the probability of project's results in staying outside its scope after conclusion. Therefore, it can be associated to the risk of delay (ESHLAGHY; RAZI, 2015), additional costs (MOHANTY <i>et al.</i> , 2005) or unexpected interdependencies (BHATTACHARYYA, 2015).	21 (34%)

Table 4.5 – Theoretical list of criteria - 2/3

graphs, such as Spectral Clustering. For instance, directly creating a symmetric Adjacency Matrix (227 x 227) would require 25,651 comparison among criteria, which is not reasonable to be manually handled.

#	Criteria	Description	Utilization
17	Social Impact (SOI)	Measures the capacity of the project to generate social benefit (ORAL <i>et al.</i> , 1991; RINGUEST; GRAVES, 1989). It can also be associated to job creation oppor- tunities (KARASAKAL; AKER, 2017) and the ethics or morality of the project (BITMAN; SHARIF, 2008).	7 (11%)
18	Strategic Fitness (STF)	Measures the capacity of a project to meet the strate- gic goals of the company. It can be also described as strategic fit (CARLSSON <i>et al.</i> , 2007) and strategic need (MOHANTY <i>et al.</i> , 2005), for example.	12 (20%)
19	Technical Contri- bution & Innova- tiveness (TCI)	Indicates the potential of a project to introduce new approaches to achieve new technologies (JENG; HUANG, 2015; ORAL <i>et al.</i> , 1991). It can also be measured by terms of advancement of technology (HSU <i>et al.</i> , 2003) and creativity (WANG <i>et al.</i> , 2005).	16 (26%)
20	Technical Issues & Constraints (TIC)	Is related to the main technologies used in the project and their impact or possible associated problems. The criteria can be exemplified as the technological connec- tions (HSU <i>et al.</i> , 2003), the technological difficulty (IMOTO <i>et al.</i> , 2008) and type of technology (HSU <i>et al.</i> , 2003).	9 (15%)
21	Technical Risk (TER)	Is related, in a general manner, to the uncertainty asso- ciated to the technology or the probability of technical issues to occur (MEADE; PRESLEY, 2002; KUMAR, 2004).	4 (7%)
22	Timing Require- ments (TIR)	Is related to all criteria belonging to a time dimension, such as timing, project completion time and time to market (MEADE; PRESLEY, 2002; LIBERATORE, 1986; HEYDARI <i>et al.</i> , 2016).	15 (25%)
23	Work Resources (WOR)	Comprehends the criteria related to resources that will be used, such as manpower and their required knowl- edge and experience (WANG; HWANG, 2007; MO- HAGHAR <i>et al.</i> , 2012) or employing a reputable leader or team (KUMAR, 2004).	40 (66%)

Table 4.6 – Theoretical list of criteria - 3/3

4.3 A theoretical grouped list of criteria

After obtaining the theoretical list of criteria, the 23 criteria were grouped and a hierarchical structure was set. To do so an IRM from Fuzzy-based DEMATEL was created, thought steps 1 to 6 of the proposed model. First, three experts representing ANEEL, the biggest public-electric Brazilian R&D organization, have pointed the influence of each criterion over all criteria. Then, the three individual direct-influence fuzzy matrices \tilde{C}_k were aggregated into a group direct-influence fuzzy matrix \tilde{C} . To build the inner dependence fuzzy matrix \tilde{G} , a threshold α was set by taking the average values from the total-influence fuzzy matrix \tilde{T} . Then, the fuzzy dispatcher \tilde{D} and receiver \tilde{R} groups were obtained and defuzzified, resulting in dispatcher D and receiver R groups with crisp numerical values. Tables 4.7, 4.8, and 4.9 contains the values of all Individual direct-influence matrix. Notice that this matrix is the only input need to perform the Fuzzy-based DEMATEL.

Table 4.7 – Individual direct-influence matrix for Decision-Maker 1

	CMR	COP	COI	ENI	EII	EXT	FIB	FII	IHD	IEI	MPA	MAR	NFB	ORR	QTR	SCR	SOI	STF	TCI	TIC	TER	TIR	WOR
CMR	0	3	3	2	0	1	4	0	0	0	3	0	1	0	0	0	1	1	1	0	0	0	0
COP	1	0	4	1	0	2	3	0	1	1	4	0	2	0	0	1	1	4	1	1	2	0	1
COI	0	2	0	1	0	0	1	0	1	0	2	0	1	0	0	0	1	0	0	0	0	0	2
ENI	3	1	4	0	0	0	1	0	0	0	3	0	3	0	0	1	1	3	1	4	0	0	0
EII	3	3	2	0	0	0	2	3	0	1	4	1	2	1	2	3	0	0	3	3	3	3	1
EXT	2	4	3	2	0	0	2	0	2	0	3	0	2	0	0	1	2	2	3	1	2	0	0
FIB	4	4	4	3	0	2	0	1	1	0	3	0	2	0	0	4	3	3	3	1	4	0	0
FII	1	3	0	4	0	1	4	0	3	1	2	2	3	3	4	2	4	2	3	1	1	4	2
IHD	2	2	2	1	0	1	1	0	0	2	0	0	1	0	0	3	1	2	2	1	1	0	4
IEI	2	3	2	0	0	3	2	2	3	0	1	4	2	3	3	2	0	3	3	3	2	2	4
MPA	3	2	3	2	2	1	4	3	0	1	0	1	2	0	1	3	2	0	1	2	3	2	1
MAR	1	2	1	4	0	1	1	3	1	1	2	0	2	1	4	1	0	0	2	3	2	3	4
NFB	0	3	3	3	0	3	2	0	4	0	1	0	0	0	0	1	3	2	4	2	1	0	3
ORR	2	2	3	2	0	1	2	2	2	0	2	1	3	0	3	3	2	4	1	4	2	2	1
QTR	1	3	4	1	0	1	3	4	2	0	4	4	1	2	0	3	1	2	2	3	2	4	3
SCR	2	3	2	2	0	1	4	0	1	0	0	0	2	0	0	0	1	0	2	2	1	0	0
SOI	3	1	4	1	0	0	1	0	2	0	3	0	3	0	0	1	0	3	1	2	0	0	1
STF	0	3	4	1	0	1	1	0	1	0	1	0	1	1	0	0	1	0	2	4	0	0	1
TCI	4	2	3	4	0	4	2	0	4	0	3	0	4	1	0	4	4	1	0	4	4	0	0
TIC	2	3	2	1	0	3	3	0	3	0	1	1	4	1	0	2	1	3	4	0	3	0	1
TER	2	3	3	4	0	3	3	0	1	0	0	0	3	0	0	0	3	0	4	3	0	0	0
TIR	3	3	2	1	0	0	3	3	2	1	4	2	2	3	4	4	1	2	2	1	3	0	4
WOR	2	3	2	2	0	2	3	4	4	1	2	4	4	3	4	3	2	1	2	2	3	4	0

Among the 23 criteria, some interesting correlations could be found, all with p-values = 0.00:

- Strong correlation (with coefficients greater than 0.8 (DEVORE, 2015)) is only observed between Quality Requirements (QTR) and the criteria Impact in Human Development (IHD) and Organizational Requirements (ORR), with correlation coefficients (cc) values of 0.87 and 0.80, respectively. It seems that articles using a considerable number of qualitative criteria tend to combine ORR and QTR criteria. However, yet a 0.87 coefficient indicates a strong correlation, IDH and ORR are only correlated because there are few articles using IDH criteria. By reading those articles no causality could be found.
- Articles that measure Social Impact (SOI) tends (cc +0.67) to use criteria related to Technical Contribution and Innovativeness (TCI). In general articles measuring Social Impact, tends to measure use a variety of output criteria, such as Corporate Image (COI, cc +0.52), Environmental Impact (ENI, cc +0.63).

	CMR	COP	COI	ENI	EII	EXT	FIB	FII	IHD	IEI	MPA	MAR	NFB	ORR	QTR	SCR	SOI	STF	TCI	TIC	TER	TIR	WOR
CMR	0	2	3	1	0	2	3	3	1	1	3	3	1	1	2	2	1	1	2	2	1	3	3
COP	2	0	4	2	2	1	4	1	3	2	1	2	2	2	3	3	2	2	3	3	2	3	4
COI	1	2	0	1	0	0	1	0	1	2	2	1	0	0	1	1	1	0	0	0	1	0	3
ENI	1	2	4	0	1	1	1	1	2	1	1	0	2	1	1	1	2	1	1	1	1	1	0
EII	3	4	1	1	0	2	3	3	2	3	3	2	3	2	4	3	1	2	4	2	3	3	3
EXT	3	1	0	2	1	0	2	0	2	1	2	1	1	1	1	3	1	2	2	2	3	2	1
FIB	2	3	2	1	1	1	0	1	2	1	1	0	1	3	2	2	1	1	1	1	2	3	0
FII	4	3	2	2	0	2	4	0	3	1	4	4	2	2	2	3	1	2	3	1	2	3	4
IHD	1	1	2	1	1	1	1	1	0	2	2	0	3	1	1	2	1	1	1	1	2	2	1
IEI	2	3	3	1	1	2	2	2	3	0	3	1	2	2	4	3	0	2	2	4	3	3	3
MPA	4	3	3	1	0	0	4	1	1	0	0	1	2	1	1	3	1	1	1	0	2	2	2
MAR	2	4	2	1	0	2	4	4	1	2	3	0	2	1	4	3	1	1	2	1	4	4	2
NFB	1	2	1	1	1	2	1	1	2	1	2	0	0	1	2	1	1	2	2	2	1	2	1
ORR	3	3	1	1	1	1	3	2	2	2	2	3	2	0	2	2	1	2	2	1	2	3	3
QTR	3	2	1	3	1	1	3	4	3	2	3	3	3	1	0	3	1	2	2	2	3	3	3
SCR	2	2	3	1	1	1	3	4	2	2	4	4	1	1	2	0	1	1	1	1	2	2	4
SOI	1	1	3	2	0	1	1	1	2	1	1	0	2	1	1	1	0	1	2	1	1	1	0
STF	2	2	1	2	1	1	1	1	2	2	2	1	1	2	3	3	1	0	2	2	2	2	1
TCI	2	2	4	1	1	1	3	2	2	3	3	0	2	1	2	2	1	1	0	2	2	3	0
TIC	1	2	0	1	1	1	2	3	1	1	3	3	1	1	2	1	1	2	2	0	1	2	3
TER	2	2	3	1	0	1	2	3	2	1	3	3	1	2	3	2	0	1	3	1	0	3	3
TIR	4	3	2	2	0	2	4	4	3	2	3	3	3	1	2	3	1	3	4	2	3	0	4
WOR	2	4	3	1	0	3	4	4	2	2	4	4	3	1	4	3	1	1	3	1	4	4	0

Table 4.8 – Individual direct-influence matrix for Decision-Maker 2

Table 4.9 – Individual direct-influence matrix for Decision-Maker 3 $\,$

CMR 0 2 3 1 0 1 3 1 0 0 3 1 2 0 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>		CMR	COP	COI	ENI	EП	EXT	FIB	FП	IHD	IEI	MPA	MAR	NFB	ORR	OTR	SCR	SOI	STF	TCI	TIC	TER	TIR	WOR
COP 1 0 4 1 1 1 3 0 2 1 2 1 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 0 0 0 0 1 1 1 2 0 0 0 0 1 0 0 0 1 1 2 0 0 0 1 1 1 2 1 1 1 0 0 0 0 1 1 1 2 1 1 1 0 0 0 1 1 1 2 1 1 1 1 0 0 1 1 2 1 1 1 1 1 1 1 2 1	CMR				1		1		1							1	1	1	1	1	1		1	1
COI 0 2 0 1 0 1 1 1 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 2 0 0 1 2 1 2 0 0 0 1 2 1 3 3 1 1 3 2 1 3 3 1 1 3 2 1 2 0 0 1 1 1 0 2 0 1 1 1 1 1 1 3 3 1				-	1	1	1		0	•	1		1		1	1	2	2	2	2	2	Ŭ	1	2
ENI 2 1 4 0 0 1 0 1 0 2 0 2 0 0 1 2 2 1 2 2 1 2 0 0 1 2 3 1 2 0 0 1 2 3 1 2 0 0 1 2 3 1 2 1 3 3 1 1 3 2 1 3 3 1 1 3 2 3 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 1 0 0 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1	0	0	1	-	1	1		0		0	0						-	0	2
EII 3 3 1 0 0 1 2 3 1 2 3 1 2 1 3 3 1 1 3 2 3 3 EXT 2 2 1 2 0 0 2 0 2 0 1 0 0 2 2 2 1 3 3 1 1 3 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 0 1 1 0 2 0 1 1 1 0 0 2 0 1 1 1 1 1 1 1 3 1 1 3 3 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 3 1 1 3 1 1 3 1 1 1 1 </td <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>1</td> <td>-</td> <td>1</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>0</td>					0			1	-	1	0							-		1				0
EXT 2 1 2 0 0 2 0 2 0 1 0 0 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 3 1 2 1 0 1 1 0 2 0 1 1 1 0 2 0 1 1 1 3 3 1 2 1 3 1 1 3 3 1 2 1 3 1 1 3 3 1 1 3 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1			3	1			1	2	-	1					1		3		1	3		3		2
FIB 3 3 2 0 1 0 1 1 0 2 0 1 1 1 3 3 1 2 1 3 1 FIB 3 1 3 0 1 4 0 3 1 3 2 2 3 2 4 1 3 1 1 3 IHD 1 1 2 1 0 1 1 0 0 2 1 0 2 2 3 2 4 1 3 1 1 3 IHD 1 1 2 1 0 1 1 0 0 2 1 0 2 0 0 2 1				1			0		-	2			-	1	0			-	2		1		1	0
FII 2 3 1 3 0 1 4 0 3 1 3 3 2 2 3 2 4 1 3 1 1 3 IHD 1 1 2 1 0 1 1 0 0 2 1 0 2 0 0 2 1 </td <td></td> <td>_</td> <td>-</td> <td>3</td> <td>-</td> <td></td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td>_</td> <td>1</td> <td>_</td> <td>1</td> <td>_</td> <td>1</td> <td>0</td>		_	-	3	-		1		1	1				1	1			_	1	_	1	_	1	0
IHD 1 1 2 1 0 1 1 0 2 1 0 2 0 0 2 1				1			1		0	3	1			2	2	-			1		1	1	3	3
IEI 2 3 2 0 0 2 2 2 3 0 2 2 3 2 3 2 0 2 2 3 2 3 2 0 2 2 3 2 3 2 0 2 2 3 2 3 2 0 2 2 3 2 2 3 2 0 1 1 3 2 0 1 1 3 2 0 1 1 2 2 3 1 3 2 0 1 1 3 0 1 3 2 0 1 1 2 2 3 3 3 1 1 2 2 1 1 2 0 1 1 1 2 2 3 3 3 3 1 2 2 1 2 1 2 1 3 3 3 1 1 2 2 2 3 3 3 3 1			1	2	1		1	1			2	1						1	1	1	1	1	1	2
MPA 3 2 3 1 1 0 4 2 0 0 1 3 0 1 3 2 0 1 1 2 2 MAR 1 2 1 1 0 1 2 2 1 1 2 0 2 1 3 2 0 1 1 2 2 3 NFB 1 3 3 1 3 2 1 4 1 3 0 0 1 3 3 4 2 1 2 ORR 2 2 2 1 2 3 3 3 3 3 4 2 1 3 3 3 1 1 2		-	3		0	-	2	2		•		2						0	2	2	3	2	2	3
MAR 1 2 1 1 2 2 1 1 2 0 2 1 2 1 1 0 2 2 2 2 3 NFB 1 3 3 1 3 2 1 4 1 3 0 0 1 3 1 3 4 2 1 2 ORR 2 2 2 1 2 3 3 3 1 1 2 2 2 3 3 3 3 3 1 <td< td=""><td></td><td></td><td></td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td>č</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>1</td><td>1</td><td>-</td><td></td><td>1</td></td<>					1	1					č				-					1	1	-		1
NFB 1 3 3 3 1 3 2 1 4 1 3 0 0 1 3 1 3 4 2 1 2 ORR 2 2 2 1 0 1 2 2 2 2 2 1 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 0 1 2 2 2 2 2 2 1 2 3 3 3 3 1 0 3 1 1 2 2 2 3 3 3 1 0 3 1 1 2 2 2 3 3 3 1 1 </td <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>-</td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td>-</td> <td>1</td> <td>1</td> <td></td> <td>2</td> <td>2</td> <td>-</td> <td></td> <td>2</td>				1	1	0	1	-		1	1				1	-	1	1		2	2	-		2
ORR 2 2 1 0 1 2 2 1 2 2 2 0 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 3 3 3 3 1 0 3 1 1 2 2 2 3			-	3	3	1	3		1	4	1				1		1	3				1		3
QTR 2 2 2 2 0 1 3 4 2 1 3 3 3 1 0 3 1 1 2 2 2 3					1	0	1		2		1				0		2			1		2		2
					2		1				1								1	2				3
	SCR	2	2	2	1	0	1	3	2	1	1	2	2	1	0	1	0	1	0	1	1	1	1	2
SOI 2 1 3 1 0 0 1 0 2 0 2 0 2 0 0 1 0 1 1 1 0 0			1		1		0	1		2	1			2				0	1	1	1	0	0	0
STF 1 2 2 1 0 1 1 0 1 1 1 0 1 1 1 1 0 2 3 1 1			2		1		1	1	-	2 1	1	1		1	1	1	1		1	2	1	1	1	1
TCI 3 2 3 2 0 2 2 1 3 1 3 0 4 1 1 3 4 1 0 3 3 1					2		2	2	1	3	1	3		1	1	1	1	-	1			3	1	0
TIC 1 2 1 1 0 2 2 1 2 0 2 2 2 1 1 1 1 1 3 0 2 1				1	2 1			-	1	-	1			-	1	1	1		1				1	2
TER 2 3 1 0 2 2 1 1 1 1 3 0 2 1				1	1		∠ 1		1	∠ 1				∠ 1	1	1	1		1	-	1	-	1	2 0
			-	-	1		1		-	1 2	1			1				1			1			4
TIR 3 2 1 0 1 3 2 1 3 2 2 2 3 1 2 3 1 3 0 WOR 2 3 2 1 3 2 1 3 2 2 2 3 3 1 2 3 1 3 0 WOR 2 3 2 1 3 4 4 2 4 3 2 1 3 4					1		1			-	1				_			1	∠ 1		1			4

- The criteria Extendibility (EXT) and Material Resources (MAR) show a moderate positive correlation (cc +0.67). A potential cause to this correlation is that the usage of the results, innovations and products of a project in other future projects are normally dependent on the materials employed.
- Material Resources (MAR) and Work Resources (WOR) does not show relevant correlation, which may be a popular expectation. It may highlight a tendency in experimental research to consider materials as a critical resource, letting Work Resources (WOR) outside the set of important criteria. However, Material Resources (MAR) are positively correlated (cc +0.67) to Market Potential and Attractiveness (MPA). A explanation is based on that certain types of materials may be attractive to the public, which may improve market share and sales. It reflects on this particular combination of a cause criteria (MAR) and a effect criteria (MPA). More details about cause and effect will be discussed later.
- The same conclusions made to Work Resourcers (WOR) and Material Resourcers (MAR) are also valid to External Environment Income (EEI) and Internal Environment Income (IEI). When one or another is listed among the used criteria, the other tends to be let aside.

Other correlations were found, however no possible cause could be pointed. All correlation values are given by Annex G.

Finally, the experts have pointed the clusters by considering the IRM and the relation among criteria in practice. Names were given to the the clusters, according to the criteria inside. The clusters are displayed on Fig. 4.1. Later, the criteria and the groups of criteria were validated by all experts, that represent all five selected organizations.

The groups of criteria are:

- Environmental Income (ENI) group includes criteria exclusively related the relationship between the organization and its internal and external environments (MEADE; PRESLEY, 2002; MOHANTY *et al.*, 2005; LIBERATORE, 1988). Criteria in this group are classified as autonomous criteria, that show low prominence and high relation. The Environmental Income Group contains the criteria: External Environmental Income (EEI) and Internal Environmental Income (IEI).
- 2. Scope Requirements (SRE) group includes all the criteria related to the necessary requirements for performing the project according to its scope (LIBERATORE, 1986; JENG; HUANG, 2015; EILAT *et al.*, 2008). It is composed by core criteria, that have high prominence and high relation. Yet resource requirements are defined in the project's scope, they will be treated in a separated group. The Scope Require-

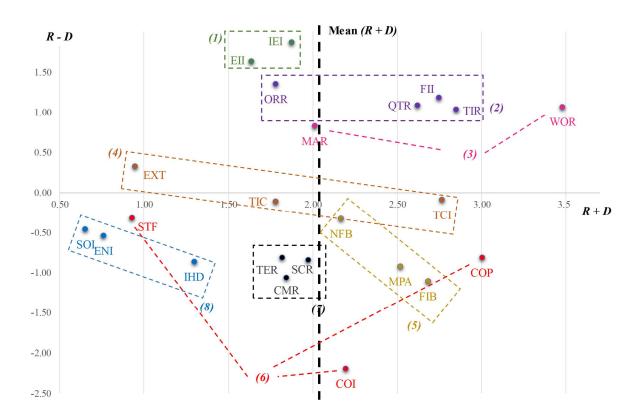


Figure 4.1 – IRM Generated in Fuzzy-based DEMATEL and recommended groups of criteria.

ments group can be split into: Financial Income (FII), Organizational Requirement (ORR), Time Requirement (TIR), and Quality Requirement (QTR).

- 3. The Resource (RES) group includes all non-financial resources used on a project, such as manpower, materials and equipment. (WANG *et al.*, 2005; CHENG *et al.*, 2017; HEIDENBERGER, 1996). It is also maily composed by core criteria, that have high prominence and high relation. The Resource group contains: Work Resourcers (WOR) and Material Resourcers (MAR).
- 4. Technical (TEC) group contains criteria that are moderate givers and moderate receivers. These criteria impact and are impacted in similar proportions by other criteria. It includes all criteria related to technical or technological aspects, impact and relevance of the project (HSU *et al.*, 2003; KUMAR, 2004; WANG *et al.*, 2005). The Technical group contains: Technological Contribution & Innovativeness (TCI), Technical Issues & Constraints (TIC), and Extendability (EXT).
- 5. Benefit (BEN) group includes all the criteria related to the possible rewards that a project can bring to the organization. It is composed by impact criteria, that show high prominence and low relation. This group can be directly measured, by financial metrics, or indirectly measured, in terms of market acceptance or other benefits, such as number of patents and produced papers (JUNG; SEO, 2010; BHAT-

TACHARYYA *et al.*, 2011; RINGUEST *et al.*, 2004; MOHANTY *et al.*, 2005). The Benefit criteria group can be split in: Financial Benefit (FIB), Non-financial Benefit (NFB) and Market Potencial & Attractiveness (MPA).

- 6. Strategy (STR) group is composed by low relation criteria, that can be intertwined criteria or autonomous receivers. Criteria in this group are related to an exclusive benefit to the organization, in which includes all the criteria that provides a strategical and political aspect from the project to the organization (CONKA *et al.*, 2008; HSU *et al.*, 2003; STEWART, 1991). The Strategic criteria group is formed by: Competitiveness & Partnership (COP), Strategic Fitness (STF), and Corportate Image (COI).
- Risk (RIS) group is solely composed by autonomous receivers criteria, that shows low prominence and low relation. It contains all the criteria related to the uncertainty of the project's future, like the probability of success or the possibility in appearing different issues (MEADE; PRESLEY, 2002; CARLSSON *et al.*, 2007; EILAT *et al.*, 2008). The Risk group of criteria can be subdivided in three criteria:Technical Risk (TER), Scope Risk (SCR), and Commercial & Market Risk (CMR).
- 8. Social & Environment Impact (SEI) group is also composed by autonomous receivers criteria, that shows low prominence and low relation. It includes all criteria that measures the impact of a project on society, environment and company's workers, (KARASAKAL; AKER, 2017; EILAT *et al.*, 2008; ORAL *et al.*, 1991). The Social & Environment Impact group contains the criteria: Social Impact (SOI), Environmental Impact (ENI) and Impact in Human Development (IHD).

As noticed, Groups 1, 2 and 3 are entirely composed by cause criteria, which has high influence over other criteria. According to the results, those criteria should be assigned with bigger weights. Group 4 presents criteria that moderately influence and are influenced by others. Groups 5, 6, 7 and 8 contains only effect criteria, which are highly influenced by others. These criteria should receive lower weights.

By performing Pearson correlation tests among all groups of criteria, no strong correlation (higher than 0,8) was observed (DEVORE, 2015). It may be an indicator that the groups of criteria are well defined and not presenting significant overlapping. All correlation coefficients can be found in Annex G.

4.4 A grouped list of criteria (Validation)

After grouping the criteria, we have validated the list in practice. To do so, ten experts were requested to analyze the theoretical grouped list of criteria by crossing the criteria used by the organizations and the proposed list of criteria. The goals in this step were to check the applicability of the list in practice and search for criteria used by organizations that do not fit in the proposed theoretical grouped list of criteria. Thus, a correspondence matrix was created (Table 4.10), which shows the number of times each one of the 23 proposed criteria was related to criteria used by organizations, all showing at least one correspondence. Each correspondence matrix performed by each expert is also available on Annex C.

As a result, all criteria used by the organizations were fit into at least one of the proposed 23 criteria. In fact, a representative number of criteria were fit into more than one of the proposed 23 criteria. It happens mainly happens due to the way the criteria proposed by the organizations are built. Commonly a criteria may contain various subcriteria, which sometimes has no relation with each other.

Notice that the criteria Material Resources (MAR), Commercial Market Risk (CMR), and Scope Risk (SCR) had no references in the criteria presented in the organization's calls. It does not mean they are not well defined. It evidences that those criteria are not used by the organizations. In fact, the Brazilian R&D public organization pay little official attention to the Risks related to R&D. Yet, those Risks will pointed by the Decision-makers as relevant ones in Section 4.5

In a complementary manner, most criteria used by the organizations are not well defined. In some cases, such as CNPq (see, B.2), the criteria is composed by many subcriteria. However these are not weighted by the decision-makers and the explanations for final weight of the criteria may be difficult to track or understand. In other cases, no relevant description is presented, such as BNDES and ANP, and the differentiation of one criteria scope from other become a personal task of each decision making, which makes it easier to infer sense and some sort of weight to each one.

4.5 Ranking the criteria

These subsection is more related to the method, than to the bank of criteria itself. However it will be presented here, since the conclusion of the validated list is an indispensable step to be concluded in advance.

These proposed ranking would serve only as guideline to select criteria for R&D PPS, since weights would be always given by experts according to the analyzed portfolio. In this paper, the criteria were ranked according to two criteria: importance to the organization and influence over other criteria. First, fuzzy-based AHP was used to weight the criteria according to their importance. Thus, three experts have pointed the importance of one criteria over another according to hierarchy established in Section 4.3 and validated in Section 4.4. For all comparison matrices we have check the consistency ratios CR and

Critorio	Petro	bras	CNP	q	FINE	Р	ANE	EEL		BNDES	Used at
Criteria	E1	E2	E3	E4	E5	E6	$\mathrm{E7}$	$\mathbf{E8}$	E9	E10	least once?
IEI	0	0	0	0	0	0	0	0	0	1	Yes
MPA	0	0	0	0	1	1	0	0	0	1	Yes
EEI	1	1	0	0	0	0	0	0	0	1	Yes
FII	1	1	1	1	1	1	0	0	0	1	Yes
TIR	1	1	0	0	0	0	0	0	0	1	Yes
ORR	1	1	1	1	1	0	1	0	1	1	Yes
QTR	1	1	1	0	0	0	0	0	0	0	Yes
FIB	0	0	1	0	0	0	1	1	1	1	Yes
NFB	1	1	0	1	0	0	1	1	1	1	Yes
WOR	1	1	1	1	1	1	0	0	0	1	Yes
MAR	0	0	0	0	0	0	0	0	0	0	No
COP	1	1	0	0	1	1	1	1	1	1	Yes
$\mathbf{E}\mathbf{X}\mathbf{T}$	1	1	0	0	1	1	1	1	1	0	Yes
STF	1	1	0	0	0	1	0	1	1	0	Yes
COI	0	0	0	0	1	0	0	1	1	1	Yes
TER	0	0	1	1	0	0	0	0	0	1	Yes
CMR	0	0	0	0	0	0	0	0	0	0	No
SCR	0	0	0	0	0	0	0	0	0	0	No
TCI	0	0	1	1	1	1	1	1	1	1	Yes
TIC	1	1	0	0	0	0	1	0	0	1	Yes
SOI	1	1	1	1	0	0	1	1	1	1	Yes
ENI	1	1	1	1	0	0	1	1	1	1	Yes
IHD	1	1	0	0	0	0	1	1	1	1	Yes

Table 4.10 – Validation matrices: summary

only those with CR greater than 0.1 were approved. Rejected matrices were reworked by the experts until obtaining an approved CR. Then, all matrices were transformed into fuzzified pairwise comparison matrices and later aggregated. The input matrices with weights given by the same three experts representing ANEEL are given by Tables 4.11, 4.12, and 4.13.

The Fuzzy Synthetic Extents S_i were obtained to each one of the 23 criteria and 8 groups of criteria. Then, 562 $(23 \times 22 + 8 \times 7)$ degrees of possibility were calculated, prior obtaining the 23 degrees of possibility for a convex fuzzy number to be greater than the others 22 convex fuzzy numbers. Finally, the a weight vector W_i was obtained.

From fuzzy-based DEMATEL, dependency weights of criteria w_d through Equation 12. Thus, Dependency Weight Vector W_d was obtained, by using inputs from the Crisp Receiver Group R.

In possessing the vectors W_i and W_d , An Overall Weight Vector W_o was obtained, by multiplying the i_{th} w_i and w_d weights and normalizing the results, according to Equation 11. The set of Overall Weights w_o gives us the relative weight of one criteria over the others (see, Table 4.14). Criteria with bigger w_o should be prioritized over those with lower w_o values.

FIN EN SIE TEC BBM SIE TEC BBM SIE Comps Comp	11																						3	_	_		_		_		_
EN EN STR TEC BIM Compare Compare FEI FI																							= 0.0	2.0							
Image: Fig: Fig: Fig: Fig: Fig: Fig: Fig: Fig																							CI	3 1.(
EIN SIE RIS TEC BEM SIE RIS SIE SIE <td></td> <td>A ST</td> <td></td>		A ST																													
EIN SIE RIS TEC BEM SIE RIS SIE SIE <td>sdno.</td> <td>BEN</td> <td></td> <td>0.5</td> <td>2.0</td> <td>1.0</td> <td>2.0</td> <td>1.0</td> <td>1.0</td> <td>0.5</td> <td>0.3</td>	sdno.	BEN																						0.5	2.0	1.0	2.0	1.0	1.0	0.5	0.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	G																														0.3
ENI SRE RES TEC BEM STR RIS SH FEI FI ORR FO 10 400 FO FI FO		E RES																													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		I SRF																													
EH IFI RIS TEC BEM STR RIS SEI EH HI ORK WOR MAR TCT TC EXT FIB MEB MPA COP STF COJ TR SCR CMR SOI ENI HI 0.3 100 0.3 20 0.5 0.5 0.0 0.3 20 0.5 0.5 0.0 0.0 3 0.0		O EN																				_	_	1.0	2.0	2.0	3.0	2.0	3.0	1.0	0.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Γ	I IHI																						2							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SE																							= 0.0							
EH IEI																				(1.(5.0	2.(Ū							
FN RE RES TEC BEM STR EEI 1.0 0.8 100 000 1000 000 1000 </td <td>~</td> <td>R CM</td> <td></td> <td>_</td> <td></td>	~	R CM																			_										
ENI SRE RES TEC BEM STR STR EEI 100 400 EI 10 0400 EI 10 0400 EI EI 000 51 100 20 010 <	RIS	CCF SCF																			= 0.00										
ENI RE RE TEC BEM STR STR EEI IEI FII ORR TIR OTR WOR MAR TCI TIC EXT FIB NFB MPA COP STF FII 0.25 1.00 1.0 4.0 3.0 5.0 1.0 4.0 3.0 5.0 1.0 4.0 3.0 5.0 1.0 4.0 3.0 5.0 1.0 4.0 3.0 5.0 1.0 4.0 3.0 5.0 1.0 4.0 3.0 5.0 1.0 4.0 3.0 5.0 1.0 4.0 3.0 5.0 1.0 4.0 3.0 5.0 1.0 1.0 2.0 1.0 1.0		TER																1.0	1.0	2.0	G										
ENI RES TEC BEM COP EEI EII ORK WOR MAR TCI TC EIB MFA COP EI 1.00 4.00 1.00 4.00 3.0 5.0 1.00 1.00 4.00 1.00 4.00 1.00 4.00 1.00 4.00 1.00 4.00 1.00 4.00 1.00 4.00 1.00 1.00 4.00 1.0		col																_													
ENI SRE RES TEC BEM EEI EII IOR TIR QTR WOR MAR TCI TEC BEM IEI 100 4.00 EEI EII IOR TIR QTR WOR MAR TCI TE BNFB MPA G IEI 0.25 1.00 1.0 4.0 3.0 5.0 0.3 1.0 1.0 2.0 0.3 1.0 1.0 2.0 0.3 1.0 1.0 2.0 0.3 1.0 1.0 2.0 0.3 1.0 1.0 2.0 0.3 1.0 1.0 2.0 0.3 4.0 1.0 0.3 4.0 1.0 0.3 4.0 1.0 0.3 1.0 1.0 2.0 0.3 1.0 1.0 2.0 0.3 4.0 1.0 0.3 4.0 1.0 0.3 4.0 1.0 0.3 4.0 1.0 0.3 4.0 1.0 0.3 1.0 1.0 2.0 0.3 4.0 1.0 <t< td=""><td>STR</td><td>STF</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>= 0.09</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	STR	STF																= 0.09													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															1.0	4.0	0.5	G													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		MPA										2 0	0.0	0.3																	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BEN	NFB										C y	0.0	1.0	0.07																
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												1	1.0	0.3	СĒ																
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		EXT								2.0	2.0	1.0			ļ																
ENI SRE RES EEI IEI ORR TIR QTR WOR MAR EEI 1.00 4.00 EI 0.25 1.00 EI 0.3 FII CI= 0.00 1.0 4.0 3.0 5.0 0.3 ORR 0.3 1.0 0.5 0.5 0.3 1.0 TIR 0.3 1.0 0.5 1.0 2.0 0.3 1.0 WOR CI= 0.04 1.0 2.0 0.3 1.0 0.3 1.0 WOR CIE 0.4 0.2 2.0 0.3 1.0 WOR CIE 0.04 1.0 2.0 0.3 1.0 WOR CIE 0.04 1.0 2.0 0.3 1.0 MPA COP CIE 0.04 1.0 2.0 0.1 0.5 0.0 TIC CIE 0.04 1.0 2.0 0.1 0.5 0.0 0.0 0.0 0.0 <	TEC	TIC								1.0	1.0		000																		
ENI SRE RES EEI EI FI ORR WOR M EEI 1.00<4.00		TCI								1.0	1.0		5																		
EII EII SRE EEI EI FII ORR WM EEI 1.00 4.00 10 WM FII 0.25 1.00 1.0 2.0 FII CT= 0.00 1.0 4.0 3.0 5.0 ORR 0.3 1.0 0.5 0.5 1.1 ORR 0.3 1.0 0.5 0.5 1.1 WOR CT= 0.04 1.0 2.0 1.0 2.0 WOR CT 0.2 2.0 0.5 1.1 0.1 WOR CT 0.2 0.04 1.0 2.0 0.1 0.0 WOR COP 0.2 0.04 1.0 0.0 0.0 0.0 0.0 TCI COP 0.2 0.04 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <	SS	MAR						3.0	1.0	0.00																					
ENI SRE EEI EI FI ORR TIR EEI 1.00 4.00 3.0 3.0 IEI 0.25 1.00 4.00 3.0 FII CT= 0.00 1.0 4.0 3.0 ORR TIR 0.3 2.0 1.0 ORR 0.3 2.0 0.3 2.0 0.5 WOR O.2 0.2 0.2 0.0 0.2 MAR C 0.2 0.0 0.1 0.0 TTC NFB NFB 0.2 0.0 0.1 <t< td=""><td>RF</td><td>VOR</td><td></td><td></td><td></td><td></td><td></td><td>1.0</td><td>0.3</td><td>CI=</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	RF	VOR						1.0	0.3	CI=																					
ENI SRE EEI EI FI ORR TIR EEI 1.00 4.00 3.0 3.0 IEI 0.25 1.00 4.00 3.0 FII CT= 0.00 1.0 4.0 3.0 ORR TIR 0.3 2.0 1.0 ORR 0.3 2.0 0.3 2.0 0.5 WOR O.2 0.2 0.2 0.0 0.2 MAR C 0.2 0.0 0.1 0.0 TTC NFB 0.1 0.2 0.0 0.1 <t< td=""><td></td><td>DTR V</td><td></td><td>5.0</td><td>0.5</td><td>2.0</td><td>1.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		DTR V		5.0	0.5	2.0	1.0																								
EII EII EEI EII EEI EI EII 1.00 4.00 FII CI= 0.00 ORR TIR WOR MAR MAR TCI TCI TCI TCI EXT FIB NFB MPA MPA FIB NFB MPA FIB NFB NFB NFB NFB NFB NFB NFB NFB NFB NF	Ш	TIR (
EII EII EEI EII EEI EI EII 1.00 4.00 FII CI= 0.00 ORR TIR WOR MAR MAR TCI TCI TCI TCI EXT FIB NFB MPA MPA FIB NFB MPA FIB NFB NFB NFB NFB NFB NFB NFB NFB NFB NF	SRI	RR						.04																							
EII EII EEI EII EEI EI EII 1.00 4.00 FII CI= 0.00 ORR TIR WOR MAR MAR TCI TCI TCI TCI EXT FIB NFB MPA MPA FIB NFB MPA FIB NFB NFB NFB NFB NFB NFB NFB NFB NFB NF		FII C		1.0	0.3	0.3	0.2	CI=0																							
EEI EEI FII FII FII FII FII FII MAR WOR WOR WOR WOR WOR FII FII FII FII FII FII FII FII FII FI	I	IEI	1.00	00.0	-	-	-	-																							
EEI EEI FII FII FII FII FII FII MAR WOR WOR WOR WOR WOR FII FII FII FII FII FII FII FII FII FI	EN	EEI	0.25	CI = (
				_	JRR	TIR	QTR	VOR	AAR	TCI	TIC		A	NFB APA	COP	STF	COI	TER	SCR	CMR	SOI	ENI	IHD	ENI	SRE	RES	TEC	3EM	STR	RIS	SEI
				<u> </u>)						_												.						

Table 4.11 – AHP: Comparison matrices for Decision Maker 1

	SEI																						0.10	0.3	0.3	2.0	1.0	1.0	2.0	2.0	1.0
	RIS																						CI=	0.5	0.5	2.0	2.0	3.0	1.0	1.0	c.0
																								0.5	0.5	2.0	2.0	3.0	1.0	1.0	0.5
s	S M3																							0.5			1.0			0.3	
Groups	CBI																														
0	TEC																							1.0			1.0				1.0
	RES																							0.3	0.5	1.0	0.5	1.0	0.5	0.5	C.U
	ENI SRE RES TEC BEM STR																							0.5	1.0	2.0	0.5	3.0	2.0	2.0	5.0
																								1.0	2.0	3.0	1.0	2.0	2.0	2.0	5.5
	IHD																				1.0	4.0	1.0								
SEI	ENI																				0.3	1.0	0.3	0.00							
	SOI																				1.0	4.0	1.0	CI=							
	CMR																	1.0	0.5	1.0											
RIS	SCR C																		1.0		32										
R	R SC																				CI= 0.02										
	I TER														_	_	_	1.0	0.3		U										
	F COI															8.0	1.0														
STR	STF														0.3	1.0	0.1	= 0.04													
	COP											_			1.0	3.0	0.2	CI=													
	MPA											0.3	0.3	1.0																	
BEM	NFB 1											1.0	1.0	4.0	00																
н	FIB N												1.0 1		CI = 0.00																
										0	0 0		1	4	0																
S	TCI TIC EXT										0.1																				
TEC	I TI									7.(0.1 1.0 0.3 5.0	= 0.0																			
	LC TC							1		1.0	0.1	5																			
RES	MAF							7.0	1.0	CI= 0.00																					
RI	VOR							1.0	0.1	CI=																					
	QTR WOR MAR			ë.	0.	0.3	1.0																								
SRE	ORR TIR					0 1.0		4																							
					1.0		1.0	CI= 0.07																							
	FΠ	~			5.0	5.0	4.0	C,																							
ENI	ΕI	$1.00 \ 4.00$	0.25 1.00	CI = 0.00																											
Е	EEI	1.00																													
		EEI	IEI	FΠ	ORR	TIR	QTR	WOR	MAR	TCI	TIC EXT	FIB	NFB	MPA	COP	STF	COI	TER	SCR	CMR	SOI	ENI	IHD	ENI	SRE	RES	TEC	BEM	STR	RIS	SEI
		IN			E		-	SE			LEC		3EV			ITZ			SIA	-		ЗE		<u> </u>			sdno				1
		EEI IEI FII ORR				-			-	~	_	-																			1

Table 4.12 – AHP: Comparison matrices for Decision Maker 2

	RIS COI TER SCR 3.0 8.0 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 CI= 0.02	COI TER 3.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
BEM FIB NFB MPA COP 1.0 0.3 3.0 0.3 0.1.0 5.0 0.3 0.1.0 5.0 0.3 0.1.0 5.0 0.3 0.1.0 5.0 0.3 0.1.0 5.0 0.3 0.1.0 5.0 0.3 0.1.0 5.0 0.3 0.1.0 5.0 0.3 0.1.0 5.0 0.3 0.3 0.3	BEM STR RIS NFB MPA COP STF COI TER SCR NFB MPA COP STF COI TER SCR 0.3 3.0 10 5.0 10 0.0 10 5.0 0.03 3.0 0.03 0.0 1.0 2.0 0.03 0.0	BEM STR RIS SEI NFB MPA COP STF COI TER SCR CMR SOI ENI 003 10 5.0 0.03 1.0 0.2 1.0 0.3 3.0 0.03 1.0 0.0 0.03 1.0 0.3 3.0 0.03 1.0 3.0 0.03 1.0 0.3 3.0 0.03 1.0 3.0 0.03 1.0 0.3 3.0 0.0 3.0 0.0
	RIS COI TER SCR 3.0 8.0 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 CI= 0.02	RIS SCI TH SCR CMR SOI ENI COI TH SCR CMR SOI ENI 3.0 3.0 3.0 1.0 1.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0

Table 4.13 – AHP: Comparison matrices for Decision Maker 3 $\,$

Acronym	Criteria	Wd	Wi	Wo
EEI	External Environment Income	1.00	1.00	14.25%
ORR	Organizational Requirements	0.90	0.92	11.77%
STF	Strategic Fitness	0.72	1.00	10.20%
ENI	Environmental Impact	0.70	1.00	10.03%
FII	Financial Income	0.64	1.00	9.18%
QTR	Quality Requirements	0.65	0.77	7.15%
WOR	Work Resources	0.45	1.00	6.41%
TER	Technical Risk	0.40	1.00	5.71%
TCI	Technical Contribution and Innovativeness	0.35	1.00	4.97%
TIR	Timing Requirements	0.59	0.47	3.96%
CMR	Commercial & Market Risk	0.34	0.63	3.04%
NFB	Non-Financial Benefit	0.43	0.48	2.96%
MPA	Market Potential & Attractiveness	0.21	0.89	2.73%
SCR	Scope Risk	0.36	0.51	2.61%
FIB	Financia Benefit	0.14	1.00	1.93%
SOI	Social Impact	0.75	0.15	1.62%
IEI	Internal Environment Income	1.00	0.10	1.38%
COP	Competitiveness & Partnership	0.13	0.04	0.07%
COI	Corporate Image	-	-	0.00%
EXT	Extendibility	0.86	-	0.00%
IHD	Impact in Human Development	0.51	-	0.00%
MAR	Material Resource	0.73	-	0.00%
TIC	Technical Issues & Constraints	0.57	-	0.00%

Table 4.14 – Values of W_i , W_d and W_o

As it can be noticed, the criteria with higher weights are those that show higher importance and higher influence over each other. If we look at the W_i column, a relevant number of criteria are assigned with full weight. It means that all of them present non-dominated fuzzy distributions. Values equal to zero represent fully-dominated fuzzy distribution. Values between 0 and 1 represent partially-dominated fuzzy numbers. On the other hand W_d presents only one zero value and only one criteria with influence 1, all other values are ranging between those values. This difference between the set of values W_d and W_i are mainly explained by the defuzzification methods, which are presented in section 2.3.

Qualitative criteria are the most weighted ones, such as External Environment Income, Organizational Requirements and Strategic Fitness. Quantitative criteria represent less than 30% of the total weight assigned. Hosseini *et al.* (2019) presents four major problems in project selection. Among these problems, biased decision making (called irrational decision making by the authors) is pertinent in the context of project selection. The authors state that biased decision making reflects on selecting unnecessary projects, in order to obtain private vantages and gains over projects that could bring more economic benefit or social good. Thus, biased decision making may be observed during qualitative attribute evaluation, in which decision makers may assign higher grades to projects that give them particular advantages. Since qualitative judgments are mainly employed and knowing that the board of decision-makers is large, heterogeneous and with considerable turn-over, measures should be taken to mitigate biased decision making. A possible solution, to be explored in future research and/or calls, is to use zero-or-one scales, instead of the 1-to-5 scales that are normally used. Thus, qualitative criteria would be employed only as a filter, while quantitative data, taken from the proposals, which are questionable and auditable, would rank the filtered projects.

Other important results from the data is that ANEEL give few attention to Non-Financial Benefit, such as publications and patents. The same happens to Impact in Human Development. However, yet the calls present those criteria as relevant ones, the decision-makers that select the projects seem to do not give much attention to them. Again, it is mainly possible due to the huge scopes of the current criteria adopted by ANEEL.

Similar discussion may occur to the Risks, they are not even mentioned by Table B.4. However all three risks, Scope Risk, Commercial & Market Risk and Techenical Risk, sum up for almost 11% of the overall weights assigned by the experts. It means the the criteria current employed by ANEEL does not reflect what the decision makers analyze on the projects.

5 CONCLUSIONS

The research presented in this doctorate thesis investigated two research propositions: (1) Most criteria used in R&D PPS can be represented by a smaller list of criteria; and (2) the criteria used in R&D PPS can be selected according to their influence, importance and uncertainty, by integrating AHP (Analytic Hierarchy Process) and DEMATEL (Decision-Making Trial and Evaluation Laboratory) in a fuzzy environment.

On chapter 2 the theoretical foundations were presented and a Systematic Literature Review was performed. From all research opportunities highlighted by the SLR, we have chosen the lack of criteria selection approaches as a research opportunity to explored by this thesis (see, Table 2.11). It is also presents research opportunities presented by other authors, which are referenced on Chapter 2..

Also from the SLR, we have collected 227 criteria used by the 63 articles about MCDM-based R&D PPS, published from 1970 to 2019. Those criteria were condensed in a shorter list of criteria, which were later grouped in 8 groups of criteria. The whole process were conducted with the assistance of experts representing ANEEL, the main Brazilian organization of the public-electrical segment. The results were also validated by experts from other relevant Brazilian R&D public organizations. The proposed groups and list have shown consistent to be used in future R&D PPS performed by those organizations (see Chapter 4).

To group and rank the criteria a novel integrated MCDM approach was proposed, based on Fuzzy-based DEMATEL and Fuzzy-AHP Extent Analysis methods. The method was mainly designed in Excel[®], in order to attend another research opportunity also presented by Table 2.11. The opportunity highlighted states that most approaches proposed in literature are far from the reality of many companies, that do not have personnel to use them, nor money to provide a software that could run those approaches. The Excel[®] approach can be replicated and is also available online (see, <http://bit.ly/33we3C5>). To verify the algorithm, it was also coded in Python. The pseudo-code and a proposal of user framework are also available Annex D and E. The results from both applications, in Excel[®] and Python Programming Language returned the same results in all cases. The python application was registered and is also available online (see, <http://bit.ly/33we3C5>).

The proposed method have also shown its applicability. It provides viable answers, based on criteria importance, influence and potential data imprecision. However some limitations were pointed out, such as: it is not recommended to decisions based on few criteria, since both fuzzy DEMATEL and AHP approaches seems to more frequently assign zero weights to the criteria, when compared to classic approaches. Thus, its recommended to use the proposed method to not only weight the criteria, but also chose them. This fact is also reflected on the thesis title question "which criteria should we use", since the method is better explored in the context of choosing the criteria, and not only ranking them when the more appreciated ones were already chosen (see, Chapter 3.

In the case of ANEEL also brings interesting conclusions. Qualitative criteria, such as External Environment Income, Strategic Fitness and criteria related to Scope Requirements are preferred, instead of traditional considered criteria, such as Financial and Non-Financial Benefits. This is not only reflected by the weights returned by the method. It is also highlighted by ANEEL's calls, that does not seem to give much attention to them. Other important conclusion is that despite not explicit given much importance to risk, they were pointed out as relevant criteria by the experts. Thus, they may should be better presented or at least discussed before the next calls, in order to reflect the expectations of policy makers and decision makers.

Developments, delimitation's and insights given by this work can also be explored by further investigations. Such as the correlation among criteria, that was only related to the articles that have proposed them. For R&D PPS applications that will result in a list of selected projects and after collecting the inputs for all criteria and according to all analyzed projects, it is recommended to evaluate the correlation between the criteria. To this end, objective MCDM methods could be employed, such as CRITIC and CCSD. Criteria Importance Through Inter-criteria Correlation (CRITIC), proposed by Diakoulaki *et al.* (1995): the method assign bigger weights to criteria represented by data with lower correlation coefficient and bigger standard deviations. The correlation among criteria is used, rather then their impact on decision making. On the other hand, Correlation Coefficient and Standard Deviation (CCSD), proposed by Wang e Luo (2010): the method is very similar to CRITIC, however the weight of a criteria are calculated considering the correlation between criteria and the set of scores of all alternatives, which is calculated according to Simple Additive Weighting (SAW) method. the The CCSD final step requires a non-linear model to be solved.

The consistency of the decision-makers was only considered when evaluating the importance of the criteria, through classic AHP. However, the measurement system could me analyzed by studies of Gage R&R, which may result in interesting findings.

Some authors does not seem to be consistent when selecting and using MCDM methods. Sometimes the used method could be replaced for a more suitable one (GRACIA *et al.*, 2019). Sometimes the applications does not seems to be accurate. Future research could explore those limitations and mistakes in R&D PPS.

The proposition of a support system to aid the Brazilian public R&D organizations select their projects may also be an idea to further research. As exposed on Chapter 4,

those organizations use simple PPS methods, such as simple weighted average.

All research opportunities presented by the SLR and summarized by Table 2.11 may also be explored in the future, such as: the proposition of approaches to select projects from several proposals; vagueness and preference thresholds could be explored by outranking approaches; and a framework or application that help decision makers to select the best MCDM methods according to their reality can also be proposed. Research opportunities presented by other authors may also be explored, such those proposed or evidenced by Liang *et al.* (2018), Cheng *et al.* (2017) and (MARCONDES *et al.*, 2017).

BIBLIOGRAPHY

ALMEIDA, A. T. de; GEIGER, M. J.; MORAIS, D. C. *Challenges in multicriteria decision methods.* [S.l.]: Oxford University Press, 2018. Citado 3 vezes nas páginas 21, 23, and 35.

ALTUNTAS, S.; DERELI, T. A novel approach based on dematel method and patent citation analysis for prioritizing a portfolio of investment projects. *Expert systems with Applications*, Elsevier, v. 42, n. 3, p. 1003–1012, 2015. Citado 3 vezes nas páginas 36, 37, and 48.

ANANDA, J.; HERATH, G. A critical review of multi-criteria decision making methods with special reference to forest management and planning. *Ecological Economics*, Elsevier B.V., v. 68, n. 10, p. 2535–2548, aug 2009. ISSN 09218009. Citado 3 vezes nas páginas 10, 11, and 12.

ANEEL. Manual 2012: Programa de Pesquisa e desenvolvimento tecnológico do setor de energia elétrica. 2012. Disponível em: https://bit.ly/2Jbi3TQ. Citado na página 59.

ANEEL. Transparência: Programa de pesquisa e desenvolvimento do setor de energia elétrica. 2018. Disponível em: https://bit.ly/2u32ao9. Citado na página 59.

ANP. Seleção pública de projetos sociais e ambientais 2018: Programa Petrobras Socioambiental. 2018. Disponível em: https://bit.ly/2TPszUI. Citado na página 59.

APPOLINARIO, F. *Metodologia da ciência: filosofia e prática da pesquisa*. [S.l.]: Cencage Learning, 2009. 209 p. (Metodologia da ciência). Citado na página 6.

ARRATIA, M.; LóPEZ, I.; SCHAEFFER, S.; CRUZ-REYES, L. Static r&d project portfolio selection in public organizations. *Decision Support Systems*, v. 84, p. 53–63, 2016. Citado 4 vezes nas páginas 2, 16, 31, and 35.

AWASTHI, A.; CHAUHAN, S. S. A hybrid approach integrating affinity diagram, ahp and fuzzy topsis for sustainable city logistics planning. *Applied Mathematical Modelling*, Elsevier, v. 36, n. 2, p. 573–584, 2012. Citado na página 60.

AWASTHI, A.; OMRANI, H. A goal-oriented approach based on fuzzy axiomatic design for sustainable mobility project selection. *International Journal of Systems Science: Operations & Logistics*, Taylor & Francis, v. 6, n. 1, p. 86–98, 2019. Citado na página 60.

BALACHANDRA, R.; FRIAR, J. H. Factors for success in r&d projects and new product innovation: a contextual framework. *IEEE Transactions on Engineering management*, IEEE, v. 44, n. 3, p. 276–287, 1997. Citado na página 1.

BANAITIENE, N.; BANAITIS, A.; KAKLAUSKAS, A.; ZAVADSKAS, E. Evaluating the life cycle of a building: A multivariant and multiple criteria approach. *Omega*, v. 36, n. 3, p. 429–441, 2008. Citado na página 11.

BARD, J.; BALACHANDRA, R.; KAUFMANN, P. An interactive approach to r&d project selection and termination. *IEEE Transactions on Engineering Management*, v. 35, n. 3, p. 139–146, 1988. Citado 11 vezes nas páginas 3, 14, 18, 24, 30, 34, 62, 95, 110, 113, and 153.

BEAUJON, G.; MARIN, S.; MCDONALD, G. Balancing and optimizing a portfolio of r&d projects. *Naval Research Logistics*, v. 48, n. 1, p. 18–40, 2001. Citado 5 vezes nas páginas 14, 30, 94, 108, and 114.

BEHZADIAN, M.; KHANMOHAMMADI, O.; YAZDANI, M.; IGNATIUS, J. A state-of the-art survey of topsis applications. *Expert Systems with Applications*, v. 39, n. 17, p. 13051–13069, 2012. Citado na página 11.

BELL, D.; READ, A. The application of a research project selection method. R & DManagement, v. 1, n. 1, p. 35–42, 1970. Citado 4 vezes nas páginas 14, 30, 96, and 113.

BENAYOUN, R.; ROY, B.; SUSSMAN, B. Electre: Une méthode pour guider le choix en présence de points de vue multiples. *Note de travail*, v. 49, 1966. Citado na página 20.

BERALDI, P.; VIOLI, A.; SIMONE, F. D. A decision support system for strategic asset allocation. *Decision support systems*, Elsevier, v. 51, n. 3, p. 549–561, 2011. Citado na página 2.

BERTRAND, J. W. M.; FRANSOO, J. C. Operations management research methodologies using quantitative modeling. *International Journal of Operations amp; Production Management*, v. 22, n. 2, p. 241–264, Feb 2002. ISSN 0144-3577. Citado na página 6.

BHATTACHARYYA, R. A grey theory based multiple attribute approach for r&d project portfolio selection. *Fuzzy Information and Engineering*, v. 7, n. 2, p. 211–225, 2015. Citado 12 vezes nas páginas 1, 16, 31, 63, 96, 107, 109, 111, 114, 117, 120, and 154.

BHATTACHARYYA, R.; KUMAR, P.; KAR, S. Fuzzy r&d portfolio selection of interdependent projects. *Computers and Mathematics with Applications*, v. 62, n. 10, p. 3857–3870, 2011. Citado 13 vezes nas páginas 2, 15, 24, 31, 63, 68, 69, 96, 108, 111, 114, 115, and 153.

BILALIS, N.; LOLOS, D.; ANTONIADIS, A.; EMIRIS, D. A fuzzy sets approach to new product portfolio management. In: IEEE. *IEEE International Engineering Management Conference*. [S.l.], 2002. v. 1, p. 485–490. Citado na página 3.

BITMAN, W. R.; SHARIF, N. A conceptual framework for ranking r&d projects. *IEEE Transactions on Engineering Management*, IEEE, v. 55, n. 2, p. 267–278, 2008. Citado 22 vezes nas páginas 3, 15, 18, 28, 30, 62, 64, 97, 99, 100, 109, 112, 113, 116, 117, 118, 119, 121, 123, 124, 153, and 154.

BJØRN, A.; SIM, S.; BOULAY, A.-M.; KING, H.; CLAVREUL, J.; LAM, W. Y.; BARBAROSSA, V.; BULLE, C.; MARGNI, M. A planetary boundary-based method for freshwater use in life cycle assessment: Development and application to a tomato production case study. *Ecological Indicators*, Elsevier, v. 110, p. 105865, 2020. Citado na página 2. BNDES. Edital de seleção pública conjunta ANEEL/BNDES/FINEP de apoio à inovação tecnológica no setor elétrico - INOVA ENERGIA. 2013. Disponível em: https://bit.ly/2VQP8WC>. Citado na página 59.

BNDES. Edital de seleção pública conjunta BNDES/FINEP/MCTI/Ministério da Saúde de apoio à inovação tecnológica no setor de equipamentos médicos e tecnologias para a saúde - INOVA SAÚDE - Equipamentos Médicos. 2013. Disponível em: https://bit.ly/2TBH8Mg. Citado na página 59.

BNDES. Edital de seleção pública conjunta FINEP/BNDES/MD/AEB de apoio à inovação tecnológica nos setores aeroespacial, defesa e segurança - INOVA AERODEFESA. 2013. Disponível em: https://bit.ly/2CiZGqh. Citado na página 59.

BNDES. Edital de seleção pública conjunta MCTI/BNDES/FINEP de apoio à inovação tecnológica no setor de agronegócio - INOVA AGRO. 2013. Disponível em: https://bit.ly/2TzAGp3>. Citado na página 59.

BNDES. Edital de seleção pública conjunta MMA/BNDES/FINEP de apoio à inovação tecnológica relacionada ao tema sustentabilidade - INOVA SUSTENTABILIDADE. 2013. Disponível em: https://bit.ly/2T3Cl15. Citado na página 59.

BNDES. Edital de seleção pública de apoio à inovação tecnológica no setor de telecomunicações - INOVA TELECOM. 2013. Disponível em: ">https://bit.ly/2FcwjYx>">https://bit.ly/2FcwjYx>. Citado na página 59.

BNDES. Edital de seleção pública conjunta BNDES/FINEP de apoio à inovação tecnológica industrial no setor de Petróleo Gás - INOVA PETRO. 2014. Disponível em: https://bit.ly/2EXwJR3. Citado na página 59.

BNDES. Edital de Seleção Pública Conjunta BNDES/FINEP de Apoio ao Desenvolvimento, Sustentabilidade e Inovação no setor de Mineração e Transformação Mineral – INOVA MINERAL (Anexo II). 2017. Disponível em: https://bit.ly/2T3b0fx>. Citado na página 59.

BNDES. Edital de seleção pública conjunta BNDES/FINEP: plano de desenvolvimento, sustentabilidade e inovação no setor de mineração e transformação mineral - INOVA MINERAL. 2017. Disponível em: https://bit.ly/2F9BZ5v>. Citado na página 59.

BRAILSFORD, S. C.; ELDABI, T.; KUNC, M.; MUSTAFEE, N.; OSORIO, A. F. Hybrid simulation modelling in operational research: A state-of-the-art review. *European Journal of Operational Research*, v. 278, n. 3, p. 721 – 737, 2019. ISSN 0377-2217. Disponível em: http://www.sciencedirect.com/science/article/pii/S0377221718308786>. Citado na página 6.

BRANS, J.-P.; VINCKE, P. Note—a preference ranking organisation method: (the promethee method for multiple criteria decision-making). *Management science*, INFORMS, v. 31, n. 6, p. 647–656, 1985. Citado na página 20.

BÜYÜKÖZKAN, G.; ÖZTÜRKCAN, D. An integrated analytic approach for six sigma project selection. *Expert Systems with Applications*, Elsevier, v. 37, n. 8, p. 5835–5847, 2010. Citado 3 vezes nas páginas 36, 37, and 48.

CARLSSON, C.; FULLéR, R.; HEIKKILä, M.; MAJLENDER, P. A fuzzy approach to r&d project portfolio selection. *International Journal of Approximate Reasoning*, v. 44, n. 2, p. 93–105, 2007. Citado 11 vezes nas páginas 15, 24, 30, 34, 43, 64, 69, 95, 111, 121, and 155.

CHADEGANI, A. A.; SALEHI, H.; YUNUS, M. M.; FARHADI, H.; FOOLADI, M.; FARHADI, M.; EBRAHIM, N. A. A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases. *Asian Social Science*, v. 9, n. 5, p. 18–26, apr 2013. ISSN 1911-2025. Citado na página 10.

CHAI, J.; LIU, J. N.; NGAI, E. W. Application of decision-making techniques in supplier selection: A systematic review of literature. *Expert Systems with Applications*, v. 40, n. 10, p. 3872–3885, aug 2013. ISSN 09574174. Citado 2 vezes nas páginas 13 and 23.

CHANG, D.-Y. Applications of the extent analysis method on fuzzy ahp. *European journal of operational research*, Elsevier, v. 95, n. 3, p. 649–655, 1996. Citado 2 vezes nas páginas 46 and 48.

CHENG, C.-H.; LIOU, J.; CHIU, C.-Y. A consistent fuzzy preference relations based anp model for r&d project selection. *Sustainability*, Multidisciplinary Digital Publishing Institute, v. 9, n. 8, p. 1352, 2017. Citado 27 vezes nas páginas 3, 16, 18, 31, 35, 36, 37, 48, 50, 63, 68, 79, 95, 98, 101, 102, 104, 105, 106, 107, 110, 111, 113, 115, 121, 153, and 154.

CNPQ. Chamada Universal MCTIC/CNPq n.o 28/2018. 2018. Disponível em: https://bit.ly/2Cluiao. Citado na página 59.

COLLAN, M.; FEDRIZZI, M.; LUUKKA, P. New closeness coefficients for fuzzy similarity based fuzzy topsis: An approach combining fuzzy entropy and multidistance. *Advances in Fuzzy Systems*, v. 2015, 2015. Citado 5 vezes nas páginas 16, 18, 31, 96, and 114.

COLLAN, M.; LUUKKA, P. Evaluating r&d projects as investments by using an overall ranking from four new fuzzy similarity measure-based topsis variants. *IEEE Transactions on Fuzzy Systems*, v. 22, n. 3, p. 505–515, 2014. Citado 6 vezes nas páginas 2, 15, 18, 21, 31, and 96.

COMMITTEE, P. S. et al. A guide to the project management body of knowledge. [S.I.], 1996. Citado na página 17.

CONKA, T.; VAYVAY, O.; SENNAROGLU, B. A combined decision model for r&d project portfolio selection. *International Journal of Business Innovation and Research*, Inderscience Publishers, v. 2, n. 2, p. 190–202, 2008. Citado 19 vezes nas páginas 1, 15, 18, 20, 31, 63, 69, 94, 95, 96, 97, 100, 108, 114, 119, 122, 123, 154, and 155.

CZAJKOWSKI, A. F.; JONES, S. Selecting interrelated r&d projects in space technology planning. *IEEE Transactions on Engineering Management*, EM-33, n. 1, p. 17–24, 1986. Citado 8 vezes nas páginas 2, 14, 18, 24, 30, 94, 96, and 115.

DALALAH, D.; HAYAJNEH, M.; BATIEHA, F. A fuzzy multi-criteria decision making model for supplier selection. *Expert systems with applications*, Elsevier, v. 38, n. 7, p. 8384–8391, 2011. Citado na página 46.

DEVORE, J. L. Probability and Statistics for Engineering and the Sciences. [S.1.]: Cengage Learning, 2015. Citado 2 vezes nas páginas 65 and 69.

DIABY, V.; CAMPBELL, K.; GOEREE, R. Multi-criteria decision analysis (mcda) in health care: a bibliometric analysis. *Operations Research for Health Care*, Elsevier, v. 2, n. 1-2, p. 20–24, 2013. Citado na página 10.

DIAKOULAKI, D.; MAVROTAS, G.; PAPAYANNAKIS, L. Determining objective weights in multiple criteria problems: The critic method. *Computers & Operations Research*, Elsevier, v. 22, n. 7, p. 763–770, 1995. Citado na página 78.

ECKHAUSE, J.; GABRIEL, S.; HUGHES, D. An integer programming approach for evaluating r&d funding decisions with optimal budget allocations. *IEEE Transactions on Engineering Management*, v. 59, n. 4, p. 679–691, 2012. Citado 2 vezes nas páginas 15 and 31.

EILAT, H.; GOLANY, B.; SHTUB, A. R&d project evaluation: An integrated dea and balanced scorecard approach. *Omega*, v. 36, n. 5, p. 895–912, 2008. Citado 24 vezes nas páginas 3, 15, 24, 31, 34, 62, 63, 67, 69, 94, 97, 100, 108, 110, 112, 114, 115, 116, 118, 119, 122, 123, 153, and 154.

ESHLAGHY, A.; RAZI, F. A hybrid grey-based k-means and genetic algorithm for project selection. *International Journal of Business Information Systems*, v. 18, n. 2, p. 141–159, 2015. Citado 10 vezes nas páginas 3, 16, 25, 31, 63, 95, 96, 108, 112, and 154.

FANG, Y.; CHEN, L.; FUKUSHIMA, M. A mixed r&d projects and securities portfolio selection model. *European Journal of Operational Research*, v. 185, n. 2, p. 700–715, 2008. Citado 4 vezes nas páginas 15, 31, 95, and 114.

FETANAT, A.; KHORASANINEJAD, E. A novel hybrid mcdm approach for offshore wind farm site selection: A case study of iran. *Ocean & Coastal Management*, Elsevier, v. 109, p. 17–28, 2015. Citado na página 46.

FINEP. Finep Startup - Programa de investimento em startups inovadoras: Edital de seleção pública. 2018. Disponível em: https://bit.ly/2UVwAnI. Citado na página 59.

GABUS, A.; FONTELA, E. World problems, an invitation to further thought within the framework of dematel. *Battelle Geneva Research Center, Geneva, Switzerland*, p. 1–8, 1972. Citado na página 35.

GABUS, A.; FONTELA, E. Perceptions of the world problematique: Communication procedure, communicating with those bearing collective responsibility. DEMATEL report, 1973. Citado 2 vezes nas páginas 20 and 35.

GARZA-REYES, J. A. Lean and green – a systematic review of the state of the art literature. *Journal of Cleaner Production*, v. 102, p. 18–29, sep 2015. ISSN 09596526. Citado na página 34.

GERHARDT, T. E.; SILVEIRA, D. T. *Métodos de pesquisa*. [S.l.]: Editora da UFRGS, 2019. 120 p. (Métodos de pesquisa). ISBN 9788538600718. Citado na página 6.

GHASEMZADEH, F.; ARCHER, N. An integrated framework for project portfolio selection. *International Journal of Project Management*, v. 17, n. 4, p. 207–216, 1999. ISSN 02637863. Citado na página 2.

GOVINDAN, K.; RAJENDRAN, S.; SARKIS, J.; MURUGESAN, P. Multi criteria decision making approaches for green supplier evaluation and selection: a literature review. *Journal of Cleaner Production*, v. 98, p. 66–83, jul 2015. ISSN 09596526. Citado 2 vezes nas páginas 10 and 13.

GRACIA, M. D. Storch de; PERRINO, D. M.; LLAMAS, B. Multicriteria methodology and hierarchical innovation in the energy sector: The project management institute approach. *Management Decision*, Emerald Publishing Limited, v. 57, n. 5, p. 1286–1303, 2019. Citado 5 vezes nas páginas 16, 20, 31, 39, and 78.

GRAVES, S.; RINGUEST, J. Choosing the best solution in an r&d project selection problem with multiple objectives. *Journal of High Technology Management Research*, v. 3, n. 2, p. 213–224, 1992. Citado 5 vezes nas páginas 1, 14, 30, 94, and 103.

GROUP, B. C. *Perspectives on experience*. [S.l.]: Boston Consulting Group, 1970. Citado na página 20.

GUSTAFSSON, J.; SALO, A. Contingent portfolio programming for the management of risky projects. *Operations Research*, v. 53, n. 6, p. 946–956, 2005. Citado 5 vezes nas páginas 2, 14, 30, 111, and 114.

HAJKOWICZ, S.; COLLINS, K. A review of multiple criteria analysis for water resource planning and management. *Water resources management*, Springer, v. 21, n. 9, p. 1553–1566, 2007. Citado na página 21.

HASSANZADEH, F.; COLLAN, M.; MODARRES, M. A Practical Approach to R&D Portfolio Selection Using the Fuzzy Pay-Off Method. *IEEE Transactions on Fuzzy Systems*, 20, n. 4, p. 615–622, 2012. Citado 6 vezes nas páginas 15, 21, 31, 96, 110, and 115.

HASSANZADEH, F.; COLLAN, M.; MODARRES, M. A practical R&D selection model using fuzzy pay-off method. *International Journal of Avances Manufacturing Technology*, 58, n. 1-4, p. 227–236, 2012. Citado 6 vezes nas páginas 15, 21, 31, 96, 110, and 115.

HASSANZADEH, F.; NEMATI, H.; SUN, M. Robust optimization for interactive multiobjective programming with imprecise information applied to r&d project portfolio selection. *European Journal of Operational Research*, v. 238, n. 1, p. 41–53, 2014. Citado 6 vezes nas páginas 2, 16, 21, 31, 111, and 114.

HEIDENBERGER, K. Dynamic project selection and funding under risk: A decision tree based milp approach. *European Journal of Operational Research*, v. 95, n. 2, p. 284–298, 1996. Citado 7 vezes nas páginas 3, 14, 30, 68, 95, 108, and 114.

HENIG, M.; KATZ, H. R&d project selection: A decision process approach. *Journal of Multi-Criteria Decision Analysis*, v. 5, n. 3, p. 169–177, 1996. Citado 5 vezes nas páginas 14, 30, 94, 95, and 97.

HEYDARI, T.; HOSSEINI, S.-M. S.; MAKUI, A. Developing and solving an one-zero non-linear goal programming model to r and d portfolio project selection with interactions between projects. *International Business Management*, v. 10, n. 19, p. 4516–4521, 2016. Citado 12 vezes nas páginas 3, 16, 31, 64, 94, 107, 108, 110, 111, 112, 117, and 155.

HO, W.; XU, X.; DEY, P. K. Multi-criteria decision making approaches for supplier evaluation and selection : A literature review. *European Journal of Operational Research*, v. 202, n. 1, p. 16–24, 2010. Citado 2 vezes nas páginas 10 and 12.

HOSSEINI, M. R.; MARTEK, I.; BANIHASHEMI, S.; CHAN, A. P.; DARKO, A.; TAHMASEBI, M. Distinguishing characteristics of corruption risks in iranian construction projects: A weighted correlation network analysis. *Science and engineering ethics*, Springer, p. 1–27, 2019. Citado na página 75.

HSU, Y.-G.; TZENG, G.-H.; SHYU, J. Fuzzy multiple criteria selection of governmentsponsored frontier technology r&d projects. *R and D Management*, v. 33, n. 5, p. 539–551, 2003. Citado 28 vezes nas páginas 14, 18, 19, 30, 48, 62, 63, 64, 68, 69, 95, 96, 99, 101, 104, 107, 113, 116, 117, 118, 119, 120, 121, 122, 123, 153, 154, and 155.

HUANG, C.-C.; CHU, P.-Y. Using the fuzzy analytic network process for selecting technology r&d projects. *International Journal of Technology Management*, Inderscience Publishers Ltd, v. 53, n. 1, p. 89–115, 2011. Citado 2 vezes nas páginas 28 and 35.

HWANG, C.-L.; YOON, K. Methods for multiple attribute decision making. In: *Multiple attribute decision making*. [S.l.]: Springer, 1981. p. 58–191. Citado na página 20.

IMOTO, S.; YABUUCHI, Y.; WATADA, J. Fuzzy regression model of r&d project evaluation. *Applied Soft Computing Journal*, v. 8, n. 3, p. 1266–1273, 2008. Citado 15 vezes nas páginas 3, 15, 19, 31, 63, 64, 96, 105, 113, 114, 116, 117, 123, 154, and 155.

IPEA. Radar: Tecnologia, Produção e Comércio Exterior (Nº 48). [S.l.], 2016. 36 p. Disponível em: https://bit.ly/2HjQntZ>. Citado na página 56.

JAFARIZADEH, B.; KHORSHID-DOUST, R. R. A method of project selection based on capital asset pricing theories in a framework of mean-semideviation behavior. *International Journal of Project Management*, v. 26, p. 612–619, 2008. Citado na página 1.

JAHANGIRIAN, M.; ELDABI, T.; NASEER, A.; STERGIOULAS, L. K.; YOUNG, T. Simulation in manufacturing and business: A review. *European Journal of Operational Research*, Elsevier B.V., v. 203, n. 1, p. 1–13, 2010. ISSN 03772217. Citado na página 10.

JENG, D.; HUANG, K.-H. Strategic project portfolio selection for national research institutes. *Journal of Business Research*, v. 68, n. 11, p. 2305–2311, 2015. Citado 20 vezes nas páginas 16, 18, 21, 31, 36, 64, 67, 95, 97, 100, 103, 105, 109, 112, 113, 117, 118, 122, 123, and 155.

JUNG, U.; SEO, D. An anp approach for r&d project evaluation based on interdependencies between research objectives and evaluation criteria. *Decision Support Systems*, v. 49, n. 3, p. 335–342, 2010. Citado 13 vezes nas páginas 2, 15, 18, 21, 31, 63, 68, 69, 96, 107, 108, 114, and 154.

KANNAN, D.; KHODAVERDI, R.; OLFAT, L.; JAFARIAN, A.; DIABAT, A. Integrated fuzzy multi criteria decision making method and multi-objective programming approach for supplier selection and order allocation in a green supply chain. *Journal of Cleaner Production*, Elsevier, v. 47, p. 355–367, 2013. Citado 2 vezes nas páginas 46 and 49.

KARASAKAL, E.; AKER, P. A multicriteria sorting approach based on data envelopment analysis for r&d project selection problem. *Omega (United Kingdom)*, v. 73, p. 79–92, 2017. Citado 24 vezes nas páginas 16, 20, 25, 31, 35, 62, 64, 69, 95, 98, 101, 102, 105, 106, 109, 115, 116, 118, 119, 120, 123, 124, 153, and 154.

KARAVEG, C.; THAWESAENGSKULTHAI, N.; CHANDRACHAI, A. A combined technique using sem and topsis for the commercialization capability of r & d project evaluation. *Decision Science Letters*, v. 4, n. 3, p. 379–396, 2015. Citado 12 vezes nas páginas 16, 18, 31, 62, 95, 101, 104, 108, 113, 118, 123, and 153.

KARSAK, E. A generalized fuzzy optimization framework for R&D project selection using real options valuation. *Computational Science and Its Applications - ICCSA 2006*, *PT 3*, 3982, p. 918–927, 2006. Citado 10 vezes nas páginas 2, 15, 18, 21, 30, 63, 108, 114, 115, and 153.

KAWAKITA, J. The original kj method. *Tokyo: Kawakita Research Institute*, 1991. Citado na página 60.

KEENEY, R. L.; RAIFFA, H. Decisions with multiple objectives: preferences and value trade-offs. [S.l.]: Cambridge university press, 1993. Citado na página 20.

KHAZAI, B.; MERZ, M.; SCHULZ, C.; BORST, D. An integrated indicator framework for spatial assessment of industrial and social vulnerability to indirect disaster losses. *Natural hazards*, Springer, v. 67, n. 2, p. 145–167, 2013. Citado 2 vezes nas páginas 48 and 54.

KUMAR, S. Ahp-based formal system for r&d project evaluation. *Journal of Scientific and Industrial Research*, v. 63, n. 11, p. 888–896, 2004. Citado 22 vezes nas páginas 14, 18, 19, 30, 35, 63, 64, 68, 102, 106, 108, 112, 113, 115, 117, 118, 119, 120, 122, 123, 153, and 155.

LIANG, D.; XU, Z.; LIU, D.; WU, Y. Method for three-way decisions using ideal topsis solutions at pythagorean fuzzy information. *Information Sciences*, v. 435, p. 282–295, 2018. Citado 6 vezes nas páginas 16, 23, 31, 33, 35, and 79.

LIBERATORE, M. R&d project selection. *Telematics and Informatics*, v. 3, n. 4, p. 289–300, 1986. Citado 31 vezes nas páginas 1, 2, 14, 18, 30, 62, 64, 67, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112, 114, 115, 117, 120, 121, 123, 153, and 155.

LIBERATORE, M. An expert support system for r&d project selection. *Mathematical and Computer Modelling*, v. 11, n. C, p. 260–265, 1988. Citado 19 vezes nas páginas 1, 14, 18, 19, 25, 30, 63, 67, 94, 100, 101, 102, 104, 107, 111, 114, 115, 117, and 153.

LIBERATORE, M. J. Extension of the analytic hierarchy process for industrial r&d project selection and resource allocation. *IEEE Transactions on Engineering Management*, EM-34, n. 1, p. 12–18, 1987. Citado 17 vezes nas páginas 2, 14, 16, 18, 19, 25, 30, 34, 94, 100, 101, 102, 104, 107, 111, 115, and 117.

LIN, C.-J.; WU, W.-W. A causal analytical method for group decision-making under fuzzy environment. *Expert Systems with Applications*, Elsevier, v. 34, n. 1, p. 205–213, 2008. Citado 3 vezes nas páginas 28, 36, and 50.

LING, W.-K. Nonlinear digital filters: analysis and applications. [S.l.]: Academic Press, 2010. Citado na página 43.

MADEY, G. R.; DEAN, B. V. Strategic planning for investment in r&d usiong decision analysis and mathematical programming. *IEEE Transactions on Engineering Management*, EM-32, n. 2, p. 84–90, 1985. Citado 9 vezes nas páginas 14, 18, 30, 63, 94, 95, 105, 111, and 154.

MALCZEWSKI, J. GIS-based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, v. 20, n. 7, p. 703–726, 2006. ISSN 13658816. Citado 3 vezes nas páginas 10, 13, and 25.

MARCONDES, G. A. B.; LEME, R. C.; LEME, M. d. S.; SILVA, C. E. Sanches da. Using mean-Gini and stochastic dominance to choose project portfolios with parameter uncertainty. *Engineering Economist*, 62, n. 1, p. 33–53, 2017. Citado 7 vezes nas páginas 2, 16, 23, 26, 31, 35, and 79.

MARDANI, A.; JUSOH, A.; ZAVADSKAS, E. Fuzzy multiple criteria decision-making techniques and applications-two decades review from 1994 to 2014. *Expert Systems with Applications*, v. 42, n. 8, p. 4126–4148, 2015. Citado na página 11.

MARDANI, A.; ZAVADSKAS, E. K.; KHALIFAH, Z.; JUSOH, A.; NOR, K. M. D. Multiple criteria decision-making techniques in transportation systems : a systematic review of the state of the art literature. *Transport*, v. 31, n. 3, p. 359–385, 2016. Citado na página 10.

MCTIC. Ministério da Ciência, Tecnologia, Inovação e Comunicações: Indicadores nacionais de ciência, tecnologia e inovação. [S.l.], 2018. 164 p. Disponível em: https://bit.ly/2HiluFg>. Citado na página 56.

MEADE, L.; PRESLEY, A. R&d project selection using the analytic network process. *IEEE Transactions on Engineering Management*, v. 49, n. 1, p. 59–66, 2002. Citado 29 vezes nas páginas 1, 2, 3, 13, 14, 18, 20, 30, 34, 62, 63, 64, 67, 69, 94, 98, 99, 100, 102, 103, 106, 107, 111, 112, 117, 121, 153, 154, and 155.

MEDAGLIA, A. L.; GRAVES, S. B.; RINGUEST, J. L. A multiobjective evolutionary approach for linearly constrained project selection under uncertainty. *European Journal of Operational Research*, 179, n. 3, p. 869–894, 2007. Citado 7 vezes nas páginas 3, 15, 30, 34, 94, 103, and 114.

MENDOZA, G.; MARTINS, H. Multi-criteria decision analysis in natural resource management: A critical review of methods and new modelling paradigms. *Forest Ecology and Management*, v. 230, n. 1-3, p. 1–22, jul 2006. ISSN 03781127. Citado na página 10.

MISHAN, E. J.; EUSTON, Q. Cost-benefit analysis. [S.l.]: Praeger New York, 1976. Citado na página 20.

MIZUMOTO, M.; TANAKA, K. Fuzzy sets and their operations. *Information and Control*, Elsevier, v. 48, n. 1, p. 30–48, 1981. Citado 2 vezes nas páginas 42 and 45.

MOHAGHAR, A.; FATHI, M.; FAGHIH, A.; TURKAYESH, M. An integrated approach of fuzzy anp and fuzzy topsis for r&d project selection: A case study. *Australian Journal of Basic and Applied Sciences*, v. 6, n. 2, p. 66–75, 2012. Citado 24 vezes nas páginas 2,

15, 18, 21, 31, 62, 64, 94, 98, 99, 100, 102, 103, 104, 105, 106, 108, 109, 112, 113, 121, 122, 153, and 155.

MOHANTY, R.; AGARWAL, R.; CHOUDHURY, A.; TIWARI, M. A fuzzy anp-based approach to r&d project selection: a case study. *International Journal of Production Research*, Taylor & Francis, v. 43, n. 24, p. 5199–5216, 2005. Citado 30 vezes nas páginas 14, 20, 30, 34, 43, 48, 62, 63, 64, 67, 68, 69, 97, 98, 99, 100, 102, 103, 105, 106, 108, 109, 110, 111, 112, 113, 121, 153, 154, and 155.

MONTAJABIHA, M.; KHAMSEH, A. A.; AFSHAR-NADJAFI, B. A robust algorithm for project portfolio selection problem using real options valuation. *International Journal* of Managing Projects in Business, v. 10, n. 2, p. 386–403, 2017. Citado 10 vezes nas páginas 1, 3, 16, 26, 31, 62, 97, 115, 117, and 153.

MORABITO, R.; PUREZA, V.; FLEURY, A.; MELLO, C. H. P.; NAKANO, D. N.; LIMA, E. P. de; TURRIONI, J. B.; HO, L. L.; COSTA, S. E. G. da; MARTINS, R. A. *et al. Metodologia de pesquisa em engenharia de produção e gestão de operações.* [S.1.]: Elsevier Brasil, 2018. Citado na página 3.

NORTON, D. P.; KAPLAN, R. *The Balanced Scorecard: translating strategy into action.* [S.l.]: Institute for International Research, 1999. Citado na página 20.

OGUZTIMUR, S. Why fuzzy analytic hierarchy process approach for transport problems? Louvain-la-Neuve: European Regional Science Association (ERSA), 2011. Citado na página 39.

OPRICOVIC, S. Fuzzy vikor with an application to water resources planning. *Expert* Systems with Applications, Elsevier, v. 38, n. 10, p. 12983–12990, 2011. Citado na página 20.

OPRICOVIC, S.; TZENG, G.-H. Defuzzification within a multicriteria decision model. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, World Scientific, v. 11, n. 05, p. 635–652, 2003. Citado 2 vezes nas páginas 46 and 50.

ORAL, M. Action research contextualizes dea in a multi-organizational decision-making process. *Expert Systems with Applications*, v. 39, n. 7, p. 6503–6513, 2012. Citado 7 vezes nas páginas 3, 15, 31, 95, 97, 114, and 119.

ORAL, M.; KETTANI, O.; LANG, P. A Methodology for Collective Evaluation and Selection of Industrial Research and Development projects. *Management Science*, 37, n. 7, p. 871–885, 1991. Citado 14 vezes nas páginas 14, 24, 30, 34, 64, 69, 94, 97, 107, 111, 119, 122, 154, and 155.

PATIL, S. K.; KANT, R. A fuzzy dematel method to identify critical success factors of knowledge management adoption in supply chain. *Journal of Information & Knowledge Management*, World Scientific, v. 12, n. 03, p. 1350019, 2013. Citado na página 46.

PAUL, S. M.; MYTELKA, D. S.; DUNWIDDIE, C. T.; PERSINGER, C. C.; MUNOS, B. H.; LINDBORG, S. R.; SCHACHT, A. L. How to improve r&d productivity: the pharmaceutical industry's grand challenge. *Nature reviews Drug discovery*, Nature Publishing Group, v. 9, n. 3, p. 203, 2010. Citado na página 1.

PMI, P. The standard for portfolio management. *Project Management Institute, Inc*, 2013. Citado na página 2.

POHEKAR, S.; RAMACHANDRAN, M. Application of multi-criteria decision making to sustainable energy planning—A review. *Renewable and Sustainable Energy Reviews*, v. 8, n. 4, p. 365–381, aug 2004. ISSN 13640321. Citado 3 vezes nas páginas 10, 11, and 12.

PWC. What the top innovators get right. 2018. Disponível em: https://bit.ly/2SMbc43. Citado na página 58.

RABBANI, M.; TAVAKKOLI-MOGHADDAM, R.; JOLAI, F.; GHORBANI, H. A comprehensive model for r and d project portfolio selection with zero-one linear goal-programming (research note). *International Journal of Engineering-Transactions A: Basics*, v. 19, n. 1, p. 55–66, 2006. Citado 11 vezes nas páginas 3, 15, 20, 24, 30, 62, 94, 108, 111, 115, and 153.

Reza Afshari, A. Selection of construction project manager by using Delphi and fuzzy linguistic decision making. *Journal of Intelligent & Fuzzy Systems*, v. 28, n. 6, p. 2827–2838, aug 2015. ISSN 10641246. Citado 3 vezes nas páginas 3, 28, and 35.

RIBEIRO, R. A. Fuzzy multiple attribute decision making: A review and new preference elicitation techniques. *Fuzzy Sets and Systems*, v. 78, n. 2, p. 155–181, mar 1996. ISSN 01650114. Citado na página 10.

RINGUEST, J.; GRAVES, S. The linear multi-objective r&d project selection problem. *IEEE Transactions on Engineering Management*, v. 36, n. 1, p. 54–57, 1989. Citado 6 vezes nas páginas 14, 30, 64, 103, 114, and 154.

RINGUEST, J.; GRAVES, S. The linear r&d project selection problem: An alternative to net present value. *IEEE Transactions on Engineering Management*, v. 37, n. 2, p. 143–146, 1990. Citado 5 vezes nas páginas 14, 30, 63, 114, and 153.

RINGUEST, J.; GRAVES, S. Formulating optimal r&d portfolios. *Research Technology* Management, v. 48, n. 6, p. 42–47, 2005. Citado 3 vezes nas páginas 15, 30, and 95.

RINGUEST, J.; GRAVES, S.; CASE, R. Mean-gini analysis in r&d portfolio selection. *European Journal of Operational Research*, v. 154, n. 1, p. 157–169, 2004. Citado 6 vezes nas páginas 2, 14, 30, 68, 69, and 95.

ROWLEY, J.; SLACK, F. Conducting a literature review. *Management research news*, Emerald Group Publishing Limited, v. 27, n. 6, p. 31–39, 2004. Citado 2 vezes nas páginas 6 and 10.

SAATY, T. L. A scaling method for priorities in hierarchical structures. *Journal of mathematical psychology*, Elsevier, v. 15, n. 3, p. 234–281, 1977. Citado 3 vezes nas páginas 20, 39, and 49.

SAATY, T. L. *The analytic hierarchy process*. New York: McGraw-Hill, 1980. 287 p. Citado 3 vezes nas páginas 39, 42, and 49.

SAATY, T. L. How to make a decision: the analytic hierarchy process. *European journal* of operational research, Elsevier, v. 48, n. 1, p. 9–26, 1990. Citado 4 vezes nas páginas 39, 41, 49, and 51.

SAATY, T. L. Decision making with the analytic network process (anp) and its super decisions software: the national missile defense (nmd) example. *ISAHP 2001 proceedings*, p. 2–4, 2001. Citado na página 20.

SCHIFFELS, S.; FLIEDNER, T.; KOLISCH, R. Human behavior in project portfolio selection: Insights from an experimental study. *Decision Sciences*, Wiley Online Library, v. 49, n. 6, p. 1061–1087, 2018. Citado 3 vezes nas páginas 2, 27, and 35.

SEKER, S.; ZAVADSKAS, E. Application of fuzzy dematel method for analyzing occupational risks on construction sites. *Sustainability*, Multidisciplinary Digital Publishing Institute, v. 9, n. 11, p. 2083, 2017. Citado na página 49.

SHIN, C.-O.; YOO, S.-H.; KWAK, S.-J. Applying the analytic hierarchy process to evaluation of the national nuclear r&d projects: The case of korea. *Progress in Nuclear Energy*, v. 49, n. 5, p. 375–384, 2007. Citado 4 vezes nas páginas 15, 18, 30, and 35.

SHOU, Y.-y.; HUANG, Y.-l. Combinatorial auction algorithm for project portfolio selection and scheduling to maximize the net present value. *Journal of Zhejiang University SCIENCE C*, v. 11, n. 7, p. 562–574, 2010. ISSN 1869-1951. Citado na página 1.

SI, S.-L.; YOU, X.-Y.; LIU, H.-C.; ZHANG, P. Dematel technique: A systematic review of the state-of-the-art literature on methodologies and applications. *Mathematical Problems in Engineering*, Hindawi, v. 2018, 2018. Citado 6 vezes nas páginas 36, 37, 45, 46, 48, and 50.

STEWART, T. A multi-criteria decision support system for r&d project selection. *Journal of the Operational Research Society*, v. 42, n. 1, p. 17–26, 1991. Citado 13 vezes nas páginas 2, 14, 30, 62, 63, 69, 114, 116, 118, 119, 120, 153, and 154.

STEWART, T. A critical survey on the status of multiple criteria decision making theory and practice. *Omega*, v. 20, n. 5-6, p. 569–586, sep 1992. ISSN 03050483. Citado na página 10.

STEWART, T. Multiple objective project portfolio selection based on reference points. *Journal of Business Economics*, v. 86, n. 1-2, p. 23–33, 2016. Citado 4 vezes nas páginas 2, 16, 25, and 31.

STUMMER, C.; HEIDENBERGER, K. Interactive r&d portfolio analysis with project interdependencies and time profiles of multiple objectives. *IEEE Transactions on Engineering Management*, v. 50, n. 2, p. 175–183, 2003. Citado 9 vezes nas páginas 2, 14, 24, 30, 34, 105, 108, 114, and 115.

SUN, H.; MA, T. A packing-multiple-boxes model for r&d project selection and scheduling. *Technovation*, v. 25, n. 11, p. 1355–1361, 2005. Citado 8 vezes nas páginas 3, 15, 24, 30, 63, 114, 116, and 154.

TAYLOR, B.; MOORE, L.; CLAYTON, E. R and D Project Selection and Manpower Allocation with Integer Non-Linear Goal Programming. *Management Science*, 28, n. 10, p. 1149–1158, 1982. Citado 10 vezes nas páginas 3, 14, 18, 30, 95, 101, 107, 110, 114, and 117.

THORE, A. Technology Commercialization: DEA and Related Analytical Methods for Evaluating the Use and Implementation of Technical Innovation. [S.l.]: Kluwer Academic Publishers, 2002. Citado na página 1.

TOLGA, A.; KAHRAMAN, C. Fuzzy multiattribute evaluation of r&d projects using a real options valuation model. *International Journal of Intelligent Systems*, v. 23, n. 11, p. 1153–1176, 2008. Citado 17 vezes nas páginas 2, 15, 18, 19, 31, 62, 96, 100, 101, 102, 103, 104, 107, 111, 117, 122, and 153.

TRIANTAPHYLLOU, E. Multi-criteria decision making methods: a comparative study. [S.l.]: Dordrecht: Springer, 2010. Citado na página 11.

TRIGEORGIS, L. Real options in capital investment: Models, strategies, and applications. [S.l.]: Greenwood Publishing Group, 1995. Citado na página 20.

TSENG, M.-L. An assessment of cause and effect decision-making model for firm environmental knowledge management capacities in uncertainty. *Environmental monitoring and assessment*, Springer, v. 161, n. 1-4, p. 549–564, 2010. Citado na página 55.

UIS. How much your country invest in R&D? Unesco Institute for Statistics, 2018. Disponível em: https://bit.ly/2rMGLgH. Citado na página 1.

VAIDYA, O. S.; KUMAR, S. Analytic hierarchy process: An overview of applications. *European Journal of operational research*, Elsevier, v. 169, n. 1, p. 1–29, 2006. Citado na página 39.

VELASQUEZ, M.; HESTER, P. T. An analysis of multi-criteria decision making methods. *International Journal of Operations Research*, v. 10, n. 2, p. 56–66, 2013. Citado na página 22.

WANG, J.; HWANG, W.-L. A fuzzy set approach for r&d portfolio selection using a real options valuation model. *Omega*, v. 35, n. 3, p. 247–257, 2007. Citado 10 vezes nas páginas 2, 3, 15, 24, 30, 34, 64, 108, 115, and 155.

WANG, J.-j.; JING, Y.-y.; ZHANG, C.-f.; ZHAO, J.-h. Review on multi-criteria decision analysis aid in sustainable energy decision-making. *Renewable and Sustainable Energy Reviews*, v. 13, n. 9, p. 2263–2278, dec 2009. ISSN 13640321. Citado na página 10.

WANG, K.; WANG, C.; HU, C. Analytic hierarchy process with fuzzy scoring in evaluating multidisciplinary r&d projects in china. *IEEE Transactions on Engineering Management*, v. 52, n. 1, p. 119–129, 2005. Citado 18 vezes nas páginas 15, 18, 19, 30, 62, 63, 64, 68, 95, 96, 97, 105, 119, 120, 122, 153, 154, and 155.

WANG, Y.-M.; LUO, Y. Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making. *Mathematical and Computer Modelling*, Elsevier, v. 51, n. 1-2, p. 1–12, 2010. Citado na página 78.

WEI, H.; XIA, B.; YANG, Z.; ZHOU, Z. Model and data-driven system portfolio selection based on value and risk. *Applied Sciences*, Multidisciplinary Digital Publishing Institute, v. 9, n. 8, p. 1657, 2019. Citado 4 vezes nas páginas 16, 26, 31, and 35.

WU, J.; LIANG, L.; YANG, F.; YAN, H. Bargaining game model in the evaluation of decision making units. *Expert Systems with Applications*, v. 36, n. 3 PART 1, p. 4357–4362, 2009. Citado 8 vezes nas páginas 3, 15, 31, 95, 97, 114, 119, and 122.

WU, W.-W.; LEE, Y.-T. Developing global managers' competencies using the fuzzy dematel method. *Expert systems with applications*, Elsevier, v. 32, n. 2, p. 499–507, 2007. Citado na página 55.

YEH, C.-H. The selection of multiattribute decision making methods for scholarship student selection. *International Journal of Selection and Assessment*, Wiley Online Library, v. 11, n. 4, p. 289–296, 2003. Citado na página 3.

ZAVADSKAS, E. K.; KAKLAUSKAS, A.; SARKA, V. The new method of multicriteria complex proportional assessment of projects. *Technological and economic development of economy*, v. 1, n. 3, p. 131–139, 1994. Citado na página 20.

ZAVADSKAS, E. K.; TURSKIS, Z.; KILDIENė, S. State of art surveys of overviews on MCDM/MADM methods. *Technological and Economic Development of Economy*, v. 20, n. 1, p. 165–179, mar 2014. ISSN 2029-4913. Citado 3 vezes nas páginas 10, 11, and 12.

ZHOU, Q.; HUANG, W.; ZHANG, Y. Identifying critical success factors in emergency management using a fuzzy dematel method. *Safety science*, Elsevier, v. 49, n. 2, p. 243–252, 2011. Citado na página 55.

ANNEX A – CRITERIA USED BY THE SLR PAPERS

Criteria	Description	Author
Benefit or pay-off in-	-	Czajkowski e Jones
teraction		(1986)
Expected net benefit	-	Beaujon et al. (2001)
Expected savings	-	Conka <i>et al.</i> (2008)
resulting modernizing		
system instead of		
replacement		
Earned value	-	Eilat <i>et al.</i> (2008)
	-	Liberatore (1986)
Profitability	-	Liberatore (1987)
	-	Liberatore (1988)
	-	Madey e Dean (1985)
Profit	-	Graves e Ringuest
Pront		(1992)
	-	Henig e Katz (1996)
	-	Heydari <i>et al.</i> (2016)
	Net present value. Related to the	Meade e Presley
New	success of the technology and its as-	(2002)
Npv	sociated products as related to com-	
	mercial and marketing.	
	-	Rabbani et al. (2006)
	-	Medaglia et al. (2007)
	-	Mohaghar <i>et al.</i>
		(2012)
	Through improved quality and pro-	Oral <i>et al.</i> (1991)
	ductivity, cost reduction, better	
Economic	quality, lower prices, etc.	

	Even for theoretical projects, the	Wang <i>et al.</i> (2005)
	long-term economic and social val-	
	ues should also be included as crite-	
	ria. One could use heavier weighting	
	for theoretical criteria and lighter	
	weighting for criteria related to eco-	
	nomic value.	
	-	Conka <i>et al.</i> (2008)
	-	Wu et al. (2009)
	-	Oral (2012)
	Each project selected results in an	Taylor $et al.$ (1982)
	expected monetary return as a func-	
	tion of the probability of success of	
	the project	
	-	Henig e Katz (1996
	The maximum possible return on an	Jeng e Huang (2015
Expected return	investment	
	Considering financial information	Karaveg et al. (201
	such as production cost, sales vol-	
	ume, source of funds	
	-	Madey e Dean (198
	-	Eshlaghy e R
		(2015)
	-	Cheng <i>et al.</i> (2017)
	-	Liberatore (1986)
	-	Heidenberger (1996
	-	Ringuest <i>et al.</i> (200
	-	Ringuest e Grav
		(2005)
	-	Fang <i>et al.</i> (2008)
	-	Carlsson <i>et al.</i> (200
Growth potential of	The growth potential of the targeted	Hsu <i>et al.</i> (2003)
product	product applications	
Potential of profitabil-	The project output is expected	Karasakal e Al
ity, improvements in	to provide profitability or improve-	$(2017)^1$
- · ·	ments in productivity or costs	
productivity and cost		
productivity and cost Present value of re-	-	Bard <i>et al.</i> (1988)

5 1	Fuzzy real option value of r&d	Tolga e Kahraman
Real options value	projects	(2008)
(rov)	-	Hassanzadeh <i>et al.</i>
		(2012a)
	-	Hassanzadeh <i>et al.</i>
		(2012b)
	-	Collan e Luukka
		(2014)
Value-added of target	The value-added potential for the	Hsu <i>et al.</i> (2003)
products	targeted products	
Benefit/cost	-	Bell e Read (1970)
Denent/ cost	-	Collan <i>et al.</i> (2015)
Expected degree of	-	Conka <i>et al.</i> (2008)
the facts and the		
knowledge which will		
be gained during the		
project		
Outcome or technol-	-	Czajkowski e Jones
ogy interaction		(1986)
	Number of scientific and technical	Jung e Seo (2010)
Academic papers	articles published or accepted in	
	journals	
	-	Conka <i>et al.</i> (2008)
	-	Eshlaghy e Razi (2015)
Dissemination ability	For benefits to be reaped readily	Wang et al. (2005)
	from an r&d project, it should be	
	disseminated to many fields	
0	Traditional attribute; this attribute	Bhattacharyya (2015)
Outcome	implies the expected outcome of in-	
	dividual project, if selected	
	-	Bhattacharyya <i>et al.</i> (2011)
	Evaluate the possibility to get	Imoto <i>et al.</i> (2008)
	patents	
Patents	Number of patents registered at	Jung e Seo (2010)
	patent	

	The proprietary technology position through the collection of patents owned	Jeng e Huang (2015)
	-	Liberatore (1986)
	-	Conka <i>et al.</i> (2008)
Research	Research that gives support to man-	Mohanty $et al.$ (2005)
	agement and production processes,	
	for upgrading existing technology, to	
	develop new and innovative prod-	
	ucts	
	In the sense of better use and rapid	Oral <i>et al.</i> (1991)
Scientific contribution	diffusion of the existing scientific	
	knowledge, advancing the body of	
	scientific knowledge, etc.	
	-	Wu et al. (2009)
	-	Oral (2012)
Theoretical of techni-	Some indicators in this group are:	Wang <i>et al.</i> (2005)
cal contribution	numbers of journal publications,	
	citations, technical reports, and	
	patents	
Track record of sub-	-	Bitman e Sharif
mitter of this project		$(2008)^2$
Pricing trend, pro-	-	Liberatore (1986)
prietary problem,		
geographical extent,		
and effect on existing		
products (each)		
Relationship with ex-	-	Liberatore (1986)
isting markets		
Regulatory impact	-	Eilat <i>et al.</i> (2008)
Annual market	-	Montajabiha <i>et al.</i>
volatility		(2017)
Environment compat-	The degree to which the firm has the	Henig e Katz (1996)
ibility	technology to develop the product	

Commentities of the state	These attributes scrutinize the vari-	Mohanty et al. (2005)
Competitors effort in	ous market limits. These include po-	
similar areas	tential market size, expected market	
	share received after successful com-	
	pletion of the project, degree of com-	
	petition in a similar field, and the ef-	
	forts of competitors in similar areas.	
	-	Mohaghar <i>et al</i>
		(2012)
	-	Cheng <i>et al.</i> (2017)
Number and strength	Related to the success of the tech-	Meade e Presley
of competitors	nology and its associated products	(2002)
	as related to commercial and mar-	
	keting	
Collaboration with	The project has the potential to pro-	Karasakal e Ake
university/industry	vide the university and industry col-	$(2017)^1$
	laboration	
Environmental	These attributes take into account	Mohanty et al. (2005)
economic regulations	various ambient factors. It en-	
	compasses government policies, eco-	
	nomic regulations, social ambiance,	
	safety considerations and environ-	
	mental considerations.	
	-	Mohaghar <i>et al</i>
		(2012)
Environmental policy	These attributes take into account	Mohanty et al. (2005)
	various ambient factors. It en-	
	compasses government policies, eco-	
	nomic regulations, social ambiance,	
	safety considerations and environ-	
	mental considerations.	
	-	Mohaghar et al
		(2012)

	These attributes take into account	Mohanty et al. (2005)
Government policy	various ambient factors. It en-	$\frac{1}{2003}$
	compasses government policies, eco-	
	nomic regulations, social ambiance,	
	safety considerations and environ- mental considerations.	
	mental considerations.	Mohaghar <i>et al.</i>
	-	0
Environmental sefety	These attributes take into account	(2012)
Environmental safety	These attributes take into account	Mohanty $et al.$ (2005)
considerations	various ambient factors. It en-	
	compasses government policies, eco-	
	nomic regulations, social ambiance,	
	safety considerations and environ-	
	mental considerations.	
	-	Mohaghar et $al.$
		(2012)
Environmental social	These attributes take into account	Mohanty $et al.$ (2005)
ambience	various ambient factors. It en-	
	compasses government policies, eco-	
	nomic regulations, social ambiance,	
	safety considerations and environ-	
	mental considerations.	
	-	Mohaghar <i>et al.</i>
		(2012)
Environmental favora-	The macroeconomic policy for the	Hsu <i>et al.</i> (2003)
bility	project, such as regulations, infras-	
	tructures, capital markets, etc	
Intensity of competi-	The intensity of market competition	Hsu <i>et al.</i> (2003)
tion	of the targeted products	
External regulations	Includes internal and external cul-	Meade e Presley
	tural and political factors that might	(2002)
	influence the decision	
Regulamentory con-	-	Bitman e Sharif
straints		$(2008)^2$
Relatedness of indus-	The scope of industry to which the	Hsu <i>et al.</i> (2003)

Ability to meet likely future regulamenta-	The extent to which a proposed technology coincides with science	Jeng e Huang (2015)
tions	and technology policy	
Influencing actors	-	Bitman e Sharif $(2008)^2$
Environmental con-	Includes internal and external cul-	Meade e Presley
siderations	tural and political factors that might	(2002)
	influence the decision	
Complete product line	-	Liberatore (1986)
and quality improve-		
ment (each)		
Compatibility with	-	Conka <i>et al.</i> (2008)
the existing system		
Synergy with other	-	Eilat <i>et al.</i> (2008)
operations		
Learning and growth	-	Eilat <i>et al.</i> (2008)
(platform for growth)		
Degree of competence	These attributes scrutinize the vari-	Mohanty et al. (2005)
Degree of competence	ous market limits. These include po-	
	tential market size, expected market	
	share received after successful com-	
	pletion of the project, degree of com-	
	petition in a similar field, and the ef-	
	forts of competitors in similar areas.	
	-	Mohaghar et $al.$
		(2012)
	Likely sales volume and market	Tolga e Kahraman
Capability to market	share	(2008)
product	-	Liberatore (1986)
	-	Liberatore (1987)
	-	Liberatore (1988)
Existence of project	Factors related to the project itself	Meade e Presley
champion	and the technology being investi-	(2002)
	gated	
Existence of required	Factors related to the project itself	Meade e Presley
competence	and the technology being investi-	(2002)
	gated	

Technology capability	Is considered with several factors in	Karaveg et al. (2015)
reemology capability	mind, such as; comparative advan-	Rataveg et al. (2019)
	tage, technology beneficial in terms	
	of value to consumer, technology	
	lifetime, and technology applicabil-	
	ity	
Technology compati-	Is considered with several factors in	Karaveg $et al.$ (2015)
bility	mind, such as; comparative advan-	
	tage, technology beneficial in terms	
	of value to consumer, technology	
	lifetime, and technology applicabil-	
	ity	
Capability of research	The capability of the research team,	Hsu <i>et al.</i> (2003)
team	especially the team leader and the	
	key technical staff	
Compatibility of the	The expense items are compatible	Karasakal e Aker
expenses to the mar-	with the current market values	$(2017)^1$
ket		
Computer capacity	Each project selected utilize a spe-	Taylor <i>et al.</i> (1982)
utilization	cific percentage of the existing avail-	
	able computer capacity	
Existence of required	Work sharing and manpower plan-	Karasakal e Aker
competence and de-	ning. The quality and the quantity	$(2017)^1$
gree of internal com-	of the project team. R&d activities	
mitment	are performed by the project team	
Intellectual property	Know-how and patent are impor-	Karaveg et al. (2015)
valuation	tance intellectual capital because	
	they can create a comparative ad-	
	vantage for organization	
	Staff numbers and skills availability	Tolga e Kahraman
	in manufacturing and compatibility	(2008)
Manufacturing	with existing capability	(2000)
capability		Liberatore (1986)
	-	. ,
	-	Liberatore (1987)
	-	Liberatore (1988)
	-	Cheng et al. (2017)

Manufacturing envi-	Respect of the project to environ-	Tolga e Kahrama
ronmental considera- tions	mental conditions	(2008)
	Adequacy of equipment and facilities	Kumar (2004)
Manuala atauina	Requirements for additional equip-	Tolga e Kahrama
Manufacturing	ment and facilities and system flexi-	(2008)
facility and equipment	bility	
requirements/adequacy	-	Liberatore (1986)
	-	Liberatore (1987)
	-	Liberatore (1988)
	-	Cheng <i>et al.</i> (2017)
	Safety of job-site	Tolga e Kahrama
Manufacturing safety		(2008)
	-	Liberatore (1986)
Competence and	These attributes judge the organiza-	Mohanty et al. (2005
experience on similar	tional constraints. It includes the	
project	efficiency of the management staff,	
	the skilled labor available, the re-	
	search staff available, raw material	
	and component availability, and the	
	reliability of the available machinery	
	-	Mohaghar et d
		(2012)
Environmental con-	Includes internal and external cul-	Meade e Presle
siderations	tural and political factors that might	(2002)
	influence the decision	
Workplace safety	Includes internal and external cul-	Meade e Presle
	tural and political factors that might	(2002)
	influence the decision	
R&d infrastructure	A company strategy for r&d activ-	Karasakal e Ak
and culture of the	ities and r&d department availabil-	$(2017)^1$
company	ity. Staff and hardware availability.	
	Monitoring, evaluation and develop-	
	ment of r&d and innovation pro-	
	cesses.	

	These attributes scrutinize the vari-	Mohanty et al. (2005)
	ous market limits. These include po-	
Expected market	tential market size, expected market	
share	share received after successful com-	
	pletion of the project, degree of com-	
	petition in a similar field, and the ef-	
	forts of competitors in similar areas.	
		Mohaghar <i>et al.</i>
		(2012)
	-	Medaglia $et al.$ (2007)
	-	Ringuest e Graves
		(1989)
	-	Graves e Ringuest
		(1992)
	-	Liberatore (1986)
	Related to the success of the tech-	Meade e Presley
	nology and its associated products	(2002)
	as related to commercial and mar-	
	keting	
	These attributes scrutinize the vari-	Mohanty et al. (2005)
Market potential	ous market limits. These include po-	
	tential market size, expected market	
	share received after successful com-	
	pletion of the project, degree of com-	
	petition in a similar field, and the ef-	
	forts of competitors in similar areas.	
	Probability of commercial success	Tolga e Kahraman
	against competitors, customer ac-	(2008)
	ceptance	
	The potential size or growth of a	Jeng e Huang (2015)
	market for products based on the	
	proposed technology	

	Addressing this area requires find- ing the necessary information such as economic trends, and competi- tive data, as well as considering the products values, such as uniqueness, changing consumer behavior, imita- tion, and value chain	Karaveg et al. (2015)
	-	Mohaghar <i>et al.</i> (2012)
	-	Liberatore (1986)
	-	Liberatore (1987)
	-	Liberatore (1988)
	-	Cheng <i>et al.</i> (2017)
Market analysis	Addressing this area requires find-	Karaveg et al. (2015)
	ing the necessary information such	
	as economic trends, and competi-	
	tive data, as well as considering the	
	products values, such as uniqueness,	
	changing consumer behavior, imita-	
	tion, and value chain	
Customer acceptance	-	Liberatore (1986)
Market scope of appli- cation	The potential market size for the targeted products	Hsu <i>et al.</i> (2003)
Market strategy	Addressing this area requires find-	Karaveg et al. (2015)
	ing the necessary information such	
	as economic trends, and competi-	
	tive data, as well as considering the	
	products values, such as uniqueness,	
	changing consumer behavior, imita-	
	tion, and value chain	
	Adequacy for customer future pref-	Tolga e Kahraman
Market trend and	erences	(2008)
growth	-	Liberatore (1986)
	-	Liberatore (1987)
	-	Liberatore (1988)

Aid an organization in	The extent to which a proposed	Jeng e Huang (2015)
competing in the mar-	technology may further improve	
ket	technological developments and	
	competiveness based on the project	
	outcomes	
Unit price	-	Liberatore (1986)
omt price	-	Cheng <i>et al.</i> (2017)
Conducting market	The project output potential to find	Karasakal e Aker
research	an international market	$(2017)^1$
Expected sales volume	To indicate how many achievements	Imoto <i>et al.</i> (2008)
	will be obtained, that means the	
	evaluation of the growing volume re-	
	ceived orders in the future. In other	
	words, this means the project can	
	create a product which will be sold	
	largely	
Calar	-	Madey e Dean (1985)
Sales	-	Stummer e Heiden
		berger (2003)
Opportunity for mar-	The opportunity for the market suc-	Jeng e Huang (2015)
ket success	cess of a product based on a pro-	
	posed technology.	
Potential market	These are the general characteristics	Mohanty et al. (2005)
interactions with the	of a proposed alternative. It includes	
previous product	the expected utility of the project,	
	the strategic benefit of the project	
	to the organization, product life be-	
	fore obsolescence, potential techni-	
	cal interaction with existing prod-	
	ucts, and potential market interac-	
	tions with existing products	
	-	Mohaghar et al
		(2012)
Energy and material	This involves not only production	Wang <i>et al.</i> (2005)
saved	cost savings but also foreign cur-	
	rency usage	

	These attributes judge the organiza-	Mohanty $et al.$ (2005)
Availability of raw	tional constraints. It includes the	
material	efficiency of the management staff,	
	the skilled labor available, the re-	
	search staff available, raw material	
	and component availability, and the	
	reliability of the available machinery	
	-	Liberatore (1986)
	-	Mohaghar <i>et al.</i>
		(2012)
	-	Cheng <i>et al.</i> (2017)
Availability of mate-	-	Kumar (2004)
rial resources and con-		
sumables		
	These attributes judge the organiza-	Mohanty et al. (2005)
Facilities available	tional constraints. It includes the	
	efficiency of the management staff,	
	the skilled labor available, the re-	
	search staff available, raw material	
	and component availability, and the	
	reliability of the available machinery	
	-	Liberatore (1986)
	-	Mohaghar et al.
		(2012)
In-house availability	-	Kumar (2004)
of technology		
Availability of re-	Factors related to the project itself	Meade e Presley
sources	and the technology being investi-	(2002)
	gated	
Resources other than	The resources other than manpower	Karasakal e Ake
manpower	required for r&d activities.	$(2017)^1$

Resource interdepen-	Resource interdependencies result	Bhattacharyya (2015)
dency	from sharing limited resources be-	
	tween different projects. The re-	
	source allocation for each project	
	is inversely related to resources for	
	each concurrent project, an increase	
	in the resource level for one project	
	would lead to a decrease level of	
	another project. Some resources	
	may be shared among one or more	
	projects in such way that the imple-	
	mentation of one project reduces the	
	resource consumption of interrelated	
	projects.	
Resource require-	In terms of r&d personnel, r&d labs,	Oral <i>et al.</i> (1991)
ments	local and foreign currency needs, etc.	
	These were then transformed into	
	r&d budgets in monetary units.	
Other resources	-	Heydari et al. (2016)
Availability of r&d	-	Liberatore (1986)
resources	-	Cheng <i>et al.</i> (2017)
Availability of re-	Factors related to the project itself	Meade e Presley
sources	and the technology being investi-	(2002)
	gated	
	Available technical resources for re-	Tolga e Kahraman
Technical resources	search and development	(2008)
Technical resources	-	Liberatore (1986)
	-	Liberatore (1987)
	-	Liberatore (1988)
Availability of comple-	The capability of firms to absorb	Hsu <i>et al.</i> (2003)
mentary assets	and internalize the technology devel-	
	oped, and then to commercialize it	
	-	Taylor et al. (1982)
		Jung e Seo (2010)

	Resource – based view (rbv) theory focuses on the strategy of internal resource control to create sustain- able competition. Both tangible re- sources and intangible resources are considered	Karaveg et al. (2015)
	Number of ph.d. Researchers on a project	Jung e Seo (2010)
	-	Heidenberger (1996)
	-	Beaujon $et al.$ (2001)
	-	Rabbani et al. (2006)
	-	Wang e Hwang (2007)
	-	Bhattacharyya <i>et al.</i> (2011)
		Heydari <i>et al.</i> (2016)
		Eilat $et al.$ (2008)
	-	Conka <i>et al.</i> (2008)
	-	Eshlaghy e Razi (2015)
	-	Stummer e Heiden- berger (2003)
	-	Karsak (2006)
Availability of human	Availability of human expertise to	Kumar (2004)
expertise	carry out the project in the organization	
Knowledge/skills availability	These attributes judge the organiza-	Mohanty et al. (2005)
	tional constraints. It includes the	
	efficiency of the management staff,	
	the skilled labor available, the re-	
	search staff available, raw material	
	and component availability, and the	
	reliability of the available machinery	
	-	Liberatore (1986)
	-	Mohaghar <i>et al.</i> (2012)

Research staff	These attributes judge the organiza-	Mohanty $et al.$ (2005)
availability	tional constraints. It includes the	
	efficiency of the management staff,	
	the skilled labor available, the re-	
	search staff available, raw material	
	and component availability, and the	
	reliability of the available machinery	
	-	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Resources other than	The resources other than man-	Karasakal e Aker
manpower	power required for r&d activities are	$(2017)^1$
	planned to be supplied. Their qual-	
	ity	
	And quantity are adequate.	
Resource interdepen-	Resource interdependencies result	Bhattacharyya (2015)
dency	from sharing limited resources be-	
	tween different projects. The re-	
	source allocation for each project	
	is inversely related to resources for	
	each concurrent project, an increase	
	in the resource level for one project	
	would lead to a decrease level of	
	another project. Some resources	
	may be shared among one or more	
	projects in such way that the imple-	
	mentation of one project reduces the	
	resource consumption of interrelated	
	projects.	
Skills needed for the	-	Bitman e Shari
tools needed for this		$(2008)^2$
project		
Technical resource	The degree to which a project has	Jeng e Huang (2015)
availability	access to technical resources.	
Subcontracting	-	Bitman e Shari
needed to perform		$(2008)^2$
this project		
Tools needed to per-	-	Bitman e Shari
r r r r r r r r r		

Availability of people and facilities	-	Eilat <i>et al.</i> (2008)
Labor available to staff	-	Hassanzadeh <i>et al.</i> (2012a)
	-	Hassanzadeh <i>et al.</i> (2012b)
Labor required for	-	Hassanzadeh <i>et al.</i>
implementation		(2012a)
	-	Hassanzadeh <i>et al.</i> (2012b)
Other resources	-	Heydari et al. (2016)
Availability of r&d	-	Cheng <i>et al.</i> (2017)
resources	-	Liberatore (1986)
Probability of com- mercial and technical	-	Eilat <i>et al.</i> (2008)
success		
Market		Liberatore (1986)
Commercial	This focuses on the probability of	Mohanty <i>et al.</i> (2005)
Commercial	not being able to attain the required	(2000)
	sales volume	
	The probability of a successful out-	Taylor <i>et al.</i> (1982)
	come to each project if the project	
	is selected as a function of the num-	
	ber of researchers allocated to the se-	
Probability of success	lected project	
1 robability of success	In order to assess this, measure a	Bard <i>et al.</i> (1988)
	solid knowledge of the market, and	
	the costs associated with production	
	and distribution is required. As the	
	project evolves these factors become	
	clearer to management. A product	
	whose costs will be higher because of	
	unanticipated technical and produc-	
	tion problems is a serious candidate	
	for termination. The probability of	
	commercial success should increase	
	or at least remain the same from one	
	review period to the next	

	With respect to planned time, bud- get, defined objectives, applicability,	Oral <i>et al.</i> (1991)
	etc.	
	-	Meade e Presley
		(2002)
	-	Tolga e Kahraman
		(2008)
	-	Liberatore (1986)
	-	Liberatore (1987)
	-	Liberatore (1988)
	-	Madey e Dean (1985)
	-	Cheng <i>et al.</i> (2017)
	Risk attached with the projects must	Bhattacharyya (2015)
	be as less as possible. As the futures	
וית	of all the projects are uncertain, im-	
Risk	plementation of a project may or	
	may not yield us success. In case of	
	failure, the decision makers may lose	
	their money, time, and resource.	
	-	Gustafsson e Salo
		(2005)
	-	Rabbani <i>et al.</i> (2006)
		Bhattacharyya <i>et al.</i>
		(2011)
	-	Heydari <i>et al.</i> (2016)
	-	Hassanzadeh <i>et al.</i>
		(2014)
Uncertainty	-	Carlsson $et al.$ (2007)
Economic and techni-	-	Mohanty et al. (2005)
cal		
Interdependency	This interdependency affect the	Bhattacharyya (2015)
1 0	overall outcome obtained from a	
	project portfolio. When the out-	
	come interdependency occurs, the	
	total value of a project portfolio is	
	greater than the sum of the individ-	
	ual project values.	
	and project variable.	<u> </u>

Delay	-	Eshlaghy e Razi (2015)
Probability of technical issues	Related to the project itself and the technology being investigated	Meade e Presley (2002)
	-	Kumar (2004)
Probability of com- mercial and technical success	-	Eilat <i>et al.</i> (2008)
Technical	-	Eshlaghy e Razi (2015)
Clarity of definition	-	Kumar (2004)
Facts needed to per- form this project	-	Bitman e Sharif $(2008)^2$
Urgent customer re- quirement	The urgency of customer demands	Jeng e Huang (2015)
Expected utility	These are the general characteristics of a proposed alternative. It includes the expected utility of the project, the strategic benefit of the project to the organization, product life be- fore obsolescence, potential techni- cal interaction with existing prod- ucts, and potential market interac- tions with existing products	Mohanty et al. (2005)
	-	Mohaghar <i>et al.</i> (2012)
Market need	-	Eilat <i>et al.</i> (2008)
Fits in overall objec- tives and strategy	-	Liberatore (1986)
Necessary funding	-	Heydari et al. (2016)
Product life cycle	Factors related to the success of the technology and its associated prod- ucts as related to commercial and marketing	Meade e Presley (2002)

	These are the general characteristics of a proposed alternative. It includes the expected utility of the project, the strategic benefit of the project to the organization, product life be- fore obsolescence, potential techni- cal interaction with existing prod- ucts, and potential market interac- tions with existing products	Mohanty et al. (2005)
	-	$\begin{array}{c} \text{Mohaghar} et al. \\ (2012) \end{array}$
	-	Cheng <i>et al.</i> (2017)
Necessity	To evaluate the necessity to start a project	Imoto $et al.$ (2008)
Financial feasibility	-	Kumar (2004)
Financial analysis	Considering financial information	Karaveg et al. (2015)
	such as production cost, sales vol-	
	ume, source of funds	
Research lifecycle	-	Bitman e Sharif
phase		$(2008)^2$
Content of a technical	The project must be described in de-	Jeng e Huang (2015)
plan	tail to answer questions on clear and	
	concise planning, clear identification	
	of the core technology, feasibility of	
	the technical approach, and the ma-	
	jor technical constraints	
Soundness of	Is there any fundamental scientific	Hsu <i>et al.</i> (2003)
scientific principles	problem? Is the scientific base suffi-	
	cient for further technological devel- opment?	
	Research that gives support to man-	Mohanty et al. (2005)
	agement and production processes,	
	for upgrading existing technology, to	
	develop new and innovative prod-	
	ucts	
	-	Bard <i>et al.</i> (1988)
	_	Bell e Read (1970)

		Ringuest e Graves
	-	(1990)
	_	Medaglia <i>et al.</i> (2007)
	-	Wu et al. (2009)
	-	Oral (2012)
	-	Fang <i>et al.</i> (2008)
	Direct cash flow generated for the di- vision	Stewart (1991)
Cash flow	-	Ringuest e Graves (1989)
Cash now	-	Ringuest e Graves (1990)
	-	Gustafsson e Salo (2005)
	-	Karsak (2006)
	-	Stummer e Heiden-
		berger (2003)
	-	Heidenberger (1996)
	-	Eilat <i>et al.</i> (2008)
	Each project that is selected entails	Taylor $et al.$ (1982)
	an initial setup (fixed) cost, and, a	
	total budget	
	To evaluate the research fund re- quired	Imoto <i>et al.</i> (2008)
	-	Jung e Seo (2010)
Cost	Traditional attribute; this attribute implies the expected cost for individ-	Bhattacharyya (2015)
	ual projects, if selected	Beaujon et al. (2001)
	-	Bhattacharyya <i>et al.</i>
		(2011)
	-	Collan <i>et al.</i> (2015)
	-	Hassanzadeh <i>et al.</i> (2014)
	-	Sun e Ma (2005)
	-	Liberatore (1986)
	-	Conka <i>et al.</i> (2008)
	-	Liberatore (1988)

	-	Hassanzadeh <i>et al.</i> (2012a)
	-	Hassanzadeh <i>et al.</i> (2012b)
	-	Montajabiha <i>et al.</i> (2017)
	-	Wang e Hwang (2007)
	-	Czajkowski e Jones (1986)
	-	Liberatore (1987)
Aids or collaboration from outside agencies (financial)	-	Kumar (2004)
Commercial sponsor- ship	-	Kumar (2004)
Financial resources	The company makes plans for the re-	Karasakal e Aker
	quired financial resources	$(2017)^1$
	-	Cheng <i>et al.</i> (2017)
	-	Liberatore (1986)
Total investment	-	Liberatore (1987)
rotar myestment	-	Liberatore (1988)
	-	Rabbani et al. (2006)
	-	Eilat <i>et al.</i> (2008)
Utilization of assets, cost trend, cost reduc- tion, and cash flow (each)		Liberatore (1986)
Fund	-	Bhattacharyya <i>et al.</i> (2011)
Inicial expenditures	-	Karsak (2006)
R&d funds	-	Stummer e Heiden- berger (2003)
Methodology of the	An appropriate systematic method	Karasakal e Aker
project	and an adequate work plan is de-	$(2017)^1$
	fined. There is a plan for technical	
	risks	

Methods to perform	-	Bitman e Shar
and manage this project		$(2008)^2$
Objective of r&d	To evaluate the objective fitting to	Imoto <i>et al.</i> (2008)
	a company's mission, and projects	
	included in each category are em-	
	phasized by the area pursued by the	
	company and set a high valuation	
Project management	A comprehensive and adequate	Karasakal e Ake
planning	project management plan	$(2017)^1$
Urgency of the project to maintain power generation capacity of the corporation	-	Stewart (1991)
Work packages and	Activities are allocated to the work	Karasakal e Ake
project schedule	packages and project schedule is ap-	$(2017)^1$
	propriate	
Congruence	-	Eilat <i>et al.</i> (2008)
Importance	-	Eilat <i>et al.</i> (2008)
Priority	-	Sun e Ma (2005)
Quality of proposal	Quality of the research proposal, in-	Hsu <i>et al.</i> (2003)
	cluding clear and measurable goals,	
	feasible approach, good planning	
	of resources/manpower, rational	
	scheduling, solutions to problems	
Customer complaints	-	Eilat <i>et al.</i> (2008)
Customer delivery statistics	-	Eilat $et al.$ (2008)
Customer focus feed- back	-	Eilat <i>et al.</i> (2008)
Customer perfor- mance improvement	-	Eilat <i>et al.</i> (2008)
Customer satisfaction	-	Eilat <i>et al.</i> (2008)
Team/supplier satis- faction	-	Eilat <i>et al.</i> (2008)

Related to the success of the tech-	Meade e Presley
nology and its associated products	(2002)
as related to commercial and mar-	
keting	
The time from product conception	Jeng e Huang (2015)
to commercial sale	
-	Kumar (2004)
To evaluate the duration required	Imoto <i>et al.</i> (2008)
until obtaining some results of a	
project since the start of the project	
The time required to complete each	Taylor <i>et al.</i> (1982)
project.	
Time required for individual	Bhattacharyya (2015)
projects; the less is good	
-	Heydari <i>et al.</i> (2016)
Is it now the right timing to conduct	Hsu <i>et al.</i> (2003)
Time for r&d phase of new product	Tolga e Kahraman
	(2008)
-	Liberatore (1986)
-	Liberatore (1987)
-	Liberatore (1988)
-	Liberatore (1986)
-	Liberatore (1986)
-	Montajabiha <i>et al.</i>
	(2017)
_	Bitman e Sharif
	$(2008)^2$
Concerns about public safety and	Hsu <i>et al.</i> (2003)
- •	
commercial production to product	
commercial production to product consumption. The performance	
	nology and its associated products as related to commercial and mar- ketingThe time from product conception to commercial saleTo evaluate the duration required

Sustainability	A comprehensive evaluation of po-	Karaveg et al. (2015)
2 42 641142 11109	tential r&d should compare financial	
	performance with the non-financial	
	performance (nfp) through defining	
	clear aims and objectives; identify-	
	ing requirements; evaluation of the	
	successfulness of activities and uti-	
	lize resources information	
Benefit to	Contribution to improvements in	Stewart (1991)
environment & life	public health and safety, and in the	
chvironniene de me	environment	
	The project has a impact on envi-	Karasakal e Aker
	ronment and life	$(2017)^1$
Contribution to staff		Stewart (1991)
training and develop-		Stewart (1991)
ment, and to general		
job satisfaction		
Learning and growth		Eilat <i>et al.</i> (2008)
(durability [technical	-	Enat <i>et ut</i> . (2008)
and market])		
/		$\mathbf{Filet} \ at \ al \ (2008)$
Learning and growth (team members	-	Eilat $et al.$ (2008)
N N N N N N N N N N N N N N N N N N N		
trained) Social relevance		$K_{\rm umar} (2004)$
Ethics/morality of		Kumar (2004) Bitman e Sharif
/ 0	-	
this project	Denofita to acciety through the im-	$(2008)^2$
Improvement on the	Benefits to society through the im-	Hsu <i>et al.</i> (2003)
qesis	provement in quality, environmen-	
	tal protection, industrial safety, na-	
	tional image and industrial stan-	
	dards	
	Benefits to society achieved through	Jeng e Huang (2015)
	the improvement of national stan-	
	dards of quality, environmental pro-	
	tection, industrial safety, national	
	image, and industrial standards (qe-	
	sis)	

Job creation opportu-	The project creates job opportuni-	Karasakal e Aker
nity	ties by providing new avenues for in-	$(2017)^1$
	dustry	
	In terms of job creation, better	Oral <i>et al.</i> (1991)
	working conditions, higher living	
	standards, etc	
Social benefit	The benefits for human life, such as	Hsu <i>et al.</i> (2003)
	health, and quality of life	
	This item measures the benefits of	Wang <i>et al.</i> (2005)
	r&d projects to society and the pub-	
	lic	
	The project output has a impact on	Karasakal e Aker
	socio-cultural life	$(2017)^1$
	-	Conka <i>et al.</i> (2008)
	-	Oral (2012)
	-	Wu et al. (2009)
Degree of the owner-	-	Conka <i>et al.</i> (2008)
ship		
Learning and growth	-	Eilat <i>et al.</i> (2008)
(propriety position)		
Anticipated change of	-	Kumar (2004)
commercial success		
Utility of regional re-	-	Kumar (2004)
sources		
Competitiveness	Development of in-house technology	Stewart (1991)
Competitiveness	to make the corporation more com-	
	petitive	
	-	Bitman e Sharif
		$(2008)^2$
Concatenation with	The concatenation of the project	Hsu <i>et al.</i> (2003)
s&t policy	with the science and technology pol-	
	icy of the nation	
Importance of the	-	Stewart (1991)
client organization to		
the engineering inves-		
tigations division, and		
of the project to the		
client		

		TT . 1 ()
Proprietary technol-	Will the project generate a propri-	Hsu <i>et al.</i> (2003)
ogy	etary technology position through	
	the intellectual property rights?	
R&d project efficiency	Reflect the economic efficiency of	Wang $et al. (2005)$
and commercializa-	r&d work	
tion potential		
Leader reputation	-	Kumar (2004)
Corporate image	-	Liberatore (1986)
Contribution to na-	Reflects the purpose of encourag-	Wang <i>et al.</i> (2005)
tional economy	ing r&d projects to benefit national	
	economic development in a tangible	
	manner	
Contribution to	-	Stewart (1991)
national strategic		
technological indepen-		
dence		
Decreasing inter-	The project can cause a decrease in	Karasakal e Aker
regional differences in	inter-regional differences in terms of	$(2017)^1$
terms of development	development and this is one of the	
	aims of the project	
Extent of tie-in with	-	Kumar (2004)
existing projects		
Technical interdepen-	Technical interdependencies result	Bhattacharyya (2015)
dency	from leveraging common technol-	
v	ogy across multiple projects. When	
	the technical interdependency oc-	
	curs, the total value of a project is	
	greater than the sum of the individ-	
	ual project values	
Potential for long-	-	Stewart (1991)
term gains to the		· · · ·
division, such as in		
generating future		
contracts		
		<u> </u>

Potential technical	These are the general characteristics	Mohanty et al. (2005)
interaction with	of a proposed alternative. It includes	
existing products	the expected utility of the project,	
	the strategic benefit of the project	
	to the organization, product life be-	
	fore obsolescence, potential techni-	
	cal interaction with existing prod-	
	ucts, and potential market interac-	
	tions with existing products	
	-	Mohaghar <i>et al.</i>
		(2012)
Applicability to other	Factors related to the project itself	Meade e Presley
products and	and the technology being investi-	(2002)
processes	gated	
	Value-added of the targeted prod-	Hsu <i>et al.</i> (2003)
	ucts - the value-added potential for	
	the targeted products	
	-	Cheng <i>et al.</i> (2017)
Compatibility with	-	Liberatore (1986)
other projects		
	Includes internal and external cul-	Meade e Presley
Strategic fit	tural and political factors that might	(2002)
	influence the decision	
	-	Bitman e Sharif
		$(2008)^2$
	-	Carlsson $et al.$ (2007)
Idea source	-	Bitman e Sharif
		$(2008)^2$
Stratogia pood	These are the general characteristics	Mohanty et al. (2005)
Strategic need	of a proposed alternative. It includes	
	the expected utility of the project,	
	the strategic benefit of the project	
	to the organization, product life be-	
	fore obsolescence, potential techni-	
	cal interaction with existing prod-	
	ucts, and potential market interac-	
	tions with existing products	

	-	$\begin{array}{ccc} \text{Mohaghar} & et & al. \\ (2012) \end{array}$
Strategic	-	Conka <i>et al.</i> (2008)
Program complexity	-	Eilat <i>et al.</i> (2008)
Attractiveness of tech-	-	Kumar (2004)
nological route		
Technological rele-	-	Kumar (2004)
vance of the project		
Technological	-	Conka <i>et al.</i> (2008)
Technical	Contribution to firm's know-how.	Tolga e Kahraman (2008)
contribution	-	Wu et al. (2009)
	Through better use and adoption of	Oral <i>et al.</i> (1991)
	imported technology, rapid diffusion	
	of technology, etc.	
Technique improve-	This measures the effectiveness of	Wang <i>et al.</i> (2005)
ment	the candidates and emphasizes their	
	real-world operational ability	
Advancement of	How advanced is the targeted tech-	Hsu <i>et al.</i> (2003)
technology	nology compared with existing tech-	
	nology?	
	How advanced is the proposed tech-	Jeng e Huang (2015)
	nology compared with existing tech-	
	nology?	
Creativity and level of	The creativity and the level of ad-	Wang $et al. (2005)$
advancement	vancement of the project should be	
	encouraged to reach that of a global	
	level. Otherwise, most r&d re-	
	sources would be put into short-term	
	projects with only modest economic	
	value. This may lead to obsoles-	
	cence, which would not be healthy	
	for long-term scientific and techno-	
	logical progress. The measurement	
	of this criterion is through compari-	
	son between r&d projects at the in-	
	ternational level and those at the	
	current local level.	

	How innovative is the research idea?	Hsu <i>et al.</i> (2003)
	Is it an incremental improvement or	
	a radical innovation?	
Innovativeness	-	Karaveg $et al.$ (2015)
	How innovative is the proposed tech- nology?	Jeng e Huang (2015)
	-	Conka <i>et al.</i> (2008)
	-	Karasakal e Aker $(2017)^1$
	-	Bitman e Shari: $(2008)^2$
	Extent of innovation in the project	Kumar (2004)
	objective	
This project's im-	-	Bitman e Shari
provement to techno-		$(2008)^2$
logical dimensions		
Technological connec-	The extents to which the technol-	Hsu <i>et al.</i> (2003)
tions	ogy is applicable for many products.	
	The technological connection is high	
	if there are many technological ap- plications	
Technological diffi-	To evaluate the technological diffi-	Imoto <i>et al.</i> (2008)
culty	culty that a project faces	
Technology used in	-	Karasakal e Ake
the project		$(2017)^1$
Technology skill base	-	Eilat <i>et al.</i> (2008)
Key of technology	The critical characteristics of a tech- nology for product or industry devel- opment.	Jeng e Huang (2015)
Generics or specific	Is the technology developed a	Hsu <i>et al.</i> (2003)
	generic technology to industry? Or	
	is it merely a specific technology for	
	few companies?	
Likelihood of	-	Liberatore (1986)
technical success	The opportunity for success of a proposed technology.	Jeng e Huang (2015)

 1,2 The articles Karasakal e Aker (2017) and Bitman e Sharif (2008) are the only

ones to present scales to criteria used, however, while Karasakal e Aker (2017) presents a acceptable scale with detailed information, Bitman e Sharif (2008) provides a poor scale, that associates only numbers to each level.

ANNEX B – CRITERIA EMPLOYED BY THE BRAZILIAN R&D PUBLIC ORGANIZATIONS

Table B.1 – Criteria employed by Petrobras

Reference	Criteria ¹
p1	Alignment with the guidelines of the program
p2	History and experience of the executing $\operatorname{organization}^2$
p3	Interaction with the organizational business
p4	Strategic partnerships
p5	Characterization of the socio-environmental reality
p6	Level of community participation
p7	Communication plan
$\mathbf{p8}$	Objectives and execution schedule
p9	Methodology
p10	Team
p11	$Evaluation/Indicators^3$
p12	Transparency and accountability practices (such as external project fore- casting and evaluation, tools for results dissemination and collective project management)
p13	Suitability of the physical-financial budget
p14	Integration of social and environmental dimensions
p15	Democratic participation and social control
p16	Interaction with public policies (aimed to maintain or expand the benefits generated by the project)
p17	Project changing potential, in accordance to the context.
P18	Project's high value attributes (usage of social technologies, joint action with the priority public of the program, affirmative actions and/or dissem- ination of knowledge in transversal themes and relevance of the worked areas and/or species)

¹Petrobras do not provide further information regarding the used criteria.

 $^2 {\rm Some}$ projects are executed by an executing organization, instead of a team. This note applies to all programs of this work.

³Criteria not used due to its subjectivity: the experts were unable to evaluate its meaning.

Table B.2 – Cr	iteria employed	l by CNPq
----------------	-----------------	-----------

Reference	Criteria ¹
c1	Excellence of the project regarding scientific, technological, innovation,
	originality and quality aspects. The expected general advancements and proposal methodology are also evaluated.
c2	The project manager experience in the research area in terms of scientific
0	and technological production in the last five years.
c3	Alignment of the project deliverables and results to the schedule.
c4	Coherence and alignment between the proposed objectives, activities and goals and the experience and training of the project team.
c5	Adequacy of the project budget to the project objectives, activities and goals.
сб	Potential impact of the results from technical-scientific, innovation, socio- economic and environmental perspectives.

¹CNPq do not give further information regarding the used criteria.

Reference	Criteria	Description
f1	Eligibility	Measures the fitness of the project
		plan to the program.
f2	Market, Positioning and Products	Measures characteristics of the prod- ucts related to the project, such as: functionalities, tendencies in the des- tination market, price, employed tech- nologies and differentiation from com-
		petitors.
f3	Innovation	Measures the alignment between inno- vation and competitive strategy, tech- nological challenges and general risks
		associated to the project. Potential partnerships with customers and sup- pliers are also evaluated.
f4	Team and societal structure	Evaluated the quality of the human resources in terms of academic de- gree, experience and potential contri- butions.
f5	Investment commitment	Evaluates if other companies are com- mitted to invest in the project.

Table B.3 – Criteria employed by FINEP

Reference	Criteria	Description
al	Originality	Measures the originality, the methodology and the technical-scientific contribution of
		the project. The focus of the project in R&D is also evaluated.
a2	Applicability	Measures the potential of application of the
		delivered products and its extendibility to other fields.
a3	Professional qualification	Measures the impact of the project in train-
		ing and developing human resources.
a4	Technological empowerment	Measures how relevant the project is to gen- erate knowledge and technological advance- ment. This criterion is evaluated in terms of technical-scientific publications, the acquisi- tion of new materials and equipments (in- frastructure support) and the development of new patents (Intellectual property).
a5	Socioenvironmental impact	Measures the positives and negatives im- pacts of the project to the environment (wa- ter, air and soil) and society (quality of life, safety and the potential to enhance local ac- tivities, such as tourism and agriculture).
a6	Economic impact	Measures the financial benefits that will be provided by the project.

Table B.4 – Criteria employed by ANEEL

Reference	$Program^1$	Criteria ²
b1	EN, AE, AG, SA, SU, TE, MI	Adherence of the project plan to the
		program guidelines
b2	EN, AE, AG, SA, SU, TE, MI	Effectiveness of the project plan in
		achieving the objectives of the pro-
<u> </u>		gram
b3	EN, AE, AG, SA, SU, TE, PE, MI	Innovation impact
b4	EN, AG, SU, TE, PE, MI	Technology risk of the project
b5	EN, AE, AG, SU	Marketing appeal
b6	EN, AE, AG, SU, TE	Experience in innovation projects
b7	EN, AE, AG, SU, TE, PE, MI	Technological absorption capacity
b8	EN, AE, AG, SA, SU, TE, PE, MI	Suitability of the schedule to the
		project plan
b9	EN, AE, AG, SA, SU, TE, PE, MI	Suitability of the budget to the project plan
b10	EN, AE, AG, SA, SU, TE, PE	Suitability of the work team availabil-
		ity and size to the project plan
b11	EN, AE, AG, SA, SU, TE, PE	Suitability of the executing organiza-
		tion infrastructure to the project de-
		velopment
b12	EN, AE, AG, SU, TE, PE	Suitability of strategic partnerships
b13	EN, AE, AG, SA, SU, TE, PE, MI	Suitability of the project to the com-
		petitive strategy of the executing or-
		ganization
b14	EN, AE, AG, SA, SU	Export potential and international
		insertion of the executing organiza-
		tion
b15	EN, AE, AG, SU, TE, PE	Marketing model
b16	EN, AE, AG, SU, TE, PE	Suitability of the administrative and
		managerial capacity of the executing
		organization to the project
b17	EN, AE, AG	Duality of the proposed development
b18	EN, AE, AG, SU, TE	Potential of guaranteed demand or
		with strong indicative of interest
b19	EN, AE, AG	Local technological development
b20	EN, AE, AG, SU	Strengthening of the local productive chain
b21	EN, AE, AG, SU, MI	Economic and socio-environmental
	, ,,,	externalities
b22	EN, AE, AG, SU	Scientific and technological external-
	, , , ,	ities

Table B.5 – Criteria employed by BNDES - 1/2

Reference	Program ¹	Criteria ²
b23	EN, AG	Development of partnerships and integrated solutions
b24	AG	Independence to potential technological barriers
b25	AG, SU	Food safety
b26	AG, SU	Prediction of mechanisms for effective absorption and internal-
		ization of technologies
b27	AG, SU	Potential to reduce productive costs
b28	\mathbf{EN}	Development of organic microelectronics and electronics
b29	\mathbf{EN}	Development of solutions with potential to create a technolog-
		ical and productive standard for mass diffusion
b30	\mathbf{EN}	Technological routes with diffusion potential
b31	\mathbf{EN}	Development of embedded electronics
b32	\mathbf{EN}	Level of energy efficiency and impact on energy consumption
b33	EN	Potential usage in public transportation
b34	\mathbf{EN}	Level of autonomy projected to the vehicle
b35	MI	Risk mapping and ability to overcome them
b36	MI	Commercial capacity
b37	MI	Financial capacity
b38	PE	Intensity of personnel qualification
b39	$\rm PE$	Intensity of personnel hiring
b40	PE	Breadth of innovation
b41	PE, TE	Effectiveness in solving problems related to the program guide-
		lines
b42	PE	Economic viability
b43	PE	Organizational and credit risk
b44	\mathbf{SA}	Degree of technological challenge
b45	\mathbf{SA}	Adequation of the executing organization's business model
b46	\mathbf{SA}	Impact on cost reduction of existent products and services
b47	\mathbf{SA}	Development of new treatments and medical procedures
b48	\mathbf{SA}	Development of equipments and devices to the Brazilian Public
		Health Service (SUS)
b49	SU, TE	Social and environmental impact
b50	TE	Degree of national content
¹ Abbreviati	ons of the na	ame of the programs: EN=Inova Energia, AE = Inova Aerodefesa,

Table B.6 – Criteria employed by BNDES - 2/2

¹Abbreviations of the name of the programs: EN=Inova Energia, AE = Inova Aerodefesa, AG = Inova Agro, SA = Inova Saúde, SU = Inova Sustentabilidade, TE = Inova Telecom, PE = Inova Petro and MI = Inova Mineral.

²Criteria not used due to its subjectivity: the experts were unable to evaluate its meaning.

ANNEX C - VALIDATION MATRICES

	p1	p2	p3	p4	p5	p6	p7	p8	p9	p10	p11
IEI											
MPA											
EEI					1						
FII											
TIR								1			
ORR	1						1	1	1		
QTR							1				
FIB											
NFB											
WOR		1								1	
MAR											
COP				1							
EXT											
STF	1		1								
COI											
TER											
CMR											
SCR											
TCI											
TIC											
SOI						1					
ENI											
IHD											

Table C.1 – Validation matrix: ANP x Expert 1 - 1/2

	p12	p13	p14	p15	p16	p17	p18	Used at least once?
IEI								No
MPA								No
EEI			1					Yes
FII		1						Yes
TIR								Yes
ORR		1			1		1	Yes
QTR								Yes
FIB								No
NFB					1		1	Yes
WOR	1							Yes
MAR								No
COP							1	Yes
EXT						1		Yes
STF					1		1	Yes
COI								No
TER								No
CMR								No
SCR								No
TCI								No
TIC							1	Yes
SOI			1	1	1		1	Yes
ENI			1					Yes
IHD							1	Yes

Table C.2 – Validation matrix: ANP x Expert 1 - 2/2

p5p7 p8 p6 p9 p10 p11 p3p1 p2p4 IEI MPA EEI 1 \mathbf{FII} TIR 1 ORR 1 1 QTR 1 1 FIB NFB WOR 1 1 MAR COP 1 EXT STF 1 1 COI TER CMR SCR TCI TIC SOI 1 ENI IHD

Table C.3 – Validation matrix: ANP x Expert 2 - 1/2

	p12	p13	p14	p15	p16	p17	p18	Used at least once?
IEI								No
MPA								No
EEI			1					Yes
FII		1						Yes
TIR								Yes
ORR							1	Yes
QTR		1						Yes
FIB								No
NFB					1		1	Yes
WOR	1							Yes
MAR								No
COP							1	Yes
EXT						1		Yes
STF					1		1	Yes
COI								No
TER								No
CMR								No
SCR								No
TCI								No
TIC							1	Yes
SOI			1	1	1		1	Yes
ENI			1					Yes
IHD							1	Yes

Table C.4 – Validation matrix: ANP x Expert 1 - 2/2

	1	0	0	4		0	
	c1	c2	c3	c4	c5	c6	Used at least once?
IEI							No
MPA							No
EEI							No
FII					1		Yes
TIR							No
ORR	1						Yes
QTR	1						Yes
FIB						1	Yes
NFB							No
WOR		1		1			Yes
MAR							No
COP							No
EXT							No
STF							No
COI							No
TER			1				Yes
CMR							No
SCR							No
TCI	1					1	Yes
TIC							No
SOI						1	Yes
ENI						1	Yes
IHD							No

Table C.5 – Validation matrix: CNPq x Expert 3

	c1	c2	c3	c4	c5	c6	Used at least once?
IEI		02		04	0	0	
							No
MPA							No
EEI							No
FII					1		Yes
TIR							No
ORR	1						Yes
QTR							No
FIB							No
NFB						1	Yes
WOR		1		1			Yes
MAR							No
COP							No
EXT							No
STF							No
COI							No
TER			1				Yes
CMR							No
SCR							No
TCI	1					1	Yes
TIC							No
SOI						1	Yes
ENI						1	Yes
IHD							No

Table C.6 – Validation matrix: CNPq x Expert 4

	f1	f2	f3	f4	f5	Used at least once?
IEI						No
MPA		1				Yes
EEI						No
FII					1	Yes
TIR						No
ORR	1					Yes
QTR						No
FIB						No
NFB						No
WOR				1		Yes
MAR						No
COP		1	1		1	Yes
EXT		1				Yes
STF						No
COI			1			Yes
TER						No
CMR						No
SCR						No
TCI		1	1			Yes
TIC						No
SOI						No
ENI						No
IHD						No

Table C.7 – Validation matrix: FINEP x Expert 5

	f1	f2	f3	f4	f5	Used at least once?
IEI						No
MPA		1				Yes
EEI						No
FII					1	Yes
TIR						No
ORR						No
QTR						No
FIB						No
NFB						No
WOR				1		Yes
MAR						No
COP		1	1		1	Yes
EXT		1				Yes
STF	1					Yes
COI						No
TER						No
CMR						No
SCR						No
TCI		1	1			Yes
TIC						No
SOI						No
ENI						No
IHD						No

Table C.8 – Validation matrix: FINEP x Expert 6

	a1	a2	a3	a4	a5	a6	Used at least once?
IEI							No
MPA							No
EEI							No
FII							No
TIR							No
ORR	1						Yes
QTR							No
FIB						1	Yes
NFB				1			Yes
WOR							No
MAR							No
COP		1					Yes
EXT		1					Yes
STF							No
COI							No
TER							No
CMR							No
SCR							No
TCI	1			1			Yes
TIC				1			Yes
SOI					1		Yes
ENI					1		Yes
IHD			1				Yes

Table C.9 – Validation matrix: ANEEL x Expert 7 $\,$

	a1	a2	a3	a4	a5	a6	Used at least once?
IEI							No
MPA							No
EEI							No
FII							No
TIR							No
ORR							No
QTR							No
FIB						1	Yes
NFB				1			Yes
WOR							No
MAR							No
COP		1					Yes
EXT		1					Yes
STF	1						Yes
COI						1	Yes
TER							No
CMR							No
SCR							No
TCI	1						Yes
TIC							No
SOI					1		Yes
ENI					1		Yes
IHD			1				Yes

Table C.10 – Validation matrix: ANEEL x Expert 8 $\,$

	a1	a2	a3	a4	a5	a6	Used at least once?
IEI							No
MPA							No
EEI							No
FII							No
TIR							No
ORR	1						Yes
QTR							No
FIB						1	Yes
NFB				1			Yes
WOR							No
MAR							No
COP		1				1	Yes
EXT		1					Yes
STF	1						Yes
COI					1	1	Yes
TER							No
CMR							No
SCR							No
TCI	1						Yes
TIC							No
SOI					1		Yes
ENI					1		Yes
IHD			1				Yes

Table C.11 – Validation matrix: ANEEL x Expert 9

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	$ 17^1$	18	19	20
IEI	1		0	1			•		0	10	1	12	10	11	10	10		10	10	
MPA					1						1			1	1		1			<u> </u>
EEI					1									1	1		1			<u> </u>
									1											<u> </u>
TIR								1	1											<u> </u>
ORR		1						1								1				<u> </u>
QTR		1														1				<u> </u>
																				<u> </u>
NFB							1													<u> </u>
WOR						1	1			1						1				<u> </u>
MAR						1				1						1				<u> </u>
												1	1							
COP												1	1							<u> </u>
EXT																				<u> </u>
STF																				
COI																				
TER				1																
CMR																				
SCR																				
TCI			1																	
TIC																				
SOI																		1	1	
ENI																				
IHD																				

Table C.12 – Validation matrix: BNDES x Expert 10 - 1/3

	21	22	23	24	25^{2}	26	27	28^{2}	29	30	31	32	33^{2}	34^{2}	35	36	37
1171	21	22	20	27	20	20	21	20	25	00	01	02	00	54	00	00	01
IEI																	
MPA																1	
EEI	1	1															
FII																	
TIR																	
ORR																	
QTR																	
FIB							1										1
NFB																	
WOR																	
MAR																	
COP			1														
EXT																	
STF																	
COI															1		
TER																	
CMR																	
SCR																	
TCI						1					1	1					
TIC				1							1						
SOI																	
ENI																	
IHD																	

Table C.13 – Validation matrix: BNDES x Expert 10 - 2/3

	38	39	40	41	42	43	44	45	46	$ 47^2$	48^{2}	49	50	Used at least once?
IEI														Yes
MPA														Yes
EEI														Yes
FII														Yes
TIR														Yes
ORR														Yes
QTR														No
FIB					1				1					Yes
NFB	1													Yes
WOR		1												Yes
MAR														No
COP														Yes
EXT														No
STF														No
COI						1								Yes
TER							1							Yes
CMR														No
SCR														No
TCI			1			1	1							Yes
TIC							1							Yes
SOI												1		Yes
ENI												1		Yes
IHD														Yes

Table C.14 – Validation matrix: BNDES x Expert 10 - 3/3

¹Criteria not used due to its subjectivity: the expert was unable to evaluate its meaning; ²Criteria not compared due to its high level of specificity.

ANNEX D – A POSSIBLE USER INTERFACE TO THE PROPOSED INTEGRATED MODEL AND SOFTWARE

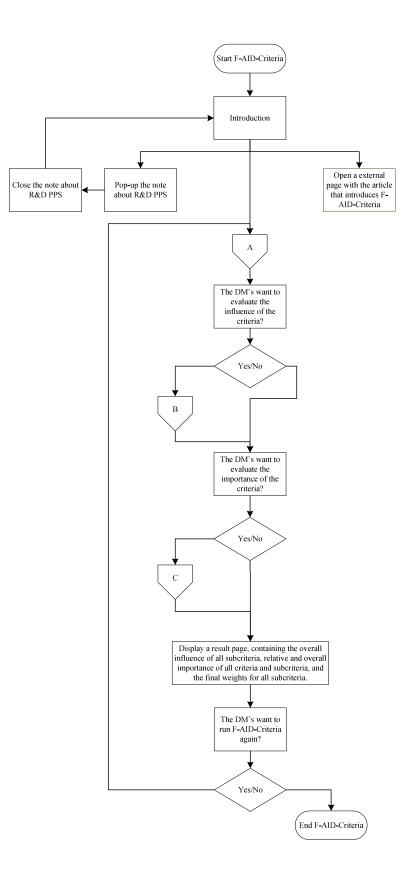


Figure D.1 – Proposed software: user interface - Overvier

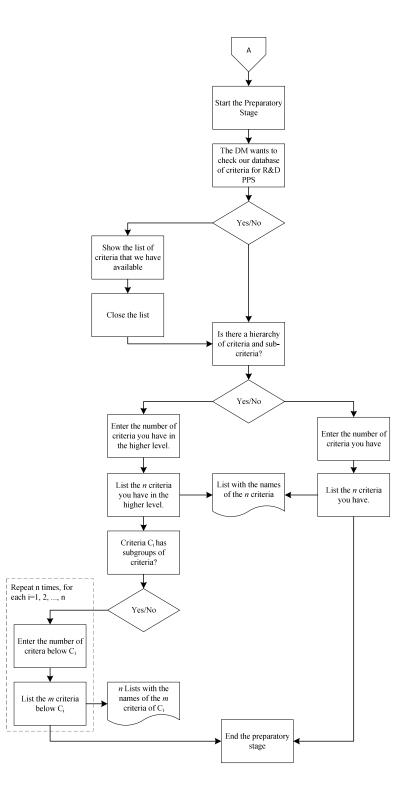


Figure D.2 – Proposed software: user interface - Preparatory Stage

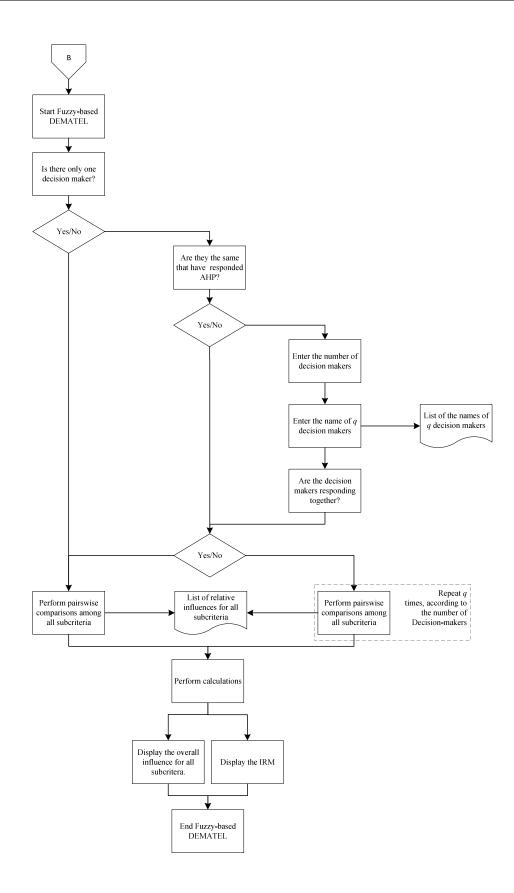


Figure D.3 – Proposed software: user interface - Fuzzy-based DEMATEL

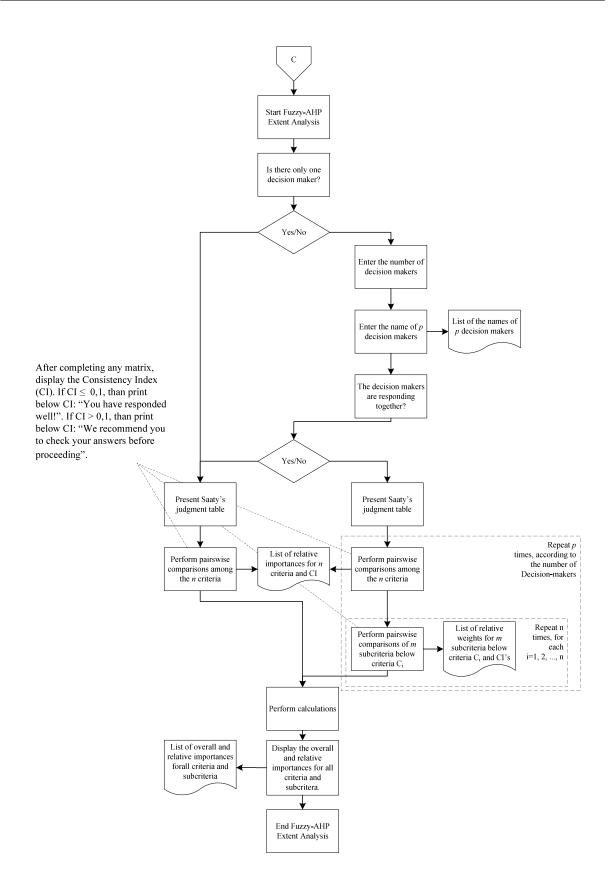


Figure D.4 – Proposed software: user interface - Fuzzy-AHP Extent Analysis

ANNEX E - PROPOSED PSEUDO-CODE

```
#Preparatory Stage
FUNCTION preparatory stage
  Pass in :nothing
  If there is a hierarchy of criteria and subcriteria:
    Input the number of criteria in the higher level
    Input the n criteria in the higher level
    Print the names of the n criteria
    If the criteria Ci has subgroups of criteria:
      For i subgroups of criteria:
        Input the number of criteria below Ci
        Input the m criteria below Ci
        Input the names of each subcriterias
 Else:
    Input the number of criterias
    For n number of criterias:
      Input the values of each criteria
      Input the names of each criteria
  ENDIF
  Return:nothing
Endfunction
If the DM's want to evaluate the influence of the criteria:
  #Fuzzy-based DEMATEL
  Function pairwise_comparison_dematel
    Pass in: The values of criteria in a matrix
    Perform the pairwise comparison among all subcriterias
    Input the relative influences for all subcriterias
    Return the results from the comparison
 Endfunction
 FUNCTION Fuzzy based DEMATEL
    If there is only one decision maker:
        Call pairwise_comparison_dematel
```

Else:

```
If they are the same that responded AHP:
     For n number of decision makers:
        Call pairwise comparison
     Else:
        Input the number of decision makers
        Input the name of q decision makers
       Print the names of q decision makers
        If the decision makers are responding together:
          Call pairwise_comparison
       Else:
         For q decision makers:
            Call pairwise_comparison
       ENDIF
   ENDIF
   Perform calculations from DEMATEL
   Print the overall influence for all subcriterias
   Print the IRM
   END Fuzzy-based DEMATEL
 ENDIF
If the DM's want to evaluate the importance of the criteria:
 #Fuzzy AHP extent analysis
 Function pairwise comparison ahp
   Pass in: criterias
   Perform pairwise comparisons among the n criterias
   Print the relative importance for n criteria and CI
   Return the results from the comparison
 Endfunction
 Start fuzzy ahp extent analysis
  If there is only one decision maker:
   Print Saaty's judgment table
   Call pairwise_comparison_ahp
 Else:
   Input the number of decision makers
   Input the name of p decision makers
```

```
Input the names of p decision makers
    If the decision makers are responding together:
      Print Saaty's judgment table
      Call pairwise_comparison_ahp
    Else:
      Print Saaty's judgment table
      For p times according to the number of decision makers:
        Call pairwise_comparison_ahp
        For n times for each subcriteria below Ci
          Perform pairwise comparisons of m subcriteria below criteria Ci
          Input the relative weights for m subcriteria below criteria Ci
          and Ci's
    ENDIF
  ENDIF
  Perform calculations from FUZZY-AHP
  Print the overall and relative importances for all criteria and
  subcriteria
  Print the overall and relative importances for all criteria and
  subcriteria
  END FUZZYAHP
ENDIF
```

Print the result with the overall influence of all subcriteria, relative and overall importance of all criteria and subcriteria, and the final weights for all subcriteria

ANNEX F – NON-VERIFIED THEORETICAL LIST OF CRITERIA FOR R&D PPS

#	Criteria	Description
1	Commercial & Mar-	Is related, in a general manner, to the uncertainty of a project
	ket Risk (CMR)	to induce the commercial success (MOHANTY et al., 2005; LIB-
		ERATORE, 1986; EILAT <i>et al.</i> , 2008).
2	Competitiveness	Measures the potential of a project to enhance the company's
	(COM)	participation on the market more than its competitors. It can
		be achieved, for example, by the concatenation with Science $\&$
		Technology (S&T) policy or with the development, use and com-
		mercialization of proprietary technology (HSU <i>et al.</i> , 2003).
3	Corporate Image	Describes the potential of a project to enhance the company's
	(COI)	visibility before the society or with a specific company or with
		an economic segment. Some articles like Liberatore (1986) used
		corporate image as a criteria and others indirectly achieved this
		by pursuing other goals, such as the contribution of a project to
		the national economy (WANG $et al., 2005$).
4	Customer Require-	Includes the criteria that are imposed by the customer, such as
	ments (CUR)	expected utility (MOHANTY et al., 2005) and clarity of defini-
		tion (KUMAR, 2004).
5	Environmental	Measures the capacity of a project to generate any environmental
	Impact (ENI)	benefit (KARASAKAL; AKER, 2017; STEWART, 1991). Be-
		sides the internal environment, it can also be associated to the
		external environment, such as the project ecological implications
		(BITMAN; SHARIF, 2008) or its sustainability (KARAVEG et
		<i>al.</i> , 2015).
6	Extendibility (EXT)	Is related to the capacity of a project to enhance its company's
		growing by the addition of new components or integrating the
		project to other public polices. It can be measured, for example,
		by the applicability of a project results in other products and
		process (MEADE; PRESLEY, 2002), the potential technical in- teraction with existing products (MOHANTY <i>et al.</i> , 2005) and
		the compatibility with other projects (LIBERATORE, 1986).
7	External Environ-	Considers all factors and criteria that are not within the com-
•	ment Income (EEI)	pany and are out of its control, such as the existence of competi-
		tors (MOHANTY <i>et al.</i> , 2005), unexpected volatilities (MONTA-
		JABIHA et al., 2017) and regulations (MOHANTY et al., 2005;
		MOHAGHAR et al., 2012).
8	Feasibility Require-	Includes the criteria that are mandatory to successfully perform
	ments (FER)	the project, for example, the product life cycle (MOHANTY et
		al., 2005) and the financial feasibility (KUMAR, 2004).
9	Financial Benefit	Expresses the financial return of the project to an organizational
	(FIB)	and can be measured by different indicators, such as net present
		value (NPV) (RABBANI et al., 2006), present value of return
		(BARD et al., 1988) and real options value (ROV) Tolga e Kahra-
		man (2008).
10	Financial Income	Is related to all financial resources needed to perform the project
	(FII)	and they are able to be measured in terms of cost, budget,
		cash flow, total investment and other metrics (LIBERATORE,
		1988; BHATTACHARYYA et al., 2011; CHENG et al., 2017;
		RINGUEST; GRAVES, 1990; KARSAK, 2006).

Table F.1 – Non-verified theorical list of criteria for R&D PPS - 1/3.

#	Criteria	Description
$\frac{\pi}{11}$	General Risk (GER)	Comprehends the criteria related to the overall uncertainty asso-
11		ciated to a project and can be represented by, for example, the
		probability of success (CHENG <i>et al.</i> , 2017).
12	Impact in Human	Associates to any criteria related to the improvement and training
	Development (IHD)	of human resources (EILAT <i>et al.</i> , 2008; STEWART, 1991).
13	Internal Environ-	Comprehends the criteria related to factors inside an orga-
	ment Income (IEI)	nization, like workplace safety and manufacturing capability
		(MEADE; PRESLEY, 2002; CHENG et al., 2017).
14	Market Potential	Includes criteria exclusively related to the market, such as sales,
	(MAP)	market acceptance, interactions, trends, potential and possible
		market share (MOHANTY <i>et al.</i> , 2005; MADEY; DEAN, 1985).
15	Material Resources	Includes the criteria related to resources that will be consumed,
	(MAR)	like raw material and energy (WANG <i>et al.</i> , 2005; CHENG <i>et al.</i> , 2017)
16	Non Financial Dana	2017).
16	Non-Financial Bene- fit (NFB)	Expresses the non-financial gains of the project to an organiza- tional, such as patents (JUNG; SEO, 2010) and academic papers
	$\Pi \left(\left[\mathbf{N} \mathbf{I} \right] \mathbf{D} \right)$	(CONKA <i>et al.</i> , 2008).
17	Organizational Re-	comprehends the criteria imposed by the organization, like the
11	quirements (ORR)	objective of R&D, priority, congruence and importance (IMOTO
	quinomonos (orano)	<i>et al.</i> , 2008; EILAT <i>et al.</i> , 2008; SUN; MA, 2005).
18	Quality Require-	Put together all the criteria that may interfere on the overall
	ments (QTR)	quality of the project, such as customer feedback, customer sat-
		isfaction and the quality proposal (HSU et al., 2003; EILAT et
		al., 2008).
19	Scope Risk (SCR)	Measures the probability of project's results in staying outside
		its scope after conclusion. Therefore, it can be associated to
		the risk of delay (ESHLAGHY; RAZI, 2015), additional costs
		(MOHANTY <i>et al.</i> , 2005) or unexpected interdependencies Bhat-
20	Social Impact (SOI)	tacharyya (2015).
20	Social Impact (SOI)	Measures the capacity of the project to generate social bene- fit (ORAL <i>et al.</i> , 1991; RINGUEST; GRAVES, 1989). It can
		also be associated to job creation opportunities (KARASAKAL;
		AKER, 2017) and the ethics or morality of the project (BITMAN;
		SHARIF, 2008).
		······································

Table F.2 – Non-verified theorical list of criteria for R&D PPS - 2/3.

Table F.3 – Non-verified theorical list of criteria for R&D PPS - 3/3.

	~	
#	Criteria	Description
21	Strategic Fitness	Measures the capacity of a project to meet the strategic goals of
	(STF)	the company. It can be also described as strategic fit (CARLS-
		SON et al., 2007) and strategic need (MOHANTY et al., 2005),
		for example.
22	Technical Attrac-	Indicates the receptivity by the market with the relevance of a
	tiveness & Relevance	developed technology (CONKA et al., 2008; KUMAR, 2004).
	(TAR)	
23	Technical Contribu-	Indicates the potential of a project to introduce new approaches
	tion & Innovative-	to achieve new technologies (JENG; HUANG, 2015; ORAL et
	ness (TCI)	al., 1991). It can also be measured by terms of advancement
		of technology (HSU et al., 2003) and creativity (WANG et al.,
		2005).
24	Technical Issues &	Is related to the main technologies used in the project and their
	Constraints (TIC)	impact or possible associated problems. The criteria can be ex-
		emplified as the technological connections (HSU <i>et al.</i> , 2003), the
		technological difficulty (IMOTO <i>et al.</i> , 2008) and type of tech-
		nology (HSU <i>et al.</i> , 2003).
25	Technical Risk	Is related, in a general manner, to the uncertainty associated
	(TER)	to the technology or the probability of technical issues to occur
	(1210)	(MEADE; PRESLEY, 2002; KUMAR, 2004).
26	Timing Require-	Is related to all criteria belonging to a time dimension, such as
	ments (TIR)	timing, project completion time and time to market (MEADE;
		PRESLEY, 2002; LIBERATORE, 1986; HEYDARI <i>et al.</i> , 2016).
27	Work Resources	Comprehends the criteria related to resources that will be used,
	(WOR)	such as manpower and their required knowledge and experience
		(WANG; HWANG, 2007; MOHAGHAR <i>et al.</i> , 2012) or employ-
		ing a reputable leader or team (KUMAR, 2004).
		ing a reputable leader of team (KOMAR, 2004).

ANNEX G – INTER-CRITERIA CORRELATION COEFFICIENTS

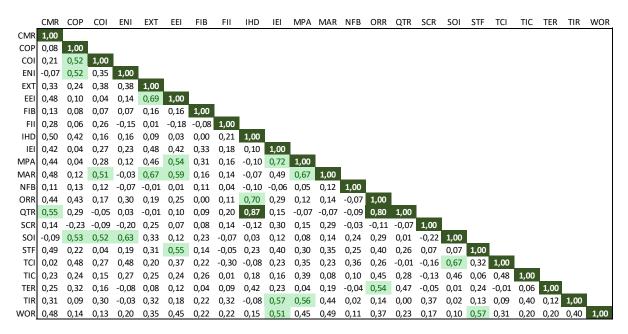


Figure G.1 – Pearson's correlation coefficients between the proposed criteria

Table G.1 – Pearson's correlation coefficients between the proposed groups of criteria

	ENI	SER	RES	TEC	BEN	STR	RIS	SEI
ENI	1,00							
SER	0,33	1,00						
RES	0,69	0,38	1,00					
TEC	0,53	0,30	0,44	1,00				
BEN	0,61	0,15	0,56	0,56	1,00			
STR	0,38	0,44	0,46	0,52	0,32	1,00		
RIS	0,44	0,42	0,48	0,04	0,24	0,15	1,00	
SEI	0,19	0,39	0,15	0,65	0,15	0,65	-0,13	1,00